xref: /openbmc/linux/arch/arm/mm/mmu.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/fixmap.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/memory.h>
31 #include <asm/pgalloc.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48 
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53 
54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
55 
56 #define CPOLICY_UNCACHED	0
57 #define CPOLICY_BUFFERED	1
58 #define CPOLICY_WRITETHROUGH	2
59 #define CPOLICY_WRITEBACK	3
60 #define CPOLICY_WRITEALLOC	4
61 
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
66 
67 EXPORT_SYMBOL(pgprot_user);
68 EXPORT_SYMBOL(pgprot_kernel);
69 
70 struct cachepolicy {
71 	const char	policy[16];
72 	unsigned int	cr_mask;
73 	pmdval_t	pmd;
74 	pteval_t	pte;
75 };
76 
77 static struct cachepolicy cache_policies[] __initdata = {
78 	{
79 		.policy		= "uncached",
80 		.cr_mask	= CR_W|CR_C,
81 		.pmd		= PMD_SECT_UNCACHED,
82 		.pte		= L_PTE_MT_UNCACHED,
83 	}, {
84 		.policy		= "buffered",
85 		.cr_mask	= CR_C,
86 		.pmd		= PMD_SECT_BUFFERED,
87 		.pte		= L_PTE_MT_BUFFERABLE,
88 	}, {
89 		.policy		= "writethrough",
90 		.cr_mask	= 0,
91 		.pmd		= PMD_SECT_WT,
92 		.pte		= L_PTE_MT_WRITETHROUGH,
93 	}, {
94 		.policy		= "writeback",
95 		.cr_mask	= 0,
96 		.pmd		= PMD_SECT_WB,
97 		.pte		= L_PTE_MT_WRITEBACK,
98 	}, {
99 		.policy		= "writealloc",
100 		.cr_mask	= 0,
101 		.pmd		= PMD_SECT_WBWA,
102 		.pte		= L_PTE_MT_WRITEALLOC,
103 	}
104 };
105 
106 #ifdef CONFIG_CPU_CP15
107 static unsigned long initial_pmd_value __initdata = 0;
108 
109 /*
110  * Initialise the cache_policy variable with the initial state specified
111  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
112  * the C code sets the page tables up with the same policy as the head
113  * assembly code, which avoids an illegal state where the TLBs can get
114  * confused.  See comments in early_cachepolicy() for more information.
115  */
116 void __init init_default_cache_policy(unsigned long pmd)
117 {
118 	int i;
119 
120 	initial_pmd_value = pmd;
121 
122 	pmd &= PMD_SECT_CACHE_MASK;
123 
124 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
125 		if (cache_policies[i].pmd == pmd) {
126 			cachepolicy = i;
127 			break;
128 		}
129 
130 	if (i == ARRAY_SIZE(cache_policies))
131 		pr_err("ERROR: could not find cache policy\n");
132 }
133 
134 /*
135  * These are useful for identifying cache coherency problems by allowing
136  * the cache or the cache and writebuffer to be turned off.  (Note: the
137  * write buffer should not be on and the cache off).
138  */
139 static int __init early_cachepolicy(char *p)
140 {
141 	int i, selected = -1;
142 
143 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
144 		int len = strlen(cache_policies[i].policy);
145 
146 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
147 			selected = i;
148 			break;
149 		}
150 	}
151 
152 	if (selected == -1)
153 		pr_err("ERROR: unknown or unsupported cache policy\n");
154 
155 	/*
156 	 * This restriction is partly to do with the way we boot; it is
157 	 * unpredictable to have memory mapped using two different sets of
158 	 * memory attributes (shared, type, and cache attribs).  We can not
159 	 * change these attributes once the initial assembly has setup the
160 	 * page tables.
161 	 */
162 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
163 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
164 			cache_policies[cachepolicy].policy);
165 		return 0;
166 	}
167 
168 	if (selected != cachepolicy) {
169 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
170 		cachepolicy = selected;
171 		flush_cache_all();
172 		set_cr(cr);
173 	}
174 	return 0;
175 }
176 early_param("cachepolicy", early_cachepolicy);
177 
178 static int __init early_nocache(char *__unused)
179 {
180 	char *p = "buffered";
181 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
182 	early_cachepolicy(p);
183 	return 0;
184 }
185 early_param("nocache", early_nocache);
186 
187 static int __init early_nowrite(char *__unused)
188 {
189 	char *p = "uncached";
190 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
191 	early_cachepolicy(p);
192 	return 0;
193 }
194 early_param("nowb", early_nowrite);
195 
196 #ifndef CONFIG_ARM_LPAE
197 static int __init early_ecc(char *p)
198 {
199 	if (memcmp(p, "on", 2) == 0)
200 		ecc_mask = PMD_PROTECTION;
201 	else if (memcmp(p, "off", 3) == 0)
202 		ecc_mask = 0;
203 	return 0;
204 }
205 early_param("ecc", early_ecc);
206 #endif
207 
208 #else /* ifdef CONFIG_CPU_CP15 */
209 
210 static int __init early_cachepolicy(char *p)
211 {
212 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
213 }
214 early_param("cachepolicy", early_cachepolicy);
215 
216 static int __init noalign_setup(char *__unused)
217 {
218 	pr_warn("noalign kernel parameter not supported without cp15\n");
219 }
220 __setup("noalign", noalign_setup);
221 
222 #endif /* ifdef CONFIG_CPU_CP15 / else */
223 
224 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
225 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
226 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
227 
228 static struct mem_type mem_types[] __ro_after_init = {
229 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
230 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
231 				  L_PTE_SHARED,
232 		.prot_l1	= PMD_TYPE_TABLE,
233 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
234 		.domain		= DOMAIN_IO,
235 	},
236 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
237 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
238 		.prot_l1	= PMD_TYPE_TABLE,
239 		.prot_sect	= PROT_SECT_DEVICE,
240 		.domain		= DOMAIN_IO,
241 	},
242 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
243 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
244 		.prot_l1	= PMD_TYPE_TABLE,
245 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
246 		.domain		= DOMAIN_IO,
247 	},
248 	[MT_DEVICE_WC] = {	/* ioremap_wc */
