1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/mmu.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 */ 7 #include <linux/module.h> 8 #include <linux/kernel.h> 9 #include <linux/errno.h> 10 #include <linux/init.h> 11 #include <linux/mman.h> 12 #include <linux/nodemask.h> 13 #include <linux/memblock.h> 14 #include <linux/fs.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sizes.h> 17 18 #include <asm/cp15.h> 19 #include <asm/cputype.h> 20 #include <asm/cachetype.h> 21 #include <asm/sections.h> 22 #include <asm/setup.h> 23 #include <asm/smp_plat.h> 24 #include <asm/tlb.h> 25 #include <asm/highmem.h> 26 #include <asm/system_info.h> 27 #include <asm/traps.h> 28 #include <asm/procinfo.h> 29 #include <asm/memory.h> 30 #include <asm/pgalloc.h> 31 #include <asm/kasan_def.h> 32 33 #include <asm/mach/arch.h> 34 #include <asm/mach/map.h> 35 #include <asm/mach/pci.h> 36 #include <asm/fixmap.h> 37 38 #include "fault.h" 39 #include "mm.h" 40 #include "tcm.h" 41 42 extern unsigned long __atags_pointer; 43 44 /* 45 * empty_zero_page is a special page that is used for 46 * zero-initialized data and COW. 47 */ 48 struct page *empty_zero_page; 49 EXPORT_SYMBOL(empty_zero_page); 50 51 /* 52 * The pmd table for the upper-most set of pages. 53 */ 54 pmd_t *top_pmd; 55 56 pmdval_t user_pmd_table = _PAGE_USER_TABLE; 57 58 #define CPOLICY_UNCACHED 0 59 #define CPOLICY_BUFFERED 1 60 #define CPOLICY_WRITETHROUGH 2 61 #define CPOLICY_WRITEBACK 3 62 #define CPOLICY_WRITEALLOC 4 63 64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 65 static unsigned int ecc_mask __initdata = 0; 66 pgprot_t pgprot_user; 67 pgprot_t pgprot_kernel; 68 69 EXPORT_SYMBOL(pgprot_user); 70 EXPORT_SYMBOL(pgprot_kernel); 71 72 struct cachepolicy { 73 const char policy[16]; 74 unsigned int cr_mask; 75 pmdval_t pmd; 76 pteval_t pte; 77 }; 78 79 static struct cachepolicy cache_policies[] __initdata = { 80 { 81 .policy = "uncached", 82 .cr_mask = CR_W|CR_C, 83 .pmd = PMD_SECT_UNCACHED, 84 .pte = L_PTE_MT_UNCACHED, 85 }, { 86 .policy = "buffered", 87 .cr_mask = CR_C, 88 .pmd = PMD_SECT_BUFFERED, 89 .pte = L_PTE_MT_BUFFERABLE, 90 }, { 91 .policy = "writethrough", 92 .cr_mask = 0, 93 .pmd = PMD_SECT_WT, 94 .pte = L_PTE_MT_WRITETHROUGH, 95 }, { 96 .policy = "writeback", 97 .cr_mask = 0, 98 .pmd = PMD_SECT_WB, 99 .pte = L_PTE_MT_WRITEBACK, 100 }, { 101 .policy = "writealloc", 102 .cr_mask = 0, 103 .pmd = PMD_SECT_WBWA, 104 .pte = L_PTE_MT_WRITEALLOC, 105 } 106 }; 107 108 #ifdef CONFIG_CPU_CP15 109 static unsigned long initial_pmd_value __initdata = 0; 110 111 /* 112 * Initialise the cache_policy variable with the initial state specified 113 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 114 * the C code sets the page tables up with the same policy as the head 115 * assembly code, which avoids an illegal state where the TLBs can get 116 * confused. See comments in early_cachepolicy() for more information. 117 */ 118 void __init init_default_cache_policy(unsigned long pmd) 119 { 120 int i; 121 122 initial_pmd_value = pmd; 123 124 pmd &= PMD_SECT_CACHE_MASK; 125 126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 127 if (cache_policies[i].pmd == pmd) { 128 cachepolicy = i; 129 break; 130 } 131 132 if (i == ARRAY_SIZE(cache_policies)) 133 pr_err("ERROR: could not find cache policy\n"); 134 } 135 136 /* 137 * These are useful for identifying cache coherency problems by allowing 138 * the cache or the cache and writebuffer to be turned off. (Note: the 139 * write buffer should not be on and the cache off). 140 */ 141 static int __init early_cachepolicy(char *p) 142 { 143 int i, selected = -1; 144 145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 146 int len = strlen(cache_policies[i].policy); 147 148 if (memcmp(p, cache_policies[i].policy, len) == 0) { 149 selected = i; 150 break; 151 } 152 } 153 154 if (selected == -1) 155 pr_err("ERROR: unknown or unsupported cache policy\n"); 156 157 /* 158 * This restriction is partly to do with the way we boot; it is 159 * unpredictable to have memory mapped using two different sets of 160 * memory attributes (shared, type, and cache attribs). We can not 161 * change these attributes once the initial assembly has setup the 162 * page tables. 163 */ 164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 166 cache_policies[cachepolicy].policy); 167 return 0; 168 } 169 170 if (selected != cachepolicy) { 171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 172 cachepolicy = selected; 173 flush_cache_all(); 174 set_cr(cr); 175 } 176 return 0; 177 } 178 early_param("cachepolicy", early_cachepolicy); 179 180 static int __init early_nocache(char *__unused) 181 { 182 char *p = "buffered"; 183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 184 early_cachepolicy(p); 185 return 0; 186 } 187 early_param("nocache", early_nocache); 188 189 static int __init early_nowrite(char *__unused) 190 { 191 char *p = "uncached"; 192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 193 early_cachepolicy(p); 194 return 0; 195 } 196 early_param("nowb", early_nowrite); 197 198 #ifndef CONFIG_ARM_LPAE 199 static int __init early_ecc(char *p) 200 { 201 if (memcmp(p, "on", 2) == 0) 202 ecc_mask = PMD_PROTECTION; 203 else if (memcmp(p, "off", 3) == 0) 204 ecc_mask = 0; 205 return 0; 206 } 207 early_param("ecc", early_ecc); 208 #endif 209 210 #else /* ifdef CONFIG_CPU_CP15 */ 211 212 static int __init early_cachepolicy(char *p) 213 { 214 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 215 return 0; 216 } 217 early_param("cachepolicy", early_cachepolicy); 218 219 static int __init noalign_setup(char *__unused) 220 { 221 pr_warn("noalign kernel parameter not supported without cp15\n"); 222 return 1; 223 } 224 __setup("noalign", noalign_setup); 225 226 #endif /* ifdef CONFIG_CPU_CP15 / else */ 227 228 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 229 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 230 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 231 232 static struct mem_type mem_types[] __ro_after_init = { 233 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 234 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 235 L_PTE_SHARED, 236 .prot_l1 = PMD_TYPE_TABLE, 237 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 238 .domain = DOMAIN_IO, 239 }, 240 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 241 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 242 .prot_l1 = PMD_TYPE_TABLE, 243 .prot_sect = PROT_SECT_DEVICE, 244 .domain = DOMAIN_IO, 245 }, 246 [MT_DEVICE_CACHED] = { /* ioremap_cache */ 247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 248 .prot_l1 = PMD_TYPE_TABLE, 249 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 250 .domain = DOMAIN_IO, 251 }, 252 [MT_DEVICE_WC] = { /* ioremap_wc */ 253 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 254 .prot_l1 = PMD_TYPE_TABLE, 255 .prot_sect = PROT_SECT_DEVICE, 256 .domain = DOMAIN_IO, 257 }, 258 [MT_UNCACHED] = { 259 .prot_pte = PROT_PTE_DEVICE, 260 .prot_l1 = PMD_TYPE_TABLE, 261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 262 .domain = DOMAIN_IO, 263 }, 264 [MT_CACHECLEAN] = { 265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 266 .domain = DOMAIN_KERNEL, 267 }, 268 #ifndef CONFIG_ARM_LPAE 269 [MT_MINICLEAN] = { 270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 271 .domain = DOMAIN_KERNEL, 272 }, 273 #endif 274 [MT_LOW_VECTORS] = { 275 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 276 L_PTE_RDONLY, 277 .prot_l1 = PMD_TYPE_TABLE, 278 .domain = DOMAIN_VECTORS, 279 }, 280 [MT_HIGH_VECTORS] = { 281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 282 L_PTE_USER | L_PTE_RDONLY, 283 .prot_l1 = PMD_TYPE_TABLE, 284 .domain = DOMAIN_VECTORS, 285 }, 286 [MT_MEMORY_RWX] = { 287 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 288 .prot_l1 = PMD_TYPE_TABLE, 289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 290 .domain = DOMAIN_KERNEL, 291 }, 292 [MT_MEMORY_RW] = { 293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 294 L_PTE_XN, 295 .prot_l1 = PMD_TYPE_TABLE, 296 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 297 .domain = DOMAIN_KERNEL, 298 }, 299 [MT_MEMORY_RO] = { 300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 301 L_PTE_XN | L_PTE_RDONLY, 302 .prot_l1 = PMD_TYPE_TABLE, 303 .prot_sect = PMD_TYPE_SECT, 304 .domain = DOMAIN_KERNEL, 305 }, 306 [MT_ROM] = { 307 .prot_sect = PMD_TYPE_SECT, 308 .domain = DOMAIN_KERNEL, 309 }, 310 [MT_MEMORY_RWX_NONCACHED] = { 311 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 312 L_PTE_MT_BUFFERABLE, 313 .prot_l1 = PMD_TYPE_TABLE, 314 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 315 .domain = DOMAIN_KERNEL, 316 }, 317 [MT_MEMORY_RW_DTCM] = { 318 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 319 L_PTE_XN, 320 .prot_l1 = PMD_TYPE_TABLE, 321 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 322 .domain = DOMAIN_KERNEL, 323 }, 324 [MT_MEMORY_RWX_ITCM] = { 325 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 326 .prot_l1 = PMD_TYPE_TABLE, 327 .domain = DOMAIN_KERNEL, 328 }, 329 [MT_MEMORY_RW_SO] = { 330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 331 L_PTE_MT_UNCACHED | L_PTE_XN, 332 .prot_l1 = PMD_TYPE_TABLE, 333 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 334 PMD_SECT_UNCACHED | PMD_SECT_XN, 335 .domain = DOMAIN_KERNEL, 336 }, 337 [MT_MEMORY_DMA_READY] = { 338 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 339 L_PTE_XN, 340 .prot_l1 = PMD_TYPE_TABLE, 341 .domain = DOMAIN_KERNEL, 342 }, 343 }; 344 345 const struct mem_type *get_mem_type(unsigned int type) 346 { 347 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 348 } 349 EXPORT_SYMBOL(get_mem_type); 350 351 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); 352 353 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] 354 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; 355 356 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) 357 { 358 return &bm_pte[pte_index(addr)]; 359 } 360 361 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) 362 { 363 return pte_offset_kernel(dir, addr); 364 } 365 366 static inline pmd_t * __init fixmap_pmd(unsigned long addr) 367 { 368 return pmd_off_k(addr); 369 } 370 371 void __init early_fixmap_init(void) 372 { 373 pmd_t *pmd; 374 375 /* 376 * The early fixmap range spans multiple pmds, for which 377 * we are not prepared: 378 */ 379 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) 380 != FIXADDR_TOP >> PMD_SHIFT); 381 382 pmd = fixmap_pmd(FIXADDR_TOP); 383 pmd_populate_kernel(&init_mm, pmd, bm_pte); 384 385 pte_offset_fixmap = pte_offset_early_fixmap; 386 } 387 388 /* 389 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). 390 * As a result, this can only be called with preemption disabled, as under 391 * stop_machine(). 392 */ 393 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 394 { 395 unsigned long vaddr = __fix_to_virt(idx); 396 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); 397 398 /* Make sure fixmap region does not exceed available allocation. */ 399 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START); 400 BUG_ON(idx >= __end_of_fixed_addresses); 401 402 /* We support only device mappings before pgprot_kernel is set. */ 403 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && 404 pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0)) 405 return; 406 407 if (pgprot_val(prot)) 408 set_pte_at(NULL, vaddr, pte, 409 pfn_pte(phys >> PAGE_SHIFT, prot)); 410 else 411 pte_clear(NULL, vaddr, pte); 412 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); 413 } 414 415 static pgprot_t protection_map[16] __ro_after_init = { 416 [VM_NONE] = __PAGE_NONE, 417 [VM_READ] = __PAGE_READONLY, 418 [VM_WRITE] = __PAGE_COPY, 419 [VM_WRITE | VM_READ] = __PAGE_COPY, 420 [VM_EXEC] = __PAGE_READONLY_EXEC, 421 [VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, 422 [VM_EXEC | VM_WRITE] = __PAGE_COPY_EXEC, 423 [VM_EXEC | VM_WRITE | VM_READ] = __PAGE_COPY_EXEC, 424 [VM_SHARED] = __PAGE_NONE, 425 [VM_SHARED | VM_READ] = __PAGE_READONLY, 426 [VM_SHARED | VM_WRITE] = __PAGE_SHARED, 427 [VM_SHARED | VM_WRITE | VM_READ] = __PAGE_SHARED, 428 [VM_SHARED | VM_EXEC] = __PAGE_READONLY_EXEC, 429 [VM_SHARED | VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, 430 [VM_SHARED | VM_EXEC | VM_WRITE] = __PAGE_SHARED_EXEC, 431 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __PAGE_SHARED_EXEC 432 }; 433 DECLARE_VM_GET_PAGE_PROT 434 435 /* 436 * Adjust the PMD section entries according to the CPU in use. 437 */ 438 static void __init build_mem_type_table(void) 439 { 440 struct cachepolicy *cp; 441 unsigned int cr = get_cr(); 442 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 443 int cpu_arch = cpu_architecture(); 444 int i; 445 446 if (cpu_arch < CPU_ARCH_ARMv6) { 447 #if defined(CONFIG_CPU_DCACHE_DISABLE) 448 if (cachepolicy > CPOLICY_BUFFERED) 449 cachepolicy = CPOLICY_BUFFERED; 450 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 451 if (cachepolicy > CPOLICY_WRITETHROUGH) 452 cachepolicy = CPOLICY_WRITETHROUGH; 453 #endif 454 } 455 if (cpu_arch < CPU_ARCH_ARMv5) { 456 if (cachepolicy >= CPOLICY_WRITEALLOC) 457 cachepolicy = CPOLICY_WRITEBACK; 458 ecc_mask = 0; 459 } 460 461 if (is_smp()) { 462 if (cachepolicy != CPOLICY_WRITEALLOC) { 463 pr_warn("Forcing write-allocate cache policy for SMP\n"); 464 cachepolicy = CPOLICY_WRITEALLOC; 465 } 466 if (!(initial_pmd_value & PMD_SECT_S)) { 467 pr_warn("Forcing shared mappings for SMP\n"); 468 initial_pmd_value |= PMD_SECT_S; 469 } 470 } 471 472 /* 473 * Strip out features not present on earlier architectures. 