1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 18 #include <asm/cputype.h> 19 #include <asm/mach-types.h> 20 #include <asm/sections.h> 21 #include <asm/cachetype.h> 22 #include <asm/setup.h> 23 #include <asm/sizes.h> 24 #include <asm/tlb.h> 25 #include <asm/highmem.h> 26 27 #include <asm/mach/arch.h> 28 #include <asm/mach/map.h> 29 30 #include "mm.h" 31 32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 33 34 /* 35 * empty_zero_page is a special page that is used for 36 * zero-initialized data and COW. 37 */ 38 struct page *empty_zero_page; 39 EXPORT_SYMBOL(empty_zero_page); 40 41 /* 42 * The pmd table for the upper-most set of pages. 43 */ 44 pmd_t *top_pmd; 45 46 #define CPOLICY_UNCACHED 0 47 #define CPOLICY_BUFFERED 1 48 #define CPOLICY_WRITETHROUGH 2 49 #define CPOLICY_WRITEBACK 3 50 #define CPOLICY_WRITEALLOC 4 51 52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 53 static unsigned int ecc_mask __initdata = 0; 54 pgprot_t pgprot_user; 55 pgprot_t pgprot_kernel; 56 57 EXPORT_SYMBOL(pgprot_user); 58 EXPORT_SYMBOL(pgprot_kernel); 59 60 struct cachepolicy { 61 const char policy[16]; 62 unsigned int cr_mask; 63 unsigned int pmd; 64 unsigned int pte; 65 }; 66 67 static struct cachepolicy cache_policies[] __initdata = { 68 { 69 .policy = "uncached", 70 .cr_mask = CR_W|CR_C, 71 .pmd = PMD_SECT_UNCACHED, 72 .pte = L_PTE_MT_UNCACHED, 73 }, { 74 .policy = "buffered", 75 .cr_mask = CR_C, 76 .pmd = PMD_SECT_BUFFERED, 77 .pte = L_PTE_MT_BUFFERABLE, 78 }, { 79 .policy = "writethrough", 80 .cr_mask = 0, 81 .pmd = PMD_SECT_WT, 82 .pte = L_PTE_MT_WRITETHROUGH, 83 }, { 84 .policy = "writeback", 85 .cr_mask = 0, 86 .pmd = PMD_SECT_WB, 87 .pte = L_PTE_MT_WRITEBACK, 88 }, { 89 .policy = "writealloc", 90 .cr_mask = 0, 91 .pmd = PMD_SECT_WBWA, 92 .pte = L_PTE_MT_WRITEALLOC, 93 } 94 }; 95 96 /* 97 * These are useful for identifying cache coherency 98 * problems by allowing the cache or the cache and 99 * writebuffer to be turned off. (Note: the write 100 * buffer should not be on and the cache off). 101 */ 102 static void __init early_cachepolicy(char **p) 103 { 104 int i; 105 106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 107 int len = strlen(cache_policies[i].policy); 108 109 if (memcmp(*p, cache_policies[i].policy, len) == 0) { 110 cachepolicy = i; 111 cr_alignment &= ~cache_policies[i].cr_mask; 112 cr_no_alignment &= ~cache_policies[i].cr_mask; 113 *p += len; 114 break; 115 } 116 } 117 if (i == ARRAY_SIZE(cache_policies)) 118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); 119 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 120 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); 121 cachepolicy = CPOLICY_WRITEBACK; 122 } 123 flush_cache_all(); 124 set_cr(cr_alignment); 125 } 126 __early_param("cachepolicy=", early_cachepolicy); 127 128 static void __init early_nocache(char **__unused) 129 { 130 char *p = "buffered"; 131 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); 132 early_cachepolicy(&p); 133 } 134 __early_param("nocache", early_nocache); 135 136 static void __init early_nowrite(char **__unused) 137 { 138 char *p = "uncached"; 139 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); 140 early_cachepolicy(&p); 141 } 142 __early_param("nowb", early_nowrite); 143 144 static void __init early_ecc(char **p) 145 { 146 if (memcmp(*p, "on", 2) == 0) { 147 ecc_mask = PMD_PROTECTION; 148 *p += 2; 149 } else if (memcmp(*p, "off", 3) == 0) { 150 ecc_mask = 0; 151 *p += 3; 152 } 153 } 154 __early_param("ecc=", early_ecc); 155 156 static int __init noalign_setup(char *__unused) 157 { 158 cr_alignment &= ~CR_A; 159 cr_no_alignment &= ~CR_A; 160 set_cr(cr_alignment); 161 return 1; 162 } 163 __setup("noalign", noalign_setup); 164 165 #ifndef CONFIG_SMP 166 void adjust_cr(unsigned long mask, unsigned long set) 167 { 168 unsigned long flags; 169 170 mask &= ~CR_A; 171 172 set &= mask; 173 174 local_irq_save(flags); 175 176 cr_no_alignment = (cr_no_alignment & ~mask) | set; 177 cr_alignment = (cr_alignment & ~mask) | set; 178 179 set_cr((get_cr() & ~mask) | set); 180 181 local_irq_restore(flags); 182 } 183 #endif 184 