249 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
250 		.prot_l1	= PMD_TYPE_TABLE,
251 		.prot_sect	= PROT_SECT_DEVICE,
252 		.domain		= DOMAIN_IO,
253 	},
254 	[MT_UNCACHED] = {
255 		.prot_pte	= PROT_PTE_DEVICE,
256 		.prot_l1	= PMD_TYPE_TABLE,
257 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
258 		.domain		= DOMAIN_IO,
259 	},
260 	[MT_CACHECLEAN] = {
261 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain    = DOMAIN_KERNEL,
263 	},
264 #ifndef CONFIG_ARM_LPAE
265 	[MT_MINICLEAN] = {
266 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
267 		.domain    = DOMAIN_KERNEL,
268 	},
269 #endif
270 	[MT_LOW_VECTORS] = {
271 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
272 				L_PTE_RDONLY,
273 		.prot_l1   = PMD_TYPE_TABLE,
274 		.domain    = DOMAIN_VECTORS,
275 	},
276 	[MT_HIGH_VECTORS] = {
277 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278 				L_PTE_USER | L_PTE_RDONLY,
279 		.prot_l1   = PMD_TYPE_TABLE,
280 		.domain    = DOMAIN_VECTORS,
281 	},
282 	[MT_MEMORY_RWX] = {
283 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
284 		.prot_l1   = PMD_TYPE_TABLE,
285 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
286 		.domain    = DOMAIN_KERNEL,
287 	},
288 	[MT_MEMORY_RW] = {
289 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
290 			     L_PTE_XN,
291 		.prot_l1   = PMD_TYPE_TABLE,
292 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
293 		.domain    = DOMAIN_KERNEL,
294 	},
295 	[MT_ROM] = {
296 		.prot_sect = PMD_TYPE_SECT,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RWX_NONCACHED] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 				L_PTE_MT_BUFFERABLE,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
304 		.domain    = DOMAIN_KERNEL,
305 	},
306 	[MT_MEMORY_RW_DTCM] = {
307 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
308 				L_PTE_XN,
309 		.prot_l1   = PMD_TYPE_TABLE,
310 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
311 		.domain    = DOMAIN_KERNEL,
312 	},
313 	[MT_MEMORY_RWX_ITCM] = {
314 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
315 		.prot_l1   = PMD_TYPE_TABLE,
316 		.domain    = DOMAIN_KERNEL,
317 	},
318 	[MT_MEMORY_RW_SO] = {
319 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
320 				L_PTE_MT_UNCACHED | L_PTE_XN,
321 		.prot_l1   = PMD_TYPE_TABLE,
322 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
323 				PMD_SECT_UNCACHED | PMD_SECT_XN,
324 		.domain    = DOMAIN_KERNEL,
325 	},
326 	[MT_MEMORY_DMA_READY] = {
327 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328 				L_PTE_XN,
329 		.prot_l1   = PMD_TYPE_TABLE,
330 		.domain    = DOMAIN_KERNEL,
331 	},
332 };
333 
334 const struct mem_type *get_mem_type(unsigned int type)
335 {
336 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
337 }
338 EXPORT_SYMBOL(get_mem_type);
339 
340 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
341 
342 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
343 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
344 
345 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
346 {
347 	return &bm_pte[pte_index(addr)];
348 }
349 
350 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
351 {
352 	return pte_offset_kernel(dir, addr);
353 }
354 
355 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
356 {
357 	return pmd_off_k(addr);
358 }
359 
360 void __init early_fixmap_init(void)
361 {
362 	pmd_t *pmd;
363 
364 	/*
365 	 * The early fixmap range spans multiple pmds, for which
366 	 * we are not prepared:
367 	 */
368 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
369 		     != FIXADDR_TOP >> PMD_SHIFT);
370 
371 	pmd = fixmap_pmd(FIXADDR_TOP);
372 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
373 
374 	pte_offset_fixmap = pte_offset_early_fixmap;
375 }
376 
377 /*
378  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
379  * As a result, this can only be called with preemption disabled, as under
380  * stop_machine().
381  */
382 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
383 {
384 	unsigned long vaddr = __fix_to_virt(idx);
385 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
386 
387 	/* Make sure fixmap region does not exceed available allocation. */
388 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
389 		     FIXADDR_END);
390 	BUG_ON(idx >= __end_of_fixed_addresses);
391 
392 	/* we only support device mappings until pgprot_kernel has been set */
393 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
394 		    pgprot_val(pgprot_kernel) == 0))
395 		return;
396 
397 	if (pgprot_val(prot))
398 		set_pte_at(NULL, vaddr, pte,
399 			pfn_pte(phys >> PAGE_SHIFT, prot));
400 	else
401 		pte_clear(NULL, vaddr, pte);
402 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
403 }
404 
405 /*
406  * Adjust the PMD section entries according to the CPU in use.
407  */
408 static void __init build_mem_type_table(void)
409 {
410 	struct cachepolicy *cp;
411 	unsigned int cr = get_cr();
412 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
413 	int cpu_arch = cpu_architecture();
414 	int i;
415 
416 	if (cpu_arch < CPU_ARCH_ARMv6) {
417 #if defined(CONFIG_CPU_DCACHE_DISABLE)
418 		if (cachepolicy > CPOLICY_BUFFERED)
419 			cachepolicy = CPOLICY_BUFFERED;
420 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
421 		if (cachepolicy > CPOLICY_WRITETHROUGH)
422 			cachepolicy = CPOLICY_WRITETHROUGH;
423 #endif
424 	}
425 	if (cpu_arch < CPU_ARCH_ARMv5) {
426 		if (cachepolicy >= CPOLICY_WRITEALLOC)
427 			cachepolicy = CPOLICY_WRITEBACK;
428 		ecc_mask = 0;
429 	}
430 
431 	if (is_smp()) {
432 		if (cachepolicy != CPOLICY_WRITEALLOC) {
433 			pr_warn("Forcing write-allocate cache policy for SMP\n");
434 			cachepolicy = CPOLICY_WRITEALLOC;
435 		}
436 		if (!(initial_pmd_value & PMD_SECT_S)) {
437 			pr_warn("Forcing shared mappings for SMP\n");
438 			initial_pmd_value |= PMD_SECT_S;
439 		}
440 	}
441 
442 	/*
443 	 * Strip out features not present on earlier architectures.
