1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/mman.h> 15 #include <linux/nodemask.h> 16 #include <linux/memblock.h> 17 #include <linux/fs.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sizes.h> 20 21 #include <asm/cp15.h> 22 #include <asm/cputype.h> 23 #include <asm/sections.h> 24 #include <asm/cachetype.h> 25 #include <asm/fixmap.h> 26 #include <asm/sections.h> 27 #include <asm/setup.h> 28 #include <asm/smp_plat.h> 29 #include <asm/tlb.h> 30 #include <asm/highmem.h> 31 #include <asm/system_info.h> 32 #include <asm/traps.h> 33 #include <asm/procinfo.h> 34 #include <asm/memory.h> 35 36 #include <asm/mach/arch.h> 37 #include <asm/mach/map.h> 38 #include <asm/mach/pci.h> 39 #include <asm/fixmap.h> 40 41 #include "mm.h" 42 #include "tcm.h" 43 44 /* 45 * empty_zero_page is a special page that is used for 46 * zero-initialized data and COW. 47 */ 48 struct page *empty_zero_page; 49 EXPORT_SYMBOL(empty_zero_page); 50 51 /* 52 * The pmd table for the upper-most set of pages. 53 */ 54 pmd_t *top_pmd; 55 56 pmdval_t user_pmd_table = _PAGE_USER_TABLE; 57 58 #define CPOLICY_UNCACHED 0 59 #define CPOLICY_BUFFERED 1 60 #define CPOLICY_WRITETHROUGH 2 61 #define CPOLICY_WRITEBACK 3 62 #define CPOLICY_WRITEALLOC 4 63 64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 65 static unsigned int ecc_mask __initdata = 0; 66 pgprot_t pgprot_user; 67 pgprot_t pgprot_kernel; 68 pgprot_t pgprot_hyp_device; 69 pgprot_t pgprot_s2; 70 pgprot_t pgprot_s2_device; 71 72 EXPORT_SYMBOL(pgprot_user); 73 EXPORT_SYMBOL(pgprot_kernel); 74 75 struct cachepolicy { 76 const char policy[16]; 77 unsigned int cr_mask; 78 pmdval_t pmd; 79 pteval_t pte; 80 pteval_t pte_s2; 81 }; 82 83 #ifdef CONFIG_ARM_LPAE 84 #define s2_policy(policy) policy 85 #else 86 #define s2_policy(policy) 0 87 #endif 88 89 static struct cachepolicy cache_policies[] __initdata = { 90 { 91 .policy = "uncached", 92 .cr_mask = CR_W|CR_C, 93 .pmd = PMD_SECT_UNCACHED, 94 .pte = L_PTE_MT_UNCACHED, 95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 96 }, { 97 .policy = "buffered", 98 .cr_mask = CR_C, 99 .pmd = PMD_SECT_BUFFERED, 100 .pte = L_PTE_MT_BUFFERABLE, 101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 102 }, { 103 .policy = "writethrough", 104 .cr_mask = 0, 105 .pmd = PMD_SECT_WT, 106 .pte = L_PTE_MT_WRITETHROUGH, 107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH), 108 }, { 109 .policy = "writeback", 110 .cr_mask = 0, 111 .pmd = PMD_SECT_WB, 112 .pte = L_PTE_MT_WRITEBACK, 113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 114 }, { 115 .policy = "writealloc", 116 .cr_mask = 0, 117 .pmd = PMD_SECT_WBWA, 118 .pte = L_PTE_MT_WRITEALLOC, 119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 120 } 121 }; 122 123 #ifdef CONFIG_CPU_CP15 124 static unsigned long initial_pmd_value __initdata = 0; 125 126 /* 127 * Initialise the cache_policy variable with the initial state specified 128 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 129 * the C code sets the page tables up with the same policy as the head 130 * assembly code, which avoids an illegal state where the TLBs can get 131 * confused. See comments in early_cachepolicy() for more information. 132 */ 133 void __init init_default_cache_policy(unsigned long pmd) 134 { 135 int i; 136 137 initial_pmd_value = pmd; 138 139 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE; 140 141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 142 if (cache_policies[i].pmd == pmd) { 143 cachepolicy = i; 144 break; 145 } 146 147 if (i == ARRAY_SIZE(cache_policies)) 148 pr_err("ERROR: could not find cache policy\n"); 149 } 150 151 /* 152 * These are useful for identifying cache coherency problems by allowing 153 * the cache or the cache and writebuffer to be turned off. (Note: the 154 * write buffer should not be on and the cache off). 155 */ 156 static int __init early_cachepolicy(char *p) 157 { 158 int i, selected = -1; 159 160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 161 int len = strlen(cache_policies[i].policy); 162 163 if (memcmp(p, cache_policies[i].policy, len) == 0) { 164 selected = i; 165 break; 166 } 167 } 168 169 if (selected == -1) 170 pr_err("ERROR: unknown or unsupported cache policy\n"); 171 172 /* 173 * This restriction is partly to do with the way we boot; it is 174 * unpredictable to have memory mapped using two different sets of 175 * memory attributes (shared, type, and cache attribs). We can not 176 * change these attributes once the initial assembly has setup the 177 * page tables. 178 */ 179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 181 cache_policies[cachepolicy].policy); 182 return 0; 183 } 184 185 if (selected != cachepolicy) { 186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 187 cachepolicy = selected; 188 flush_cache_all(); 189 set_cr(cr); 190 } 191 return 0; 192 } 193 early_param("cachepolicy", early_cachepolicy); 194 195 static int __init early_nocache(char *__unused) 196 { 197 char *p = "buffered"; 198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 199 early_cachepolicy(p); 200 return 0; 201 } 202 early_param("nocache", early_nocache); 203 204 static int __init early_nowrite(char *__unused) 205 { 206 char *p = "uncached"; 207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 208 early_cachepolicy(p); 209 return 0; 210 } 211 early_param("nowb", early_nowrite); 212 213 #ifndef CONFIG_ARM_LPAE 214 static int __init early_ecc(char *p) 215 { 216 if (memcmp(p, "on", 2) == 0) 217 ecc_mask = PMD_PROTECTION; 218 else if (memcmp(p, "off", 3) == 0) 219 ecc_mask = 0; 220 return 0; 221 } 222 early_param("ecc", early_ecc); 223 #endif 224 225 #else /* ifdef CONFIG_CPU_CP15 */ 226 227 static int __init early_cachepolicy(char *p) 228 { 229 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 230 } 231 early_param("cachepolicy", early_cachepolicy); 232 233 static int __init