474 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 475 * without extended page tables don't have the 'Shared' bit. 476 */ 477 if (cpu_arch < CPU_ARCH_ARMv5) 478 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 479 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 480 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 481 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 482 mem_types[i].prot_sect &= ~PMD_SECT_S; 483 484 /* 485 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 486 * "update-able on write" bit on ARM610). However, Xscale and 487 * Xscale3 require this bit to be cleared. 488 */ 489 if (cpu_is_xscale_family()) { 490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 491 mem_types[i].prot_sect &= ~PMD_BIT4; 492 mem_types[i].prot_l1 &= ~PMD_BIT4; 493 } 494 } else if (cpu_arch < CPU_ARCH_ARMv6) { 495 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 496 if (mem_types[i].prot_l1) 497 mem_types[i].prot_l1 |= PMD_BIT4; 498 if (mem_types[i].prot_sect) 499 mem_types[i].prot_sect |= PMD_BIT4; 500 } 501 } 502 503 /* 504 * Mark the device areas according to the CPU/architecture. 505 */ 506 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 507 if (!cpu_is_xsc3()) { 508 /* 509 * Mark device regions on ARMv6+ as execute-never 510 * to prevent speculative instruction fetches. 511 */ 512 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 513 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 514 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 515 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 516 517 /* Also setup NX memory mapping */ 518 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 519 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN; 520 } 521 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 522 /* 523 * For ARMv7 with TEX remapping, 524 * - shared device is SXCB=1100 525 * - nonshared device is SXCB=0100 526 * - write combine device mem is SXCB=0001 527 * (Uncached Normal memory) 528 */ 529 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 530 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 531 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 532 } else if (cpu_is_xsc3()) { 533 /* 534 * For Xscale3, 535 * - shared device is TEXCB=00101 536 * - nonshared device is TEXCB=01000 537 * - write combine device mem is TEXCB=00100 538 * (Inner/Outer Uncacheable in xsc3 parlance) 539 */ 540 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 541 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 542 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 543 } else { 544 /* 545 * For ARMv6 and ARMv7 without TEX remapping, 546 * - shared device is TEXCB=00001 547 * - nonshared device is TEXCB=01000 548 * - write combine device mem is TEXCB=00100 549 * (Uncached Normal in ARMv6 parlance). 550 */ 551 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 552 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 553 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 554 } 555 } else { 556 /* 557 * On others, write combining is "Uncached/Buffered" 558 */ 559 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 560 } 561 562 /* 563 * Now deal with the memory-type mappings 564 */ 565 cp = &cache_policies[cachepolicy]; 566 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 567 568 #ifndef CONFIG_ARM_LPAE 569 /* 570 * We don't use domains on ARMv6 (since this causes problems with 571 * v6/v7 kernels), so we must use a separate memory type for user 572 * r/o, kernel r/w to map the vectors page. 573 */ 574 if (cpu_arch == CPU_ARCH_ARMv6) 575 vecs_pgprot |= L_PTE_MT_VECTORS; 576 577 /* 578 * Check is it with support for the PXN bit 579 * in the Short-descriptor translation table format descriptors. 580 */ 581 if (cpu_arch == CPU_ARCH_ARMv7 && 582 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { 583 user_pmd_table |= PMD_PXNTABLE; 584 } 585 #endif 586 587 /* 588 * ARMv6 and above have extended page tables. 589 */ 590 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 591 #ifndef CONFIG_ARM_LPAE 592 /* 593 * Mark cache clean areas and XIP ROM read only 594 * from SVC mode and no access from userspace. 595 */ 596 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 597 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 598 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 599 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 600 #endif 601 602 /* 603 * If the initial page tables were created with the S bit 604 * set, then we need to do the same here for the same 605 * reasons given in early_cachepolicy(). 606 */ 607 if (initial_pmd_value & PMD_SECT_S) { 608 user_pgprot |= L_PTE_SHARED; 609 kern_pgprot |= L_PTE_SHARED; 610 vecs_pgprot |= L_PTE_SHARED; 611 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 612 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 613 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 614 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 615 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 616 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 617 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 618 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 619 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S; 620 mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED; 621 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 622 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 623 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 624 } 625 } 626 627 /* 628 * Non-cacheable Normal - intended for memory areas that must 629 * not cause dirty cache line writebacks when used 630 */ 631 if (cpu_arch >= CPU_ARCH_ARMv6) { 632 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 633 /* Non-cacheable Normal is XCB = 001 */ 634 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 635 PMD_SECT_BUFFERED; 636 } else { 637 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 638 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 639 PMD_SECT_TEX(1); 640 } 641 } else { 642 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 643 } 644 645 #ifdef CONFIG_ARM_LPAE 646 /* 647 * Do not generate access flag faults for the kernel mappings. 