444 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
445 	 * without extended page tables don't have the 'Shared' bit.
446 	 */
447 	if (cpu_arch < CPU_ARCH_ARMv5)
448 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
449 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
450 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
451 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
452 			mem_types[i].prot_sect &= ~PMD_SECT_S;
453 
454 	/*
455 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
456 	 * "update-able on write" bit on ARM610).  However, Xscale and
457 	 * Xscale3 require this bit to be cleared.
458 	 */
459 	if (cpu_is_xscale_family()) {
460 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
461 			mem_types[i].prot_sect &= ~PMD_BIT4;
462 			mem_types[i].prot_l1 &= ~PMD_BIT4;
463 		}
464 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
465 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
466 			if (mem_types[i].prot_l1)
467 				mem_types[i].prot_l1 |= PMD_BIT4;
468 			if (mem_types[i].prot_sect)
469 				mem_types[i].prot_sect |= PMD_BIT4;
470 		}
471 	}
472 
473 	/*
474 	 * Mark the device areas according to the CPU/architecture.
475 	 */
476 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
477 		if (!cpu_is_xsc3()) {
478 			/*
479 			 * Mark device regions on ARMv6+ as execute-never
480 			 * to prevent speculative instruction fetches.
481 			 */
482 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
483 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
484 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
485 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
486 
487 			/* Also setup NX memory mapping */
488 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
489 		}
490 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
491 			/*
492 			 * For ARMv7 with TEX remapping,
493 			 * - shared device is SXCB=1100
494 			 * - nonshared device is SXCB=0100
495 			 * - write combine device mem is SXCB=0001
496 			 * (Uncached Normal memory)
497 			 */
498 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
499 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
500 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
501 		} else if (cpu_is_xsc3()) {
502 			/*
503 			 * For Xscale3,
504 			 * - shared device is TEXCB=00101
505 			 * - nonshared device is TEXCB=01000
506 			 * - write combine device mem is TEXCB=00100
507 			 * (Inner/Outer Uncacheable in xsc3 parlance)
508 			 */
509 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
510 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
511 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
512 		} else {
513 			/*
514 			 * For ARMv6 and ARMv7 without TEX remapping,
515 			 * - shared device is TEXCB=00001
516 			 * - nonshared device is TEXCB=01000
517 			 * - write combine device mem is TEXCB=00100
518 			 * (Uncached Normal in ARMv6 parlance).
519 			 */
520 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
521 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
522 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
523 		}
524 	} else {
525 		/*
526 		 * On others, write combining is "Uncached/Buffered"
527 		 */
528 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
529 	}
530 
531 	/*
532 	 * Now deal with the memory-type mappings
533 	 */
534 	cp = &cache_policies[cachepolicy];
535 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
536 
537 #ifndef CONFIG_ARM_LPAE
538 	/*
539 	 * We don't use domains on ARMv6 (since this causes problems with
540 	 * v6/v7 kernels), so we must use a separate memory type for user
541 	 * r/o, kernel r/w to map the vectors page.
542 	 */
543 	if (cpu_arch == CPU_ARCH_ARMv6)
544 		vecs_pgprot |= L_PTE_MT_VECTORS;
545 
546 	/*
547 	 * Check is it with support for the PXN bit
548 	 * in the Short-descriptor translation table format descriptors.
549 	 */
550 	if (cpu_arch == CPU_ARCH_ARMv7 &&
551 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
552 		user_pmd_table |= PMD_PXNTABLE;
553 	}
554 #endif
555 
556 	/*
557 	 * ARMv6 and above have extended page tables.
558 	 */
559 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
560 #ifndef CONFIG_ARM_LPAE
561 		/*
562 		 * Mark cache clean areas and XIP ROM read only
563 		 * from SVC mode and no access from userspace.
564 		 */
565 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
566 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
567 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
568 #endif
569 
570 		/*
571 		 * If the initial page tables were created with the S bit
572 		 * set, then we need to do the same here for the same
573 		 * reasons given in early_cachepolicy().
574 		 */
575 		if (initial_pmd_value & PMD_SECT_S) {
576 			user_pgprot |= L_PTE_SHARED;
577 			kern_pgprot |= L_PTE_SHARED;
578 			vecs_pgprot |= L_PTE_SHARED;
579 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
580 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
581 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
582 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
583 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
584 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
585 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
586 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
587 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
588 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
589 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
590 		}
591 	}
592 
593 	/*
594 	 * Non-cacheable Normal - intended for memory areas that must
595 	 * not cause dirty cache line writebacks when used
596 	 */
597 	if (cpu_arch >= CPU_ARCH_ARMv6) {
598 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
599 			/* Non-cacheable Normal is XCB = 001 */
600 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
601 				PMD_SECT_BUFFERED;
602 		} else {
603 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
604 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
605 				PMD_SECT_TEX(1);
606 		}
607 	} else {
608 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
609 	}
610 
611 #ifdef CONFIG_ARM_LPAE
612 	/*
613 	 * Do not generate access flag faults for the kernel mappings.