noalign_setup(char *__unused) 234 { 235 pr_warn("noalign kernel parameter not supported without cp15\n"); 236 } 237 __setup("noalign", noalign_setup); 238 239 #endif /* ifdef CONFIG_CPU_CP15 / else */ 240 241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 244 245 static struct mem_type mem_types[] = { 246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 248 L_PTE_SHARED, 249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) | 250 s2_policy(L_PTE_S2_MT_DEV_SHARED) | 251 L_PTE_SHARED, 252 .prot_l1 = PMD_TYPE_TABLE, 253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 254 .domain = DOMAIN_IO, 255 }, 256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 258 .prot_l1 = PMD_TYPE_TABLE, 259 .prot_sect = PROT_SECT_DEVICE, 260 .domain = DOMAIN_IO, 261 }, 262 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 264 .prot_l1 = PMD_TYPE_TABLE, 265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 266 .domain = DOMAIN_IO, 267 }, 268 [MT_DEVICE_WC] = { /* ioremap_wc */ 269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 270 .prot_l1 = PMD_TYPE_TABLE, 271 .prot_sect = PROT_SECT_DEVICE, 272 .domain = DOMAIN_IO, 273 }, 274 [MT_UNCACHED] = { 275 .prot_pte = PROT_PTE_DEVICE, 276 .prot_l1 = PMD_TYPE_TABLE, 277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 278 .domain = DOMAIN_IO, 279 }, 280 [MT_CACHECLEAN] = { 281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 282 .domain = DOMAIN_KERNEL, 283 }, 284 #ifndef CONFIG_ARM_LPAE 285 [MT_MINICLEAN] = { 286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 287 .domain = DOMAIN_KERNEL, 288 }, 289 #endif 290 [MT_LOW_VECTORS] = { 291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 292 L_PTE_RDONLY, 293 .prot_l1 = PMD_TYPE_TABLE, 294 .domain = DOMAIN_VECTORS, 295 }, 296 [MT_HIGH_VECTORS] = { 297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 298 L_PTE_USER | L_PTE_RDONLY, 299 .prot_l1 = PMD_TYPE_TABLE, 300 .domain = DOMAIN_VECTORS, 301 }, 302 [MT_MEMORY_RWX] = { 303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 304 .prot_l1 = PMD_TYPE_TABLE, 305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 306 .domain = DOMAIN_KERNEL, 307 }, 308 [MT_MEMORY_RW] = { 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 310 L_PTE_XN, 311 .prot_l1 = PMD_TYPE_TABLE, 312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 313 .domain = DOMAIN_KERNEL, 314 }, 315 [MT_ROM] = { 316 .prot_sect = PMD_TYPE_SECT, 317 .domain = DOMAIN_KERNEL, 318 }, 319 [MT_MEMORY_RWX_NONCACHED] = { 320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 321 L_PTE_MT_BUFFERABLE, 322 .prot_l1 = PMD_TYPE_TABLE, 323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 324 .domain = DOMAIN_KERNEL, 325 }, 326 [MT_MEMORY_RW_DTCM] = { 327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 328 L_PTE_XN, 329 .prot_l1 = PMD_TYPE_TABLE, 330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 331 .domain = DOMAIN_KERNEL, 332 }, 333 [MT_MEMORY_RWX_ITCM] = { 334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 335 .prot_l1 = PMD_TYPE_TABLE, 336 .domain = DOMAIN_KERNEL, 337 }, 338 [MT_MEMORY_RW_SO] = { 339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 340 L_PTE_MT_UNCACHED | L_PTE_XN, 341 .prot_l1 = PMD_TYPE_TABLE, 342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 343 PMD_SECT_UNCACHED | PMD_SECT_XN, 344 .domain = DOMAIN_KERNEL, 345 }, 346 [MT_MEMORY_DMA_READY] = { 347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 348 L_PTE_XN, 349 .prot_l1 = PMD_TYPE_TABLE, 350 .domain = DOMAIN_KERNEL, 351 }, 352 }; 353 354 const struct mem_type *get_mem_type(unsigned int type) 355 { 356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 357 } 358 EXPORT_SYMBOL(get_mem_type); 359 360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); 361 362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] 363 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; 364 365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) 366 { 367 return &bm_pte[pte_index(addr)]; 368 } 369 370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) 371 { 372 return pte_offset_kernel(dir, addr); 373 } 374 375 static inline pmd_t * __init fixmap_pmd(unsigned long addr) 376 { 377 pgd_t *pgd = pgd_offset_k(addr); 378 pud_t *pud = pud_offset(pgd, addr); 379 pmd_t *pmd = pmd_offset(pud, addr); 380 381 return pmd; 382 } 383 384 void __init early_fixmap_init(void) 385 { 386 pmd_t *pmd; 387 388 /* 389 * The early fixmap range spans multiple pmds, for which 390 * we are not prepared: 391 */ 392 BUILD_BUG_ON((__fix_to_virt(__end_of_permanent_fixed_addresses) >> PMD_SHIFT) 393 != FIXADDR_TOP >> PMD_SHIFT); 394 395 pmd = fixmap_pmd(FIXADDR_TOP); 396 pmd_populate_kernel(&init_mm, pmd, bm_pte); 397 398 pte_offset_fixmap = pte_offset_early_fixmap; 399 } 400 401 /* 402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). 403 * As a result, this can only be called with preemption disabled, as under 404 * stop_machine(). 405 */ 406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 407 { 408 unsigned long vaddr = __fix_to_virt(idx); 409 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); 410 411 /* Make sure fixmap region does not exceed available allocation. */ 412 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > 413 FIXADDR_END); 414 BUG_ON(idx >= __end_of_fixed_addresses); 415 416 if (pgprot_val(prot)) 417 set_pte_at(NULL, vaddr, pte, 418 pfn_pte(phys >> PAGE_SHIFT, prot)); 419 else 420 pte_clear(NULL, vaddr, pte); 421 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); 422 } 423 424 /* 425 * Adjust the PMD section entries according to the CPU in use. 426 */ 427 static void __init build_mem_type_table(void) 428 { 429 struct cachepolicy *cp; 430 unsigned int cr = get_cr(); 431 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 432 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; 433 int cpu_arch = cpu_architecture(); 434 int i; 435 436 if (cpu_arch < CPU_ARCH_ARMv6) { 437 #if defined(CONFIG_CPU_DCACHE_DISABLE) 438 if (cachepolicy > CPOLICY_BUFFERED) 439 cachepolicy = CPOLICY_BUFFERED; 440 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 441 if (cachepolicy > CPOLICY_WRITETHROUGH) 442 cachepolicy = CPOLICY_WRITETHROUGH; 443 #endif 444 } 445 if (cpu_arch < CPU_ARCH_ARMv5) { 446 if (cachepolicy >= CPOLICY_WRITEALLOC) 447 cachepolicy = CPOLICY_WRITEBACK; 448 ecc_mask = 0; 449 } 450 451 if (is_smp()) { 452 if (cachepolicy != CPOLICY_WRITEALLOC) { 453 pr_warn("Forcing write-allocate cache policy for SMP\n"); 454 cachepolicy = CPOLICY_WRITEALLOC; 455 } 456 if (!