648 */ 649 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 650 mem_types[i].prot_pte |= PTE_EXT_AF; 651 if (mem_types[i].prot_sect) 652 mem_types[i].prot_sect |= PMD_SECT_AF; 653 } 654 kern_pgprot |= PTE_EXT_AF; 655 vecs_pgprot |= PTE_EXT_AF; 656 657 /* 658 * Set PXN for user mappings 659 */ 660 user_pgprot |= PTE_EXT_PXN; 661 #endif 662 663 for (i = 0; i < 16; i++) { 664 pteval_t v = pgprot_val(protection_map[i]); 665 protection_map[i] = __pgprot(v | user_pgprot); 666 } 667 668 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 669 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 670 671 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 672 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 673 L_PTE_DIRTY | kern_pgprot); 674 675 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 676 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 677 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 678 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 679 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 680 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 681 mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd; 682 mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot; 683 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 684 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 685 mem_types[MT_ROM].prot_sect |= cp->pmd; 686 687 switch (cp->pmd) { 688 case PMD_SECT_WT: 689 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 690 break; 691 case PMD_SECT_WB: 692 case PMD_SECT_WBWA: 693 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 694 break; 695 } 696 pr_info("Memory policy: %sData cache %s\n", 697 ecc_mask ? "ECC enabled, " : "", cp->policy); 698 699 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 700 struct mem_type *t = &mem_types[i]; 701 if (t->prot_l1) 702 t->prot_l1 |= PMD_DOMAIN(t->domain); 703 if (t->prot_sect) 704 t->prot_sect |= PMD_DOMAIN(t->domain); 705 } 706 } 707 708 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 709 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 710 unsigned long size, pgprot_t vma_prot) 711 { 712 if (!pfn_valid(pfn)) 713 return pgprot_noncached(vma_prot); 714 else if (file->f_flags & O_SYNC) 715 return pgprot_writecombine(vma_prot); 716 return vma_prot; 717 } 718 EXPORT_SYMBOL(phys_mem_access_prot); 719 #endif 720 721 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 722 723 static void __init *early_alloc(unsigned long sz) 724 { 725 void *ptr = memblock_alloc(sz, sz); 726 727 if (!ptr) 728 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 729 __func__, sz, sz); 730 731 return ptr; 732 } 733 734 static void *__init late_alloc(unsigned long sz) 735 { 736 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz)); 737 738 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr))) 739 BUG(); 740 return ptr; 741 } 742 743 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, 744 unsigned long prot, 745 void *(*alloc)(unsigned long sz)) 746 { 747 if (pmd_none(*pmd)) { 748 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 749 __pmd_populate(pmd, __pa(pte), prot); 750 } 751 BUG_ON(pmd_bad(*pmd)); 752 return pte_offset_kernel(pmd, addr); 753 } 754 755 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, 756 unsigned long prot) 757 { 758 return arm_pte_alloc(pmd, addr, prot, early_alloc); 759 } 760 761 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 762 unsigned long end, unsigned long pfn, 763 const struct mem_type *type, 764 void *(*alloc)(unsigned long sz), 765 bool ng) 766 { 767 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); 768 do { 769 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 770 ng ? PTE_EXT_NG : 0); 771 pfn++; 772 } while (pte++, addr += PAGE_SIZE, addr != end); 773 } 774 775 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 776 unsigned long end, phys_addr_t phys, 777 const struct mem_type *type, bool ng) 778 { 779 pmd_t *p = pmd; 780 781 #ifndef CONFIG_ARM_LPAE 782 /* 783 * In classic MMU format, puds and pmds are folded in to 784 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 785 * group of L1 entries making up one logical pointer to 786 * an L2 table (2MB), where as PMDs refer to the individual 787 * L1 entries (1MB). Hence increment to get the correct 788 * offset for odd 1MB sections. 789 * (See arch/arm/include/asm/pgtable-2level.h) 790 */ 791 if (addr & SECTION_SIZE) 792 pmd++; 793 #endif 794 do { 795 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); 796 phys += SECTION_SIZE; 797 } while (pmd++, addr += SECTION_SIZE, addr != end); 798 799 flush_pmd_entry(p); 800 } 801 802 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 803 unsigned long end, phys_addr_t phys, 804 const struct mem_type *type, 805 void *(*alloc)(unsigned long sz), bool ng) 806 { 807 pmd_t *pmd = pmd_offset(pud, addr); 808 unsigned long next; 809 810 do { 811 /* 812 * With LPAE, we must loop over to map 813 * all the pmds for the given range. 814 */ 815 next = pmd_addr_end(addr, end); 816 817 /* 818 * Try a section mapping - addr, next and phys must all be 819 * aligned to a section boundary. 820 */ 821 if (type->prot_sect && 822 ((addr | next | phys) & ~SECTION_MASK) == 0) { 823 __map_init_section(pmd, addr, next, phys, type, ng); 824 } else { 825 alloc_init_pte(pmd, addr, next, 826 __phys_to_pfn(phys), type, alloc, ng); 827 } 828 829 phys += next - addr; 830 831 } while (pmd++, addr = next, addr != end); 832 } 833 834 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, 835 unsigned long end, phys_addr_t phys, 836 const struct mem_type *type, 837 void *(*alloc)(unsigned long sz), bool ng) 838 { 839 pud_t *pud = pud_offset(p4d, addr); 840 unsigned long next; 841 842 do { 843 next = pud_addr_end(addr, end); 844 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); 845 phys += next - addr; 846 } while (pud++, addr = next, addr != end); 847 } 848 849 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, 850 unsigned long end, phys_addr_t phys, 851 const struct mem_type *type, 852 void *(*alloc)(unsigned long sz), bool ng) 853 { 854 p4d_t *p4d = p4d_offset(pgd, addr); 855 unsigned long next; 856 857 do { 858 next = p4d_addr_end(addr, end); 859 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); 860 phys += next - addr; 861 } while (p4d++, addr = next, addr != end); 862 } 863 864 #ifndef CONFIG_ARM_LPAE 865 static void __init create_36bit_mapping(struct mm_struct *mm, 866 struct map_desc *md, 867 const struct mem_type *type, 868 bool ng) 869 { 870 unsigned long addr, length, end; 871 phys_addr_t phys; 872 pgd_t *pgd; 873 874 addr = md->virtual; 875 phys = __pfn_to_phys(md->pfn); 876 length = PAGE_ALIGN(md->length); 877 878 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 879 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 880 (long long)__pfn_to_phys((u64)md->pfn), addr); 881 return; 882 } 883 884 /* N.B. ARMv6 supersections are only defined to work with domain 0. 885 * Since domain assignments can in fact be arbitrary, the 886 * 'domain == 0' check below is required to insure that ARMv6 887 * supersections are only allocated for domain 0 regardless 888 * of the actual domain assignments in use. 889 */ 890 if (type->domain) { 891 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 892 (long long)__pfn_to_phys((u64)md->pfn), addr); 893 return; 894 } 895 896 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 897 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 898 (long long)__pfn_to_phys((u64)md->pfn), addr); 899 return; 900 } 901 902 /* 903 * Shift bits [35:32] of address into bits [23:20] of PMD 904 * (See ARMv6 spec). 