xref: /openbmc/linux/arch/arm/mm/mmu.c (revision b627b4ed)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 
27 #include <asm/mach/arch.h>
28 #include <asm/mach/map.h>
29 
30 #include "mm.h"
31 
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40 
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45 
46 #define CPOLICY_UNCACHED	0
47 #define CPOLICY_BUFFERED	1
48 #define CPOLICY_WRITETHROUGH	2
49 #define CPOLICY_WRITEBACK	3
50 #define CPOLICY_WRITEALLOC	4
51 
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56 
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59 
60 struct cachepolicy {
61 	const char	policy[16];
62 	unsigned int	cr_mask;
63 	unsigned int	pmd;
64 	unsigned int	pte;
65 };
66 
67 static struct cachepolicy cache_policies[] __initdata = {
68 	{
69 		.policy		= "uncached",
70 		.cr_mask	= CR_W|CR_C,
71 		.pmd		= PMD_SECT_UNCACHED,
72 		.pte		= L_PTE_MT_UNCACHED,
73 	}, {
74 		.policy		= "buffered",
75 		.cr_mask	= CR_C,
76 		.pmd		= PMD_SECT_BUFFERED,
77 		.pte		= L_PTE_MT_BUFFERABLE,
78 	}, {
79 		.policy		= "writethrough",
80 		.cr_mask	= 0,
81 		.pmd		= PMD_SECT_WT,
82 		.pte		= L_PTE_MT_WRITETHROUGH,
83 	}, {
84 		.policy		= "writeback",
85 		.cr_mask	= 0,
86 		.pmd		= PMD_SECT_WB,
87 		.pte		= L_PTE_MT_WRITEBACK,
88 	}, {
89 		.policy		= "writealloc",
90 		.cr_mask	= 0,
91 		.pmd		= PMD_SECT_WBWA,
92 		.pte		= L_PTE_MT_WRITEALLOC,
93 	}
94 };
95 
96 /*
97  * These are useful for identifying cache coherency
98  * problems by allowing the cache or the cache and
99  * writebuffer to be turned off.  (Note: the write
100  * buffer should not be on and the cache off).
101  */
102 static void __init early_cachepolicy(char **p)
103 {
104 	int i;
105 
106 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 		int len = strlen(cache_policies[i].policy);
108 
109 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
110 			cachepolicy = i;
111 			cr_alignment &= ~cache_policies[i].cr_mask;
112 			cr_no_alignment &= ~cache_policies[i].cr_mask;
113 			*p += len;
114 			break;
115 		}
116 	}
117 	if (i == ARRAY_SIZE(cache_policies))
118 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
120 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
121 		cachepolicy = CPOLICY_WRITEBACK;
122 	}
123 	flush_cache_all();
124 	set_cr(cr_alignment);
125 }
126 __early_param("cachepolicy=", early_cachepolicy);
127 
128 static void __init early_nocache(char **__unused)
129 {
130 	char *p = "buffered";
131 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
132 	early_cachepolicy(&p);
133 }
134 __early_param("nocache", early_nocache);
135 
136 static void __init early_nowrite(char **__unused)
137 {
138 	char *p = "uncached";
139 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
140 	early_cachepolicy(&p);
141 }
142 __early_param("nowb", early_nowrite);
143 
144 static void __init early_ecc(char **p)
145 {
146 	if (memcmp(*p, "on", 2) == 0) {
147 		ecc_mask = PMD_PROTECTION;
148 		*p += 2;
149 	} else if (memcmp(*p, "off", 3) == 0) {
150 		ecc_mask = 0;
151 		*p += 3;
152 	}
153 }
154 __early_param("ecc=", early_ecc);
155 
156 static int __init noalign_setup(char *__unused)
157 {
158 	cr_alignment &= ~CR_A;
159 	cr_no_alignment &= ~CR_A;
160 	set_cr(cr_alignment);
161 	return 1;
162 }
163 __setup("noalign", noalign_setup);
164 
165 #ifndef CONFIG_SMP
166 void adjust_cr(unsigned long mask, unsigned long set)
167 {
168 	unsigned long flags;
169 
170 	mask &= ~CR_A;
171 
172 	set &= mask;
173 
174 	local_irq_save(flags);
175 
176 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
177 	cr_alignment = (cr_alignment & ~mask) | set;
178 
179 	set_cr((get_cr() & ~mask) | set);
180 
181 	local_irq_restore(flags);
182 }
183 #endif
184 
185 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
187 
