xref: /openbmc/linux/arch/arm/mm/mmu.c (revision afb46f79)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34 
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 
39 #include "mm.h"
40 #include "tcm.h"
41 
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48 
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53 
54 #define CPOLICY_UNCACHED	0
55 #define CPOLICY_BUFFERED	1
56 #define CPOLICY_WRITETHROUGH	2
57 #define CPOLICY_WRITEBACK	3
58 #define CPOLICY_WRITEALLOC	4
59 
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
67 
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
70 
71 struct cachepolicy {
72 	const char	policy[16];
73 	unsigned int	cr_mask;
74 	pmdval_t	pmd;
75 	pteval_t	pte;
76 	pteval_t	pte_s2;
77 };
78 
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy)	policy
81 #else
82 #define s2_policy(policy)	0
83 #endif
84 
85 static struct cachepolicy cache_policies[] __initdata = {
86 	{
87 		.policy		= "uncached",
88 		.cr_mask	= CR_W|CR_C,
89 		.pmd		= PMD_SECT_UNCACHED,
90 		.pte		= L_PTE_MT_UNCACHED,
91 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 	}, {
93 		.policy		= "buffered",
94 		.cr_mask	= CR_C,
95 		.pmd		= PMD_SECT_BUFFERED,
96 		.pte		= L_PTE_MT_BUFFERABLE,
97 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 	}, {
99 		.policy		= "writethrough",
100 		.cr_mask	= 0,
101 		.pmd		= PMD_SECT_WT,
102 		.pte		= L_PTE_MT_WRITETHROUGH,
103 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 	}, {
105 		.policy		= "writeback",
106 		.cr_mask	= 0,
107 		.pmd		= PMD_SECT_WB,
108 		.pte		= L_PTE_MT_WRITEBACK,
109 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 	}, {
111 		.policy		= "writealloc",
112 		.cr_mask	= 0,
113 		.pmd		= PMD_SECT_WBWA,
114 		.pte		= L_PTE_MT_WRITEALLOC,
115 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 	}
117 };
118 
119 #ifdef CONFIG_CPU_CP15
120 /*
121  * These are useful for identifying cache coherency
122  * problems by allowing the cache or the cache and
123  * writebuffer to be turned off.  (Note: the write
124  * buffer should not be on and the cache off).
125  */
126 static int __init early_cachepolicy(char *p)
127 {
128 	int i;
129 
130 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 		int len = strlen(cache_policies[i].policy);
132 
133 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 			cachepolicy = i;
135 			cr_alignment &= ~cache_policies[i].cr_mask;
136 			cr_no_alignment &= ~cache_policies[i].cr_mask;
137 			break;
138 		}
139 	}
140 	if (i == ARRAY_SIZE(cache_policies))
141 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 	/*
143 	 * This restriction is partly to do with the way we boot; it is
144 	 * unpredictable to have memory mapped using two different sets of
145 	 * memory attributes (shared, type, and cache attribs).  We can not
146 	 * change these attributes once the initial assembly has setup the
147 	 * page tables.
148 	 */
149 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 		cachepolicy = CPOLICY_WRITEBACK;
152 	}
153 	flush_cache_all();
154 	set_cr(cr_alignment);
155 	return 0;
156 }
157 early_param("cachepolicy", early_cachepolicy);
158 
159 static int __init early_nocache(char *__unused)
160 {
161 	char *p = "buffered";
162 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 	early_cachepolicy(p);
164 	return 0;
165 }
166 early_param("nocache", early_nocache);
167 
168 static int __init early_nowrite(char *__unused)
169 {
170 	char *p = "uncached";
171 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 	early_cachepolicy(p);
173 	return 0;
174 }
175 early_param("nowb", early_nowrite);
176 
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
179 {
180 	if (memcmp(p, "on", 2) == 0)
181 		ecc_mask = PMD_PROTECTION;
182 	else if (memcmp(p, "off", 3) == 0)
183 		ecc_mask = 0;
184 	return 0;
185 }
186 early_param("ecc", early_ecc);
187 #endif
188 
189 static int __init noalign_setup(char *__unused)
190 {
191 	cr_alignment &= ~CR_A;
192 	cr_no_alignment &= ~CR_A;
193 	set_cr(cr_alignment);
194 	return 1;
195 }
196 __setup("noalign", noalign_setup);
197 
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
200 {
201 	unsigned long flags;
202 
203 	mask &= ~CR_A;
204 
205 	set &= mask;
206 
207 	local_irq_save(flags);
208 
209 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 	cr_alignment = (cr_alignment & ~mask) | set;
211 
212 	set_cr((get_cr() & ~mask) | set);
213 
214 	local_irq_restore(flags);
215 }
216 #endif
217 
218 #else /* ifdef CONFIG_CPU_CP15 */
219 
220 static int __init early_cachepolicy(char *p)
221 {
222 	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223 }
224 early_param("cachepolicy", early_cachepolicy);
225 
226 static int __init noalign_setup(char *__unused)
227 {
228 	pr_warning("noalign kernel parameter not supported without cp15\n");
229 }
230 __setup("noalign", noalign_setup);
231 
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
233 
234 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
236 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237 
238 static struct mem_type mem_types[] = {
239 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
240 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
241 				  L_PTE_SHARED,
242 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
243 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
244 				  L_PTE_SHARED,
245 		.prot_l1	= PMD_TYPE_TABLE,