614 	 */
615 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
616 		mem_types[i].prot_pte |= PTE_EXT_AF;
617 		if (mem_types[i].prot_sect)
618 			mem_types[i].prot_sect |= PMD_SECT_AF;
619 	}
620 	kern_pgprot |= PTE_EXT_AF;
621 	vecs_pgprot |= PTE_EXT_AF;
622 
623 	/*
624 	 * Set PXN for user mappings
625 	 */
626 	user_pgprot |= PTE_EXT_PXN;
627 #endif
628 
629 	for (i = 0; i < 16; i++) {
630 		pteval_t v = pgprot_val(protection_map[i]);
631 		protection_map[i] = __pgprot(v | user_pgprot);
632 	}
633 
634 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
635 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
636 
637 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
638 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
639 				 L_PTE_DIRTY | kern_pgprot);
640 
641 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
642 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
643 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
644 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
645 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
646 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
647 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
648 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
649 	mem_types[MT_ROM].prot_sect |= cp->pmd;
650 
651 	switch (cp->pmd) {
652 	case PMD_SECT_WT:
653 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
654 		break;
655 	case PMD_SECT_WB:
656 	case PMD_SECT_WBWA:
657 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
658 		break;
659 	}
660 	pr_info("Memory policy: %sData cache %s\n",
661 		ecc_mask ? "ECC enabled, " : "", cp->policy);
662 
663 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
664 		struct mem_type *t = &mem_types[i];
665 		if (t->prot_l1)
666 			t->prot_l1 |= PMD_DOMAIN(t->domain);
667 		if (t->prot_sect)
668 			t->prot_sect |= PMD_DOMAIN(t->domain);
669 	}
670 }
671 
672 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
673 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
674 			      unsigned long size, pgprot_t vma_prot)
675 {
676 	if (!pfn_valid(pfn))
677 		return pgprot_noncached(vma_prot);
678 	else if (file->f_flags & O_SYNC)
679 		return pgprot_writecombine(vma_prot);
680 	return vma_prot;
681 }
682 EXPORT_SYMBOL(phys_mem_access_prot);
683 #endif
684 
685 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
686 
687 static void __init *early_alloc(unsigned long sz)
688 {
689 	void *ptr = memblock_alloc(sz, sz);
690 
691 	if (!ptr)
692 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
693 		      __func__, sz, sz);
694 
695 	return ptr;
696 }
697 
698 static void *__init late_alloc(unsigned long sz)
699 {
700 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
701 
702 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
703 		BUG();
704 	return ptr;
705 }
706 
707 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
708 				unsigned long prot,
709 				void *(*alloc)(unsigned long sz))
710 {
711 	if (pmd_none(*pmd)) {
712 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
713 		__pmd_populate(pmd, __pa(pte), prot);
714 	}
715 	BUG_ON(pmd_bad(*pmd));
716 	return pte_offset_kernel(pmd, addr);
717 }
718 
719 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
720 				      unsigned long prot)
721 {
722 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
723 }
724 
725 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
726 				  unsigned long end, unsigned long pfn,
727 				  const struct mem_type *type,
728 				  void *(*alloc)(unsigned long sz),
729 				  bool ng)
730 {
731 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
732 	do {
733 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
734 			    ng ? PTE_EXT_NG : 0);
735 		pfn++;
736 	} while (pte++, addr += PAGE_SIZE, addr != end);
737 }
738 
739 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
740 			unsigned long end, phys_addr_t phys,
741 			const struct mem_type *type, bool ng)
742 {
743 	pmd_t *p = pmd;
744 
745 #ifndef CONFIG_ARM_LPAE
746 	/*
747 	 * In classic MMU format, puds and pmds are folded in to
748 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
749 	 * group of L1 entries making up one logical pointer to
750 	 * an L2 table (2MB), where as PMDs refer to the individual
751 	 * L1 entries (1MB). Hence increment to get the correct
752 	 * offset for odd 1MB sections.
753 	 * (See arch/arm/include/asm/pgtable-2level.h)
754 	 */
755 	if (addr & SECTION_SIZE)
756 		pmd++;
757 #endif
758 	do {
759 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
760 		phys += SECTION_SIZE;
761 	} while (pmd++, addr += SECTION_SIZE, addr != end);
762 
763 	flush_pmd_entry(p);
764 }
765 
766 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
767 				      unsigned long end, phys_addr_t phys,
768 				      const struct mem_type *type,
769 				      void *(*alloc)(unsigned long sz), bool ng)
770 {
771 	pmd_t *pmd = pmd_offset(pud, addr);
772 	unsigned long next;
773 
774 	do {
775 		/*
776 		 * With LPAE, we must loop over to map
777 		 * all the pmds for the given range.
778 		 */
779 		next = pmd_addr_end(addr, end);
780 
781 		/*
782 		 * Try a section mapping - addr, next and phys must all be
783 		 * aligned to a section boundary.
784 		 */
785 		if (type->prot_sect &&
786 				((addr | next | phys) & ~SECTION_MASK) == 0) {
787 			__map_init_section(pmd, addr, next, phys, type, ng);
788 		} else {
789 			alloc_init_pte(pmd, addr, next,
790 				       __phys_to_pfn(phys), type, alloc, ng);
791 		}
792 
793 		phys += next - addr;
794 
795 	} while (pmd++, addr = next, addr != end);
796 }
797 
798 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
799 				  unsigned long end, phys_addr_t phys,
800 				  const struct mem_type *type,
801 				  void *(*alloc)(unsigned long sz), bool ng)
802 {
803 	pud_t *pud = pud_offset(p4d, addr);
804 	unsigned long next;
805 
806 	do {
807 		next = pud_addr_end(addr, end);
808 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
809 		phys += next - addr;
810 	} while (pud++, addr = next, addr != end);
811 }
812 
813 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
814 				  unsigned long end, phys_addr_t phys,
815 				  const struct mem_type *type,
816 				  void *(*alloc)(unsigned long sz), bool ng)
817 {
818 	p4d_t *p4d = p4d_offset(pgd, addr);
819 	unsigned long next;
820 
821 	do {
822 		next = p4d_addr_end(addr, end);
823 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
824 		phys += next - addr;
825 	} while (p4d++, addr = next, addr != end);
826 }
827 
828 #ifndef CONFIG_ARM_LPAE
829 static void __init create_36bit_mapping(struct mm_struct *mm,
830 					struct map_desc *md,
831 					const struct mem_type *type,
832 					bool ng)
833 {
834 	unsigned long addr, length, end;
835 	phys_addr_t phys;
836 	pgd_t *pgd;
837 
838 	addr = md->virtual;
839 	phys = __pfn_to_phys(md->pfn);
840 	length = PAGE_ALIGN(md->length);
841 
842 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
843 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
844 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
845 		return;
846 	}
847 
848 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
849 	 *	Since domain assignments can in fact be arbitrary, the
850 	 *	'domain == 0' check below is required to insure that ARMv6
851 	 *	supersections are only allocated for domain 0 regardless
852 	 *	of the actual domain assignments in use.
853 	 */
854 	if (type->domain) {
855 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
856 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
857 		return;
858 	}
859 
860 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
861 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
862 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
863 		return;
864 	}
865 
866 	/*
867 	 * Shift bits [35:32] of address into bits [23:20] of PMD
868 	 * (See ARMv6 spec).