188 static struct mem_type mem_types[] = {
189 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
190 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
191 				  L_PTE_SHARED,
192 		.prot_l1	= PMD_TYPE_TABLE,
193 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
194 		.domain		= DOMAIN_IO,
195 	},
196 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198 		.prot_l1	= PMD_TYPE_TABLE,
199 		.prot_sect	= PROT_SECT_DEVICE,
200 		.domain		= DOMAIN_IO,
201 	},
202 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
203 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 		.prot_l1	= PMD_TYPE_TABLE,
205 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
206 		.domain		= DOMAIN_IO,
207 	},
208 	[MT_DEVICE_WC] = {	/* ioremap_wc */
209 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210 		.prot_l1	= PMD_TYPE_TABLE,
211 		.prot_sect	= PROT_SECT_DEVICE,
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_UNCACHED] = {
215 		.prot_pte	= PROT_PTE_DEVICE,
216 		.prot_l1	= PMD_TYPE_TABLE,
217 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
218 		.domain		= DOMAIN_IO,
219 	},
220 	[MT_CACHECLEAN] = {
221 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 		.domain    = DOMAIN_KERNEL,
223 	},
224 	[MT_MINICLEAN] = {
225 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 		.domain    = DOMAIN_KERNEL,
227 	},
228 	[MT_LOW_VECTORS] = {
229 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 				L_PTE_EXEC,
231 		.prot_l1   = PMD_TYPE_TABLE,
232 		.domain    = DOMAIN_USER,
233 	},
234 	[MT_HIGH_VECTORS] = {
235 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 				L_PTE_USER | L_PTE_EXEC,
237 		.prot_l1   = PMD_TYPE_TABLE,
238 		.domain    = DOMAIN_USER,
239 	},
240 	[MT_MEMORY] = {
241 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 		.domain    = DOMAIN_KERNEL,
243 	},
244 	[MT_ROM] = {
245 		.prot_sect = PMD_TYPE_SECT,
246 		.domain    = DOMAIN_KERNEL,
247 	},
248 	[MT_MEMORY_NONCACHED] = {
249 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 		.domain    = DOMAIN_KERNEL,
251 	},
252 };
253 
254 const struct mem_type *get_mem_type(unsigned int type)
255 {
256 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
257 }
258 
259 /*
260  * Adjust the PMD section entries according to the CPU in use.
261  */
262 static void __init build_mem_type_table(void)
263 {
264 	struct cachepolicy *cp;
265 	unsigned int cr = get_cr();
266 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
267 	int cpu_arch = cpu_architecture();
268 	int i;
269 
270 	if (cpu_arch < CPU_ARCH_ARMv6) {
271 #if defined(CONFIG_CPU_DCACHE_DISABLE)
272 		if (cachepolicy > CPOLICY_BUFFERED)
273 			cachepolicy = CPOLICY_BUFFERED;
274 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
275 		if (cachepolicy > CPOLICY_WRITETHROUGH)
276 			cachepolicy = CPOLICY_WRITETHROUGH;
277 #endif
278 	}
279 	if (cpu_arch < CPU_ARCH_ARMv5) {
280 		if (cachepolicy >= CPOLICY_WRITEALLOC)
281 			cachepolicy = CPOLICY_WRITEBACK;
282 		ecc_mask = 0;
283 	}
284 #ifdef CONFIG_SMP
285 	cachepolicy = CPOLICY_WRITEALLOC;
286 #endif
287 
288 	/*
289 	 * Strip out features not present on earlier architectures.
290 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
291 	 * without extended page tables don't have the 'Shared' bit.
292 	 */
293 	if (cpu_arch < CPU_ARCH_ARMv5)
294 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
295 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
296 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
297 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
298 			mem_types[i].prot_sect &= ~PMD_SECT_S;
299 
300 	/*
301 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
302 	 * "update-able on write" bit on ARM610).  However, Xscale and
303 	 * Xscale3 require this bit to be cleared.