185 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE 186 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 187 188 static struct mem_type mem_types[] = { 189 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 190 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 191 L_PTE_SHARED, 192 .prot_l1 = PMD_TYPE_TABLE, 193 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 194 .domain = DOMAIN_IO, 195 }, 196 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 197 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 198 .prot_l1 = PMD_TYPE_TABLE, 199 .prot_sect = PROT_SECT_DEVICE, 200 .domain = DOMAIN_IO, 201 }, 202 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 204 .prot_l1 = PMD_TYPE_TABLE, 205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 206 .domain = DOMAIN_IO, 207 }, 208 [MT_DEVICE_WC] = { /* ioremap_wc */ 209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 210 .prot_l1 = PMD_TYPE_TABLE, 211 .prot_sect = PROT_SECT_DEVICE, 212 .domain = DOMAIN_IO, 213 }, 214 [MT_UNCACHED] = { 215 .prot_pte = PROT_PTE_DEVICE, 216 .prot_l1 = PMD_TYPE_TABLE, 217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 218 .domain = DOMAIN_IO, 219 }, 220 [MT_CACHECLEAN] = { 221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 222 .domain = DOMAIN_KERNEL, 223 }, 224 [MT_MINICLEAN] = { 225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 226 .domain = DOMAIN_KERNEL, 227 }, 228 [MT_LOW_VECTORS] = { 229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 230 L_PTE_EXEC, 231 .prot_l1 = PMD_TYPE_TABLE, 232 .domain = DOMAIN_USER, 233 }, 234 [MT_HIGH_VECTORS] = { 235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 236 L_PTE_USER | L_PTE_EXEC, 237 .prot_l1 = PMD_TYPE_TABLE, 238 .domain = DOMAIN_USER, 239 }, 240 [MT_MEMORY] = { 241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 242 .domain = DOMAIN_KERNEL, 243 }, 244 [MT_ROM] = { 245 .prot_sect = PMD_TYPE_SECT, 246 .domain = DOMAIN_KERNEL, 247 }, 248 [MT_MEMORY_NONCACHED] = { 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 250 .domain = DOMAIN_KERNEL, 251 }, 252 }; 253 254 const struct mem_type *get_mem_type(unsigned int type) 255 { 256 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 257 } 258 259 /* 260 * Adjust the PMD section entries according to the CPU in use. 261 */ 262 static void __init build_mem_type_table(void) 263 { 264 struct cachepolicy *cp; 265 unsigned int cr = get_cr(); 266 unsigned int user_pgprot, kern_pgprot, vecs_pgprot; 267 int cpu_arch = cpu_architecture(); 268 int i; 269 270 if (cpu_arch < CPU_ARCH_ARMv6) { 271 #if defined(CONFIG_CPU_DCACHE_DISABLE) 272 if (cachepolicy > CPOLICY_BUFFERED) 273 cachepolicy = CPOLICY_BUFFERED; 274 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 275 if (cachepolicy > CPOLICY_WRITETHROUGH) 276 cachepolicy = CPOLICY_WRITETHROUGH; 277 #endif 278 } 279 if (cpu_arch < CPU_ARCH_ARMv5) { 280 if (cachepolicy >= CPOLICY_WRITEALLOC) 281 cachepolicy = CPOLICY_WRITEBACK; 282 ecc_mask = 0; 283 } 284 #ifdef CONFIG_SMP 285 cachepolicy = CPOLICY_WRITEALLOC; 286 #endif 287 288 /* 289 * Strip out features not present on earlier architectures. 290 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 291 * without extended page tables don't have the 'Shared' bit. 292 */ 293 if (cpu_arch < CPU_ARCH_ARMv5) 294 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 295 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 296 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 297 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 298 mem_types[i].prot_sect &= ~PMD_SECT_S; 299 300 /* 301 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 302 * "update-able on write" bit on ARM610). However, Xscale and 303 * Xscale3 require this bit to be cleared. 304 */ 305 if (cpu_is_xscale() || cpu_is_xsc3()) { 306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 307 mem_types[i].prot_sect &= ~PMD_BIT4; 308 mem_types[i].prot_l1 &= ~PMD_BIT4; 309 } 310 } else if (cpu_arch < CPU_ARCH_ARMv6) { 311 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 312 if (mem_types[i].prot_l1) 313 mem_types[i].prot_l1 |= PMD_BIT4; 314 if (mem_types[i].prot_sect) 315 mem_types[i].prot_sect |= PMD_BIT4; 316 } 317 } 318 319 /* 320 * Mark the device areas according to the CPU/architecture. 