xref: /openbmc/linux/arch/arm/mm/mmu.c (revision a2fb4d78)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34 
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 
39 #include "mm.h"
40 #include "tcm.h"
41 
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48 
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53 
54 #define CPOLICY_UNCACHED	0
55 #define CPOLICY_BUFFERED	1
56 #define CPOLICY_WRITETHROUGH	2
57 #define CPOLICY_WRITEBACK	3
58 #define CPOLICY_WRITEALLOC	4
59 
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
67 
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
70 
71 struct cachepolicy {
72 	const char	policy[16];
73 	unsigned int	cr_mask;
74 	pmdval_t	pmd;
75 	pteval_t	pte;
76 	pteval_t	pte_s2;
77 };
78 
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy)	policy
81 #else
82 #define s2_policy(policy)	0
83 #endif
84 
85 static struct cachepolicy cache_policies[] __initdata = {
86 	{
87 		.policy		= "uncached",
88 		.cr_mask	= CR_W|CR_C,
89 		.pmd		= PMD_SECT_UNCACHED,
90 		.pte		= L_PTE_MT_UNCACHED,
91 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 	}, {
93 		.policy		= "buffered",
94 		.cr_mask	= CR_C,
95 		.pmd		= PMD_SECT_BUFFERED,
96 		.pte		= L_PTE_MT_BUFFERABLE,
97 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 	}, {
99 		.policy		= "writethrough",
100 		.cr_mask	= 0,
101 		.pmd		= PMD_SECT_WT,
102 		.pte		= L_PTE_MT_WRITETHROUGH,
103 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 	}, {
105 		.policy		= "writeback",
106 		.cr_mask	= 0,
107 		.pmd		= PMD_SECT_WB,
108 		.pte		= L_PTE_MT_WRITEBACK,
109 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 	}, {
111 		.policy		= "writealloc",
112 		.cr_mask	= 0,
113 		.pmd		= PMD_SECT_WBWA,
114 		.pte		= L_PTE_MT_WRITEALLOC,
115 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 	}
117 };
118 
119 #ifdef CONFIG_CPU_CP15
120 /*
121  * These are useful for identifying cache coherency
122  * problems by allowing the cache or the cache and
123  * writebuffer to be turned off.  (Note: the write
124  * buffer should not be on and the cache off).
125  */
126 static int __init early_cachepolicy(char *p)
127 {
128 	int i;
129 
130 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 		int len = strlen(cache_policies[i].policy);
132 
133 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 			cachepolicy = i;
135 			cr_alignment &= ~cache_policies[i].cr_mask;
136 			cr_no_alignment &= ~cache_policies[i].cr_mask;
137 			break;
138 		}
139 	}
140 	if (i == ARRAY_SIZE(cache_policies))
141 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 	/*
143 	 * This restriction is partly to do with the way we boot; it is
144 	 * unpredictable to have memory mapped using two different sets of
145 	 * memory attributes (shared, type, and cache attribs).  We can not
146 	 * change these attributes once the initial assembly has setup the
147 	 * page tables.
148 	 */
149 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 		cachepolicy = CPOLICY_WRITEBACK;
152 	}
153 	flush_cache_all();
154 	set_cr(cr_alignment);
155 	return 0;
156 }
157 early_param("cachepolicy", early_cachepolicy);
158 
159 static int __init early_nocache(char *__unused)
160 {
161 	char *p = "buffered";
162 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 	early_cachepolicy(p);
164 	return 0;
165 }
166 early_param("nocache", early_nocache);
167 
168 static int __init early_nowrite(char *__unused)
169 {
170 	char *p = "uncached";
171 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 	early_cachepolicy(p);
173 	return 0;
174 }
175 early_param("nowb", early_nowrite);
176 
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
179 {
180 	if (memcmp(p, "on", 2) == 0)
181 		ecc_mask = PMD_PROTECTION;
182 	else if (memcmp(p, "off", 3) == 0)
183 		ecc_mask = 0;
184 	return 0;
185 }
186 early_param("ecc", early_ecc);
187 #endif
188 
189 static int __init noalign_setup(char *__unused)
190 {
191 	cr_alignment &= ~CR_A;
192 	cr_no_alignment &= ~CR_A;
193 	set_cr(cr_alignment);
194 	return 1;
195 }
196 __setup("noalign", noalign_setup);
197 
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
200 {
201 	unsigned long flags;
202 
203 	mask &= ~CR_A;
204 
205 	set &= mask;
206 
207 	local_irq_save(flags);
208 
209 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 	cr_alignment = (cr_alignment & ~mask) | set;
211 
212 	set_cr((get_cr() & ~mask) | set);
213 
214 	local_irq_restore(flags);
215 }
216 #endif
217 
218 #else /* ifdef CONFIG_CPU_CP15 */
219 
220 static int __init early_cachepolicy(char *p)
221 {
222 	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223 }
224 early_param("cachepolicy", early_cachepolicy);
225 
226 static int __init noalign_setup(char *__unused)
227 {
228 	pr_warning("noalign kernel parameter not supported without cp15\n");
229 }
230 __setup("noalign", noalign_setup);
231 
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
233 
234 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
236 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237 
238 static struct mem_type mem_types[] = {
239 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
240 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
241 				  L_PTE_SHARED,
242 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
243 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
244 				  L_PTE_SHARED,
245 		.prot_l1	= PMD_TYPE_TABLE,