(initial_pmd_value & PMD_SECT_S)) { 457 pr_warn("Forcing shared mappings for SMP\n"); 458 initial_pmd_value |= PMD_SECT_S; 459 } 460 } 461 462 /* 463 * Strip out features not present on earlier architectures. 464 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 465 * without extended page tables don't have the 'Shared' bit. 466 */ 467 if (cpu_arch < CPU_ARCH_ARMv5) 468 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 469 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 470 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 471 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 472 mem_types[i].prot_sect &= ~PMD_SECT_S; 473 474 /* 475 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 476 * "update-able on write" bit on ARM610). However, Xscale and 477 * Xscale3 require this bit to be cleared. 478 */ 479 if (cpu_is_xscale() || cpu_is_xsc3()) { 480 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 481 mem_types[i].prot_sect &= ~PMD_BIT4; 482 mem_types[i].prot_l1 &= ~PMD_BIT4; 483 } 484 } else if (cpu_arch < CPU_ARCH_ARMv6) { 485 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 486 if (mem_types[i].prot_l1) 487 mem_types[i].prot_l1 |= PMD_BIT4; 488 if (mem_types[i].prot_sect) 489 mem_types[i].prot_sect |= PMD_BIT4; 490 } 491 } 492 493 /* 494 * Mark the device areas according to the CPU/architecture. 495 */ 496 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 497 if (!cpu_is_xsc3()) { 498 /* 499 * Mark device regions on ARMv6+ as execute-never 500 * to prevent speculative instruction fetches. 501 */ 502 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 503 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 504 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 505 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 506 507 /* Also setup NX memory mapping */ 508 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 509 } 510 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 511 /* 512 * For ARMv7 with TEX remapping, 513 * - shared device is SXCB=1100 514 * - nonshared device is SXCB=0100 515 * - write combine device mem is SXCB=0001 516 * (Uncached Normal memory) 517 */ 518 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 519 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 520 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 521 } else if (cpu_is_xsc3()) { 522 /* 523 * For Xscale3, 524 * - shared device is TEXCB=00101 525 * - nonshared device is TEXCB=01000 526 * - write combine device mem is TEXCB=00100 527 * (Inner/Outer Uncacheable in xsc3 parlance) 528 */ 529 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 530 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 531 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 532 } else { 533 /* 534 * For ARMv6 and ARMv7 without TEX remapping, 535 * - shared device is TEXCB=00001 536 * - nonshared device is TEXCB=01000 537 * - write combine device mem is TEXCB=00100 538 * (Uncached Normal in ARMv6 parlance). 539 */ 540 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 541 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 542 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 543 } 544 } else { 545 /* 546 * On others, write combining is "Uncached/Buffered" 547 */ 548 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 549 } 550 551 /* 552 * Now deal with the memory-type mappings 553 */ 554 cp = &cache_policies[cachepolicy]; 555 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 556 s2_pgprot = cp->pte_s2; 557 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; 558 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; 559 560 #ifndef CONFIG_ARM_LPAE 561 /* 562 * We don't use domains on ARMv6 (since this causes problems with 563 * v6/v7 kernels), so we must use a separate memory type for user 564 * r/o, kernel r/w to map the vectors page. 565 */ 566 if (cpu_arch == CPU_ARCH_ARMv6) 567 vecs_pgprot |= L_PTE_MT_VECTORS; 568 569 /* 570 * Check is it with support for the PXN bit 571 * in the Short-descriptor translation table format descriptors. 572 */ 573 if (cpu_arch == CPU_ARCH_ARMv7 && 574 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) { 575 user_pmd_table |= PMD_PXNTABLE; 576 } 577 #endif 578 579 /* 580 * ARMv6 and above have extended page tables. 581 */ 582 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 583 #ifndef CONFIG_ARM_LPAE 584 /* 585 * Mark cache clean areas and XIP ROM read only 586 * from SVC mode and no access from userspace. 587 */ 588 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 589 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 590 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 591 #endif 592 593 /* 594 * If the initial page tables were created with the S bit 595 * set, then we need to do the same here for the same 596 * reasons given in early_cachepolicy(). 