304 	 */
305 	if (cpu_is_xscale() || cpu_is_xsc3()) {
306 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
307 			mem_types[i].prot_sect &= ~PMD_BIT4;
308 			mem_types[i].prot_l1 &= ~PMD_BIT4;
309 		}
310 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
311 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
312 			if (mem_types[i].prot_l1)
313 				mem_types[i].prot_l1 |= PMD_BIT4;
314 			if (mem_types[i].prot_sect)
315 				mem_types[i].prot_sect |= PMD_BIT4;
316 		}
317 	}
318 
319 	/*
320 	 * Mark the device areas according to the CPU/architecture.
321 	 */
322 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
323 		if (!cpu_is_xsc3()) {
324 			/*
325 			 * Mark device regions on ARMv6+ as execute-never
326 			 * to prevent speculative instruction fetches.
327 			 */
328 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
329 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
330 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
331 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
332 		}
333 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
334 			/*
335 			 * For ARMv7 with TEX remapping,
336 			 * - shared device is SXCB=1100
337 			 * - nonshared device is SXCB=0100
338 			 * - write combine device mem is SXCB=0001
339 			 * (Uncached Normal memory)
340 			 */
341 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
342 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
343 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
344 		} else if (cpu_is_xsc3()) {
345 			/*
346 			 * For Xscale3,
347 			 * - shared device is TEXCB=00101
348 			 * - nonshared device is TEXCB=01000
349 			 * - write combine device mem is TEXCB=00100
350 			 * (Inner/Outer Uncacheable in xsc3 parlance)
351 			 */
352 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
353 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
354 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
355 		} else {
356 			/*
357 			 * For ARMv6 and ARMv7 without TEX remapping,
358 			 * - shared device is TEXCB=00001
359 			 * - nonshared device is TEXCB=01000
360 			 * - write combine device mem is TEXCB=00100
361 			 * (Uncached Normal in ARMv6 parlance).
362 			 */
363 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
364 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
365 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
366 		}
367 	} else {
368 		/*
369 		 * On others, write combining is "Uncached/Buffered"
370 		 */
371 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
372 	}
373 
374 	/*
375 	 * Now deal with the memory-type mappings
376 	 */
377 	cp = &cache_policies[cachepolicy];
378 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
379 
380 #ifndef CONFIG_SMP
381 	/*
382 	 * Only use write-through for non-SMP systems
383 	 */
384 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
385 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
386 #endif
387 
388 	/*
389 	 * Enable CPU-specific coherency if supported.
390 	 * (Only available on XSC3 at the moment.)
391 	 */
392 	if (arch_is_coherent() && cpu_is_xsc3())
393 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
394 
395 	/*
396 	 * ARMv6 and above have extended page tables.
397 	 */
398 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
399 		/*
400 		 * Mark cache clean areas and XIP ROM read only
401 		 * from SVC mode and no access from userspace.
402 		 */
403 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
404 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
405 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
406 
407 #ifdef CONFIG_SMP
408 		/*
409 		 * Mark memory with the "shared" attribute for SMP systems
410 		 */
411 		user_pgprot |= L_PTE_SHARED;
412 		kern_pgprot |= L_PTE_SHARED;
413 		vecs_pgprot |= L_PTE_SHARED;
414 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
415 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
416 #endif
417 	}
418 
419 	/*
420 	 * Non-cacheable Normal - intended for memory areas that must
421 	 * not cause dirty cache line writebacks when used
422 	 */
423 	if (cpu_arch >= CPU_ARCH_ARMv6) {
424 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
425 			/* Non-cacheable Normal is XCB = 001 */
426 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
427 				PMD_SECT_BUFFERED;
428 		} else {
429 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
430 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
431 				PMD_SECT_TEX(1);
432 		}
433 	} else {
434 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
435 	}
436 
437 	for (i = 0; i < 16; i++) {
438 		unsigned long v = pgprot_val(protection_map[i]);
439 		protection_map[i] = __pgprot(v | user_pgprot);
440 	}
441 
442 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