246 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
247 		.domain		= DOMAIN_IO,
248 	},
249 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
250 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
251 		.prot_l1	= PMD_TYPE_TABLE,
252 		.prot_sect	= PROT_SECT_DEVICE,
253 		.domain		= DOMAIN_IO,
254 	},
255 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
256 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
257 		.prot_l1	= PMD_TYPE_TABLE,
258 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
259 		.domain		= DOMAIN_IO,
260 	},
261 	[MT_DEVICE_WC] = {	/* ioremap_wc */
262 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
263 		.prot_l1	= PMD_TYPE_TABLE,
264 		.prot_sect	= PROT_SECT_DEVICE,
265 		.domain		= DOMAIN_IO,
266 	},
267 	[MT_UNCACHED] = {
268 		.prot_pte	= PROT_PTE_DEVICE,
269 		.prot_l1	= PMD_TYPE_TABLE,
270 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
271 		.domain		= DOMAIN_IO,
272 	},
273 	[MT_CACHECLEAN] = {
274 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 		.domain    = DOMAIN_KERNEL,
276 	},
277 #ifndef CONFIG_ARM_LPAE
278 	[MT_MINICLEAN] = {
279 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
280 		.domain    = DOMAIN_KERNEL,
281 	},
282 #endif
283 	[MT_LOW_VECTORS] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_RDONLY,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.domain    = DOMAIN_USER,
288 	},
289 	[MT_HIGH_VECTORS] = {
290 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
291 				L_PTE_USER | L_PTE_RDONLY,
292 		.prot_l1   = PMD_TYPE_TABLE,
293 		.domain    = DOMAIN_USER,
294 	},
295 	[MT_MEMORY_RWX] = {
296 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297 		.prot_l1   = PMD_TYPE_TABLE,
298 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
299 		.domain    = DOMAIN_KERNEL,
300 	},
301 	[MT_MEMORY_RW] = {
302 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 			     L_PTE_XN,
304 		.prot_l1   = PMD_TYPE_TABLE,
305 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_ROM] = {
309 		.prot_sect = PMD_TYPE_SECT,
310 		.domain    = DOMAIN_KERNEL,
311 	},
312 	[MT_MEMORY_RWX_NONCACHED] = {
313 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
314 				L_PTE_MT_BUFFERABLE,
315 		.prot_l1   = PMD_TYPE_TABLE,
316 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
317 		.domain    = DOMAIN_KERNEL,
318 	},
319 	[MT_MEMORY_RW_DTCM] = {
320 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 				L_PTE_XN,
322 		.prot_l1   = PMD_TYPE_TABLE,
323 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
324 		.domain    = DOMAIN_KERNEL,
325 	},
326 	[MT_MEMORY_RWX_ITCM] = {
327 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328 		.prot_l1   = PMD_TYPE_TABLE,
329 		.domain    = DOMAIN_KERNEL,
330 	},
331 	[MT_MEMORY_RW_SO] = {
332 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333 				L_PTE_MT_UNCACHED | L_PTE_XN,
334 		.prot_l1   = PMD_TYPE_TABLE,
335 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
336 				PMD_SECT_UNCACHED | PMD_SECT_XN,
337 		.domain    = DOMAIN_KERNEL,
338 	},
339 	[MT_MEMORY_DMA_READY] = {
340 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 				L_PTE_XN,
342 		.prot_l1   = PMD_TYPE_TABLE,
343 		.domain    = DOMAIN_KERNEL,
344 	},
345 };
346 
347 const struct mem_type *get_mem_type(unsigned int type)
348 {
349 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
350 }
351 EXPORT_SYMBOL(get_mem_type);
352 
353 #define PTE_SET_FN(_name, pteop) \
354 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
355 			void *data) \
356 { \
357 	pte_t pte = pteop(*ptep); \
358 \
359 	set_pte_ext(ptep, pte, 0); \
360 	return 0; \
361 } \
362 
363 #define SET_MEMORY_FN(_name, callback) \
364 int set_memory_##_name(unsigned long addr, int numpages) \
365 { \
366 	unsigned long start = addr; \
367 	unsigned long size = PAGE_SIZE*numpages; \
368 	unsigned end = start + size; \
369 \
370 	if (start < MODULES_VADDR || start >= MODULES_END) \
371 		return -EINVAL;\
372 \
373 	if (end < MODULES_VADDR || end >= MODULES_END) \
374 		return -EINVAL; \
375 \
376 	apply_to_page_range(&init_mm, start, size, callback, NULL); \
377 	flush_tlb_kernel_range(start, end); \
378 	return 0;\
379 }
380 
381 PTE_SET_FN(ro, pte_wrprotect)
382 PTE_SET_FN(rw, pte_mkwrite)
383 PTE_SET_FN(x, pte_mkexec)
384 PTE_SET_FN(nx, pte_mknexec)
385 
386 SET_MEMORY_FN(ro, pte_set_ro)
387 SET_MEMORY_FN(rw, pte_set_rw)
388 SET_MEMORY_FN(x, pte_set_x)
389 SET_MEMORY_FN(nx, pte_set_nx)
390 
391 /*
392  * Adjust the PMD section entries according to the CPU in use.
393  */
394 static void __init build_mem_type_table(void)
395 {
396 	struct cachepolicy *cp;
397 	unsigned int cr = get_cr();
398 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
399 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
400 	int cpu_arch = cpu_architecture();
401 	int i;
402 
403 	if (cpu_arch < CPU_ARCH_ARMv6) {
404 #if defined(CONFIG_CPU_DCACHE_DISABLE)
405 		if (cachepolicy > CPOLICY_BUFFERED)
406 			cachepolicy = CPOLICY_BUFFERED;
407 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 		if (cachepolicy > CPOLICY_WRITETHROUGH)
409 			cachepolicy = CPOLICY_WRITETHROUGH;
410 #endif
411 	}
412 	if (cpu_arch < CPU_ARCH_ARMv5) {
413 		if (cachepolicy >= CPOLICY_WRITEALLOC)
414 			cachepolicy = CPOLICY_WRITEBACK;
415 		ecc_mask = 0;
416 	}
417 	if (is_smp())
418 		cachepolicy = CPOLICY_WRITEALLOC;
419 
420 	/*
421 	 * Strip out features not present on earlier architectures.