597 */ 598 if (initial_pmd_value & PMD_SECT_S) { 599 user_pgprot |= L_PTE_SHARED; 600 kern_pgprot |= L_PTE_SHARED; 601 vecs_pgprot |= L_PTE_SHARED; 602 s2_pgprot |= L_PTE_SHARED; 603 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 604 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 605 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 606 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 607 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 608 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 609 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 610 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 611 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 612 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 613 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 614 } 615 } 616 617 /* 618 * Non-cacheable Normal - intended for memory areas that must 619 * not cause dirty cache line writebacks when used 620 */ 621 if (cpu_arch >= CPU_ARCH_ARMv6) { 622 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 623 /* Non-cacheable Normal is XCB = 001 */ 624 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 625 PMD_SECT_BUFFERED; 626 } else { 627 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 628 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 629 PMD_SECT_TEX(1); 630 } 631 } else { 632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 633 } 634 635 #ifdef CONFIG_ARM_LPAE 636 /* 637 * Do not generate access flag faults for the kernel mappings. 638 */ 639 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 640 mem_types[i].prot_pte |= PTE_EXT_AF; 641 if (mem_types[i].prot_sect) 642 mem_types[i].prot_sect |= PMD_SECT_AF; 643 } 644 kern_pgprot |= PTE_EXT_AF; 645 vecs_pgprot |= PTE_EXT_AF; 646 647 /* 648 * Set PXN for user mappings 649 */ 650 user_pgprot |= PTE_EXT_PXN; 651 #endif 652 653 for (i = 0; i < 16; i++) { 654 pteval_t v = pgprot_val(protection_map[i]); 655 protection_map[i] = __pgprot(v | user_pgprot); 656 } 657 658 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 659 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 660 661 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 662 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 663 L_PTE_DIRTY | kern_pgprot); 664 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); 665 pgprot_s2_device = __pgprot(s2_device_pgprot); 666 pgprot_hyp_device = __pgprot(hyp_device_pgprot); 667 668 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 669 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 670 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 671 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 672 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 673 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 674 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 675 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 676 mem_types[MT_ROM].prot_sect |= cp->pmd; 677 678 switch (cp->pmd) { 679 case PMD_SECT_WT: 680 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 681 break; 682 case PMD_SECT_WB: 683 case PMD_SECT_WBWA: 684 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 685 break; 686 } 687 pr_info("Memory policy: %sData cache %s\n", 688 ecc_mask ? "ECC enabled, " : "", cp->policy); 689 690 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 691 struct mem_type *t = &mem_types[i]; 692 if (t->prot_l1) 693 t->prot_l1 |= PMD_DOMAIN(t->domain); 694 if (t->prot_sect) 695 t->prot_sect |= PMD_DOMAIN(t->domain); 696 } 697 } 698 699 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 700 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 701 unsigned long size, pgprot_t vma_prot) 702 { 703 if (!pfn_valid(pfn)) 704 return pgprot_noncached(vma_prot); 705 else if (file->f_flags & O_SYNC) 706 return pgprot_writecombine(vma_prot); 707 return vma_prot; 708 } 709 EXPORT_SYMBOL(phys_mem_access_prot); 710 #endif 711 712 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 713 714 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) 715 { 716 void *ptr = __va(memblock_alloc(sz, align)); 717 memset(ptr, 0, sz); 718 return ptr; 719 } 720 721 static void __init *early_alloc(unsigned long sz) 722 { 723 return early_alloc_aligned(sz, sz); 724 } 725 726 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) 727 { 728 if (pmd_none(*pmd)) { 729 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 730 __pmd_populate(pmd, __pa(pte), prot); 731 } 732 BUG_ON(pmd_bad(*pmd)); 733 return pte_offset_kernel(pmd, addr); 734 } 735 736 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 737 unsigned long end, unsigned long pfn, 738 const struct mem_type *type) 739 { 740 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); 741 do { 742 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); 743 pfn++; 744 } while (pte++, addr += PAGE_SIZE, addr != end); 745 } 746 747 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 748 unsigned long end, phys_addr_t phys, 749 const struct mem_type *type) 750 { 751 pmd_t *p = pmd; 752 753 #ifndef CONFIG_ARM_LPAE 754 /* 755 * In classic MMU format, puds and pmds are folded in to 756 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 757 * group of L1 entries making up one logical pointer to 758 * an L2 table (2MB), where as PMDs refer to the individual 759 * L1 entries (1MB). Hence increment to get the correct 760 * offset for odd 1MB sections. 761 * (See arch/arm/include/asm/pgtable-2level.h) 762 */ 763 if (addr & SECTION_SIZE) 764 pmd++; 765 #endif 766 do { 767 *pmd = __pmd(phys | type->prot_sect); 768 phys += SECTION_SIZE; 769 } while (pmd++, addr += SECTION_SIZE, addr != end); 770 771 flush_pmd_entry(p); 772 } 773 774 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 775 unsigned long end, phys_addr_t phys, 776 const struct mem_type *type) 777 { 778 pmd_t *pmd = pmd_offset(pud, addr); 779 unsigned long next; 780 781 do { 782 /* 783 * With LPAE, we must loop over to map 784 * all the pmds for the given range. 785 */ 786 next = pmd_addr_end(addr, end); 787 788 /* 789 * Try a section mapping - addr, next and phys must all be 790 * aligned to a section boundary. 