443 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
444 
445 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
446 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
447 				 L_PTE_DIRTY | L_PTE_WRITE |
448 				 L_PTE_EXEC | kern_pgprot);
449 
450 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
451 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
452 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
453 	mem_types[MT_ROM].prot_sect |= cp->pmd;
454 
455 	switch (cp->pmd) {
456 	case PMD_SECT_WT:
457 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
458 		break;
459 	case PMD_SECT_WB:
460 	case PMD_SECT_WBWA:
461 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
462 		break;
463 	}
464 	printk("Memory policy: ECC %sabled, Data cache %s\n",
465 		ecc_mask ? "en" : "dis", cp->policy);
466 
467 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
468 		struct mem_type *t = &mem_types[i];
469 		if (t->prot_l1)
470 			t->prot_l1 |= PMD_DOMAIN(t->domain);
471 		if (t->prot_sect)
472 			t->prot_sect |= PMD_DOMAIN(t->domain);
473 	}
474 }
475 
476 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
477 
478 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
479 				  unsigned long end, unsigned long pfn,
480 				  const struct mem_type *type)
481 {
482 	pte_t *pte;
483 
484 	if (pmd_none(*pmd)) {
485 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
486 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
487 	}
488 
489 	pte = pte_offset_kernel(pmd, addr);
490 	do {
491 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
492 		pfn++;
493 	} while (pte++, addr += PAGE_SIZE, addr != end);
494 }
495 
496 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
497 				      unsigned long end, unsigned long phys,
498 				      const struct mem_type *type)
499 {
500 	pmd_t *pmd = pmd_offset(pgd, addr);
501 
502 	/*
503 	 * Try a section mapping - end, addr and phys must all be aligned
504 	 * to a section boundary.  Note that PMDs refer to the individual
505 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
506 	 * up one logical pointer to an L2 table.
507 	 */
508 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
509 		pmd_t *p = pmd;
510 
511 		if (addr & SECTION_SIZE)
512 			pmd++;
513 
514 		do {
515 			*pmd = __pmd(phys | type->prot_sect);
516 			phys += SECTION_SIZE;
517 		} while (pmd++, addr += SECTION_SIZE, addr != end);
518 
519 		flush_pmd_entry(p);
520 	} else {
521 		/*
522 		 * No need to loop; pte's aren't interested in the
523 		 * individual L1 entries.
524 		 */
525 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
526 	}
527 }
528 
529 static void __init create_36bit_mapping(struct map_desc *md,
530 					const struct mem_type *type)
531 {
532 	unsigned long phys, addr, length, end;
533 	pgd_t *pgd;
534 
535 	addr = md->virtual;
536 	phys = (unsigned long)__pfn_to_phys(md->pfn);
537 	length = PAGE_ALIGN(md->length);
538 
539 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
540 		printk(KERN_ERR "MM: CPU does not support supersection "
541 		       "mapping for 0x%08llx at 0x%08lx\n",
542 		       __pfn_to_phys((u64)md->pfn), addr);
543 		return;
544 	}
545 
546 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
547 	 *	Since domain assignments can in fact be arbitrary, the
548 	 *	'domain == 0' check below is required to insure that ARMv6
549 	 *	supersections are only allocated for domain 0 regardless
550 	 *	of the actual domain assignments in use.
551 	 */
552 	if (type->domain) {
553 		printk(KERN_ERR "MM: invalid domain in supersection "
554 		       "mapping for 0x%08llx at 0x%08lx\n",
555 		       __pfn_to_phys((u64)md->pfn), addr);
556 		return;
557 	}
558 
559 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
560 		printk(KERN_ERR "MM: cannot create mapping for "
561 		       "0x%08llx at 0x%08lx invalid alignment\n",
562 		       __pfn_to_phys((u64)md->pfn), addr);
563 		return;
564 	}
565 
566 	/*
567 	 * Shift bits [35:32] of address into bits [23:20] of PMD
568 	 * (See ARMv6 spec).
569 	 */
570 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
571 
572 	pgd = pgd_offset_k(addr);
573 	end = addr + length;
574 	do {
575 		pmd_t *pmd = pmd_offset(pgd, addr);
576 		int i;
577 
578 		for (i = 0; i < 16; i++)
579 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
580 
581 		addr += SUPERSECTION_SIZE;
582 		phys += SUPERSECTION_SIZE;
583 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
584 	} while (addr != end);
585 }
586 
587 /*
588  * Create the page directory entries and any necessary
589  * page tables for the mapping specified by `md'.  We
590  * are able to cope here with varying sizes and address
591  * offsets, and we take full advantage of sections and
592  * supersections.