422 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
423 	 * without extended page tables don't have the 'Shared' bit.
424 	 */
425 	if (cpu_arch < CPU_ARCH_ARMv5)
426 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
427 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
428 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
429 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
430 			mem_types[i].prot_sect &= ~PMD_SECT_S;
431 
432 	/*
433 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
434 	 * "update-able on write" bit on ARM610).  However, Xscale and
435 	 * Xscale3 require this bit to be cleared.
436 	 */
437 	if (cpu_is_xscale() || cpu_is_xsc3()) {
438 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
439 			mem_types[i].prot_sect &= ~PMD_BIT4;
440 			mem_types[i].prot_l1 &= ~PMD_BIT4;
441 		}
442 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
443 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
444 			if (mem_types[i].prot_l1)
445 				mem_types[i].prot_l1 |= PMD_BIT4;
446 			if (mem_types[i].prot_sect)
447 				mem_types[i].prot_sect |= PMD_BIT4;
448 		}
449 	}
450 
451 	/*
452 	 * Mark the device areas according to the CPU/architecture.
453 	 */
454 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
455 		if (!cpu_is_xsc3()) {
456 			/*
457 			 * Mark device regions on ARMv6+ as execute-never
458 			 * to prevent speculative instruction fetches.
459 			 */
460 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
461 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
462 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
463 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
464 
465 			/* Also setup NX memory mapping */
466 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
467 		}
468 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
469 			/*
470 			 * For ARMv7 with TEX remapping,
471 			 * - shared device is SXCB=1100
472 			 * - nonshared device is SXCB=0100
473 			 * - write combine device mem is SXCB=0001
474 			 * (Uncached Normal memory)
475 			 */
476 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
477 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
478 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
479 		} else if (cpu_is_xsc3()) {
480 			/*
481 			 * For Xscale3,
482 			 * - shared device is TEXCB=00101
483 			 * - nonshared device is TEXCB=01000
484 			 * - write combine device mem is TEXCB=00100
485 			 * (Inner/Outer Uncacheable in xsc3 parlance)
486 			 */
487 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
488 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
489 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
490 		} else {
491 			/*
492 			 * For ARMv6 and ARMv7 without TEX remapping,
493 			 * - shared device is TEXCB=00001
494 			 * - nonshared device is TEXCB=01000
495 			 * - write combine device mem is TEXCB=00100
496 			 * (Uncached Normal in ARMv6 parlance).
497 			 */
498 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
499 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
500 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
501 		}
502 	} else {
503 		/*
504 		 * On others, write combining is "Uncached/Buffered"
505 		 */
506 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
507 	}
508 
509 	/*
510 	 * Now deal with the memory-type mappings
511 	 */
512 	cp = &cache_policies[cachepolicy];
513 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
514 	s2_pgprot = cp->pte_s2;
515 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
516 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
517 
518 	/*
519 	 * ARMv6 and above have extended page tables.
520 	 */
521 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
522 #ifndef CONFIG_ARM_LPAE
523 		/*
524 		 * Mark cache clean areas and XIP ROM read only
525 		 * from SVC mode and no access from userspace.
526 		 */
527 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
528 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
529 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
530 #endif
531 
532 		if (is_smp()) {
533 			/*
534 			 * Mark memory with the "shared" attribute
535 			 * for SMP systems
536 			 */
537 			user_pgprot |= L_PTE_SHARED;
538 			kern_pgprot |= L_PTE_SHARED;
539 			vecs_pgprot |= L_PTE_SHARED;
540 			s2_pgprot |= L_PTE_SHARED;
541 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
542 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
543 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
544 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
545 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
546 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
547 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
548 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
549 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
550 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
551 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
552 		}
553 	}
554 
555 	/*
556 	 * Non-cacheable Normal - intended for memory areas that must
557 	 * not cause dirty cache line writebacks when used
558 	 */
559 	if (cpu_arch >= CPU_ARCH_ARMv6) {
560 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
561 			/* Non-cacheable Normal is XCB = 001 */
562 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
563 				PMD_SECT_BUFFERED;
564 		} else {
565 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
566 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
567 				PMD_SECT_TEX(1);
568 		}
569 	} else {
570 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
571 	}
572 
573 #ifdef CONFIG_ARM_LPAE
574 	/*
575 	 * Do not generate access flag faults for the kernel mappings.