791 */ 792 if (type->prot_sect && 793 ((addr | next | phys) & ~SECTION_MASK) == 0) { 794 __map_init_section(pmd, addr, next, phys, type); 795 } else { 796 alloc_init_pte(pmd, addr, next, 797 __phys_to_pfn(phys), type); 798 } 799 800 phys += next - addr; 801 802 } while (pmd++, addr = next, addr != end); 803 } 804 805 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, 806 unsigned long end, phys_addr_t phys, 807 const struct mem_type *type) 808 { 809 pud_t *pud = pud_offset(pgd, addr); 810 unsigned long next; 811 812 do { 813 next = pud_addr_end(addr, end); 814 alloc_init_pmd(pud, addr, next, phys, type); 815 phys += next - addr; 816 } while (pud++, addr = next, addr != end); 817 } 818 819 #ifndef CONFIG_ARM_LPAE 820 static void __init create_36bit_mapping(struct map_desc *md, 821 const struct mem_type *type) 822 { 823 unsigned long addr, length, end; 824 phys_addr_t phys; 825 pgd_t *pgd; 826 827 addr = md->virtual; 828 phys = __pfn_to_phys(md->pfn); 829 length = PAGE_ALIGN(md->length); 830 831 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 832 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 833 (long long)__pfn_to_phys((u64)md->pfn), addr); 834 return; 835 } 836 837 /* N.B. ARMv6 supersections are only defined to work with domain 0. 838 * Since domain assignments can in fact be arbitrary, the 839 * 'domain == 0' check below is required to insure that ARMv6 840 * supersections are only allocated for domain 0 regardless 841 * of the actual domain assignments in use. 842 */ 843 if (type->domain) { 844 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 845 (long long)__pfn_to_phys((u64)md->pfn), addr); 846 return; 847 } 848 849 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 850 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 851 (long long)__pfn_to_phys((u64)md->pfn), addr); 852 return; 853 } 854 855 /* 856 * Shift bits [35:32] of address into bits [23:20] of PMD 857 * (See ARMv6 spec). 858 */ 859 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 860 861 pgd = pgd_offset_k(addr); 862 end = addr + length; 863 do { 864 pud_t *pud = pud_offset(pgd, addr); 865 pmd_t *pmd = pmd_offset(pud, addr); 866 int i; 867 868 for (i = 0; i < 16; i++) 869 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 870 871 addr += SUPERSECTION_SIZE; 872 phys += SUPERSECTION_SIZE; 873 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 874 } while (addr != end); 875 } 876 #endif /* !CONFIG_ARM_LPAE */ 877 878 /* 879 * Create the page directory entries and any necessary 880 * page tables for the mapping specified by `md'. We 881 * are able to cope here with varying sizes and address 882 * offsets, and we take full advantage of sections and 883 * supersections. 884 */ 885 static void __init create_mapping(struct map_desc *md) 886 { 887 unsigned long addr, length, end; 888 phys_addr_t phys; 889 const struct mem_type *type; 890 pgd_t *pgd; 891 892 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 893 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 894 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 895 return; 896 } 897 898 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 899 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && 900 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 901 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 902 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 903 } 904 905 type = &mem_types[md->type]; 906 907 #ifndef CONFIG_ARM_LPAE 908 /* 909 * Catch 36-bit addresses 910 */ 911 if (md->pfn >= 0x100000) { 912 create_36bit_mapping(md, type); 913 return; 914 } 915 #endif 916 917 addr = md->virtual & PAGE_MASK; 918 phys = __pfn_to_phys(md->pfn); 919 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 920 921 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 922 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 923 (long long)__pfn_to_phys(md->pfn), addr); 924 return; 925 } 926 927 pgd = pgd_offset_k(addr); 928 end = addr + length; 929 do { 930 unsigned long next = pgd_addr_end(addr, end); 931 932 alloc_init_pud(pgd, addr, next, phys, type); 933 934 phys += next - addr; 935 addr = next; 936 } while (pgd++, addr != end); 937 } 938 939 /* 940 * Create the architecture specific mappings 941 */ 942 void __init iotable_init(struct map_desc *io_desc, int nr) 943 { 944 struct map_desc *md; 945 struct vm_struct *vm; 946 struct static_vm *svm; 947 948 if (!nr) 949 return; 950 951 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); 952 953 for (md = io_desc; nr; md++, nr--) { 954 create_mapping(md); 955 956 vm = &svm->vm; 957 vm->addr = (void *)(md->virtual & PAGE_MASK); 958 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 959 vm->phys_addr = __pfn_to_phys(md->pfn); 960 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 961 vm->flags |= VM_ARM_MTYPE(md->type); 962 vm->caller = iotable_init; 963 add_static_vm_early(svm++); 964 } 965 } 966 967 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 968 void *caller) 969 { 970 struct vm_struct *vm; 971 struct static_vm *svm; 972 973 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); 974 975 vm = &svm->vm; 976 vm->addr = (void *)addr; 977 vm->size = size; 978 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 979 vm->caller = caller; 980 add_static_vm_early(svm); 981 } 982 983 #ifndef CONFIG_ARM_LPAE 984 985 /* 986 * The Linux PMD is made of two consecutive section entries covering 2MB 987 * (see definition in include/asm/pgtable-2level.h). However a call to 988 * create_mapping() may optimize static mappings by using individual 989 * 1MB section mappings. This leaves the actual PMD potentially half 990 * initialized if the top or bottom section entry isn't used, leaving it 991 * open to problems if a subsequent ioremap() or vmalloc() tries to use 992 * the virtual space left free by that unused section entry. 993 * 994 * Let's avoid the issue by inserting dummy vm entries covering the unused 995 * PMD halves once the static mappings are in place. 