593  */
594 void __init create_mapping(struct map_desc *md)
595 {
596 	unsigned long phys, addr, length, end;
597 	const struct mem_type *type;
598 	pgd_t *pgd;
599 
600 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
601 		printk(KERN_WARNING "BUG: not creating mapping for "
602 		       "0x%08llx at 0x%08lx in user region\n",
603 		       __pfn_to_phys((u64)md->pfn), md->virtual);
604 		return;
605 	}
606 
607 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
608 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
609 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
610 		       "overlaps vmalloc space\n",
611 		       __pfn_to_phys((u64)md->pfn), md->virtual);
612 	}
613 
614 	type = &mem_types[md->type];
615 
616 	/*
617 	 * Catch 36-bit addresses
618 	 */
619 	if (md->pfn >= 0x100000) {
620 		create_36bit_mapping(md, type);
621 		return;
622 	}
623 
624 	addr = md->virtual & PAGE_MASK;
625 	phys = (unsigned long)__pfn_to_phys(md->pfn);
626 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
627 
628 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
629 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
630 		       "be mapped using pages, ignoring.\n",
631 		       __pfn_to_phys(md->pfn), addr);
632 		return;
633 	}
634 
635 	pgd = pgd_offset_k(addr);
636 	end = addr + length;
637 	do {
638 		unsigned long next = pgd_addr_end(addr, end);
639 
640 		alloc_init_section(pgd, addr, next, phys, type);
641 
642 		phys += next - addr;
643 		addr = next;
644 	} while (pgd++, addr != end);
645 }
646 
647 /*
648  * Create the architecture specific mappings
649  */
650 void __init iotable_init(struct map_desc *io_desc, int nr)
651 {
652 	int i;
653 
654 	for (i = 0; i < nr; i++)
655 		create_mapping(io_desc + i);
656 }
657 
658 static unsigned long __initdata vmalloc_reserve = SZ_128M;
659 
660 /*
661  * vmalloc=size forces the vmalloc area to be exactly 'size'
662  * bytes. This can be used to increase (or decrease) the vmalloc
663  * area - the default is 128m.
664  */
665 static void __init early_vmalloc(char **arg)
666 {
667 	vmalloc_reserve = memparse(*arg, arg);
668 
669 	if (vmalloc_reserve < SZ_16M) {
670 		vmalloc_reserve = SZ_16M;
671 		printk(KERN_WARNING
672 			"vmalloc area too small, limiting to %luMB\n",
673 			vmalloc_reserve >> 20);
674 	}
675 
676 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
677 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
678 		printk(KERN_WARNING
679 			"vmalloc area is too big, limiting to %luMB\n",
680 			vmalloc_reserve >> 20);
681 	}
682 }
683 __early_param("vmalloc=", early_vmalloc);
684 
685 #define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)
686 
687 static void __init sanity_check_meminfo(void)
688 {
689 	int i, j;
690 
691 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
692 		struct membank *bank = &meminfo.bank[j];
693 		*bank = meminfo.bank[i];
694 
695 #ifdef CONFIG_HIGHMEM
696 		/*
697 		 * Split those memory banks which are partially overlapping
698 		 * the vmalloc area greatly simplifying things later.
699 		 */
700 		if (__va(bank->start) < VMALLOC_MIN &&
701 		    bank->size > VMALLOC_MIN - __va(bank->start)) {
702 			if (meminfo.nr_banks >= NR_BANKS) {
703 				printk(KERN_CRIT "NR_BANKS too low, "
704 						 "ignoring high memory\n");
705 			} else if (cache_is_vipt_aliasing()) {
706 				printk(KERN_CRIT "HIGHMEM is not yet supported "
707 						 "with VIPT aliasing cache, "
708 						 "ignoring high memory\n");
709 			} else {
710 				memmove(bank + 1, bank,
711 					(meminfo.nr_banks - i) * sizeof(*bank));
712 				meminfo.nr_banks++;
713 				i++;
714 				bank[1].size -= VMALLOC_MIN - __va(bank->start);
715 				bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
716 				j++;
717 			}
718 			bank->size = VMALLOC_MIN - __va(bank->start);
719 		}
720 #else
721 		/*
722 		 * Check whether this memory bank would entirely overlap
723 		 * the vmalloc area.