576 	 */
577 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
578 		mem_types[i].prot_pte |= PTE_EXT_AF;
579 		if (mem_types[i].prot_sect)
580 			mem_types[i].prot_sect |= PMD_SECT_AF;
581 	}
582 	kern_pgprot |= PTE_EXT_AF;
583 	vecs_pgprot |= PTE_EXT_AF;
584 #endif
585 
586 	for (i = 0; i < 16; i++) {
587 		pteval_t v = pgprot_val(protection_map[i]);
588 		protection_map[i] = __pgprot(v | user_pgprot);
589 	}
590 
591 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
592 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
593 
594 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
595 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
596 				 L_PTE_DIRTY | kern_pgprot);
597 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
598 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
599 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
600 
601 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
602 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
603 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
604 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
605 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
606 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
607 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
608 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
609 	mem_types[MT_ROM].prot_sect |= cp->pmd;
610 
611 	switch (cp->pmd) {
612 	case PMD_SECT_WT:
613 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
614 		break;
615 	case PMD_SECT_WB:
616 	case PMD_SECT_WBWA:
617 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
618 		break;
619 	}
620 	pr_info("Memory policy: %sData cache %s\n",
621 		ecc_mask ? "ECC enabled, " : "", cp->policy);
622 
623 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
624 		struct mem_type *t = &mem_types[i];
625 		if (t->prot_l1)
626 			t->prot_l1 |= PMD_DOMAIN(t->domain);
627 		if (t->prot_sect)
628 			t->prot_sect |= PMD_DOMAIN(t->domain);
629 	}
630 }
631 
632 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
633 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
634 			      unsigned long size, pgprot_t vma_prot)
635 {
636 	if (!pfn_valid(pfn))
637 		return pgprot_noncached(vma_prot);
638 	else if (file->f_flags & O_SYNC)
639 		return pgprot_writecombine(vma_prot);
640 	return vma_prot;
641 }
642 EXPORT_SYMBOL(phys_mem_access_prot);
643 #endif
644 
645 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
646 
647 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
648 {
649 	void *ptr = __va(memblock_alloc(sz, align));
650 	memset(ptr, 0, sz);
651 	return ptr;
652 }
653 
654 static void __init *early_alloc(unsigned long sz)
655 {
656 	return early_alloc_aligned(sz, sz);
657 }
658 
659 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
660 {
661 	if (pmd_none(*pmd)) {
662 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
663 		__pmd_populate(pmd, __pa(pte), prot);
664 	}
665 	BUG_ON(pmd_bad(*pmd));
666 	return pte_offset_kernel(pmd, addr);
667 }
668 
669 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
670 				  unsigned long end, unsigned long pfn,
671 				  const struct mem_type *type)
672 {
673 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
674 	do {
675 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
676 		pfn++;
677 	} while (pte++, addr += PAGE_SIZE, addr != end);
678 }
679 
680 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
681 			unsigned long end, phys_addr_t phys,
682 			const struct mem_type *type)
683 {
684 	pmd_t *p = pmd;
685 
686 #ifndef CONFIG_ARM_LPAE
687 	/*
688 	 * In classic MMU format, puds and pmds are folded in to
689 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
690 	 * group of L1 entries making up one logical pointer to
691 	 * an L2 table (2MB), where as PMDs refer to the individual
692 	 * L1 entries (1MB). Hence increment to get the correct
693 	 * offset for odd 1MB sections.
694 	 * (See arch/arm/include/asm/pgtable-2level.h)
695 	 */
696 	if (addr & SECTION_SIZE)
697 		pmd++;
698 #endif
699 	do {
700 		*pmd = __pmd(phys | type->prot_sect);
701 		phys += SECTION_SIZE;
702 	} while (pmd++, addr += SECTION_SIZE, addr != end);
703 
704 	flush_pmd_entry(p);
705 }
706 
707 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
708 				      unsigned long end, phys_addr_t phys,
709 				      const struct mem_type *type)
710 {
711 	pmd_t *pmd = pmd_offset(pud, addr);
712 	unsigned long next;
713 
714 	do {
715 		/*
716 		 * With LPAE, we must loop over to map
717 		 * all the pmds for the given range.
718 		 */
719 		next = pmd_addr_end(addr, end);
720 
721 		/*
722 		 * Try a section mapping - addr, next and phys must all be
723 		 * aligned to a section boundary.
724 		 */
725 		if (type->prot_sect &&
726 				((addr | next | phys) & ~SECTION_MASK) == 0) {
727 			__map_init_section(pmd, addr, next, phys, type);
728 		} else {
729 			alloc_init_pte(pmd, addr, next,
730 						__phys_to_pfn(phys), type);
731 		}
732 
733 		phys += next - addr;
734 
735 	} while (pmd++, addr = next, addr != end);
736 }
737 
738 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
739 				  unsigned long end, phys_addr_t phys,
740 				  const struct mem_type *type)
741 {
742 	pud_t *pud = pud_offset(pgd, addr);
743 	unsigned long next;
744 
745 	do {
746 		next = pud_addr_end(addr, end);
747 		alloc_init_pmd(pud, addr, next, phys, type);
748 		phys += next - addr;
749 	} while (pud++, addr = next, addr != end);
750 }
751 
752 #ifndef CONFIG_ARM_LPAE
753 static void __init create_36bit_mapping(struct map_desc *md,
754 					const struct mem_type *type)
755 {
756 	unsigned long addr, length, end;
757 	phys_addr_t phys;
758 	pgd_t *pgd;
759 
760 	addr = md->virtual;
761 	phys = __pfn_to_phys(md->pfn);
762 	length = PAGE_ALIGN(md->length);
763 
764 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
765 		printk(KERN_ERR "MM: CPU does not support supersection "
766 		       "mapping for 0x%08llx at 0x%08lx\n",
767 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
768 		return;
769 	}
770 
771 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
772 	 *	Since domain assignments can in fact be arbitrary, the
773 	 *	'domain == 0' check below is required to insure that ARMv6
774 	 *	supersections are only allocated for domain 0 regardless
775 	 *	of the actual domain assignments in use.
776 	 */
777 	if (type->domain) {
778 		printk(KERN_ERR "MM: invalid domain in supersection "
779 		       "mapping for 0x%08llx at 0x%08lx\n",
780 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
781 		return;
782 	}
783 
784 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
785 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
786 		       " at 0x%08lx invalid alignment\n",
787 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
788 		return;
789 	}
790 
791 	/*
792 	 * Shift bits [35:32] of address into bits [23:20] of PMD
793 	 * (See ARMv6 spec).
794 	 */
795 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
796 
797 	pgd = pgd_offset_k(addr);
798 	end = addr + length;
799 	do {
800 		pud_t *pud = pud_offset(pgd, addr);
801 		pmd_t *pmd = pmd_offset(pud, addr);
802 		int i;
803 
804 		for (i = 0; i < 16; i++)
805 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
806 
807 		addr += SUPERSECTION_SIZE;
808 		phys += SUPERSECTION_SIZE;
809 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
810 	} while (addr != end);
811 }
812 #endif	/* !CONFIG_ARM_LPAE */
813 
814 /*
815  * Create the page directory entries and any necessary
816  * page tables for the mapping specified by `md'.  We
817  * are able to cope here with varying sizes and address
818  * offsets, and we take full advantage of sections and
819  * supersections.