321 */ 322 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 323 if (!cpu_is_xsc3()) { 324 /* 325 * Mark device regions on ARMv6+ as execute-never 326 * to prevent speculative instruction fetches. 327 */ 328 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 329 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 330 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 331 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 332 } 333 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 334 /* 335 * For ARMv7 with TEX remapping, 336 * - shared device is SXCB=1100 337 * - nonshared device is SXCB=0100 338 * - write combine device mem is SXCB=0001 339 * (Uncached Normal memory) 340 */ 341 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 342 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 343 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 344 } else if (cpu_is_xsc3()) { 345 /* 346 * For Xscale3, 347 * - shared device is TEXCB=00101 348 * - nonshared device is TEXCB=01000 349 * - write combine device mem is TEXCB=00100 350 * (Inner/Outer Uncacheable in xsc3 parlance) 351 */ 352 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 353 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 354 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 355 } else { 356 /* 357 * For ARMv6 and ARMv7 without TEX remapping, 358 * - shared device is TEXCB=00001 359 * - nonshared device is TEXCB=01000 360 * - write combine device mem is TEXCB=00100 361 * (Uncached Normal in ARMv6 parlance). 362 */ 363 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 364 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 366 } 367 } else { 368 /* 369 * On others, write combining is "Uncached/Buffered" 370 */ 371 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 372 } 373 374 /* 375 * Now deal with the memory-type mappings 376 */ 377 cp = &cache_policies[cachepolicy]; 378 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 379 380 #ifndef CONFIG_SMP 381 /* 382 * Only use write-through for non-SMP systems 383 */ 384 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) 385 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; 386 #endif 387 388 /* 389 * Enable CPU-specific coherency if supported. 390 * (Only available on XSC3 at the moment.) 391 */ 392 if (arch_is_coherent() && cpu_is_xsc3()) 393 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 394 395 /* 396 * ARMv6 and above have extended page tables. 397 */ 398 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 399 /* 400 * Mark cache clean areas and XIP ROM read only 401 * from SVC mode and no access from userspace. 402 */ 403 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 404 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 405 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 406 407 #ifdef CONFIG_SMP 408 /* 409 * Mark memory with the "shared" attribute for SMP systems 410 */ 411 user_pgprot |= L_PTE_SHARED; 412 kern_pgprot |= L_PTE_SHARED; 413 vecs_pgprot |= L_PTE_SHARED; 414 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 415 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; 416 #endif 417 } 418 419 /* 420 * Non-cacheable Normal - intended for memory areas that must 421 * not cause dirty cache line writebacks when used 422 */ 423 if (cpu_arch >= CPU_ARCH_ARMv6) { 424 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 425 /* Non-cacheable Normal is XCB = 001 */ 426 mem_types[MT_MEMORY_NONCACHED].prot_sect |= 427 PMD_SECT_BUFFERED; 428 } else { 429 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 430 mem_types[MT_MEMORY_NONCACHED].prot_sect |= 431 PMD_SECT_TEX(1); 432 } 433 } else { 434 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 435 } 436 437 for (i = 0; i < 16; i++) { 438 unsigned long v = pgprot_val(protection_map[i]); 439 protection_map[i] = __pgprot(v | user_pgprot); 440 } 441 442 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 443 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 