905 */ 906 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 907 908 pgd = pgd_offset(mm, addr); 909 end = addr + length; 910 do { 911 p4d_t *p4d = p4d_offset(pgd, addr); 912 pud_t *pud = pud_offset(p4d, addr); 913 pmd_t *pmd = pmd_offset(pud, addr); 914 int i; 915 916 for (i = 0; i < 16; i++) 917 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | 918 (ng ? PMD_SECT_nG : 0)); 919 920 addr += SUPERSECTION_SIZE; 921 phys += SUPERSECTION_SIZE; 922 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 923 } while (addr != end); 924 } 925 #endif /* !CONFIG_ARM_LPAE */ 926 927 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, 928 void *(*alloc)(unsigned long sz), 929 bool ng) 930 { 931 unsigned long addr, length, end; 932 phys_addr_t phys; 933 const struct mem_type *type; 934 pgd_t *pgd; 935 936 type = &mem_types[md->type]; 937 938 #ifndef CONFIG_ARM_LPAE 939 /* 940 * Catch 36-bit addresses 941 */ 942 if (md->pfn >= 0x100000) { 943 create_36bit_mapping(mm, md, type, ng); 944 return; 945 } 946 #endif 947 948 addr = md->virtual & PAGE_MASK; 949 phys = __pfn_to_phys(md->pfn); 950 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 951 952 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 953 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 954 (long long)__pfn_to_phys(md->pfn), addr); 955 return; 956 } 957 958 pgd = pgd_offset(mm, addr); 959 end = addr + length; 960 do { 961 unsigned long next = pgd_addr_end(addr, end); 962 963 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); 964 965 phys += next - addr; 966 addr = next; 967 } while (pgd++, addr != end); 968 } 969 970 /* 971 * Create the page directory entries and any necessary 972 * page tables for the mapping specified by `md'. We 973 * are able to cope here with varying sizes and address 974 * offsets, and we take full advantage of sections and 975 * supersections. 976 */ 977 static void __init create_mapping(struct map_desc *md) 978 { 979 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 980 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 981 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 982 return; 983 } 984 985 if (md->type == MT_DEVICE && 986 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && 987 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 988 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 989 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 990 } 991 992 __create_mapping(&init_mm, md, early_alloc, false); 993 } 994 995 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, 996 bool ng) 997 { 998 #ifdef CONFIG_ARM_LPAE 999 p4d_t *p4d; 1000 pud_t *pud; 1001 1002 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); 1003 if (WARN_ON(!p4d)) 1004 return; 1005 pud = pud_alloc(mm, p4d, md->virtual); 1006 if (WARN_ON(!pud)) 1007 return; 1008 pmd_alloc(mm, pud, 0); 1009 #endif 1010 __create_mapping(mm, md, late_alloc, ng); 1011 } 1012 1013 /* 1014 * Create the architecture specific mappings 1015 */ 1016 void __init iotable_init(struct map_desc *io_desc, int nr) 1017 { 1018 struct map_desc *md; 1019 struct vm_struct *vm; 1020 struct static_vm *svm; 1021 1022 if (!nr) 1023 return; 1024 1025 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); 1026 if (!svm) 1027 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1028 __func__, sizeof(*svm) * nr, __alignof__(*svm)); 1029 1030 for (md = io_desc; nr; md++, nr--) { 1031 create_mapping(md); 1032 1033 vm = &svm->vm; 1034 vm->addr = (void *)(md->virtual & PAGE_MASK); 1035 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 1036 vm->phys_addr = __pfn_to_phys(md->pfn); 1037 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 1038 vm->flags |= VM_ARM_MTYPE(md->type); 1039 vm->caller = iotable_init; 1040 add_static_vm_early(svm++); 1041 } 1042 } 1043 1044 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 1045 void *caller) 1046 { 1047 struct vm_struct *vm; 1048 struct static_vm *svm; 1049 1050 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); 1051 if (!svm) 1052 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1053 __func__, sizeof(*svm), __alignof__(*svm)); 1054 1055 vm = &svm->vm; 1056 vm->addr = (void *)addr; 1057 vm->size = size; 1058 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 1059 vm->caller = caller; 1060 add_static_vm_early(svm); 1061 } 1062 1063 #ifndef CONFIG_ARM_LPAE 1064 1065 /* 1066 * The Linux PMD is made of two consecutive section entries covering 2MB 1067 * (see definition in include/asm/pgtable-2level.h). However a call to 1068 * create_mapping() may optimize static mappings by using individual 1069 * 1MB section mappings. This leaves the actual PMD potentially half 1070 * initialized if the top or bottom section entry isn't used, leaving it 1071 * open to problems if a subsequent ioremap() or vmalloc() tries to use 1072 * the virtual space left free by that unused section entry. 1073 * 1074 * Let's avoid the issue by inserting dummy vm entries covering the unused 1075 * PMD halves once the static mappings are in place. 1076 */ 1077 1078 static void __init pmd_empty_section_gap(unsigned long addr) 1079 { 1080 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 1081 } 1082 1083 static void __init fill_pmd_gaps(void) 1084 { 1085 struct static_vm *svm; 1086 struct vm_struct *vm; 1087 unsigned long addr, next = 0; 1088 pmd_t *pmd; 1089 1090 list_for_each_entry(svm, &static_vmlist, list) { 1091 vm = &svm->vm; 1092 addr = (unsigned long)vm->addr; 1093 if (addr < next) 1094 continue; 1095 1096 /* 1097 * Check if this vm starts on an odd section boundary. 1098 * If so and the first section entry for this PMD is free 1099 * then we block the corresponding virtual address. 1100 */ 1101 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1102 pmd = pmd_off_k(addr); 1103 if (pmd_none(*pmd)) 1104 pmd_empty_section_gap(addr & PMD_MASK); 1105 } 1106 1107 /* 1108 * Then check if this vm ends on an odd section boundary. 1109 * If so and the second section entry for this PMD is empty 1110 * then we block the corresponding virtual address. 