996 */ 997 998 static void __init pmd_empty_section_gap(unsigned long addr) 999 { 1000 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 1001 } 1002 1003 static void __init fill_pmd_gaps(void) 1004 { 1005 struct static_vm *svm; 1006 struct vm_struct *vm; 1007 unsigned long addr, next = 0; 1008 pmd_t *pmd; 1009 1010 list_for_each_entry(svm, &static_vmlist, list) { 1011 vm = &svm->vm; 1012 addr = (unsigned long)vm->addr; 1013 if (addr < next) 1014 continue; 1015 1016 /* 1017 * Check if this vm starts on an odd section boundary. 1018 * If so and the first section entry for this PMD is free 1019 * then we block the corresponding virtual address. 1020 */ 1021 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1022 pmd = pmd_off_k(addr); 1023 if (pmd_none(*pmd)) 1024 pmd_empty_section_gap(addr & PMD_MASK); 1025 } 1026 1027 /* 1028 * Then check if this vm ends on an odd section boundary. 1029 * If so and the second section entry for this PMD is empty 1030 * then we block the corresponding virtual address. 1031 */ 1032 addr += vm->size; 1033 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1034 pmd = pmd_off_k(addr) + 1; 1035 if (pmd_none(*pmd)) 1036 pmd_empty_section_gap(addr); 1037 } 1038 1039 /* no need to look at any vm entry until we hit the next PMD */ 1040 next = (addr + PMD_SIZE - 1) & PMD_MASK; 1041 } 1042 } 1043 1044 #else 1045 #define fill_pmd_gaps() do { } while (0) 1046 #endif 1047 1048 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1049 static void __init pci_reserve_io(void) 1050 { 1051 struct static_vm *svm; 1052 1053 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1054 if (svm) 1055 return; 1056 1057 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1058 } 1059 #else 1060 #define pci_reserve_io() do { } while (0) 1061 #endif 1062 1063 #ifdef CONFIG_DEBUG_LL 1064 void __init debug_ll_io_init(void) 1065 { 1066 struct map_desc map; 1067 1068 debug_ll_addr(&map.pfn, &map.virtual); 1069 if (!map.pfn || !map.virtual) 1070 return; 1071 map.pfn = __phys_to_pfn(map.pfn); 1072 map.virtual &= PAGE_MASK; 1073 map.length = PAGE_SIZE; 1074 map.type = MT_DEVICE; 1075 iotable_init(&map, 1); 1076 } 1077 #endif 1078 1079 static void * __initdata vmalloc_min = 1080 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1081 1082 /* 1083 * vmalloc=size forces the vmalloc area to be exactly 'size' 1084 * bytes. This can be used to increase (or decrease) the vmalloc 1085 * area - the default is 240m. 1086 */ 1087 static int __init early_vmalloc(char *arg) 1088 { 1089 unsigned long vmalloc_reserve = memparse(arg, NULL); 1090 1091 if (vmalloc_reserve < SZ_16M) { 1092 vmalloc_reserve = SZ_16M; 1093 pr_warn("vmalloc area too small, limiting to %luMB\n", 1094 vmalloc_reserve >> 20); 1095 } 1096 1097 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1098 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1099 pr_warn("vmalloc area is too big, limiting to %luMB\n", 1100 vmalloc_reserve >> 20); 1101 } 1102 1103 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1104 return 0; 1105 } 1106 early_param("vmalloc", early_vmalloc); 1107 1108 phys_addr_t arm_lowmem_limit __initdata = 0; 1109 1110 void __init sanity_check_meminfo(void) 1111 { 1112 phys_addr_t memblock_limit = 0; 1113 int highmem = 0; 1114 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1; 1115 struct memblock_region *reg; 1116 bool should_use_highmem = false; 1117 1118 for_each_memblock(memory, reg) { 1119 phys_addr_t block_start = reg->base; 1120 phys_addr_t block_end = reg->base + reg->size; 1121 phys_addr_t size_limit = reg->size; 1122 1123 if (reg->base >= vmalloc_limit) 1124 highmem = 1; 1125 else 1126 size_limit = vmalloc_limit - reg->base; 1127 1128 1129 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1130 1131 if (highmem) { 1132 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n", 1133 &block_start, &block_end); 1134 memblock_remove(reg->base, reg->size); 1135 should_use_highmem = true; 1136 continue; 1137 } 1138 1139 if (reg->size > size_limit) { 1140 phys_addr_t overlap_size = reg->size - size_limit; 1141 1142 pr_notice("Truncating RAM at %pa-%pa to -%pa", 1143 &block_start, &block_end, &vmalloc_limit); 1144 memblock_remove(vmalloc_limit, overlap_size); 1145 block_end = vmalloc_limit; 1146 should_use_highmem = true; 1147 } 1148 } 1149 1150 if (!highmem) { 1151 if (block_end > arm_lowmem_limit) { 1152 if (reg->size > size_limit) 1153 arm_lowmem_limit = vmalloc_limit; 1154 else 1155 arm_lowmem_limit = block_end; 1156 } 1157 1158 /* 1159 * Find the first non-pmd-aligned page, and point 1160 * memblock_limit at it. This relies on rounding the 1161 * limit down to be pmd-aligned, which happens at the 1162 * end of this function. 1163 * 1164 * With this algorithm, the start or end of almost any 1165 * bank can be non-pmd-aligned. The only exception is 1166 * that the start of the bank 0 must be section- 1167 * aligned, since otherwise memory would need to be 1168 * allocated when mapping the start of bank 0, which 1169 * occurs before any free memory is mapped. 1170 */ 1171 if (!memblock_limit) { 1172 if (!IS_ALIGNED(block_start, PMD_SIZE)) 1173 memblock_limit = block_start; 1174 else if (!IS_ALIGNED(block_end, PMD_SIZE)) 1175 memblock_limit = arm_lowmem_limit; 1176 } 1177 1178 } 1179 } 1180 1181 if (should_use_highmem) 1182 pr_notice("Consider using a HIGHMEM enabled kernel.\n"); 1183 1184 high_memory = __va(arm_lowmem_limit - 1) + 1; 1185 1186 /* 1187 * Round the memblock limit down to a pmd size. This 1188 * helps to ensure that we will allocate memory from the 1189 * last full pmd, which should be mapped. 