246 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
247 		.domain		= DOMAIN_IO,
248 	},
249 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
250 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
251 		.prot_l1	= PMD_TYPE_TABLE,
252 		.prot_sect	= PROT_SECT_DEVICE,
253 		.domain		= DOMAIN_IO,
254 	},
255 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
256 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
257 		.prot_l1	= PMD_TYPE_TABLE,
258 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
259 		.domain		= DOMAIN_IO,
260 	},
261 	[MT_DEVICE_WC] = {	/* ioremap_wc */
262 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
263 		.prot_l1	= PMD_TYPE_TABLE,
264 		.prot_sect	= PROT_SECT_DEVICE,
265 		.domain		= DOMAIN_IO,
266 	},
267 	[MT_UNCACHED] = {
268 		.prot_pte	= PROT_PTE_DEVICE,
269 		.prot_l1	= PMD_TYPE_TABLE,
270 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
271 		.domain		= DOMAIN_IO,
272 	},
273 	[MT_CACHECLEAN] = {
274 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 		.domain    = DOMAIN_KERNEL,
276 	},
277 #ifndef CONFIG_ARM_LPAE
278 	[MT_MINICLEAN] = {
279 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
280 		.domain    = DOMAIN_KERNEL,
281 	},
282 #endif
283 	[MT_LOW_VECTORS] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_RDONLY,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.domain    = DOMAIN_USER,
288 	},
289 	[MT_HIGH_VECTORS] = {
290 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
291 				L_PTE_USER | L_PTE_RDONLY,
292 		.prot_l1   = PMD_TYPE_TABLE,
293 		.domain    = DOMAIN_USER,
294 	},
295 	[MT_MEMORY_RWX] = {
296 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297 		.prot_l1   = PMD_TYPE_TABLE,
298 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
299 		.domain    = DOMAIN_KERNEL,
300 	},
301 	[MT_MEMORY_RW] = {
302 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 			     L_PTE_XN,
304 		.prot_l1   = PMD_TYPE_TABLE,
305 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_ROM] = {
309 		.prot_sect = PMD_TYPE_SECT,
310 		.domain    = DOMAIN_KERNEL,
311 	},
312 	[MT_MEMORY_RWX_NONCACHED] = {
313 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
314 				L_PTE_MT_BUFFERABLE,
315 		.prot_l1   = PMD_TYPE_TABLE,
316 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
317 		.domain    = DOMAIN_KERNEL,
318 	},
319 	[MT_MEMORY_RW_DTCM] = {
320 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 				L_PTE_XN,
322 		.prot_l1   = PMD_TYPE_TABLE,
323 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
324 		.domain    = DOMAIN_KERNEL,
325 	},
326 	[MT_MEMORY_RWX_ITCM] = {
327 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328 		.prot_l1   = PMD_TYPE_TABLE,
329 		.domain    = DOMAIN_KERNEL,
330 	},
331 	[MT_MEMORY_RW_SO] = {
332 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333 				L_PTE_MT_UNCACHED | L_PTE_XN,
334 		.prot_l1   = PMD_TYPE_TABLE,
335 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
336 				PMD_SECT_UNCACHED | PMD_SECT_XN,
337 		.domain    = DOMAIN_KERNEL,
338 	},
339 	[MT_MEMORY_DMA_READY] = {
340 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 				L_PTE_XN,
342 		.prot_l1   = PMD_TYPE_TABLE,
343 		.domain    = DOMAIN_KERNEL,
344 	},
345 };
346 
347 const struct mem_type *get_mem_type(unsigned int type)
348 {
349 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
350 }
351 EXPORT_SYMBOL(get_mem_type);
352 
353 #define PTE_SET_FN(_name, pteop) \
354 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
355 			void *data) \
356 { \
357 	pte_t pte = pteop(*ptep); \
358 \
359 	set_pte_ext(ptep, pte, 0); \
360 	return 0; \
361 } \
362 
363 #define SET_MEMORY_FN(_name, callback) \
364 int set_memory_##_name(unsigned long addr, int numpages) \
365 { \
366 	unsigned long start = addr; \
367 	unsigned long size = PAGE_SIZE*numpages; \
368 	unsigned end = start + size; \
369 \
370 	if (start < MODULES_VADDR || start >= MODULES_END) \
371 		return -EINVAL;\
372 \
373 	if (end < MODULES_VADDR || end >= MODULES_END) \
374 		return -EINVAL; \
375 \
376 	apply_to_page_range(&init_mm, start, size, callback, NULL); \
377 	flush_tlb_kernel_range(start, end); \
378 	return 0;\
379 }
380 
381 PTE_SET_FN(ro, pte_wrprotect)
382 PTE_SET_FN(rw, pte_mkwrite)
383 PTE_SET_FN(x, pte_mkexec)
384 PTE_SET_FN(nx, pte_mknexec)
385 
386 SET_MEMORY_FN(ro, pte_set_ro)
387 SET_MEMORY_FN(rw, pte_set_rw)
388 SET_MEMORY_FN(x, pte_set_x)
389 SET_MEMORY_FN(nx, pte_set_nx)
390 
391 /*
392  * Adjust the PMD section entries according to the CPU in use.
393  */
394 static void __init build_mem_type_table(void)
395 {
396 	struct cachepolicy *cp;
397 	unsigned int cr = get_cr();
398 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
399 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
400 	int cpu_arch = cpu_architecture();
401 	int i;
402 
403 	if (cpu_arch < CPU_ARCH_ARMv6) {
404 #if defined(CONFIG_CPU_DCACHE_DISABLE)
405 		if (cachepolicy > CPOLICY_BUFFERED)
406 			cachepolicy = CPOLICY_BUFFERED;
407 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 		if (cachepolicy > CPOLICY_WRITETHROUGH)
409 			cachepolicy = CPOLICY_WRITETHROUGH;
410 #endif
411 	}
412 	if (cpu_arch < CPU_ARCH_ARMv5) {
413 		if (cachepolicy >= CPOLICY_WRITEALLOC)
414 			cachepolicy = CPOLICY_WRITEBACK;
415 		ecc_mask = 0;
416 	}
417 	if (is_smp())
418 		cachepolicy = CPOLICY_WRITEALLOC;
419 
420 	/*
421 	 * Strip out features not present on earlier architectures.