724 		 */
725 		if (__va(bank->start) >= VMALLOC_MIN ||
726 		    __va(bank->start) < (void *)PAGE_OFFSET) {
727 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
728 			       "(vmalloc region overlap).\n",
729 			       bank->start, bank->start + bank->size - 1);
730 			continue;
731 		}
732 
733 		/*
734 		 * Check whether this memory bank would partially overlap
735 		 * the vmalloc area.
736 		 */
737 		if (__va(bank->start + bank->size) > VMALLOC_MIN ||
738 		    __va(bank->start + bank->size) < __va(bank->start)) {
739 			unsigned long newsize = VMALLOC_MIN - __va(bank->start);
740 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
741 			       "to -%.8lx (vmalloc region overlap).\n",
742 			       bank->start, bank->start + bank->size - 1,
743 			       bank->start + newsize - 1);
744 			bank->size = newsize;
745 		}
746 #endif
747 		j++;
748 	}
749 	meminfo.nr_banks = j;
750 }
751 
752 static inline void prepare_page_table(void)
753 {
754 	unsigned long addr;
755 
756 	/*
757 	 * Clear out all the mappings below the kernel image.
758 	 */
759 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
760 		pmd_clear(pmd_off_k(addr));
761 
762 #ifdef CONFIG_XIP_KERNEL
763 	/* The XIP kernel is mapped in the module area -- skip over it */
764 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
765 #endif
766 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
767 		pmd_clear(pmd_off_k(addr));
768 
769 	/*
770 	 * Clear out all the kernel space mappings, except for the first
771 	 * memory bank, up to the end of the vmalloc region.
772 	 */
773 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
774 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
775 		pmd_clear(pmd_off_k(addr));
776 }
777 
778 /*
779  * Reserve the various regions of node 0
780  */
781 void __init reserve_node_zero(pg_data_t *pgdat)
782 {
783 	unsigned long res_size = 0;
784 
785 	/*
786 	 * Register the kernel text and data with bootmem.
787 	 * Note that this can only be in node 0.
788 	 */
789 #ifdef CONFIG_XIP_KERNEL
790 	reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
791 			BOOTMEM_DEFAULT);
792 #else
793 	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
794 			BOOTMEM_DEFAULT);
795 #endif
796 
797 	/*
798 	 * Reserve the page tables.  These are already in use,
799 	 * and can only be in node 0.
800 	 */
801 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
802 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
803 
804 	/*
805 	 * Hmm... This should go elsewhere, but we really really need to
806 	 * stop things allocating the low memory; ideally we need a better
807 	 * implementation of GFP_DMA which does not assume that DMA-able
808 	 * memory starts at zero.
809 	 */
810 	if (machine_is_integrator() || machine_is_cintegrator())
811 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
812 
813 	/*
814 	 * These should likewise go elsewhere.  They pre-reserve the
815 	 * screen memory region at the start of main system memory.
816 	 */
817 	if (machine_is_edb7211())
818 		res_size = 0x00020000;
819 	if (machine_is_p720t())
820 		res_size = 0x00014000;
821 
822 	/* H1940 and RX3715 need to reserve this for suspend */
823 
824 	if (machine_is_h1940() || machine_is_rx3715()) {
825 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
826 				BOOTMEM_DEFAULT);
827 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
828 				BOOTMEM_DEFAULT);
829 	}
830 
831 	if (machine_is_palmld() || machine_is_palmtx()) {
832 		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
833 				BOOTMEM_EXCLUSIVE);
834 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
835 				BOOTMEM_EXCLUSIVE);
836 	}
837 
838 	if (machine_is_palmt5())
839 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
840 				BOOTMEM_EXCLUSIVE);
841 
842 #ifdef CONFIG_SA1111
843 	/*
844 	 * Because of the SA1111 DMA bug, we want to preserve our
845 	 * precious DMA-able memory...
846 	 */
847 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
848 #endif
849 	if (res_size)
850 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
851 				BOOTMEM_DEFAULT);
852 }
853 
854 /*
855  * Set up device the mappings.  Since we clear out the page tables for all
856  * mappings above VMALLOC_END, we will remove any debug device mappings.
857  * This means you have to be careful how you debug this function, or any
858  * called function.  This means you can't use any function or debugging
859  * method which may touch any device, otherwise the kernel _will_ crash.
860  */
861 static void __init devicemaps_init(struct machine_desc *mdesc)
862 {
863 	struct map_desc map;
864 	unsigned long addr;
865 	void *vectors;
866 
867 	/*
868 	 * Allocate the vector page early.