444 445 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 446 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 447 L_PTE_DIRTY | L_PTE_WRITE | 448 L_PTE_EXEC | kern_pgprot); 449 450 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 451 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 452 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; 453 mem_types[MT_ROM].prot_sect |= cp->pmd; 454 455 switch (cp->pmd) { 456 case PMD_SECT_WT: 457 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 458 break; 459 case PMD_SECT_WB: 460 case PMD_SECT_WBWA: 461 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 462 break; 463 } 464 printk("Memory policy: ECC %sabled, Data cache %s\n", 465 ecc_mask ? "en" : "dis", cp->policy); 466 467 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 468 struct mem_type *t = &mem_types[i]; 469 if (t->prot_l1) 470 t->prot_l1 |= PMD_DOMAIN(t->domain); 471 if (t->prot_sect) 472 t->prot_sect |= PMD_DOMAIN(t->domain); 473 } 474 } 475 476 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 477 478 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 479 unsigned long end, unsigned long pfn, 480 const struct mem_type *type) 481 { 482 pte_t *pte; 483 484 if (pmd_none(*pmd)) { 485 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); 486 __pmd_populate(pmd, __pa(pte) | type->prot_l1); 487 } 488 489 pte = pte_offset_kernel(pmd, addr); 490 do { 491 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); 492 pfn++; 493 } while (pte++, addr += PAGE_SIZE, addr != end); 494 } 495 496 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, 497 unsigned long end, unsigned long phys, 498 const struct mem_type *type) 499 { 500 pmd_t *pmd = pmd_offset(pgd, addr); 501 502 /* 503 * Try a section mapping - end, addr and phys must all be aligned 504 * to a section boundary. Note that PMDs refer to the individual 505 * L1 entries, whereas PGDs refer to a group of L1 entries making 506 * up one logical pointer to an L2 table. 507 */ 508 if (((addr | end | phys) & ~SECTION_MASK) == 0) { 509 pmd_t *p = pmd; 510 511 if (addr & SECTION_SIZE) 512 pmd++; 513 514 do { 515 *pmd = __pmd(phys | type->prot_sect); 516 phys += SECTION_SIZE; 517 } while (pmd++, addr += SECTION_SIZE, addr != end); 518 519 flush_pmd_entry(p); 520 } else { 521 /* 522 * No need to loop; pte's aren't interested in the 523 * individual L1 entries. 524 */ 525 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); 526 } 527 } 528 529 static void __init create_36bit_mapping(struct map_desc *md, 530 const struct mem_type *type) 531 { 532 unsigned long phys, addr, length, end; 533 pgd_t *pgd; 534 535 addr = md->virtual; 536 phys = (unsigned long)__pfn_to_phys(md->pfn); 537 length = PAGE_ALIGN(md->length); 538 539 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 540 printk(KERN_ERR "MM: CPU does not support supersection " 541 "mapping for 0x%08llx at 0x%08lx\n", 542 __pfn_to_phys((u64)md->pfn), addr); 543 return; 544 } 545 546 /* N.B. ARMv6 supersections are only defined to work with domain 0. 547 * Since domain assignments can in fact be arbitrary, the 548 * 'domain == 0' check below is required to insure that ARMv6 549 * supersections are only allocated for domain 0 regardless 550 * of the actual domain assignments in use. 551 */ 552 if (type->domain) { 553 printk(KERN_ERR "MM: invalid domain in supersection " 554 "mapping for 0x%08llx at 0x%08lx\n", 555 __pfn_to_phys((u64)md->pfn), addr); 556 return; 557 } 558 559 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 560 printk(KERN_ERR "MM: cannot create mapping for " 561 "0x%08llx at 0x%08lx invalid alignment\n", 562 __pfn_to_phys((u64)md->pfn), addr); 563 return; 564 } 565 566 /* 567 * Shift bits [35:32] of address into bits [23:20] of PMD 568 * (See ARMv6 spec). 