820  */
821 static void __init create_mapping(struct map_desc *md)
822 {
823 	unsigned long addr, length, end;
824 	phys_addr_t phys;
825 	const struct mem_type *type;
826 	pgd_t *pgd;
827 
828 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
829 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
830 		       " at 0x%08lx in user region\n",
831 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
832 		return;
833 	}
834 
835 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
836 	    md->virtual >= PAGE_OFFSET &&
837 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
838 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
839 		       " at 0x%08lx out of vmalloc space\n",
840 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
841 	}
842 
843 	type = &mem_types[md->type];
844 
845 #ifndef CONFIG_ARM_LPAE
846 	/*
847 	 * Catch 36-bit addresses
848 	 */
849 	if (md->pfn >= 0x100000) {
850 		create_36bit_mapping(md, type);
851 		return;
852 	}
853 #endif
854 
855 	addr = md->virtual & PAGE_MASK;
856 	phys = __pfn_to_phys(md->pfn);
857 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
858 
859 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
860 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
861 		       "be mapped using pages, ignoring.\n",
862 		       (long long)__pfn_to_phys(md->pfn), addr);
863 		return;
864 	}
865 
866 	pgd = pgd_offset_k(addr);
867 	end = addr + length;
868 	do {
869 		unsigned long next = pgd_addr_end(addr, end);
870 
871 		alloc_init_pud(pgd, addr, next, phys, type);
872 
873 		phys += next - addr;
874 		addr = next;
875 	} while (pgd++, addr != end);
876 }
877 
878 /*
879  * Create the architecture specific mappings
880  */
881 void __init iotable_init(struct map_desc *io_desc, int nr)
882 {
883 	struct map_desc *md;
884 	struct vm_struct *vm;
885 	struct static_vm *svm;
886 
887 	if (!nr)
888 		return;
889 
890 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
891 
892 	for (md = io_desc; nr; md++, nr--) {
893 		create_mapping(md);
894 
895 		vm = &svm->vm;
896 		vm->addr = (void *)(md->virtual & PAGE_MASK);
897 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
898 		vm->phys_addr = __pfn_to_phys(md->pfn);
899 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
900 		vm->flags |= VM_ARM_MTYPE(md->type);
901 		vm->caller = iotable_init;
902 		add_static_vm_early(svm++);
903 	}
904 }
905 
906 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
907 				  void *caller)
908 {
909 	struct vm_struct *vm;
910 	struct static_vm *svm;
911 
912 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
913 
914 	vm = &svm->vm;
915 	vm->addr = (void *)addr;
916 	vm->size = size;
917 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
918 	vm->caller = caller;
919 	add_static_vm_early(svm);
920 }
921 
922 #ifndef CONFIG_ARM_LPAE
923 
924 /*
925  * The Linux PMD is made of two consecutive section entries covering 2MB
926  * (see definition in include/asm/pgtable-2level.h).  However a call to
927  * create_mapping() may optimize static mappings by using individual
928  * 1MB section mappings.  This leaves the actual PMD potentially half
929  * initialized if the top or bottom section entry isn't used, leaving it
930  * open to problems if a subsequent ioremap() or vmalloc() tries to use
931  * the virtual space left free by that unused section entry.
932  *
933  * Let's avoid the issue by inserting dummy vm entries covering the unused
934  * PMD halves once the static mappings are in place.
935  */
936 
937 static void __init pmd_empty_section_gap(unsigned long addr)
938 {
939 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
940 }
941 
942 static void __init fill_pmd_gaps(void)
943 {
944 	struct static_vm *svm;
945 	struct vm_struct *vm;
946 	unsigned long addr, next = 0;
947 	pmd_t *pmd;
948 
949 	list_for_each_entry(svm, &static_vmlist, list) {
950 		vm = &svm->vm;
951 		addr = (unsigned long)vm->addr;
952 		if (addr < next)
953 			continue;
954 
955 		/*
956 		 * Check if this vm starts on an odd section boundary.
957 		 * If so and the first section entry for this PMD is free
958 		 * then we block the corresponding virtual address.
959 		 */
960 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
961 			pmd = pmd_off_k(addr);
962 			if (pmd_none(*pmd))
963 				pmd_empty_section_gap(addr & PMD_MASK);
964 		}
965 
966 		/*
967 		 * Then check if this vm ends on an odd section boundary.
968 		 * If so and the second section entry for this PMD is empty
969 		 * then we block the corresponding virtual address.
970 		 */
971 		addr += vm->size;
972 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
973 			pmd = pmd_off_k(addr) + 1;
974 			if (pmd_none(*pmd))
975 				pmd_empty_section_gap(addr);
976 		}
977 
978 		/* no need to look at any vm entry until we hit the next PMD */
979 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
980 	}
981 }
982 
983 #else
984 #define fill_pmd_gaps() do { } while (0)
985 #endif
986 
987 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
988 static void __init pci_reserve_io(void)
989 {
990 	struct static_vm *svm;
991 
992 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
993 	if (svm)
994 		return;
995 
996 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
997 }
998 #else
999 #define pci_reserve_io() do { } while (0)
1000 #endif
1001 
1002 #ifdef CONFIG_DEBUG_LL
1003 void __init debug_ll_io_init(void)
1004 {
1005 	struct map_desc map;
1006 
1007 	debug_ll_addr(&map.pfn, &map.virtual);
1008 	if (!map.pfn || !map.virtual)
1009 		return;
1010 	map.pfn = __phys_to_pfn(map.pfn);
1011 	map.virtual &= PAGE_MASK;
1012 	map.length = PAGE_SIZE;
1013 	map.type = MT_DEVICE;
1014 	iotable_init(&map, 1);
1015 }
1016 #endif
1017 
1018 static void * __initdata vmalloc_min =
1019 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1020 
1021 /*
1022  * vmalloc=size forces the vmalloc area to be exactly 'size'
1023  * bytes. This can be used to increase (or decrease) the vmalloc
1024  * area - the default is 240m.