869 	 */
870 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
871 
872 	pgd = pgd_offset(mm, addr);
873 	end = addr + length;
874 	do {
875 		p4d_t *p4d = p4d_offset(pgd, addr);
876 		pud_t *pud = pud_offset(p4d, addr);
877 		pmd_t *pmd = pmd_offset(pud, addr);
878 		int i;
879 
880 		for (i = 0; i < 16; i++)
881 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
882 				       (ng ? PMD_SECT_nG : 0));
883 
884 		addr += SUPERSECTION_SIZE;
885 		phys += SUPERSECTION_SIZE;
886 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
887 	} while (addr != end);
888 }
889 #endif	/* !CONFIG_ARM_LPAE */
890 
891 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
892 				    void *(*alloc)(unsigned long sz),
893 				    bool ng)
894 {
895 	unsigned long addr, length, end;
896 	phys_addr_t phys;
897 	const struct mem_type *type;
898 	pgd_t *pgd;
899 
900 	type = &mem_types[md->type];
901 
902 #ifndef CONFIG_ARM_LPAE
903 	/*
904 	 * Catch 36-bit addresses
905 	 */
906 	if (md->pfn >= 0x100000) {
907 		create_36bit_mapping(mm, md, type, ng);
908 		return;
909 	}
910 #endif
911 
912 	addr = md->virtual & PAGE_MASK;
913 	phys = __pfn_to_phys(md->pfn);
914 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
915 
916 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
917 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
918 			(long long)__pfn_to_phys(md->pfn), addr);
919 		return;
920 	}
921 
922 	pgd = pgd_offset(mm, addr);
923 	end = addr + length;
924 	do {
925 		unsigned long next = pgd_addr_end(addr, end);
926 
927 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
928 
929 		phys += next - addr;
930 		addr = next;
931 	} while (pgd++, addr != end);
932 }
933 
934 /*
935  * Create the page directory entries and any necessary
936  * page tables for the mapping specified by `md'.  We
937  * are able to cope here with varying sizes and address
938  * offsets, and we take full advantage of sections and
939  * supersections.
940  */
941 static void __init create_mapping(struct map_desc *md)
942 {
943 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
944 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
945 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
946 		return;
947 	}
948 
949 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
950 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
951 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
952 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
953 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
954 	}
955 
956 	__create_mapping(&init_mm, md, early_alloc, false);
957 }
958 
959 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
960 				bool ng)
961 {
962 #ifdef CONFIG_ARM_LPAE
963 	p4d_t *p4d;
964 	pud_t *pud;
965 
966 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
967 	if (WARN_ON(!p4d))
968 		return;
969 	pud = pud_alloc(mm, p4d, md->virtual);
970 	if (WARN_ON(!pud))
971 		return;
972 	pmd_alloc(mm, pud, 0);
973 #endif
974 	__create_mapping(mm, md, late_alloc, ng);
975 }
976 
977 /*
978  * Create the architecture specific mappings
979  */
980 void __init iotable_init(struct map_desc *io_desc, int nr)
981 {
982 	struct map_desc *md;
983 	struct vm_struct *vm;
984 	struct static_vm *svm;
985 
986 	if (!nr)
987 		return;
988 
989 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
990 	if (!svm)
991 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
992 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
993 
994 	for (md = io_desc; nr; md++, nr--) {
995 		create_mapping(md);
996 
997 		vm = &svm->vm;
998 		vm->addr = (void *)(md->virtual & PAGE_MASK);
999 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1000 		vm->phys_addr = __pfn_to_phys(md->pfn);
1001 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1002 		vm->flags |= VM_ARM_MTYPE(md->type);
1003 		vm->caller = iotable_init;
1004 		add_static_vm_early(svm++);
1005 	}
1006 }
1007 
1008 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1009 				  void *caller)
1010 {
1011 	struct vm_struct *vm;
1012 	struct static_vm *svm;
1013 
1014 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1015 	if (!svm)
1016 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1017 		      __func__, sizeof(*svm), __alignof__(*svm));
1018 
1019 	vm = &svm->vm;
1020 	vm->addr = (void *)addr;
1021 	vm->size = size;
1022 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1023 	vm->caller = caller;
1024 	add_static_vm_early(svm);
1025 }
1026 
1027 #ifndef CONFIG_ARM_LPAE
1028 
1029 /*
1030  * The Linux PMD is made of two consecutive section entries covering 2MB
1031  * (see definition in include/asm/pgtable-2level.h).  However a call to
1032  * create_mapping() may optimize static mappings by using individual
1033  * 1MB section mappings.  This leaves the actual PMD potentially half
1034  * initialized if the top or bottom section entry isn't used, leaving it
1035  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1036  * the virtual space left free by that unused section entry.
1037  *
1038  * Let's avoid the issue by inserting dummy vm entries covering the unused
1039  * PMD halves once the static mappings are in place.
1040  */
1041 
1042 static void __init pmd_empty_section_gap(unsigned long addr)
1043 {
1044 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1045 }
1046 
1047 static void __init fill_pmd_gaps(void)
1048 {
1049 	struct static_vm *svm;
1050 	struct vm_struct *vm;
1051 	unsigned long addr, next = 0;
1052 	pmd_t *pmd;
1053 
1054 	list_for_each_entry(svm, &static_vmlist, list) {
1055 		vm = &svm->vm;
1056 		addr = (unsigned long)vm->addr;
1057 		if (addr < next)
1058 			continue;
1059 
1060 		/*
1061 		 * Check if this vm starts on an odd section boundary.
1062 		 * If so and the first section entry for this PMD is free
1063 		 * then we block the corresponding virtual address.
1064 		 */
1065 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1066 			pmd = pmd_off_k(addr);
1067 			if (pmd_none(*pmd))
1068 				pmd_empty_section_gap(addr & PMD_MASK);
1069 		}
1070 
1071 		/*
1072 		 * Then check if this vm ends on an odd section boundary.
1073 		 * If so and the second section entry for this PMD is empty
1074 		 * then we block the corresponding virtual address.