1111 */ 1112 addr += vm->size; 1113 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1114 pmd = pmd_off_k(addr) + 1; 1115 if (pmd_none(*pmd)) 1116 pmd_empty_section_gap(addr); 1117 } 1118 1119 /* no need to look at any vm entry until we hit the next PMD */ 1120 next = (addr + PMD_SIZE - 1) & PMD_MASK; 1121 } 1122 } 1123 1124 #else 1125 #define fill_pmd_gaps() do { } while (0) 1126 #endif 1127 1128 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1129 static void __init pci_reserve_io(void) 1130 { 1131 struct static_vm *svm; 1132 1133 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1134 if (svm) 1135 return; 1136 1137 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1138 } 1139 #else 1140 #define pci_reserve_io() do { } while (0) 1141 #endif 1142 1143 #ifdef CONFIG_DEBUG_LL 1144 void __init debug_ll_io_init(void) 1145 { 1146 struct map_desc map; 1147 1148 debug_ll_addr(&map.pfn, &map.virtual); 1149 if (!map.pfn || !map.virtual) 1150 return; 1151 map.pfn = __phys_to_pfn(map.pfn); 1152 map.virtual &= PAGE_MASK; 1153 map.length = PAGE_SIZE; 1154 map.type = MT_DEVICE; 1155 iotable_init(&map, 1); 1156 } 1157 #endif 1158 1159 static unsigned long __initdata vmalloc_size = 240 * SZ_1M; 1160 1161 /* 1162 * vmalloc=size forces the vmalloc area to be exactly 'size' 1163 * bytes. This can be used to increase (or decrease) the vmalloc 1164 * area - the default is 240MiB. 1165 */ 1166 static int __init early_vmalloc(char *arg) 1167 { 1168 unsigned long vmalloc_reserve = memparse(arg, NULL); 1169 unsigned long vmalloc_max; 1170 1171 if (vmalloc_reserve < SZ_16M) { 1172 vmalloc_reserve = SZ_16M; 1173 pr_warn("vmalloc area is too small, limiting to %luMiB\n", 1174 vmalloc_reserve >> 20); 1175 } 1176 1177 vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET); 1178 if (vmalloc_reserve > vmalloc_max) { 1179 vmalloc_reserve = vmalloc_max; 1180 pr_warn("vmalloc area is too big, limiting to %luMiB\n", 1181 vmalloc_reserve >> 20); 1182 } 1183 1184 vmalloc_size = vmalloc_reserve; 1185 return 0; 1186 } 1187 early_param("vmalloc", early_vmalloc); 1188 1189 phys_addr_t arm_lowmem_limit __initdata = 0; 1190 1191 void __init adjust_lowmem_bounds(void) 1192 { 1193 phys_addr_t block_start, block_end, memblock_limit = 0; 1194 u64 vmalloc_limit, i; 1195 phys_addr_t lowmem_limit = 0; 1196 1197 /* 1198 * Let's use our own (unoptimized) equivalent of __pa() that is 1199 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. 1200 * The result is used as the upper bound on physical memory address 1201 * and may itself be outside the valid range for which phys_addr_t 1202 * and therefore __pa() is defined. 1203 */ 1204 vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET - 1205 PAGE_OFFSET + PHYS_OFFSET; 1206 1207 /* 1208 * The first usable region must be PMD aligned. Mark its start 1209 * as MEMBLOCK_NOMAP if it isn't 1210 */ 1211 for_each_mem_range(i, &block_start, &block_end) { 1212 if (!IS_ALIGNED(block_start, PMD_SIZE)) { 1213 phys_addr_t len; 1214 1215 len = round_up(block_start, PMD_SIZE) - block_start; 1216 memblock_mark_nomap(block_start, len); 1217 } 1218 break; 1219 } 1220 1221 for_each_mem_range(i, &block_start, &block_end) { 1222 if (block_start < vmalloc_limit) { 1223 if (block_end > lowmem_limit) 1224 /* 1225 * Compare as u64 to ensure vmalloc_limit does 1226 * not get truncated. block_end should always 1227 * fit in phys_addr_t so there should be no 1228 * issue with assignment. 1229 */ 1230 lowmem_limit = min_t(u64, 1231 vmalloc_limit, 1232 block_end); 1233 1234 /* 1235 * Find the first non-pmd-aligned page, and point 1236 * memblock_limit at it. This relies on rounding the 1237 * limit down to be pmd-aligned, which happens at the 1238 * end of this function. 1239 * 1240 * With this algorithm, the start or end of almost any 1241 * bank can be non-pmd-aligned. The only exception is 1242 * that the start of the bank 0 must be section- 1243 * aligned, since otherwise memory would need to be 1244 * allocated when mapping the start of bank 0, which 1245 * occurs before any free memory is mapped. 1246 */ 1247 if (!memblock_limit) { 1248 if (!IS_ALIGNED(block_start, PMD_SIZE)) 1249 memblock_limit = block_start; 1250 else if (!IS_ALIGNED(block_end, PMD_SIZE)) 1251 memblock_limit = lowmem_limit; 1252 } 1253 1254 } 1255 } 1256 1257 arm_lowmem_limit = lowmem_limit; 1258 1259 high_memory = __va(arm_lowmem_limit - 1) + 1; 1260 1261 if (!memblock_limit) 1262 memblock_limit = arm_lowmem_limit; 1263 1264 /* 1265 * Round the memblock limit down to a pmd size. This 1266 * helps to ensure that we will allocate memory from the 1267 * last full pmd, which should be mapped. 1268 */ 1269 memblock_limit = round_down(memblock_limit, PMD_SIZE); 1270 1271 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1272 if (memblock_end_of_DRAM() > arm_lowmem_limit) { 1273 phys_addr_t end = memblock_end_of_DRAM(); 1274 1275 pr_notice("Ignoring RAM at %pa-%pa\n", 1276 &memblock_limit, &end); 1277 pr_notice("Consider using a HIGHMEM enabled kernel.\n"); 1278 1279 memblock_remove(memblock_limit, end - memblock_limit); 1280 } 1281 } 1282 1283 memblock_set_current_limit(memblock_limit); 1284 } 1285 1286 static __init void prepare_page_table(void) 1287 { 1288 unsigned long addr; 1289 phys_addr_t end; 1290 1291 /* 1292 * Clear out all the mappings below the kernel image. 1293 */ 1294 #ifdef CONFIG_KASAN 1295 /* 1296 * KASan's shadow memory inserts itself between the TASK_SIZE 1297 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. 1298 */ 1299 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) 1300 pmd_clear(pmd_off_k(addr)); 1301 /* 1302 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes 1303 * equal to MODULES_VADDR and then we exit the pmd clearing. If we 1304 * are using a thumb-compiled kernel, there there will be 8MB more 1305 * to clear as KASan always offset to 16 MB below MODULES_VADDR. 1306 */ 1307 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) 1308 pmd_clear(pmd_off_k(addr)); 1309 #else 1310 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1311 pmd_clear(pmd_off_k(addr)); 1312 #endif 1313 1314 #ifdef CONFIG_XIP_KERNEL 1315 /* The XIP kernel is mapped in the module area -- skip over it */ 1316 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; 1317 #endif 1318 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1319 pmd_clear(pmd_off_k(addr)); 1320 1321 /* 1322 * Find the end of the first block of lowmem. 1323 */ 1324 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1325 if (end >= arm_lowmem_limit) 1326 end = arm_lowmem_limit; 1327 1328 /* 1329 * Clear out all the kernel space mappings, except for the first 1330 * memory bank, up to the vmalloc region. 1331 */ 1332 for (addr = __phys_to_virt(end); 1333 addr < VMALLOC_START; addr += PMD_SIZE) 1334 pmd_clear(pmd_off_k(addr)); 1335 } 1336 1337 #ifdef CONFIG_ARM_LPAE 1338 /* the first page is reserved for pgd */ 1339 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1340 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1341 #else 1342 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1343 #endif 1344 1345 /* 1346 * Reserve the special regions of memory 1347 */ 1348 void __init arm_mm_memblock_reserve(void) 1349 { 1350 /* 1351 * Reserve the page tables. These are already in use, 1352 * and can only be in node 0. 1353 */ 1354 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1355 1356 #ifdef CONFIG_SA1111 1357 /* 1358 * Because of the SA1111 DMA bug, we want to preserve our 1359 * precious DMA-able memory... 1360 */ 1361 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1362 #endif 1363 } 1364 1365 /* 1366 * Set up the device mappings. Since we clear out the page tables for all 1367 * mappings above VMALLOC_START, except early fixmap, we might remove debug 1368 * device mappings. This means earlycon can be used to debug this function 1369 * Any other function or debugging method which may touch any device _will_ 1370 * crash the kernel. 