569 */ 570 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 571 572 pgd = pgd_offset_k(addr); 573 end = addr + length; 574 do { 575 pmd_t *pmd = pmd_offset(pgd, addr); 576 int i; 577 578 for (i = 0; i < 16; i++) 579 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 580 581 addr += SUPERSECTION_SIZE; 582 phys += SUPERSECTION_SIZE; 583 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 584 } while (addr != end); 585 } 586 587 /* 588 * Create the page directory entries and any necessary 589 * page tables for the mapping specified by `md'. We 590 * are able to cope here with varying sizes and address 591 * offsets, and we take full advantage of sections and 592 * supersections. 593 */ 594 void __init create_mapping(struct map_desc *md) 595 { 596 unsigned long phys, addr, length, end; 597 const struct mem_type *type; 598 pgd_t *pgd; 599 600 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 601 printk(KERN_WARNING "BUG: not creating mapping for " 602 "0x%08llx at 0x%08lx in user region\n", 603 __pfn_to_phys((u64)md->pfn), md->virtual); 604 return; 605 } 606 607 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 608 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { 609 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " 610 "overlaps vmalloc space\n", 611 __pfn_to_phys((u64)md->pfn), md->virtual); 612 } 613 614 type = &mem_types[md->type]; 615 616 /* 617 * Catch 36-bit addresses 618 */ 619 if (md->pfn >= 0x100000) { 620 create_36bit_mapping(md, type); 621 return; 622 } 623 624 addr = md->virtual & PAGE_MASK; 625 phys = (unsigned long)__pfn_to_phys(md->pfn); 626 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 627 628 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 629 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " 630 "be mapped using pages, ignoring.\n", 631 __pfn_to_phys(md->pfn), addr); 632 return; 633 } 634 635 pgd = pgd_offset_k(addr); 636 end = addr + length; 637 do { 638 unsigned long next = pgd_addr_end(addr, end); 639 640 alloc_init_section(pgd, addr, next, phys, type); 641 642 phys += next - addr; 643 addr = next; 644 } while (pgd++, addr != end); 645 } 646 647 /* 648 * Create the architecture specific mappings 649 */ 650 void __init iotable_init(struct map_desc *io_desc, int nr) 651 { 652 int i; 653 654 for (i = 0; i < nr; i++) 655 create_mapping(io_desc + i); 656 } 657 658 static unsigned long __initdata vmalloc_reserve = SZ_128M; 659 660 /* 661 * vmalloc=size forces the vmalloc area to be exactly 'size' 662 * bytes. This can be used to increase (or decrease) the vmalloc 663 * area - the default is 128m. 664 */ 665 static void __init early_vmalloc(char **arg) 666 { 667 vmalloc_reserve = memparse(*arg, arg); 668 669 if (vmalloc_reserve < SZ_16M) { 670 vmalloc_reserve = SZ_16M; 671 printk(KERN_WARNING 672 "vmalloc area too small, limiting to %luMB\n", 673 vmalloc_reserve >> 20); 674 } 675 676 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 677 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 678 printk(KERN_WARNING 679 "vmalloc area is too big, limiting to %luMB\n", 680 vmalloc_reserve >> 20); 681 } 682 } 683 __early_param("vmalloc=", early_vmalloc); 684 685 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve) 686 687 static void __init sanity_check_meminfo(void) 688 { 689 int i, j; 690 691 for (i = 0, j = 0; i < meminfo.nr_banks; i++) { 692 struct membank *bank = &meminfo.bank[j]; 693 *bank = meminfo.bank[i]; 694 695 #ifdef CONFIG_HIGHMEM 696 /* 697 * Split those memory banks which are partially overlapping 698 * the vmalloc area greatly simplifying things later. 699 */ 700 if (__va(bank->start) < VMALLOC_MIN && 701 bank->size > VMALLOC_MIN - __va(bank->start)) { 702 if (meminfo.nr_banks >= NR_BANKS) { 703 printk(KERN_CRIT "NR_BANKS too low, " 704 "ignoring high memory\n"); 705 } else if (cache_is_vipt_aliasing()) { 706 printk(KERN_CRIT "HIGHMEM is not yet supported " 707 "with VIPT aliasing cache, " 708 "ignoring high memory\n"); 709 } else { 710 memmove(bank + 1, bank, 711 (meminfo.nr_banks - i) * sizeof(*bank)); 712 meminfo.nr_banks++; 713 i++; 714 bank[1].size -= VMALLOC_MIN - __va(bank->start); 715 bank[1].start = __pa(VMALLOC_MIN - 1) + 1; 716 j++; 717 } 718 bank->size = VMALLOC_MIN - __va(bank->start); 719 } 720 #else 721 /* 722 * Check whether this memory bank would entirely overlap 723 * the vmalloc area. 724 */ 725 if (__va(bank->start) >= VMALLOC_MIN || 726 __va(bank->start) < (void *)PAGE_OFFSET) { 727 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx " 728 "(vmalloc region overlap).