1190 */ 1191 if (memblock_limit) 1192 memblock_limit = round_down(memblock_limit, PMD_SIZE); 1193 if (!memblock_limit) 1194 memblock_limit = arm_lowmem_limit; 1195 1196 memblock_set_current_limit(memblock_limit); 1197 } 1198 1199 static inline void prepare_page_table(void) 1200 { 1201 unsigned long addr; 1202 phys_addr_t end; 1203 1204 /* 1205 * Clear out all the mappings below the kernel image. 1206 */ 1207 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1208 pmd_clear(pmd_off_k(addr)); 1209 1210 #ifdef CONFIG_XIP_KERNEL 1211 /* The XIP kernel is mapped in the module area -- skip over it */ 1212 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK; 1213 #endif 1214 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1215 pmd_clear(pmd_off_k(addr)); 1216 1217 /* 1218 * Find the end of the first block of lowmem. 1219 */ 1220 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1221 if (end >= arm_lowmem_limit) 1222 end = arm_lowmem_limit; 1223 1224 /* 1225 * Clear out all the kernel space mappings, except for the first 1226 * memory bank, up to the vmalloc region. 1227 */ 1228 for (addr = __phys_to_virt(end); 1229 addr < VMALLOC_START; addr += PMD_SIZE) 1230 pmd_clear(pmd_off_k(addr)); 1231 } 1232 1233 #ifdef CONFIG_ARM_LPAE 1234 /* the first page is reserved for pgd */ 1235 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1236 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1237 #else 1238 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1239 #endif 1240 1241 /* 1242 * Reserve the special regions of memory 1243 */ 1244 void __init arm_mm_memblock_reserve(void) 1245 { 1246 /* 1247 * Reserve the page tables. These are already in use, 1248 * and can only be in node 0. 1249 */ 1250 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1251 1252 #ifdef CONFIG_SA1111 1253 /* 1254 * Because of the SA1111 DMA bug, we want to preserve our 1255 * precious DMA-able memory... 1256 */ 1257 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1258 #endif 1259 } 1260 1261 /* 1262 * Set up the device mappings. Since we clear out the page tables for all 1263 * mappings above VMALLOC_START, except early fixmap, we might remove debug 1264 * device mappings. This means earlycon can be used to debug this function 1265 * Any other function or debugging method which may touch any device _will_ 1266 * crash the kernel. 1267 */ 1268 static void __init devicemaps_init(const struct machine_desc *mdesc) 1269 { 1270 struct map_desc map; 1271 unsigned long addr; 1272 void *vectors; 1273 1274 /* 1275 * Allocate the vector page early. 1276 */ 1277 vectors = early_alloc(PAGE_SIZE * 2); 1278 1279 early_trap_init(vectors); 1280 1281 /* 1282 * Clear page table except top pmd used by early fixmaps 1283 */ 1284 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) 1285 pmd_clear(pmd_off_k(addr)); 1286 1287 /* 1288 * Map the kernel if it is XIP. 1289 * It is always first in the modulearea. 1290 */ 1291 #ifdef CONFIG_XIP_KERNEL 1292 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1293 map.virtual = MODULES_VADDR; 1294 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1295 map.type = MT_ROM; 1296 create_mapping(&map); 1297 #endif 1298 1299 /* 1300 * Map the cache flushing regions. 1301 */ 1302 #ifdef FLUSH_BASE 1303 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1304 map.virtual = FLUSH_BASE; 1305 map.length = SZ_1M; 1306 map.type = MT_CACHECLEAN; 1307 create_mapping(&map); 1308 #endif 1309 #ifdef FLUSH_BASE_MINICACHE 1310 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1311 map.virtual = FLUSH_BASE_MINICACHE; 1312 map.length = SZ_1M; 1313 map.type = MT_MINICLEAN; 1314 create_mapping(&map); 1315 #endif 1316 1317 /* 1318 * Create a mapping for the machine vectors at the high-vectors 1319 * location (0xffff0000). If we aren't using high-vectors, also 1320 * create a mapping at the low-vectors virtual address. 1321 */ 1322 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1323 map.virtual = 0xffff0000; 1324 map.length = PAGE_SIZE; 1325 #ifdef CONFIG_KUSER_HELPERS 1326 map.type = MT_HIGH_VECTORS; 1327 #else 1328 map.type = MT_LOW_VECTORS; 1329 #endif 1330 create_mapping(&map); 1331 1332 if (!vectors_high()) { 1333 map.virtual = 0; 1334 map.length = PAGE_SIZE * 2; 1335 map.type = MT_LOW_VECTORS; 1336 create_mapping(&map); 1337 } 1338 1339 /* Now create a kernel read-only mapping */ 1340 map.pfn += 1; 1341 map.virtual = 0xffff0000 + PAGE_SIZE; 1342 map.length = PAGE_SIZE; 1343 map.type = MT_LOW_VECTORS; 1344 create_mapping(&map); 1345 1346 /* 1347 * Ask the machine support to map in the statically mapped devices. 1348 */ 1349 if (mdesc->map_io) 1350 mdesc->map_io(); 1351 else 1352 debug_ll_io_init(); 1353 fill_pmd_gaps(); 1354 1355 /* Reserve fixed i/o space in VMALLOC region */ 1356 pci_reserve_io(); 1357 1358 /* 1359 * Finally flush the caches and tlb to ensure that we're in a 1360 * consistent state wrt the writebuffer. This also ensures that 1361 * any write-allocated cache lines in the vector page are written 1362 * back. After this point, we can start to touch devices again. 1363 */ 1364 local_flush_tlb_all(); 1365 flush_cache_all(); 1366 } 1367 1368 static void __init kmap_init(void) 1369 { 1370 #ifdef CONFIG_HIGHMEM 1371 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1372 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1373 #endif 1374 1375 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, 1376 _PAGE_KERNEL_TABLE); 1377 } 1378 1379 static void __init map_lowmem(void) 1380 { 1381 struct memblock_region *reg; 1382 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE); 1383 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1384 1385 /* Map all the lowmem memory banks. */ 1386 for_each_memblock(memory, reg) { 1387 phys_addr_t start = reg->base; 1388 phys_addr_t end = start + reg->size; 1389 struct map_desc map; 1390 1391 if (end > arm_lowmem_limit) 1392 end = arm_lowmem_limit; 1393 if (start >= end) 1394 break; 1395 1396 if (end < kernel_x_start) { 1397 map.pfn = __phys_to_pfn(start); 1398 map.virtual = __phys_to_virt(start); 