422 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
423 	 * without extended page tables don't have the 'Shared' bit.
424 	 */
425 	if (cpu_arch < CPU_ARCH_ARMv5)
426 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
427 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
428 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
429 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
430 			mem_types[i].prot_sect &= ~PMD_SECT_S;
431 
432 	/*
433 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
434 	 * "update-able on write" bit on ARM610).  However, Xscale and
435 	 * Xscale3 require this bit to be cleared.
436 	 */
437 	if (cpu_is_xscale() || cpu_is_xsc3()) {
438 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
439 			mem_types[i].prot_sect &= ~PMD_BIT4;
440 			mem_types[i].prot_l1 &= ~PMD_BIT4;
441 		}
442 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
443 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
444 			if (mem_types[i].prot_l1)
445 				mem_types[i].prot_l1 |= PMD_BIT4;
446 			if (mem_types[i].prot_sect)
447 				mem_types[i].prot_sect |= PMD_BIT4;
448 		}
449 	}
450 
451 	/*
452 	 * Mark the device areas according to the CPU/architecture.
453 	 */
454 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
455 		if (!cpu_is_xsc3()) {
456 			/*
457 			 * Mark device regions on ARMv6+ as execute-never
458 			 * to prevent speculative instruction fetches.
459 			 */
460 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
461 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
462 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
463 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
464 
465 			/* Also setup NX memory mapping */
466 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
467 		}
468 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
469 			/*
470 			 * For ARMv7 with TEX remapping,
471 			 * - shared device is SXCB=1100
472 			 * - nonshared device is SXCB=0100
473 			 * - write combine device mem is SXCB=0001
474 			 * (Uncached Normal memory)
475 			 */
476 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
477 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
478 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
479 		} else if (cpu_is_xsc3()) {
480 			/*
481 			 * For Xscale3,
482 			 * - shared device is TEXCB=00101
483 			 * - nonshared device is TEXCB=01000
484 			 * - write combine device mem is TEXCB=00100
485 			 * (Inner/Outer Uncacheable in xsc3 parlance)
486 			 */
487 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
488 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
489 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
490 		} else {
491 			/*
492 			 * For ARMv6 and ARMv7 without TEX remapping,
493 			 * - shared device is TEXCB=00001
494 			 * - nonshared device is TEXCB=01000
495 			 * - write combine device mem is TEXCB=00100
496 			 * (Uncached Normal in ARMv6 parlance).
497 			 */
498 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
499 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
500 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
501 		}
502 	} else {
503 		/*
504 		 * On others, write combining is "Uncached/Buffered"
505 		 */
506 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
507 	}
508 
509 	/*
510 	 * Now deal with the memory-type mappings
511 	 */
512 	cp = &cache_policies[cachepolicy];
513 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
514 	s2_pgprot = cp->pte_s2;
515 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
516 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
517 
518 	/*
519 	 * We don't use domains on ARMv6 (since this causes problems with
520 	 * v6/v7 kernels), so we must use a separate memory type for user
521 	 * r/o, kernel r/w to map the vectors page.
522 	 */
523 #ifndef CONFIG_ARM_LPAE
524 	if (cpu_arch == CPU_ARCH_ARMv6)
525 		vecs_pgprot |= L_PTE_MT_VECTORS;
526 #endif
527 
528 	/*
529 	 * ARMv6 and above have extended page tables.
530 	 */
531 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
532 #ifndef CONFIG_ARM_LPAE
533 		/*
534 		 * Mark cache clean areas and XIP ROM read only
535 		 * from SVC mode and no access from userspace.
536 		 */
537 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
538 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
539 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
540 #endif
541 
542 		if (is_smp()) {
543 			/*
544 			 * Mark memory with the "shared" attribute
545 			 * for SMP systems
546 			 */
547 			user_pgprot |= L_PTE_SHARED;
548 			kern_pgprot |= L_PTE_SHARED;
549 			vecs_pgprot |= L_PTE_SHARED;
550 			s2_pgprot |= L_PTE_SHARED;
551 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
552 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
553 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
554 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
555 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
556 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
557 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
558 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
559 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
560 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
561 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
562 		}
563 	}
564 
565 	/*
566 	 * Non-cacheable Normal - intended for memory areas that must
567 	 * not cause dirty cache line writebacks when used
568 	 */
569 	if (cpu_arch >= CPU_ARCH_ARMv6) {
570 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
571 			/* Non-cacheable Normal is XCB = 001 */
572 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
573 				PMD_SECT_BUFFERED;
574 		} else {
575 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
576 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
577 				PMD_SECT_TEX(1);
578 		}
579 	} else {
580 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
581 	}
582 
583 #ifdef CONFIG_ARM_LPAE
584 	/*
585 	 * Do not generate access flag faults for the kernel mappings.