1371 */ 1372 static void __init devicemaps_init(const struct machine_desc *mdesc) 1373 { 1374 struct map_desc map; 1375 unsigned long addr; 1376 void *vectors; 1377 1378 /* 1379 * Allocate the vector page early. 1380 */ 1381 vectors = early_alloc(PAGE_SIZE * 2); 1382 1383 early_trap_init(vectors); 1384 1385 /* 1386 * Clear page table except top pmd used by early fixmaps 1387 */ 1388 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) 1389 pmd_clear(pmd_off_k(addr)); 1390 1391 if (__atags_pointer) { 1392 /* create a read-only mapping of the device tree */ 1393 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); 1394 map.virtual = FDT_FIXED_BASE; 1395 map.length = FDT_FIXED_SIZE; 1396 map.type = MT_MEMORY_RO; 1397 create_mapping(&map); 1398 } 1399 1400 /* 1401 * Map the kernel if it is XIP. 1402 * It is always first in the modulearea. 1403 */ 1404 #ifdef CONFIG_XIP_KERNEL 1405 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1406 map.virtual = MODULES_VADDR; 1407 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1408 map.type = MT_ROM; 1409 create_mapping(&map); 1410 #endif 1411 1412 /* 1413 * Map the cache flushing regions. 1414 */ 1415 #ifdef FLUSH_BASE 1416 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1417 map.virtual = FLUSH_BASE; 1418 map.length = SZ_1M; 1419 map.type = MT_CACHECLEAN; 1420 create_mapping(&map); 1421 #endif 1422 #ifdef FLUSH_BASE_MINICACHE 1423 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1424 map.virtual = FLUSH_BASE_MINICACHE; 1425 map.length = SZ_1M; 1426 map.type = MT_MINICLEAN; 1427 create_mapping(&map); 1428 #endif 1429 1430 /* 1431 * Create a mapping for the machine vectors at the high-vectors 1432 * location (0xffff0000). If we aren't using high-vectors, also 1433 * create a mapping at the low-vectors virtual address. 1434 */ 1435 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1436 map.virtual = 0xffff0000; 1437 map.length = PAGE_SIZE; 1438 #ifdef CONFIG_KUSER_HELPERS 1439 map.type = MT_HIGH_VECTORS; 1440 #else 1441 map.type = MT_LOW_VECTORS; 1442 #endif 1443 create_mapping(&map); 1444 1445 if (!vectors_high()) { 1446 map.virtual = 0; 1447 map.length = PAGE_SIZE * 2; 1448 map.type = MT_LOW_VECTORS; 1449 create_mapping(&map); 1450 } 1451 1452 /* Now create a kernel read-only mapping */ 1453 map.pfn += 1; 1454 map.virtual = 0xffff0000 + PAGE_SIZE; 1455 map.length = PAGE_SIZE; 1456 map.type = MT_LOW_VECTORS; 1457 create_mapping(&map); 1458 1459 /* 1460 * Ask the machine support to map in the statically mapped devices. 1461 */ 1462 if (mdesc->map_io) 1463 mdesc->map_io(); 1464 else 1465 debug_ll_io_init(); 1466 fill_pmd_gaps(); 1467 1468 /* Reserve fixed i/o space in VMALLOC region */ 1469 pci_reserve_io(); 1470 1471 /* 1472 * Finally flush the caches and tlb to ensure that we're in a 1473 * consistent state wrt the writebuffer. This also ensures that 1474 * any write-allocated cache lines in the vector page are written 1475 * back. After this point, we can start to touch devices again. 1476 */ 1477 local_flush_tlb_all(); 1478 flush_cache_all(); 1479 1480 /* Enable asynchronous aborts */ 1481 early_abt_enable(); 1482 } 1483 1484 static void __init kmap_init(void) 1485 { 1486 #ifdef CONFIG_HIGHMEM 1487 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1488 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1489 #endif 1490 1491 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, 1492 _PAGE_KERNEL_TABLE); 1493 } 1494 1495 static void __init map_lowmem(void) 1496 { 1497 phys_addr_t start, end; 1498 u64 i; 1499 1500 /* Map all the lowmem memory banks. */ 1501 for_each_mem_range(i, &start, &end) { 1502 struct map_desc map; 1503 1504 pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n", 1505 (long long)start, (long long)end); 1506 if (end > arm_lowmem_limit) 1507 end = arm_lowmem_limit; 1508 if (start >= end) 1509 break; 1510 1511 /* 1512 * If our kernel image is in the VMALLOC area we need to remove 1513 * the kernel physical memory from lowmem since the kernel will 1514 * be mapped separately. 1515 * 1516 * The kernel will typically be at the very start of lowmem, 1517 * but any placement relative to memory ranges is possible. 1518 * 1519 * If the memblock contains the kernel, we have to chisel out 1520 * the kernel memory from it and map each part separately. We 1521 * get 6 different theoretical cases: 1522 * 1523 * +--------+ +--------+ 1524 * +-- start --+ +--------+ | Kernel | | Kernel | 1525 * | | | Kernel | | case 2 | | case 5 | 1526 * | | | case 1 | +--------+ | | +--------+ 1527 * | Memory | +--------+ | | | Kernel | 1528 * | range | +--------+ | | | case 6 | 1529 * | | | Kernel | +--------+ | | +--------+ 1530 * | | | case 3 | | Kernel | | | 1531 * +-- end ----+ +--------+ | case 4 | | | 1532 * +--------+ +--------+ 1533 */ 1534 1535 /* Case 5: kernel covers range, don't map anything, should be rare */ 1536 if ((start > kernel_sec_start) && (end < kernel_sec_end)) 1537 break; 1538 1539 /* Cases where the kernel is starting inside the range */ 1540 if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) { 1541 /* Case 6: kernel is embedded in the range, we need two mappings */ 1542 if ((start < kernel_sec_start) && (end > kernel_sec_end)) { 1543 /* Map memory below the kernel */ 1544 map.pfn = __phys_to_pfn(start); 1545 map.virtual = __phys_to_virt(start); 1546 map.length = kernel_sec_start - start; 1547 map.type = MT_MEMORY_RW; 1548 create_mapping(&map); 1549 /* Map memory above the kernel */ 1550 map.pfn = __phys_to_pfn(kernel_sec_end); 1551 map.virtual = __phys_to_virt(kernel_sec_end); 1552 map.length = end - kernel_sec_end; 1553 map.type = MT_MEMORY_RW; 1554 create_mapping(&map); 1555 break; 1556 } 1557 /* Case 1: kernel and range start at the same address, should be common */ 1558 if (kernel_sec_start == start) 1559 start = kernel_sec_end; 1560 /* Case 3: kernel and range end at the same address, should be rare */ 1561 if (kernel_sec_end == end) 1562 end = kernel_sec_start; 1563 } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) { 1564 /* Case 2: kernel ends inside range, starts below it */ 1565 start = kernel_sec_end; 1566 } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) { 1567 /* Case 4: kernel starts inside range, ends above it */ 1568 end = kernel_sec_start; 1569 } 1570 map.pfn = __phys_to_pfn(start); 1571 map.virtual = __phys_to_virt(start); 1572 map.length = end - start; 1573 map.type = MT_MEMORY_RW; 1574 create_mapping(&map); 1575 } 1576 } 1577 1578 static void __init map_kernel(void) 1579 { 1580 /* 1581 * We use the well known kernel section start and end and split the area in the 1582 * middle like this: 1583 * . . 1584 * | RW memory | 1585 * +----------------+ kernel_x_start 1586 * | Executable | 1587 * | kernel memory | 1588 * +----------------+ kernel_x_end / kernel_nx_start 1589 * | Non-executable | 1590 * | kernel memory | 1591 * +----------------+ kernel_nx_end 1592 * | RW memory | 1593 * . . 