1025  */
1026 static int __init early_vmalloc(char *arg)
1027 {
1028 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1029 
1030 	if (vmalloc_reserve < SZ_16M) {
1031 		vmalloc_reserve = SZ_16M;
1032 		printk(KERN_WARNING
1033 			"vmalloc area too small, limiting to %luMB\n",
1034 			vmalloc_reserve >> 20);
1035 	}
1036 
1037 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1038 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1039 		printk(KERN_WARNING
1040 			"vmalloc area is too big, limiting to %luMB\n",
1041 			vmalloc_reserve >> 20);
1042 	}
1043 
1044 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1045 	return 0;
1046 }
1047 early_param("vmalloc", early_vmalloc);
1048 
1049 phys_addr_t arm_lowmem_limit __initdata = 0;
1050 
1051 void __init sanity_check_meminfo(void)
1052 {
1053 	phys_addr_t memblock_limit = 0;
1054 	int i, j, highmem = 0;
1055 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1056 
1057 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1058 		struct membank *bank = &meminfo.bank[j];
1059 		phys_addr_t size_limit;
1060 
1061 		*bank = meminfo.bank[i];
1062 		size_limit = bank->size;
1063 
1064 		if (bank->start >= vmalloc_limit)
1065 			highmem = 1;
1066 		else
1067 			size_limit = vmalloc_limit - bank->start;
1068 
1069 		bank->highmem = highmem;
1070 
1071 #ifdef CONFIG_HIGHMEM
1072 		/*
1073 		 * Split those memory banks which are partially overlapping
1074 		 * the vmalloc area greatly simplifying things later.
1075 		 */
1076 		if (!highmem && bank->size > size_limit) {
1077 			if (meminfo.nr_banks >= NR_BANKS) {
1078 				printk(KERN_CRIT "NR_BANKS too low, "
1079 						 "ignoring high memory\n");
1080 			} else {
1081 				memmove(bank + 1, bank,
1082 					(meminfo.nr_banks - i) * sizeof(*bank));
1083 				meminfo.nr_banks++;
1084 				i++;
1085 				bank[1].size -= size_limit;
1086 				bank[1].start = vmalloc_limit;
1087 				bank[1].highmem = highmem = 1;
1088 				j++;
1089 			}
1090 			bank->size = size_limit;
1091 		}
1092 #else
1093 		/*
1094 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1095 		 */
1096 		if (highmem) {
1097 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1098 			       "(!CONFIG_HIGHMEM).\n",
1099 			       (unsigned long long)bank->start,
1100 			       (unsigned long long)bank->start + bank->size - 1);
1101 			continue;
1102 		}
1103 
1104 		/*
1105 		 * Check whether this memory bank would partially overlap
1106 		 * the vmalloc area.
1107 		 */
1108 		if (bank->size > size_limit) {
1109 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1110 			       "to -%.8llx (vmalloc region overlap).\n",
1111 			       (unsigned long long)bank->start,
1112 			       (unsigned long long)bank->start + bank->size - 1,
1113 			       (unsigned long long)bank->start + size_limit - 1);
1114 			bank->size = size_limit;
1115 		}
1116 #endif
1117 		if (!bank->highmem) {
1118 			phys_addr_t bank_end = bank->start + bank->size;
1119 
1120 			if (bank_end > arm_lowmem_limit)
1121 				arm_lowmem_limit = bank_end;
1122 
1123 			/*
1124 			 * Find the first non-section-aligned page, and point
1125 			 * memblock_limit at it. This relies on rounding the
1126 			 * limit down to be section-aligned, which happens at
1127 			 * the end of this function.
1128 			 *
1129 			 * With this algorithm, the start or end of almost any
1130 			 * bank can be non-section-aligned. The only exception
1131 			 * is that the start of the bank 0 must be section-
1132 			 * aligned, since otherwise memory would need to be
1133 			 * allocated when mapping the start of bank 0, which
1134 			 * occurs before any free memory is mapped.
1135 			 */
1136 			if (!memblock_limit) {
1137 				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1138 					memblock_limit = bank->start;
1139 				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1140 					memblock_limit = bank_end;
1141 			}
1142 		}
1143 		j++;
1144 	}
1145 #ifdef CONFIG_HIGHMEM
1146 	if (highmem) {
1147 		const char *reason = NULL;
1148 
1149 		if (cache_is_vipt_aliasing()) {
1150 			/*
1151 			 * Interactions between kmap and other mappings
1152 			 * make highmem support with aliasing VIPT caches
1153 			 * rather difficult.
1154 			 */
1155 			reason = "with VIPT aliasing cache";
1156 		}
1157 		if (reason) {
1158 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1159 				reason);
1160 			while (j > 0 && meminfo.bank[j - 1].highmem)
1161 				j--;
1162 		}
1163 	}
1164 #endif
1165 	meminfo.nr_banks = j;
1166 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1167 
1168 	/*
1169 	 * Round the memblock limit down to a section size.  This
1170 	 * helps to ensure that we will allocate memory from the
1171 	 * last full section, which should be mapped.