\n", 729 bank->start, bank->start + bank->size - 1); 730 continue; 731 } 732 733 /* 734 * Check whether this memory bank would partially overlap 735 * the vmalloc area. 736 */ 737 if (__va(bank->start + bank->size) > VMALLOC_MIN || 738 __va(bank->start + bank->size) < __va(bank->start)) { 739 unsigned long newsize = VMALLOC_MIN - __va(bank->start); 740 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx " 741 "to -%.8lx (vmalloc region overlap).\n", 742 bank->start, bank->start + bank->size - 1, 743 bank->start + newsize - 1); 744 bank->size = newsize; 745 } 746 #endif 747 j++; 748 } 749 meminfo.nr_banks = j; 750 } 751 752 static inline void prepare_page_table(void) 753 { 754 unsigned long addr; 755 756 /* 757 * Clear out all the mappings below the kernel image. 758 */ 759 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) 760 pmd_clear(pmd_off_k(addr)); 761 762 #ifdef CONFIG_XIP_KERNEL 763 /* The XIP kernel is mapped in the module area -- skip over it */ 764 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 765 #endif 766 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 767 pmd_clear(pmd_off_k(addr)); 768 769 /* 770 * Clear out all the kernel space mappings, except for the first 771 * memory bank, up to the end of the vmalloc region. 772 */ 773 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0])); 774 addr < VMALLOC_END; addr += PGDIR_SIZE) 775 pmd_clear(pmd_off_k(addr)); 776 } 777 778 /* 779 * Reserve the various regions of node 0 780 */ 781 void __init reserve_node_zero(pg_data_t *pgdat) 782 { 783 unsigned long res_size = 0; 784 785 /* 786 * Register the kernel text and data with bootmem. 787 * Note that this can only be in node 0. 788 */ 789 #ifdef CONFIG_XIP_KERNEL 790 reserve_bootmem_node(pgdat, __pa(_data), _end - _data, 791 BOOTMEM_DEFAULT); 792 #else 793 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext, 794 BOOTMEM_DEFAULT); 795 #endif 796 797 /* 798 * Reserve the page tables. These are already in use, 799 * and can only be in node 0. 800 */ 801 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 802 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT); 803 804 /* 805 * Hmm... This should go elsewhere, but we really really need to 806 * stop things allocating the low memory; ideally we need a better 807 * implementation of GFP_DMA which does not assume that DMA-able 808 * memory starts at zero. 809 */ 810 if (machine_is_integrator() || machine_is_cintegrator()) 811 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 812 813 /* 814 * These should likewise go elsewhere. They pre-reserve the 815 * screen memory region at the start of main system memory. 816 */ 817 if (machine_is_edb7211()) 818 res_size = 0x00020000; 819 if (machine_is_p720t()) 820 res_size = 0x00014000; 821 822 /* H1940 and RX3715 need to reserve this for suspend */ 823 824 if (machine_is_h1940() || machine_is_rx3715()) { 825 reserve_bootmem_node(pgdat, 0x30003000, 0x1000, 826 BOOTMEM_DEFAULT); 827 reserve_bootmem_node(pgdat, 0x30081000, 0x1000, 828 BOOTMEM_DEFAULT); 829 } 830 831 if (machine_is_palmld() || machine_is_palmtx()) { 832 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000, 833 BOOTMEM_EXCLUSIVE); 834 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, 835 BOOTMEM_EXCLUSIVE); 836 } 837 838 if (machine_is_palmt5()) 839 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, 840 BOOTMEM_EXCLUSIVE); 841 842 #ifdef CONFIG_SA1111 843 /* 844 * Because of the SA1111 DMA bug, we want to preserve our 845 * precious DMA-able memory... 846 */ 847 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 848 #endif 849 if (res_size) 850 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size, 851 BOOTMEM_DEFAULT); 852 } 853 854 /* 855 * Set up device the mappings. Since we clear out the page tables for all 856 * mappings above VMALLOC_END, we will remove any debug device mappings. 857 * This means you have to be careful how you debug this function, or any 858 * called function. This means you can't use any function or debugging 859 * method which may touch any device, otherwise the kernel _will_ crash. 