1075 		 */
1076 		addr += vm->size;
1077 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1078 			pmd = pmd_off_k(addr) + 1;
1079 			if (pmd_none(*pmd))
1080 				pmd_empty_section_gap(addr);
1081 		}
1082 
1083 		/* no need to look at any vm entry until we hit the next PMD */
1084 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1085 	}
1086 }
1087 
1088 #else
1089 #define fill_pmd_gaps() do { } while (0)
1090 #endif
1091 
1092 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1093 static void __init pci_reserve_io(void)
1094 {
1095 	struct static_vm *svm;
1096 
1097 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1098 	if (svm)
1099 		return;
1100 
1101 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1102 }
1103 #else
1104 #define pci_reserve_io() do { } while (0)
1105 #endif
1106 
1107 #ifdef CONFIG_DEBUG_LL
1108 void __init debug_ll_io_init(void)
1109 {
1110 	struct map_desc map;
1111 
1112 	debug_ll_addr(&map.pfn, &map.virtual);
1113 	if (!map.pfn || !map.virtual)
1114 		return;
1115 	map.pfn = __phys_to_pfn(map.pfn);
1116 	map.virtual &= PAGE_MASK;
1117 	map.length = PAGE_SIZE;
1118 	map.type = MT_DEVICE;
1119 	iotable_init(&map, 1);
1120 }
1121 #endif
1122 
1123 static void * __initdata vmalloc_min =
1124 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1125 
1126 /*
1127  * vmalloc=size forces the vmalloc area to be exactly 'size'
1128  * bytes. This can be used to increase (or decrease) the vmalloc
1129  * area - the default is 240m.
1130  */
1131 static int __init early_vmalloc(char *arg)
1132 {
1133 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1134 
1135 	if (vmalloc_reserve < SZ_16M) {
1136 		vmalloc_reserve = SZ_16M;
1137 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1138 			vmalloc_reserve >> 20);
1139 	}
1140 
1141 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1142 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1143 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1144 			vmalloc_reserve >> 20);
1145 	}
1146 
1147 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1148 	return 0;
1149 }
1150 early_param("vmalloc", early_vmalloc);
1151 
1152 phys_addr_t arm_lowmem_limit __initdata = 0;
1153 
1154 void __init adjust_lowmem_bounds(void)
1155 {
1156 	phys_addr_t block_start, block_end, memblock_limit = 0;
1157 	u64 vmalloc_limit, i;
1158 	phys_addr_t lowmem_limit = 0;
1159 
1160 	/*
1161 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1162 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1163 	 * The result is used as the upper bound on physical memory address
1164 	 * and may itself be outside the valid range for which phys_addr_t
1165 	 * and therefore __pa() is defined.
1166 	 */
1167 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1168 
1169 	/*
1170 	 * The first usable region must be PMD aligned. Mark its start
1171 	 * as MEMBLOCK_NOMAP if it isn't
1172 	 */
1173 	for_each_mem_range(i, &block_start, &block_end) {
1174 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1175 			phys_addr_t len;
1176 
1177 			len = round_up(block_start, PMD_SIZE) - block_start;
1178 			memblock_mark_nomap(block_start, len);
1179 		}
1180 		break;
1181 	}
1182 
1183 	for_each_mem_range(i, &block_start, &block_end) {
1184 		if (block_start < vmalloc_limit) {
1185 			if (block_end > lowmem_limit)
1186 				/*
1187 				 * Compare as u64 to ensure vmalloc_limit does
1188 				 * not get truncated. block_end should always
1189 				 * fit in phys_addr_t so there should be no
1190 				 * issue with assignment.
1191 				 */
1192 				lowmem_limit = min_t(u64,
1193 							 vmalloc_limit,
1194 							 block_end);
1195 
1196 			/*
1197 			 * Find the first non-pmd-aligned page, and point
1198 			 * memblock_limit at it. This relies on rounding the
1199 			 * limit down to be pmd-aligned, which happens at the
1200 			 * end of this function.
1201 			 *
1202 			 * With this algorithm, the start or end of almost any
1203 			 * bank can be non-pmd-aligned. The only exception is
1204 			 * that the start of the bank 0 must be section-
1205 			 * aligned, since otherwise memory would need to be
1206 			 * allocated when mapping the start of bank 0, which
1207 			 * occurs before any free memory is mapped.
1208 			 */
1209 			if (!memblock_limit) {
1210 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1211 					memblock_limit = block_start;
1212 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1213 					memblock_limit = lowmem_limit;
1214 			}
1215 
1216 		}
1217 	}
1218 
1219 	arm_lowmem_limit = lowmem_limit;
1220 
1221 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1222 
1223 	if (!memblock_limit)
1224 		memblock_limit = arm_lowmem_limit;
1225 
1226 	/*
1227 	 * Round the memblock limit down to a pmd size.  This
1228 	 * helps to ensure that we will allocate memory from the
1229 	 * last full pmd, which should be mapped.
1230 	 */
1231 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1232 
1233 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1234 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1235 			phys_addr_t end = memblock_end_of_DRAM();
1236 
1237 			pr_notice("Ignoring RAM at %pa-%pa\n",
1238 				  &memblock_limit, &end);
1239 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1240 
1241 			memblock_remove(memblock_limit, end - memblock_limit);
1242 		}
1243 	}
1244 
1245 	memblock_set_current_limit(memblock_limit);
1246 }
1247 
1248 static inline void prepare_page_table(void)
1249 {
1250 	unsigned long addr;
1251 	phys_addr_t end;
1252 
1253 	/*
1254 	 * Clear out all the mappings below the kernel image.
1255 	 */
1256 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1257 		pmd_clear(pmd_off_k(addr));
1258 
1259 #ifdef CONFIG_XIP_KERNEL
1260 	/* The XIP kernel is mapped in the module area -- skip over it */
1261 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1262 #endif
1263 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1264 		pmd_clear(pmd_off_k(addr));
1265 
1266 	/*
1267 	 * Find the end of the first block of lowmem.
1268 	 */
1269 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1270 	if (end >= arm_lowmem_limit)
1271 		end = arm_lowmem_limit;
1272 
1273 	/*
1274 	 * Clear out all the kernel space mappings, except for the first
1275 	 * memory bank, up to the vmalloc region.