1172 	 */
1173 	if (memblock_limit)
1174 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1175 	if (!memblock_limit)
1176 		memblock_limit = arm_lowmem_limit;
1177 
1178 	memblock_set_current_limit(memblock_limit);
1179 }
1180 
1181 static inline void prepare_page_table(void)
1182 {
1183 	unsigned long addr;
1184 	phys_addr_t end;
1185 
1186 	/*
1187 	 * Clear out all the mappings below the kernel image.
1188 	 */
1189 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1190 		pmd_clear(pmd_off_k(addr));
1191 
1192 #ifdef CONFIG_XIP_KERNEL
1193 	/* The XIP kernel is mapped in the module area -- skip over it */
1194 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1195 #endif
1196 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1197 		pmd_clear(pmd_off_k(addr));
1198 
1199 	/*
1200 	 * Find the end of the first block of lowmem.
1201 	 */
1202 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1203 	if (end >= arm_lowmem_limit)
1204 		end = arm_lowmem_limit;
1205 
1206 	/*
1207 	 * Clear out all the kernel space mappings, except for the first
1208 	 * memory bank, up to the vmalloc region.
1209 	 */
1210 	for (addr = __phys_to_virt(end);
1211 	     addr < VMALLOC_START; addr += PMD_SIZE)
1212 		pmd_clear(pmd_off_k(addr));
1213 }
1214 
1215 #ifdef CONFIG_ARM_LPAE
1216 /* the first page is reserved for pgd */
1217 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1218 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1219 #else
1220 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1221 #endif
1222 
1223 /*
1224  * Reserve the special regions of memory
1225  */
1226 void __init arm_mm_memblock_reserve(void)
1227 {
1228 	/*
1229 	 * Reserve the page tables.  These are already in use,
1230 	 * and can only be in node 0.
1231 	 */
1232 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1233 
1234 #ifdef CONFIG_SA1111
1235 	/*
1236 	 * Because of the SA1111 DMA bug, we want to preserve our
1237 	 * precious DMA-able memory...
1238 	 */
1239 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1240 #endif
1241 }
1242 
1243 /*
1244  * Set up the device mappings.  Since we clear out the page tables for all
1245  * mappings above VMALLOC_START, we will remove any debug device mappings.
1246  * This means you have to be careful how you debug this function, or any
1247  * called function.  This means you can't use any function or debugging
1248  * method which may touch any device, otherwise the kernel _will_ crash.
1249  */
1250 static void __init devicemaps_init(const struct machine_desc *mdesc)
1251 {
1252 	struct map_desc map;
1253 	unsigned long addr;
1254 	void *vectors;
1255 
1256 	/*
1257 	 * Allocate the vector page early.
1258 	 */
1259 	vectors = early_alloc(PAGE_SIZE * 2);
1260 
1261 	early_trap_init(vectors);
1262 
1263 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1264 		pmd_clear(pmd_off_k(addr));
1265 
1266 	/*
1267 	 * Map the kernel if it is XIP.
1268 	 * It is always first in the modulearea.
1269 	 */
1270 #ifdef CONFIG_XIP_KERNEL
1271 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1272 	map.virtual = MODULES_VADDR;
1273 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1274 	map.type = MT_ROM;
1275 	create_mapping(&map);
1276 #endif
1277 
1278 	/*
1279 	 * Map the cache flushing regions.
1280 	 */
1281 #ifdef FLUSH_BASE
1282 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1283 	map.virtual = FLUSH_BASE;
1284 	map.length = SZ_1M;
1285 	map.type = MT_CACHECLEAN;
1286 	create_mapping(&map);
1287 #endif
1288 #ifdef FLUSH_BASE_MINICACHE
1289 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1290 	map.virtual = FLUSH_BASE_MINICACHE;
1291 	map.length = SZ_1M;
1292 	map.type = MT_MINICLEAN;
1293 	create_mapping(&map);
1294 #endif
1295 
1296 	/*
1297 	 * Create a mapping for the machine vectors at the high-vectors
1298 	 * location (0xffff0000).  If we aren't using high-vectors, also
1299 	 * create a mapping at the low-vectors virtual address.
1300 	 */
1301 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1302 	map.virtual = 0xffff0000;
1303 	map.length = PAGE_SIZE;
1304 #ifdef CONFIG_KUSER_HELPERS
1305 	map.type = MT_HIGH_VECTORS;
1306 #else
1307 	map.type = MT_LOW_VECTORS;
1308 #endif
1309 	create_mapping(&map);
1310 
1311 	if (!vectors_high()) {
1312 		map.virtual = 0;
1313 		map.length = PAGE_SIZE * 2;
1314 		map.type = MT_LOW_VECTORS;
1315 		create_mapping(&map);
1316 	}
1317 
1318 	/* Now create a kernel read-only mapping */
1319 	map.pfn += 1;
1320 	map.virtual = 0xffff0000 + PAGE_SIZE;
1321 	map.length = PAGE_SIZE;
1322 	map.type = MT_LOW_VECTORS;
1323 	create_mapping(&map);
1324 
1325 	/*
1326 	 * Ask the machine support to map in the statically mapped devices.
1327 	 */
1328 	if (mdesc->map_io)
1329 		mdesc->map_io();
1330 	else
1331 		debug_ll_io_init();
1332 	fill_pmd_gaps();
1333 
1334 	/* Reserve fixed i/o space in VMALLOC region */
1335 	pci_reserve_io();
1336 
1337 	/*
1338 	 * Finally flush the caches and tlb to ensure that we're in a
1339 	 * consistent state wrt the writebuffer.  This also ensures that
1340 	 * any write-allocated cache lines in the vector page are written
1341 	 * back.  After this point, we can start to touch devices again.