860 */ 861 static void __init devicemaps_init(struct machine_desc *mdesc) 862 { 863 struct map_desc map; 864 unsigned long addr; 865 void *vectors; 866 867 /* 868 * Allocate the vector page early. 869 */ 870 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 871 872 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 873 pmd_clear(pmd_off_k(addr)); 874 875 /* 876 * Map the kernel if it is XIP. 877 * It is always first in the modulearea. 878 */ 879 #ifdef CONFIG_XIP_KERNEL 880 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 881 map.virtual = MODULES_VADDR; 882 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 883 map.type = MT_ROM; 884 create_mapping(&map); 885 #endif 886 887 /* 888 * Map the cache flushing regions. 889 */ 890 #ifdef FLUSH_BASE 891 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 892 map.virtual = FLUSH_BASE; 893 map.length = SZ_1M; 894 map.type = MT_CACHECLEAN; 895 create_mapping(&map); 896 #endif 897 #ifdef FLUSH_BASE_MINICACHE 898 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 899 map.virtual = FLUSH_BASE_MINICACHE; 900 map.length = SZ_1M; 901 map.type = MT_MINICLEAN; 902 create_mapping(&map); 903 #endif 904 905 /* 906 * Create a mapping for the machine vectors at the high-vectors 907 * location (0xffff0000). If we aren't using high-vectors, also 908 * create a mapping at the low-vectors virtual address. 909 */ 910 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 911 map.virtual = 0xffff0000; 912 map.length = PAGE_SIZE; 913 map.type = MT_HIGH_VECTORS; 914 create_mapping(&map); 915 916 if (!vectors_high()) { 917 map.virtual = 0; 918 map.type = MT_LOW_VECTORS; 919 create_mapping(&map); 920 } 921 922 /* 923 * Ask the machine support to map in the statically mapped devices. 924 */ 925 if (mdesc->map_io) 926 mdesc->map_io(); 927 928 /* 929 * Finally flush the caches and tlb to ensure that we're in a 930 * consistent state wrt the writebuffer. This also ensures that 931 * any write-allocated cache lines in the vector page are written 932 * back. After this point, we can start to touch devices again. 933 */ 934 local_flush_tlb_all(); 935 flush_cache_all(); 936 } 937 938 static void __init kmap_init(void) 939 { 940 #ifdef CONFIG_HIGHMEM 941 pmd_t *pmd = pmd_off_k(PKMAP_BASE); 942 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); 943 BUG_ON(!pmd_none(*pmd) || !pte); 944 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE); 945 pkmap_page_table = pte + PTRS_PER_PTE; 946 #endif 947 } 948 949 /* 950 * paging_init() sets up the page tables, initialises the zone memory 951 * maps, and sets up the zero page, bad page and bad page tables. 952 */ 953 void __init paging_init(struct machine_desc *mdesc) 954 { 955 void *zero_page; 956 957 build_mem_type_table(); 958 sanity_check_meminfo(); 959 prepare_page_table(); 960 bootmem_init(); 961 devicemaps_init(mdesc); 962 kmap_init(); 963 964 top_pmd = pmd_off_k(0xffff0000); 965 966 /* 967 * allocate the zero page. Note that this always succeeds and 968 * returns a zeroed result. 969 */ 970 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 971 empty_zero_page = virt_to_page(zero_page); 972 flush_dcache_page(empty_zero_page); 973 } 974 975 /* 976 * In order to soft-boot, we need to insert a 1:1 mapping in place of 977 * the user-mode pages. This will then ensure that we have predictable 978 * results when turning the mmu off 979 */ 980 void setup_mm_for_reboot(char mode) 981 { 982 unsigned long base_pmdval; 983 pgd_t *pgd; 984 int i; 985 986 if (current->mm && current->mm->pgd) 987 pgd = current->mm->pgd; 988 else 989 pgd = init_mm.pgd; 990 991 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; 992 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) 993 base_pmdval |= PMD_BIT4; 994 995 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { 996 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; 997 pmd_t *pmd; 998 999 pmd = pmd_off(pgd, i << PGDIR_SHIFT); 1000 pmd[0] = __pmd(pmdval); 1001 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); 1002 flush_pmd_entry(pmd); 1003 } 1004 } 1005