1276 	 */
1277 	for (addr = __phys_to_virt(end);
1278 	     addr < VMALLOC_START; addr += PMD_SIZE)
1279 		pmd_clear(pmd_off_k(addr));
1280 }
1281 
1282 #ifdef CONFIG_ARM_LPAE
1283 /* the first page is reserved for pgd */
1284 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1285 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1286 #else
1287 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1288 #endif
1289 
1290 /*
1291  * Reserve the special regions of memory
1292  */
1293 void __init arm_mm_memblock_reserve(void)
1294 {
1295 	/*
1296 	 * Reserve the page tables.  These are already in use,
1297 	 * and can only be in node 0.
1298 	 */
1299 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1300 
1301 #ifdef CONFIG_SA1111
1302 	/*
1303 	 * Because of the SA1111 DMA bug, we want to preserve our
1304 	 * precious DMA-able memory...
1305 	 */
1306 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1307 #endif
1308 }
1309 
1310 /*
1311  * Set up the device mappings.  Since we clear out the page tables for all
1312  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1313  * device mappings.  This means earlycon can be used to debug this function
1314  * Any other function or debugging method which may touch any device _will_
1315  * crash the kernel.
1316  */
1317 static void __init devicemaps_init(const struct machine_desc *mdesc)
1318 {
1319 	struct map_desc map;
1320 	unsigned long addr;
1321 	void *vectors;
1322 
1323 	/*
1324 	 * Allocate the vector page early.
1325 	 */
1326 	vectors = early_alloc(PAGE_SIZE * 2);
1327 
1328 	early_trap_init(vectors);
1329 
1330 	/*
1331 	 * Clear page table except top pmd used by early fixmaps
1332 	 */
1333 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1334 		pmd_clear(pmd_off_k(addr));
1335 
1336 	/*
1337 	 * Map the kernel if it is XIP.
1338 	 * It is always first in the modulearea.
1339 	 */
1340 #ifdef CONFIG_XIP_KERNEL
1341 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1342 	map.virtual = MODULES_VADDR;
1343 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1344 	map.type = MT_ROM;
1345 	create_mapping(&map);
1346 #endif
1347 
1348 	/*
1349 	 * Map the cache flushing regions.
1350 	 */
1351 #ifdef FLUSH_BASE
1352 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1353 	map.virtual = FLUSH_BASE;
1354 	map.length = SZ_1M;
1355 	map.type = MT_CACHECLEAN;
1356 	create_mapping(&map);
1357 #endif
1358 #ifdef FLUSH_BASE_MINICACHE
1359 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1360 	map.virtual = FLUSH_BASE_MINICACHE;
1361 	map.length = SZ_1M;
1362 	map.type = MT_MINICLEAN;
1363 	create_mapping(&map);
1364 #endif
1365 
1366 	/*
1367 	 * Create a mapping for the machine vectors at the high-vectors
1368 	 * location (0xffff0000).  If we aren't using high-vectors, also
1369 	 * create a mapping at the low-vectors virtual address.
1370 	 */
1371 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1372 	map.virtual = 0xffff0000;
1373 	map.length = PAGE_SIZE;
1374 #ifdef CONFIG_KUSER_HELPERS
1375 	map.type = MT_HIGH_VECTORS;
1376 #else
1377 	map.type = MT_LOW_VECTORS;
1378 #endif
1379 	create_mapping(&map);
1380 
1381 	if (!vectors_high()) {
1382 		map.virtual = 0;
1383 		map.length = PAGE_SIZE * 2;
1384 		map.type = MT_LOW_VECTORS;
1385 		create_mapping(&map);
1386 	}
1387 
1388 	/* Now create a kernel read-only mapping */
1389 	map.pfn += 1;
1390 	map.virtual = 0xffff0000 + PAGE_SIZE;
1391 	map.length = PAGE_SIZE;
1392 	map.type = MT_LOW_VECTORS;
1393 	create_mapping(&map);
1394 
1395 	/*
1396 	 * Ask the machine support to map in the statically mapped devices.
1397 	 */
1398 	if (mdesc->map_io)
1399 		mdesc->map_io();
1400 	else
1401 		debug_ll_io_init();
1402 	fill_pmd_gaps();
1403 
1404 	/* Reserve fixed i/o space in VMALLOC region */
1405 	pci_reserve_io();
1406 
1407 	/*
1408 	 * Finally flush the caches and tlb to ensure that we're in a
1409 	 * consistent state wrt the writebuffer.  This also ensures that
1410 	 * any write-allocated cache lines in the vector page are written
1411 	 * back.  After this point, we can start to touch devices again.
1412 	 */
1413 	local_flush_tlb_all();
1414 	flush_cache_all();
1415 
1416 	/* Enable asynchronous aborts */
1417 	early_abt_enable();
1418 }
1419 
1420 static void __init kmap_init(void)
1421 {
1422 #ifdef CONFIG_HIGHMEM
1423 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1424 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1425 #endif
1426 
1427 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1428 			_PAGE_KERNEL_TABLE);
1429 }
1430 
1431 static void __init map_lowmem(void)
1432 {
1433 	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1434 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1435 	phys_addr_t start, end;
1436 	u64 i;
1437 
1438 	/* Map all the lowmem memory banks. */
1439 	for_each_mem_range(i, &start, &end) {
1440 		struct map_desc map;
1441 
1442 		if (end > arm_lowmem_limit)
1443 			end = arm_lowmem_limit;
1444 		if (start >= end)
1445 			break;
1446 
1447 		if (end < kernel_x_start) {
1448 			map.pfn = __phys_to_pfn(start);
1449 			map.virtual = __phys_to_virt(start);
1450 			map.length = end - start;
1451 			map.type = MT_MEMORY_RWX;
1452 
1453 			create_mapping(&map);
1454 		} else if (start >= kernel_x_end) {
1455 			map.pfn = __phys_to_pfn(start);
1456 			map.virtual = __phys_to_virt(start);
1457 			map.length = end - start;
1458 			map.type = MT_MEMORY_RW;
1459 
1460 			create_mapping(&map);
1461 		} else {
1462 			/* This better cover the entire kernel */
1463 			if (start < kernel_x_start) {
1464 				map.pfn = __phys_to_pfn(start);
1465 				map.virtual = __phys_to_virt(start);
1466 				map.length = kernel_x_start - start;
1467 				map.type = MT_MEMORY_RW;
1468 
1469 				create_mapping(&map);
1470 			}
1471 
1472 			map.pfn = __phys_to_pfn(kernel_x_start);
1473 			map.virtual = __phys_to_virt(kernel_x_start);
1474 			map.length = kernel_x_end - kernel_x_start;
1475 			map.type = MT_MEMORY_RWX;
1476 
1477 			create_mapping(&map);
1478 
1479 			if (kernel_x_end < end) {
1480 				map.pfn = __phys_to_pfn(kernel_x_end);
1481 				map.virtual = __phys_to_virt(kernel_x_end);
1482 				map.length = end - kernel_x_end;
1483 				map.type = MT_MEMORY_RW;
1484 
1485 				create_mapping(&map);
1486 			}
1487 		}
1488 	}
1489 }
1490 
1491 #ifdef CONFIG_ARM_PV_FIXUP
1492 extern unsigned long __atags_pointer;
1493 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1494 pgtables_remap lpae_pgtables_remap_asm;
1495 
1496 /*
1497  * early_paging_init() recreates boot time page table setup, allowing machines
1498  * to switch over to a high (>4G) address space on LPAE systems
1499  */
1500 static void __init early_paging_init(const struct machine_desc *mdesc)
1501 {
1502 	pgtables_remap *lpae_pgtables_remap;
1503 	unsigned long pa_pgd;
1504 	unsigned int cr, ttbcr;
1505 	long long offset;
1506 	void *boot_data;
1507 
1508 	if (!mdesc->pv_fixup)
1509 		return;
1510 
1511 	offset = mdesc->pv_fixup();
1512 	if (offset == 0)
1513 		return;
1514 
1515 	/*
1516 	 * Get the address of the remap function in the 1:1 identity
1517 	 * mapping setup by the early page table assembly code.  We
1518 	 * must get this prior to the pv update.  The following barrier
1519 	 * ensures that this is complete before we fixup any P:V offsets.