586 	 */
587 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
588 		mem_types[i].prot_pte |= PTE_EXT_AF;
589 		if (mem_types[i].prot_sect)
590 			mem_types[i].prot_sect |= PMD_SECT_AF;
591 	}
592 	kern_pgprot |= PTE_EXT_AF;
593 	vecs_pgprot |= PTE_EXT_AF;
594 #endif
595 
596 	for (i = 0; i < 16; i++) {
597 		pteval_t v = pgprot_val(protection_map[i]);
598 		protection_map[i] = __pgprot(v | user_pgprot);
599 	}
600 
601 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
602 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
603 
604 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
605 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
606 				 L_PTE_DIRTY | kern_pgprot);
607 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
608 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
609 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
610 
611 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
612 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
613 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
614 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
615 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
616 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
617 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
618 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
619 	mem_types[MT_ROM].prot_sect |= cp->pmd;
620 
621 	switch (cp->pmd) {
622 	case PMD_SECT_WT:
623 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
624 		break;
625 	case PMD_SECT_WB:
626 	case PMD_SECT_WBWA:
627 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
628 		break;
629 	}
630 	pr_info("Memory policy: %sData cache %s\n",
631 		ecc_mask ? "ECC enabled, " : "", cp->policy);
632 
633 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
634 		struct mem_type *t = &mem_types[i];
635 		if (t->prot_l1)
636 			t->prot_l1 |= PMD_DOMAIN(t->domain);
637 		if (t->prot_sect)
638 			t->prot_sect |= PMD_DOMAIN(t->domain);
639 	}
640 }
641 
642 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
643 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
644 			      unsigned long size, pgprot_t vma_prot)
645 {
646 	if (!pfn_valid(pfn))
647 		return pgprot_noncached(vma_prot);
648 	else if (file->f_flags & O_SYNC)
649 		return pgprot_writecombine(vma_prot);
650 	return vma_prot;
651 }
652 EXPORT_SYMBOL(phys_mem_access_prot);
653 #endif
654 
655 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
656 
657 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
658 {
659 	void *ptr = __va(memblock_alloc(sz, align));
660 	memset(ptr, 0, sz);
661 	return ptr;
662 }
663 
664 static void __init *early_alloc(unsigned long sz)
665 {
666 	return early_alloc_aligned(sz, sz);
667 }
668 
669 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
670 {
671 	if (pmd_none(*pmd)) {
672 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
673 		__pmd_populate(pmd, __pa(pte), prot);
674 	}
675 	BUG_ON(pmd_bad(*pmd));
676 	return pte_offset_kernel(pmd, addr);
677 }
678 
679 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
680 				  unsigned long end, unsigned long pfn,
681 				  const struct mem_type *type)
682 {
683 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
684 	do {
685 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
686 		pfn++;
687 	} while (pte++, addr += PAGE_SIZE, addr != end);
688 }
689 
690 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
691 			unsigned long end, phys_addr_t phys,
692 			const struct mem_type *type)
693 {
694 	pmd_t *p = pmd;
695 
696 #ifndef CONFIG_ARM_LPAE
697 	/*
698 	 * In classic MMU format, puds and pmds are folded in to
699 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
700 	 * group of L1 entries making up one logical pointer to
701 	 * an L2 table (2MB), where as PMDs refer to the individual
702 	 * L1 entries (1MB). Hence increment to get the correct
703 	 * offset for odd 1MB sections.
704 	 * (See arch/arm/include/asm/pgtable-2level.h)
705 	 */
706 	if (addr & SECTION_SIZE)
707 		pmd++;
708 #endif
709 	do {
710 		*pmd = __pmd(phys | type->prot_sect);
711 		phys += SECTION_SIZE;
712 	} while (pmd++, addr += SECTION_SIZE, addr != end);
713 
714 	flush_pmd_entry(p);
715 }
716 
717 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
718 				      unsigned long end, phys_addr_t phys,
719 				      const struct mem_type *type)
720 {
721 	pmd_t *pmd = pmd_offset(pud, addr);
722 	unsigned long next;
723 
724 	do {
725 		/*
726 		 * With LPAE, we must loop over to map
727 		 * all the pmds for the given range.
728 		 */
729 		next = pmd_addr_end(addr, end);
730 
731 		/*
732 		 * Try a section mapping - addr, next and phys must all be
733 		 * aligned to a section boundary.
734 		 */
735 		if (type->prot_sect &&
736 				((addr | next | phys) & ~SECTION_MASK) == 0) {
737 			__map_init_section(pmd, addr, next, phys, type);
738 		} else {
739 			alloc_init_pte(pmd, addr, next,
740 						__phys_to_pfn(phys), type);
741 		}
742 
743 		phys += next - addr;
744 
745 	} while (pmd++, addr = next, addr != end);
746 }
747 
748 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
749 				  unsigned long end, phys_addr_t phys,
750 				  const struct mem_type *type)
751 {
752 	pud_t *pud = pud_offset(pgd, addr);
753 	unsigned long next;
754 
755 	do {
756 		next = pud_addr_end(addr, end);
757 		alloc_init_pmd(pud, addr, next, phys, type);
758 		phys += next - addr;
759 	} while (pud++, addr = next, addr != end);
760 }
761 
762 #ifndef CONFIG_ARM_LPAE
763 static void __init create_36bit_mapping(struct map_desc *md,
764 					const struct mem_type *type)
765 {
766 	unsigned long addr, length, end;
767 	phys_addr_t phys;
768 	pgd_t *pgd;
769 
770 	addr = md->virtual;
771 	phys = __pfn_to_phys(md->pfn);
772 	length = PAGE_ALIGN(md->length);
773 
774 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
775 		printk(KERN_ERR "MM: CPU does not support supersection "
776 		       "mapping for 0x%08llx at 0x%08lx\n",
777 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
778 		return;
779 	}
780 
781 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
782 	 *	Since domain assignments can in fact be arbitrary, the
783 	 *	'domain == 0' check below is required to insure that ARMv6
784 	 *	supersections are only allocated for domain 0 regardless
785 	 *	of the actual domain assignments in use.
786 	 */
787 	if (type->domain) {
788 		printk(KERN_ERR "MM: invalid domain in supersection "
789 		       "mapping for 0x%08llx at 0x%08lx\n",
790 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
791 		return;
792 	}
793 
794 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
795 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
796 		       " at 0x%08lx invalid alignment\n",
797 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
798 		return;
799 	}
800 
801 	/*
802 	 * Shift bits [35:32] of address into bits [23:20] of PMD
803 	 * (See ARMv6 spec).