1594 * 1595 * Notice that we are dealing with section sized mappings here so all of this 1596 * will be bumped to the closest section boundary. This means that some of the 1597 * non-executable part of the kernel memory is actually mapped as executable. 1598 * This will only persist until we turn on proper memory management later on 1599 * and we remap the whole kernel with page granularity. 1600 */ 1601 phys_addr_t kernel_x_start = kernel_sec_start; 1602 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1603 phys_addr_t kernel_nx_start = kernel_x_end; 1604 phys_addr_t kernel_nx_end = kernel_sec_end; 1605 struct map_desc map; 1606 1607 map.pfn = __phys_to_pfn(kernel_x_start); 1608 map.virtual = __phys_to_virt(kernel_x_start); 1609 map.length = kernel_x_end - kernel_x_start; 1610 map.type = MT_MEMORY_RWX; 1611 create_mapping(&map); 1612 1613 /* If the nx part is small it may end up covered by the tail of the RWX section */ 1614 if (kernel_x_end == kernel_nx_end) 1615 return; 1616 1617 map.pfn = __phys_to_pfn(kernel_nx_start); 1618 map.virtual = __phys_to_virt(kernel_nx_start); 1619 map.length = kernel_nx_end - kernel_nx_start; 1620 map.type = MT_MEMORY_RW; 1621 create_mapping(&map); 1622 } 1623 1624 #ifdef CONFIG_ARM_PV_FIXUP 1625 typedef void pgtables_remap(long long offset, unsigned long pgd); 1626 pgtables_remap lpae_pgtables_remap_asm; 1627 1628 /* 1629 * early_paging_init() recreates boot time page table setup, allowing machines 1630 * to switch over to a high (>4G) address space on LPAE systems 1631 */ 1632 static void __init early_paging_init(const struct machine_desc *mdesc) 1633 { 1634 pgtables_remap *lpae_pgtables_remap; 1635 unsigned long pa_pgd; 1636 unsigned int cr, ttbcr; 1637 long long offset; 1638 1639 if (!mdesc->pv_fixup) 1640 return; 1641 1642 offset = mdesc->pv_fixup(); 1643 if (offset == 0) 1644 return; 1645 1646 /* 1647 * Offset the kernel section physical offsets so that the kernel 1648 * mapping will work out later on. 1649 */ 1650 kernel_sec_start += offset; 1651 kernel_sec_end += offset; 1652 1653 /* 1654 * Get the address of the remap function in the 1:1 identity 1655 * mapping setup by the early page table assembly code. We 1656 * must get this prior to the pv update. The following barrier 1657 * ensures that this is complete before we fixup any P:V offsets. 1658 */ 1659 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); 1660 pa_pgd = __pa(swapper_pg_dir); 1661 barrier(); 1662 1663 pr_info("Switching physical address space to 0x%08llx\n", 1664 (u64)PHYS_OFFSET + offset); 1665 1666 /* Re-set the phys pfn offset, and the pv offset */ 1667 __pv_offset += offset; 1668 __pv_phys_pfn_offset += PFN_DOWN(offset); 1669 1670 /* Run the patch stub to update the constants */ 1671 fixup_pv_table(&__pv_table_begin, 1672 (&__pv_table_end - &__pv_table_begin) << 2); 1673 1674 /* 1675 * We changing not only the virtual to physical mapping, but also 1676 * the physical addresses used to access memory. We need to flush 1677 * all levels of cache in the system with caching disabled to 1678 * ensure that all data is written back, and nothing is prefetched 1679 * into the caches. We also need to prevent the TLB walkers 1680 * allocating into the caches too. Note that this is ARMv7 LPAE 1681 * specific. 1682 */ 1683 cr = get_cr(); 1684 set_cr(cr & ~(CR_I | CR_C)); 1685 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); 1686 asm volatile("mcr p15, 0, %0, c2, c0, 2" 1687 : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); 1688 flush_cache_all(); 1689 1690 /* 1691 * Fixup the page tables - this must be in the idmap region as 1692 * we need to disable the MMU to do this safely, and hence it 1693 * needs to be assembly. It's fairly simple, as we're using the 1694 * temporary tables setup by the initial assembly code. 1695 */ 1696 lpae_pgtables_remap(offset, pa_pgd); 1697 1698 /* Re-enable the caches and cacheable TLB walks */ 1699 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); 1700 set_cr(cr); 1701 } 1702 1703 #else 1704 1705 static void __init early_paging_init(const struct machine_desc *mdesc) 1706 { 1707 long long offset; 1708 1709 if (!mdesc->pv_fixup) 1710 return; 1711 1712 offset = mdesc->pv_fixup(); 1713 if (offset == 0) 1714 return; 1715 1716 pr_crit("Physical address space modification is only to support Keystone2.\n"); 1717 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); 1718 pr_crit("feature. Your kernel may crash now, have a good day.\n"); 1719 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1720 } 1721 1722 #endif 1723 1724 static void __init early_fixmap_shutdown(void) 1725 { 1726 int i; 1727 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); 1728 1729 pte_offset_fixmap = pte_offset_late_fixmap; 1730 pmd_clear(fixmap_pmd(va)); 1731 local_flush_tlb_kernel_page(va); 1732 1733 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { 1734 pte_t *pte; 1735 struct map_desc map; 1736 1737 map.virtual = fix_to_virt(i); 1738 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); 1739 1740 /* Only i/o device mappings are supported ATM */ 1741 if (pte_none(*pte) || 1742 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) 1743 continue; 1744 1745 map.pfn = pte_pfn(*pte); 1746 map.type = MT_DEVICE; 1747 map.length = PAGE_SIZE; 1748 1749 create_mapping(&map); 1750 } 1751 } 1752 1753 /* 1754 * paging_init() sets up the page tables, initialises the zone memory 1755 * maps, and sets up the zero page, bad page and bad page tables. 1756 */ 1757 void __init paging_init(const struct machine_desc *mdesc) 1758 { 1759 void *zero_page; 1760 1761 pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n", 1762 kernel_sec_start, kernel_sec_end); 1763 1764 prepare_page_table(); 1765 map_lowmem(); 1766 memblock_set_current_limit(arm_lowmem_limit); 1767 pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit); 1768 /* 1769 * After this point early_alloc(), i.e. the memblock allocator, can 1770 * be used 1771 */ 1772 map_kernel(); 1773 dma_contiguous_remap(); 1774 early_fixmap_shutdown(); 1775 devicemaps_init(mdesc); 1776 kmap_init(); 1777 tcm_init(); 1778 1779 top_pmd = pmd_off_k(0xffff0000); 1780 1781 /* allocate the zero page. */ 1782 zero_page = early_alloc(PAGE_SIZE); 1783 1784 bootmem_init(); 1785 1786 empty_zero_page = virt_to_page(zero_page); 1787 __flush_dcache_page(NULL, empty_zero_page); 1788 } 1789 1790 void __init early_mm_init(const struct machine_desc *mdesc) 1791 { 1792 build_mem_type_table(); 1793 early_paging_init(mdesc); 1794 } 1795 1796 void set_pte_at(struct mm_struct *mm, unsigned long addr, 1797 pte_t *ptep, pte_t pteval) 1798 { 1799 unsigned long ext = 0; 1800 1801 if (addr < TASK_SIZE && pte_valid_user(pteval)) { 1802 if (!pte_special(pteval)) 1803 __sync_icache_dcache(pteval); 1804 ext |= PTE_EXT_NG; 1805 } 1806 1807 set_pte_ext(ptep, pteval, ext); 1808 } 1809