869 	 */
870 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
871 
872 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
873 		pmd_clear(pmd_off_k(addr));
874 
875 	/*
876 	 * Map the kernel if it is XIP.
877 	 * It is always first in the modulearea.
878 	 */
879 #ifdef CONFIG_XIP_KERNEL
880 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
881 	map.virtual = MODULES_VADDR;
882 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
883 	map.type = MT_ROM;
884 	create_mapping(&map);
885 #endif
886 
887 	/*
888 	 * Map the cache flushing regions.
889 	 */
890 #ifdef FLUSH_BASE
891 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
892 	map.virtual = FLUSH_BASE;
893 	map.length = SZ_1M;
894 	map.type = MT_CACHECLEAN;
895 	create_mapping(&map);
896 #endif
897 #ifdef FLUSH_BASE_MINICACHE
898 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
899 	map.virtual = FLUSH_BASE_MINICACHE;
900 	map.length = SZ_1M;
901 	map.type = MT_MINICLEAN;
902 	create_mapping(&map);
903 #endif
904 
905 	/*
906 	 * Create a mapping for the machine vectors at the high-vectors
907 	 * location (0xffff0000).  If we aren't using high-vectors, also
908 	 * create a mapping at the low-vectors virtual address.
909 	 */
910 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
911 	map.virtual = 0xffff0000;
912 	map.length = PAGE_SIZE;
913 	map.type = MT_HIGH_VECTORS;
914 	create_mapping(&map);
915 
916 	if (!vectors_high()) {
917 		map.virtual = 0;
918 		map.type = MT_LOW_VECTORS;
919 		create_mapping(&map);
920 	}
921 
922 	/*
923 	 * Ask the machine support to map in the statically mapped devices.
924 	 */
925 	if (mdesc->map_io)
926 		mdesc->map_io();
927 
928 	/*
929 	 * Finally flush the caches and tlb to ensure that we're in a
930 	 * consistent state wrt the writebuffer.  This also ensures that
931 	 * any write-allocated cache lines in the vector page are written
932 	 * back.  After this point, we can start to touch devices again.
933 	 */
934 	local_flush_tlb_all();
935 	flush_cache_all();
936 }
937 
938 static void __init kmap_init(void)
939 {
940 #ifdef CONFIG_HIGHMEM
941 	pmd_t *pmd = pmd_off_k(PKMAP_BASE);
942 	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
943 	BUG_ON(!pmd_none(*pmd) || !pte);
944 	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
945 	pkmap_page_table = pte + PTRS_PER_PTE;
946 #endif
947 }
948 
949 /*
950  * paging_init() sets up the page tables, initialises the zone memory
951  * maps, and sets up the zero page, bad page and bad page tables.
952  */
953 void __init paging_init(struct machine_desc *mdesc)
954 {
955 	void *zero_page;
956 
957 	build_mem_type_table();
958 	sanity_check_meminfo();
959 	prepare_page_table();
960 	bootmem_init();
961 	devicemaps_init(mdesc);
962 	kmap_init();
963 
964 	top_pmd = pmd_off_k(0xffff0000);
965 
966 	/*
967 	 * allocate the zero page.  Note that this always succeeds and
968 	 * returns a zeroed result.
969 	 */
970 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
971 	empty_zero_page = virt_to_page(zero_page);
972 	flush_dcache_page(empty_zero_page);
973 }
974 
975 /*
976  * In order to soft-boot, we need to insert a 1:1 mapping in place of
977  * the user-mode pages.  This will then ensure that we have predictable
978  * results when turning the mmu off
979  */
980 void setup_mm_for_reboot(char mode)
981 {
982 	unsigned long base_pmdval;
983 	pgd_t *pgd;
984 	int i;
985 
986 	if (current->mm && current->mm->pgd)
987 		pgd = current->mm->pgd;
988 	else
989 		pgd = init_mm.pgd;
990 
991 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
992 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
993 		base_pmdval |= PMD_BIT4;
994 
995 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
996 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
997 		pmd_t *pmd;
998 
999 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1000 		pmd[0] = __pmd(pmdval);
1001 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1002 		flush_pmd_entry(pmd);
1003 	}
1004 }
1005