1399 map.length = end - start; 1400 map.type = MT_MEMORY_RWX; 1401 1402 create_mapping(&map); 1403 } else if (start >= kernel_x_end) { 1404 map.pfn = __phys_to_pfn(start); 1405 map.virtual = __phys_to_virt(start); 1406 map.length = end - start; 1407 map.type = MT_MEMORY_RW; 1408 1409 create_mapping(&map); 1410 } else { 1411 /* This better cover the entire kernel */ 1412 if (start < kernel_x_start) { 1413 map.pfn = __phys_to_pfn(start); 1414 map.virtual = __phys_to_virt(start); 1415 map.length = kernel_x_start - start; 1416 map.type = MT_MEMORY_RW; 1417 1418 create_mapping(&map); 1419 } 1420 1421 map.pfn = __phys_to_pfn(kernel_x_start); 1422 map.virtual = __phys_to_virt(kernel_x_start); 1423 map.length = kernel_x_end - kernel_x_start; 1424 map.type = MT_MEMORY_RWX; 1425 1426 create_mapping(&map); 1427 1428 if (kernel_x_end < end) { 1429 map.pfn = __phys_to_pfn(kernel_x_end); 1430 map.virtual = __phys_to_virt(kernel_x_end); 1431 map.length = end - kernel_x_end; 1432 map.type = MT_MEMORY_RW; 1433 1434 create_mapping(&map); 1435 } 1436 } 1437 } 1438 } 1439 1440 #ifdef CONFIG_ARM_PV_FIXUP 1441 extern unsigned long __atags_pointer; 1442 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); 1443 pgtables_remap lpae_pgtables_remap_asm; 1444 1445 /* 1446 * early_paging_init() recreates boot time page table setup, allowing machines 1447 * to switch over to a high (>4G) address space on LPAE systems 1448 */ 1449 void __init early_paging_init(const struct machine_desc *mdesc) 1450 { 1451 pgtables_remap *lpae_pgtables_remap; 1452 unsigned long pa_pgd; 1453 unsigned int cr, ttbcr; 1454 long long offset; 1455 void *boot_data; 1456 1457 if (!mdesc->pv_fixup) 1458 return; 1459 1460 offset = mdesc->pv_fixup(); 1461 if (offset == 0) 1462 return; 1463 1464 /* 1465 * Get the address of the remap function in the 1:1 identity 1466 * mapping setup by the early page table assembly code. We 1467 * must get this prior to the pv update. The following barrier 1468 * ensures that this is complete before we fixup any P:V offsets. 1469 */ 1470 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); 1471 pa_pgd = __pa(swapper_pg_dir); 1472 boot_data = __va(__atags_pointer); 1473 barrier(); 1474 1475 pr_info("Switching physical address space to 0x%08llx\n", 1476 (u64)PHYS_OFFSET + offset); 1477 1478 /* Re-set the phys pfn offset, and the pv offset */ 1479 __pv_offset += offset; 1480 __pv_phys_pfn_offset += PFN_DOWN(offset); 1481 1482 /* Run the patch stub to update the constants */ 1483 fixup_pv_table(&__pv_table_begin, 1484 (&__pv_table_end - &__pv_table_begin) << 2); 1485 1486 /* 1487 * We changing not only the virtual to physical mapping, but also 1488 * the physical addresses used to access memory. We need to flush 1489 * all levels of cache in the system with caching disabled to 1490 * ensure that all data is written back, and nothing is prefetched 1491 * into the caches. We also need to prevent the TLB walkers 1492 * allocating into the caches too. Note that this is ARMv7 LPAE 1493 * specific. 1494 */ 1495 cr = get_cr(); 1496 set_cr(cr & ~(CR_I | CR_C)); 1497 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); 1498 asm volatile("mcr p15, 0, %0, c2, c0, 2" 1499 : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); 1500 flush_cache_all(); 1501 1502 /* 1503 * Fixup the page tables - this must be in the idmap region as 1504 * we need to disable the MMU to do this safely, and hence it 1505 * needs to be assembly. It's fairly simple, as we're using the 1506 * temporary tables setup by the initial assembly code. 1507 */ 1508 lpae_pgtables_remap(offset, pa_pgd, boot_data); 1509 1510 /* Re-enable the caches and cacheable TLB walks */ 1511 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); 1512 set_cr(cr); 1513 } 1514 1515 #else 1516 1517 void __init early_paging_init(const struct machine_desc *mdesc) 1518 { 1519 long long offset; 1520 1521 if (!mdesc->pv_fixup) 1522 return; 1523 1524 offset = mdesc->pv_fixup(); 1525 if (offset == 0) 1526 return; 1527 1528 pr_crit("Physical address space modification is only to support Keystone2.\n"); 1529 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); 1530 pr_crit("feature. Your kernel may crash now, have a good day.\n"); 1531 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1532 } 1533 1534 #endif 1535 1536 static void __init early_fixmap_shutdown(void) 1537 { 1538 int i; 1539 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); 1540 1541 pte_offset_fixmap = pte_offset_late_fixmap; 1542 pmd_clear(fixmap_pmd(va)); 1543 local_flush_tlb_kernel_page(va); 1544 1545 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { 1546 pte_t *pte; 1547 struct map_desc map; 1548 1549 map.virtual = fix_to_virt(i); 1550 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); 1551 1552 /* Only i/o device mappings are supported ATM */ 1553 if (pte_none(*pte) || 1554 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) 1555 continue; 1556 1557 map.pfn = pte_pfn(*pte); 1558 map.type = MT_DEVICE; 1559 map.length = PAGE_SIZE; 1560 1561 create_mapping(&map); 1562 } 1563 } 1564 1565 /* 1566 * paging_init() sets up the page tables, initialises the zone memory 1567 * maps, and sets up the zero page, bad page and bad page tables. 1568 */ 1569 void __init paging_init(const struct machine_desc *mdesc) 1570 { 1571 void *zero_page; 1572 1573 build_mem_type_table(); 1574 prepare_page_table(); 1575 map_lowmem(); 1576 memblock_set_current_limit(arm_lowmem_limit); 1577 dma_contiguous_remap(); 1578 early_fixmap_shutdown(); 1579 devicemaps_init(mdesc); 1580 kmap_init(); 1581 tcm_init(); 1582 1583 top_pmd = pmd_off_k(0xffff0000); 1584 1585 /* allocate the zero page. */ 1586 zero_page = early_alloc(PAGE_SIZE); 1587 1588 bootmem_init(); 1589 1590 empty_zero_page = virt_to_page(zero_page); 1591 __flush_dcache_page(NULL, empty_zero_page); 1592 } 1593