1342 	 */
1343 	local_flush_tlb_all();
1344 	flush_cache_all();
1345 }
1346 
1347 static void __init kmap_init(void)
1348 {
1349 #ifdef CONFIG_HIGHMEM
1350 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1351 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1352 #endif
1353 }
1354 
1355 static void __init map_lowmem(void)
1356 {
1357 	struct memblock_region *reg;
1358 	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1359 	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1360 
1361 	/* Map all the lowmem memory banks. */
1362 	for_each_memblock(memory, reg) {
1363 		phys_addr_t start = reg->base;
1364 		phys_addr_t end = start + reg->size;
1365 		struct map_desc map;
1366 
1367 		if (end > arm_lowmem_limit)
1368 			end = arm_lowmem_limit;
1369 		if (start >= end)
1370 			break;
1371 
1372 		if (end < kernel_x_start || start >= kernel_x_end) {
1373 			map.pfn = __phys_to_pfn(start);
1374 			map.virtual = __phys_to_virt(start);
1375 			map.length = end - start;
1376 			map.type = MT_MEMORY_RWX;
1377 
1378 			create_mapping(&map);
1379 		} else {
1380 			/* This better cover the entire kernel */
1381 			if (start < kernel_x_start) {
1382 				map.pfn = __phys_to_pfn(start);
1383 				map.virtual = __phys_to_virt(start);
1384 				map.length = kernel_x_start - start;
1385 				map.type = MT_MEMORY_RW;
1386 
1387 				create_mapping(&map);
1388 			}
1389 
1390 			map.pfn = __phys_to_pfn(kernel_x_start);
1391 			map.virtual = __phys_to_virt(kernel_x_start);
1392 			map.length = kernel_x_end - kernel_x_start;
1393 			map.type = MT_MEMORY_RWX;
1394 
1395 			create_mapping(&map);
1396 
1397 			if (kernel_x_end < end) {
1398 				map.pfn = __phys_to_pfn(kernel_x_end);
1399 				map.virtual = __phys_to_virt(kernel_x_end);
1400 				map.length = end - kernel_x_end;
1401 				map.type = MT_MEMORY_RW;
1402 
1403 				create_mapping(&map);
1404 			}
1405 		}
1406 	}
1407 }
1408 
1409 #ifdef CONFIG_ARM_LPAE
1410 /*
1411  * early_paging_init() recreates boot time page table setup, allowing machines
1412  * to switch over to a high (>4G) address space on LPAE systems
1413  */
1414 void __init early_paging_init(const struct machine_desc *mdesc,
1415 			      struct proc_info_list *procinfo)
1416 {
1417 	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1418 	unsigned long map_start, map_end;
1419 	pgd_t *pgd0, *pgdk;
1420 	pud_t *pud0, *pudk, *pud_start;
1421 	pmd_t *pmd0, *pmdk;
1422 	phys_addr_t phys;
1423 	int i;
1424 
1425 	if (!(mdesc->init_meminfo))
1426 		return;
1427 
1428 	/* remap kernel code and data */
1429 	map_start = init_mm.start_code;
1430 	map_end   = init_mm.brk;
1431 
1432 	/* get a handle on things... */
1433 	pgd0 = pgd_offset_k(0);
1434 	pud_start = pud0 = pud_offset(pgd0, 0);
1435 	pmd0 = pmd_offset(pud0, 0);
1436 
1437 	pgdk = pgd_offset_k(map_start);
1438 	pudk = pud_offset(pgdk, map_start);
1439 	pmdk = pmd_offset(pudk, map_start);
1440 
1441 	mdesc->init_meminfo();
1442 
1443 	/* Run the patch stub to update the constants */
1444 	fixup_pv_table(&__pv_table_begin,
1445 		(&__pv_table_end - &__pv_table_begin) << 2);
1446 
1447 	/*
1448 	 * Cache cleaning operations for self-modifying code
1449 	 * We should clean the entries by MVA but running a
1450 	 * for loop over every pv_table entry pointer would
1451 	 * just complicate the code.
1452 	 */
1453 	flush_cache_louis();
1454 	dsb();
1455 	isb();
1456 
1457 	/* remap level 1 table */
1458 	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1459 		set_pud(pud0,
1460 			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1461 		pmd0 += PTRS_PER_PMD;
1462 	}
1463 
1464 	/* remap pmds for kernel mapping */
1465 	phys = __pa(map_start) & PMD_MASK;
1466 	do {
1467 		*pmdk++ = __pmd(phys | pmdprot);
1468 		phys += PMD_SIZE;
1469 	} while (phys < map_end);
1470 
1471 	flush_cache_all();
1472 	cpu_switch_mm(pgd0, &init_mm);
1473 	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1474 	local_flush_bp_all();
1475 	local_flush_tlb_all();
1476 }
1477 
1478 #else
1479 
1480 void __init early_paging_init(const struct machine_desc *mdesc,
1481 			      struct proc_info_list *procinfo)
1482 {
1483 	if (mdesc->init_meminfo)
1484 		mdesc->init_meminfo();
1485 }
1486 
1487 #endif
1488 
1489 /*
1490  * paging_init() sets up the page tables, initialises the zone memory
1491  * maps, and sets up the zero page, bad page and bad page tables.
1492  */
1493 void __init paging_init(const struct machine_desc *mdesc)
1494 {
1495 	void *zero_page;
1496 
1497 	build_mem_type_table();
1498 	prepare_page_table();
1499 	map_lowmem();
1500 	dma_contiguous_remap();
1501 	devicemaps_init(mdesc);
1502 	kmap_init();
1503 	tcm_init();
1504 
1505 	top_pmd = pmd_off_k(0xffff0000);
1506 
1507 	/* allocate the zero page. */
1508 	zero_page = early_alloc(PAGE_SIZE);
1509 
1510 	bootmem_init();
1511 
1512 	empty_zero_page = virt_to_page(zero_page);
1513 	__flush_dcache_page(NULL, empty_zero_page);
1514 }
1515