804 	 */
805 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
806 
807 	pgd = pgd_offset_k(addr);
808 	end = addr + length;
809 	do {
810 		pud_t *pud = pud_offset(pgd, addr);
811 		pmd_t *pmd = pmd_offset(pud, addr);
812 		int i;
813 
814 		for (i = 0; i < 16; i++)
815 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
816 
817 		addr += SUPERSECTION_SIZE;
818 		phys += SUPERSECTION_SIZE;
819 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
820 	} while (addr != end);
821 }
822 #endif	/* !CONFIG_ARM_LPAE */
823 
824 /*
825  * Create the page directory entries and any necessary
826  * page tables for the mapping specified by `md'.  We
827  * are able to cope here with varying sizes and address
828  * offsets, and we take full advantage of sections and
829  * supersections.
830  */
831 static void __init create_mapping(struct map_desc *md)
832 {
833 	unsigned long addr, length, end;
834 	phys_addr_t phys;
835 	const struct mem_type *type;
836 	pgd_t *pgd;
837 
838 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
839 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
840 		       " at 0x%08lx in user region\n",
841 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
842 		return;
843 	}
844 
845 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
846 	    md->virtual >= PAGE_OFFSET &&
847 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
848 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
849 		       " at 0x%08lx out of vmalloc space\n",
850 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
851 	}
852 
853 	type = &mem_types[md->type];
854 
855 #ifndef CONFIG_ARM_LPAE
856 	/*
857 	 * Catch 36-bit addresses
858 	 */
859 	if (md->pfn >= 0x100000) {
860 		create_36bit_mapping(md, type);
861 		return;
862 	}
863 #endif
864 
865 	addr = md->virtual & PAGE_MASK;
866 	phys = __pfn_to_phys(md->pfn);
867 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
868 
869 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
870 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
871 		       "be mapped using pages, ignoring.\n",
872 		       (long long)__pfn_to_phys(md->pfn), addr);
873 		return;
874 	}
875 
876 	pgd = pgd_offset_k(addr);
877 	end = addr + length;
878 	do {
879 		unsigned long next = pgd_addr_end(addr, end);
880 
881 		alloc_init_pud(pgd, addr, next, phys, type);
882 
883 		phys += next - addr;
884 		addr = next;
885 	} while (pgd++, addr != end);
886 }
887 
888 /*
889  * Create the architecture specific mappings
890  */
891 void __init iotable_init(struct map_desc *io_desc, int nr)
892 {
893 	struct map_desc *md;
894 	struct vm_struct *vm;
895 	struct static_vm *svm;
896 
897 	if (!nr)
898 		return;
899 
900 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
901 
902 	for (md = io_desc; nr; md++, nr--) {
903 		create_mapping(md);
904 
905 		vm = &svm->vm;
906 		vm->addr = (void *)(md->virtual & PAGE_MASK);
907 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
908 		vm->phys_addr = __pfn_to_phys(md->pfn);
909 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
910 		vm->flags |= VM_ARM_MTYPE(md->type);
911 		vm->caller = iotable_init;
912 		add_static_vm_early(svm++);
913 	}
914 }
915 
916 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
917 				  void *caller)
918 {
919 	struct vm_struct *vm;
920 	struct static_vm *svm;
921 
922 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
923 
924 	vm = &svm->vm;
925 	vm->addr = (void *)addr;
926 	vm->size = size;
927 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
928 	vm->caller = caller;
929 	add_static_vm_early(svm);
930 }
931 
932 #ifndef CONFIG_ARM_LPAE
933 
934 /*
935  * The Linux PMD is made of two consecutive section entries covering 2MB
936  * (see definition in include/asm/pgtable-2level.h).  However a call to
937  * create_mapping() may optimize static mappings by using individual
938  * 1MB section mappings.  This leaves the actual PMD potentially half
939  * initialized if the top or bottom section entry isn't used, leaving it
940  * open to problems if a subsequent ioremap() or vmalloc() tries to use
941  * the virtual space left free by that unused section entry.
942  *
943  * Let's avoid the issue by inserting dummy vm entries covering the unused
944  * PMD halves once the static mappings are in place.
945  */
946 
947 static void __init pmd_empty_section_gap(unsigned long addr)
948 {
949 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
950 }
951 
952 static void __init fill_pmd_gaps(void)
953 {
954 	struct static_vm *svm;
955 	struct vm_struct *vm;
956 	unsigned long addr, next = 0;
957 	pmd_t *pmd;
958 
959 	list_for_each_entry(svm, &static_vmlist, list) {
960 		vm = &svm->vm;
961 		addr = (unsigned long)vm->addr;
962 		if (addr < next)
963 			continue;
964 
965 		/*
966 		 * Check if this vm starts on an odd section boundary.
967 		 * If so and the first section entry for this PMD is free
968 		 * then we block the corresponding virtual address.
969 		 */
970 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
971 			pmd = pmd_off_k(addr);
972 			if (pmd_none(*pmd))
973 				pmd_empty_section_gap(addr & PMD_MASK);
974 		}
975 
976 		/*
977 		 * Then check if this vm ends on an odd section boundary.
978 		 * If so and the second section entry for this PMD is empty
979 		 * then we block the corresponding virtual address.
980 		 */
981 		addr += vm->size;
982 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
983 			pmd = pmd_off_k(addr) + 1;
984 			if (pmd_none(*pmd))
985 				pmd_empty_section_gap(addr);
986 		}
987 
988 		/* no need to look at any vm entry until we hit the next PMD */
989 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
990 	}
991 }
992 
993 #else
994 #define fill_pmd_gaps() do { } while (0)
995 #endif
996 
997 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
998 static void __init pci_reserve_io(void)
999 {
1000 	struct static_vm *svm;
1001 
1002 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1003 	if (svm)
1004 		return;
1005 
1006 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1007 }
1008 #else
1009 #define pci_reserve_io() do { } while (0)
1010 #endif
1011 
1012 #ifdef CONFIG_DEBUG_LL
1013 void __init debug_ll_io_init(void)
1014 {
1015 	struct map_desc map;
1016 
1017 	debug_ll_addr(&map.pfn, &map.virtual);
1018 	if (!map.pfn || !map.virtual)
1019 		return;
1020 	map.pfn = __phys_to_pfn(map.pfn);
1021 	map.virtual &= PAGE_MASK;
1022 	map.length = PAGE_SIZE;
1023 	map.type = MT_DEVICE;
1024 	iotable_init(&map, 1);
1025 }
1026 #endif
1027 
1028 static void * __initdata vmalloc_min =
1029 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1030 
1031 /*
1032  * vmalloc=size forces the vmalloc area to be exactly 'size'
1033  * bytes. This can be used to increase (or decrease) the vmalloc
1034  * area - the default is 240m.