1520 	 */
1521 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1522 	pa_pgd = __pa(swapper_pg_dir);
1523 	boot_data = __va(__atags_pointer);
1524 	barrier();
1525 
1526 	pr_info("Switching physical address space to 0x%08llx\n",
1527 		(u64)PHYS_OFFSET + offset);
1528 
1529 	/* Re-set the phys pfn offset, and the pv offset */
1530 	__pv_offset += offset;
1531 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1532 
1533 	/* Run the patch stub to update the constants */
1534 	fixup_pv_table(&__pv_table_begin,
1535 		(&__pv_table_end - &__pv_table_begin) << 2);
1536 
1537 	/*
1538 	 * We changing not only the virtual to physical mapping, but also
1539 	 * the physical addresses used to access memory.  We need to flush
1540 	 * all levels of cache in the system with caching disabled to
1541 	 * ensure that all data is written back, and nothing is prefetched
1542 	 * into the caches.  We also need to prevent the TLB walkers
1543 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1544 	 * specific.
1545 	 */
1546 	cr = get_cr();
1547 	set_cr(cr & ~(CR_I | CR_C));
1548 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1549 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1550 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1551 	flush_cache_all();
1552 
1553 	/*
1554 	 * Fixup the page tables - this must be in the idmap region as
1555 	 * we need to disable the MMU to do this safely, and hence it
1556 	 * needs to be assembly.  It's fairly simple, as we're using the
1557 	 * temporary tables setup by the initial assembly code.
1558 	 */
1559 	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1560 
1561 	/* Re-enable the caches and cacheable TLB walks */
1562 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1563 	set_cr(cr);
1564 }
1565 
1566 #else
1567 
1568 static void __init early_paging_init(const struct machine_desc *mdesc)
1569 {
1570 	long long offset;
1571 
1572 	if (!mdesc->pv_fixup)
1573 		return;
1574 
1575 	offset = mdesc->pv_fixup();
1576 	if (offset == 0)
1577 		return;
1578 
1579 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1580 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1581 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1582 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1583 }
1584 
1585 #endif
1586 
1587 static void __init early_fixmap_shutdown(void)
1588 {
1589 	int i;
1590 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1591 
1592 	pte_offset_fixmap = pte_offset_late_fixmap;
1593 	pmd_clear(fixmap_pmd(va));
1594 	local_flush_tlb_kernel_page(va);
1595 
1596 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1597 		pte_t *pte;
1598 		struct map_desc map;
1599 
1600 		map.virtual = fix_to_virt(i);
1601 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1602 
1603 		/* Only i/o device mappings are supported ATM */
1604 		if (pte_none(*pte) ||
1605 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1606 			continue;
1607 
1608 		map.pfn = pte_pfn(*pte);
1609 		map.type = MT_DEVICE;
1610 		map.length = PAGE_SIZE;
1611 
1612 		create_mapping(&map);
1613 	}
1614 }
1615 
1616 /*
1617  * paging_init() sets up the page tables, initialises the zone memory
1618  * maps, and sets up the zero page, bad page and bad page tables.
1619  */
1620 void __init paging_init(const struct machine_desc *mdesc)
1621 {
1622 	void *zero_page;
1623 
1624 	prepare_page_table();
1625 	map_lowmem();
1626 	memblock_set_current_limit(arm_lowmem_limit);
1627 	dma_contiguous_remap();
1628 	early_fixmap_shutdown();
1629 	devicemaps_init(mdesc);
1630 	kmap_init();
1631 	tcm_init();
1632 
1633 	top_pmd = pmd_off_k(0xffff0000);
1634 
1635 	/* allocate the zero page. */
1636 	zero_page = early_alloc(PAGE_SIZE);
1637 
1638 	bootmem_init();
1639 
1640 	empty_zero_page = virt_to_page(zero_page);
1641 	__flush_dcache_page(NULL, empty_zero_page);
1642 }
1643 
1644 void __init early_mm_init(const struct machine_desc *mdesc)
1645 {
1646 	build_mem_type_table();
1647 	early_paging_init(mdesc);
1648 }
1649 
1650 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1651 			      pte_t *ptep, pte_t pteval)
1652 {
1653 	unsigned long ext = 0;
1654 
1655 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1656 		if (!pte_special(pteval))
1657 			__sync_icache_dcache(pteval);
1658 		ext |= PTE_EXT_NG;
1659 	}
1660 
1661 	set_pte_ext(ptep, pteval, ext);
1662 }
1663