1035  */
1036 static int __init early_vmalloc(char *arg)
1037 {
1038 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1039 
1040 	if (vmalloc_reserve < SZ_16M) {
1041 		vmalloc_reserve = SZ_16M;
1042 		printk(KERN_WARNING
1043 			"vmalloc area too small, limiting to %luMB\n",
1044 			vmalloc_reserve >> 20);
1045 	}
1046 
1047 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1048 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1049 		printk(KERN_WARNING
1050 			"vmalloc area is too big, limiting to %luMB\n",
1051 			vmalloc_reserve >> 20);
1052 	}
1053 
1054 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055 	return 0;
1056 }
1057 early_param("vmalloc", early_vmalloc);
1058 
1059 phys_addr_t arm_lowmem_limit __initdata = 0;
1060 
1061 void __init sanity_check_meminfo(void)
1062 {
1063 	phys_addr_t memblock_limit = 0;
1064 	int i, j, highmem = 0;
1065 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1066 
1067 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068 		struct membank *bank = &meminfo.bank[j];
1069 		phys_addr_t size_limit;
1070 
1071 		*bank = meminfo.bank[i];
1072 		size_limit = bank->size;
1073 
1074 		if (bank->start >= vmalloc_limit)
1075 			highmem = 1;
1076 		else
1077 			size_limit = vmalloc_limit - bank->start;
1078 
1079 		bank->highmem = highmem;
1080 
1081 #ifdef CONFIG_HIGHMEM
1082 		/*
1083 		 * Split those memory banks which are partially overlapping
1084 		 * the vmalloc area greatly simplifying things later.
1085 		 */
1086 		if (!highmem && bank->size > size_limit) {
1087 			if (meminfo.nr_banks >= NR_BANKS) {
1088 				printk(KERN_CRIT "NR_BANKS too low, "
1089 						 "ignoring high memory\n");
1090 			} else {
1091 				memmove(bank + 1, bank,
1092 					(meminfo.nr_banks - i) * sizeof(*bank));
1093 				meminfo.nr_banks++;
1094 				i++;
1095 				bank[1].size -= size_limit;
1096 				bank[1].start = vmalloc_limit;
1097 				bank[1].highmem = highmem = 1;
1098 				j++;
1099 			}
1100 			bank->size = size_limit;
1101 		}
1102 #else
1103 		/*
1104 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1105 		 */
1106 		if (highmem) {
1107 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1108 			       "(!CONFIG_HIGHMEM).\n",
1109 			       (unsigned long long)bank->start,
1110 			       (unsigned long long)bank->start + bank->size - 1);
1111 			continue;
1112 		}
1113 
1114 		/*
1115 		 * Check whether this memory bank would partially overlap
1116 		 * the vmalloc area.
1117 		 */
1118 		if (bank->size > size_limit) {
1119 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1120 			       "to -%.8llx (vmalloc region overlap).\n",
1121 			       (unsigned long long)bank->start,
1122 			       (unsigned long long)bank->start + bank->size - 1,
1123 			       (unsigned long long)bank->start + size_limit - 1);
1124 			bank->size = size_limit;
1125 		}
1126 #endif
1127 		if (!bank->highmem) {
1128 			phys_addr_t bank_end = bank->start + bank->size;
1129 
1130 			if (bank_end > arm_lowmem_limit)
1131 				arm_lowmem_limit = bank_end;
1132 
1133 			/*
1134 			 * Find the first non-section-aligned page, and point
1135 			 * memblock_limit at it. This relies on rounding the
1136 			 * limit down to be section-aligned, which happens at
1137 			 * the end of this function.
1138 			 *
1139 			 * With this algorithm, the start or end of almost any
1140 			 * bank can be non-section-aligned. The only exception
1141 			 * is that the start of the bank 0 must be section-
1142 			 * aligned, since otherwise memory would need to be
1143 			 * allocated when mapping the start of bank 0, which
1144 			 * occurs before any free memory is mapped.
1145 			 */
1146 			if (!memblock_limit) {
1147 				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1148 					memblock_limit = bank->start;
1149 				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1150 					memblock_limit = bank_end;
1151 			}
1152 		}
1153 		j++;
1154 	}
1155 #ifdef CONFIG_HIGHMEM
1156 	if (highmem) {
1157 		const char *reason = NULL;
1158 
1159 		if (cache_is_vipt_aliasing()) {
1160 			/*
1161 			 * Interactions between kmap and other mappings
1162 			 * make highmem support with aliasing VIPT caches
1163 			 * rather difficult.
1164 			 */
1165 			reason = "with VIPT aliasing cache";
1166 		}
1167 		if (reason) {
1168 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1169 				reason);
1170 			while (j > 0 && meminfo.bank[j - 1].highmem)
1171 				j--;
1172 		}
1173 	}
1174 #endif
1175 	meminfo.nr_banks = j;
1176 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1177 
1178 	/*
1179 	 * Round the memblock limit down to a section size.  This
1180 	 * helps to ensure that we will allocate memory from the
1181 	 * last full section, which should be mapped.
1182 	 */
1183 	if (memblock_limit)
1184 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1185 	if (!memblock_limit)
1186 		memblock_limit = arm_lowmem_limit;
1187 
1188 	memblock_set_current_limit(memblock_limit);
1189 }
1190 
1191 static inline void prepare_page_table(void)
1192 {
1193 	unsigned long addr;
1194 	phys_addr_t end;
1195 
1196 	/*
1197 	 * Clear out all the mappings below the kernel image.
1198 	 */
1199 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200 		pmd_clear(pmd_off_k(addr));
1201 
1202 #ifdef CONFIG_XIP_KERNEL
1203 	/* The XIP kernel is mapped in the module area -- skip over it */
1204 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205 #endif
1206 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207 		pmd_clear(pmd_off_k(addr));
1208 
1209 	/*
1210 	 * Find the end of the first block of lowmem.
1211 	 */
1212 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213 	if (end >= arm_lowmem_limit)
1214 		end = arm_lowmem_limit;
1215 
1216 	/*
1217 	 * Clear out all the kernel space mappings, except for the first
1218 	 * memory bank, up to the vmalloc region.
1219 	 */
1220 	for (addr = __phys_to_virt(end);
1221 	     addr < VMALLOC_START; addr += PMD_SIZE)
1222 		pmd_clear(pmd_off_k(addr));
1223 }
1224 
1225 #ifdef CONFIG_ARM_LPAE
1226 /* the first page is reserved for pgd */
1227 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1228 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1229 #else
1230 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1231 #endif
1232 
1233 /*
1234  * Reserve the special regions of memory
1235  */
1236 void __init arm_mm_memblock_reserve(void)
1237 {
1238 	/*
1239 	 * Reserve the page tables.  These are already in use,
1240 	 * and can only be in node 0.
1241 	 */
1242 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1243 
1244 #ifdef CONFIG_SA1111
1245 	/*
1246 	 * Because of the SA1111 DMA bug, we want to preserve our
1247 	 * precious DMA-able memory...
1248 	 */
1249 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250 #endif
1251 }
1252 
1253 /*
1254  * Set up the device mappings.  Since we clear out the page tables for all
1255  * mappings above VMALLOC_START, we will remove any debug device mappings.
1256  * This means you have to be careful how you debug this function, or any
1257  * called function.  This means you can't use any function or debugging
1258  * method which may touch any device, otherwise the kernel _will_ crash.
1259  */
1260 static void __init devicemaps_init(const struct machine_desc *mdesc)
1261 {
1262 	struct map_desc map;
1263 	unsigned long addr;
1264 	void *vectors;
1265 
1266 	/*
1267 	 * Allocate the vector page early.
1268 	 */
1269 	vectors = early_alloc(PAGE_SIZE * 2);
1270 
1271 	early_trap_init(vectors);
1272 
1273 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1274 		pmd_clear(pmd_off_k(addr));
1275 
1276 	/*
1277 	 * Map the kernel if it is XIP.
1278 	 * It is always first in the modulearea.
1279 	 */
1280 #ifdef CONFIG_XIP_KERNEL
1281 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282 	map.virtual = MODULES_VADDR;
1283 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284 	map.type = MT_ROM;
1285 	create_mapping(&map);
1286 #endif
1287 
1288 	/*
1289 	 * Map the cache flushing regions.
1290 	 */
1291 #ifdef FLUSH_BASE
1292 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1293 	map.virtual = FLUSH_BASE;
1294 	map.length = SZ_1M;
1295 	map.type = MT_CACHECLEAN;
1296 	create_mapping(&map);
1297 #endif
1298 #ifdef FLUSH_BASE_MINICACHE
1299 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1300 	map.virtual = FLUSH_BASE_MINICACHE;
1301 	map.length = SZ_1M;
1302 	map.type = MT_MINICLEAN;
1303 	create_mapping(&map);
1304 #endif
1305 
1306 	/*
1307 	 * Create a mapping for the machine vectors at the high-vectors
1308 	 * location (0xffff0000).  If we aren't using high-vectors, also
1309 	 * create a mapping at the low-vectors virtual address.
1310 	 */
1311 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312 	map.virtual = 0xffff0000;
1313 	map.length = PAGE_SIZE;
1314 #ifdef CONFIG_KUSER_HELPERS
1315 	map.type = MT_HIGH_VECTORS;
1316 #else
1317 	map.type = MT_LOW_VECTORS;
1318 #endif
1319 	create_mapping(&map);
1320 
1321 	if (!vectors_high()) {
1322 		map.virtual = 0;
1323 		map.length = PAGE_SIZE * 2;
1324 		map.type = MT_LOW_VECTORS;
1325 		create_mapping(&map);
1326 	}
1327 
1328 	/* Now create a kernel read-only mapping */
1329 	map.pfn += 1;
1330 	map.virtual = 0xffff0000 + PAGE_SIZE;
1331 	map.length = PAGE_SIZE;
1332 	map.type = MT_LOW_VECTORS;
1333 	create_mapping(&map);
1334 
1335 	/*
1336 	 * Ask the machine support to map in the statically mapped devices.
1337 	 */
1338 	if (mdesc->map_io)
1339 		mdesc->map_io();
1340 	else
1341 		debug_ll_io_init();
1342 	fill_pmd_gaps();
1343 
1344 	/* Reserve fixed i/o space in VMALLOC region */
1345 	pci_reserve_io();
1346 
1347 	/*
1348 	 * Finally flush the caches and tlb to ensure that we're in a
1349 	 * consistent state wrt the writebuffer.  This also ensures that
1350 	 * any write-allocated cache lines in the vector page are written
1351 	 * back.  After this point, we can start to touch devices again.
1352 	 */
1353 	local_flush_tlb_all();
1354 	flush_cache_all();
1355 }
1356 
1357 static void __init kmap_init(void)
1358 {
1359 #ifdef CONFIG_HIGHMEM
1360 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1361 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1362 #endif
1363 }
1364 
1365 static void __init map_lowmem(void)
1366 {
1367 	struct memblock_region *reg;
1368 	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1369 	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1370 
1371 	/* Map all the lowmem memory banks. */
1372 	for_each_memblock(memory, reg) {
1373 		phys_addr_t start = reg->base;
1374 		phys_addr_t end = start + reg->size;
1375 		struct map_desc map;
1376 
1377 		if (end > arm_lowmem_limit)
1378 			end = arm_lowmem_limit;
1379 		if (start >= end)
1380 			break;
1381 
1382 		if (end < kernel_x_start || start >= kernel_x_end) {
1383 			map.pfn = __phys_to_pfn(start);
1384 			map.virtual = __phys_to_virt(start);
1385 			map.length = end - start;
1386 			map.type = MT_MEMORY_RWX;
1387 
1388 			create_mapping(&map);
1389 		} else {
1390 			/* This better cover the entire kernel */
1391 			if (start < kernel_x_start) {
1392 				map.pfn = __phys_to_pfn(start);
1393 				map.virtual = __phys_to_virt(start);
1394 				map.length = kernel_x_start - start;
1395 				map.type = MT_MEMORY_RW;
1396 
1397 				create_mapping(&map);
1398 			}
1399 
1400 			map.pfn = __phys_to_pfn(kernel_x_start);
1401 			map.virtual = __phys_to_virt(kernel_x_start);
1402 			map.length = kernel_x_end - kernel_x_start;
1403 			map.type = MT_MEMORY_RWX;
1404 
1405 			create_mapping(&map);
1406 
1407 			if (kernel_x_end < end) {
1408 				map.pfn = __phys_to_pfn(kernel_x_end);
1409 				map.virtual = __phys_to_virt(kernel_x_end);
1410 				map.length = end - kernel_x_end;
1411 				map.type = MT_MEMORY_RW;
1412 
1413 				create_mapping(&map);
1414 			}
1415 		}
1416 	}
1417 }
1418 
1419 #ifdef CONFIG_ARM_LPAE
1420 /*
1421  * early_paging_init() recreates boot time page table setup, allowing machines
1422  * to switch over to a high (>4G) address space on LPAE systems
1423  */
1424 void __init early_paging_init(const struct machine_desc *mdesc,
1425 			      struct proc_info_list *procinfo)
1426 {
1427 	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1428 	unsigned long map_start, map_end;
1429 	pgd_t *pgd0, *pgdk;
1430 	pud_t *pud0, *pudk, *pud_start;
1431 	pmd_t *pmd0, *pmdk;
1432 	phys_addr_t phys;
1433 	int i;
1434 
1435 	if (!(mdesc->init_meminfo))
1436 		return;
1437 
1438 	/* remap kernel code and data */
1439 	map_start = init_mm.start_code;
1440 	map_end   = init_mm.brk;
1441 
1442 	/* get a handle on things... */
1443 	pgd0 = pgd_offset_k(0);
1444 	pud_start = pud0 = pud_offset(pgd0, 0);
1445 	pmd0 = pmd_offset(pud0, 0);
1446 
1447 	pgdk = pgd_offset_k(map_start);
1448 	pudk = pud_offset(pgdk, map_start);
1449 	pmdk = pmd_offset(pudk, map_start);
1450 
1451 	mdesc->init_meminfo();
1452 
1453 	/* Run the patch stub to update the constants */
1454 	fixup_pv_table(&__pv_table_begin,
1455 		(&__pv_table_end - &__pv_table_begin) << 2);
1456 
1457 	/*
1458 	 * Cache cleaning operations for self-modifying code
1459 	 * We should clean the entries by MVA but running a
1460 	 * for loop over every pv_table entry pointer would
1461 	 * just complicate the code.
1462 	 */
1463 	flush_cache_louis();
1464 	dsb();
1465 	isb();
1466 
1467 	/* remap level 1 table */
1468 	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1469 		set_pud(pud0,
1470 			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1471 		pmd0 += PTRS_PER_PMD;
1472 	}
1473 
1474 	/* remap pmds for kernel mapping */
1475 	phys = __pa(map_start) & PMD_MASK;
1476 	do {
1477 		*pmdk++ = __pmd(phys | pmdprot);
1478 		phys += PMD_SIZE;
1479 	} while (phys < map_end);
1480 
1481 	flush_cache_all();
1482 	cpu_switch_mm(pgd0, &init_mm);
1483 	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1484 	local_flush_bp_all();
1485 	local_flush_tlb_all();
1486 }
1487 
1488 #else
1489 
1490 void __init early_paging_init(const struct machine_desc *mdesc,
1491 			      struct proc_info_list *procinfo)
1492 {
1493 	if (mdesc->init_meminfo)
1494 		mdesc->init_meminfo();
1495 }
1496 
1497 #endif
1498 
1499 /*
1500  * paging_init() sets up the page tables, initialises the zone memory
1501  * maps, and sets up the zero page, bad page and bad page tables.
1502  */
1503 void __init paging_init(const struct machine_desc *mdesc)
1504 {
1505 	void *zero_page;
1506 
1507 	build_mem_type_table();
1508 	prepare_page_table();
1509 	map_lowmem();
1510 	dma_contiguous_remap();
1511 	devicemaps_init(mdesc);
1512 	kmap_init();
1513 	tcm_init();
1514 
1515 	top_pmd = pmd_off_k(0xffff0000);
1516 
1517 	/* allocate the zero page. */
1518 	zero_page = early_alloc(PAGE_SIZE);
1519 
1520 	bootmem_init();
1521 
1522 	empty_zero_page = virt_to_page(zero_page);
1523 	__flush_dcache_page(NULL, empty_zero_page);
1524 }
1525