xref: /openbmc/linux/arch/arm/mm/mmu.c (revision a2cce7a9)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35 
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40 
41 #include "mm.h"
42 #include "tcm.h"
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 pgprot_t pgprot_hyp_device;
69 pgprot_t pgprot_s2;
70 pgprot_t pgprot_s2_device;
71 
72 EXPORT_SYMBOL(pgprot_user);
73 EXPORT_SYMBOL(pgprot_kernel);
74 
75 struct cachepolicy {
76 	const char	policy[16];
77 	unsigned int	cr_mask;
78 	pmdval_t	pmd;
79 	pteval_t	pte;
80 	pteval_t	pte_s2;
81 };
82 
83 #ifdef CONFIG_ARM_LPAE
84 #define s2_policy(policy)	policy
85 #else
86 #define s2_policy(policy)	0
87 #endif
88 
89 static struct cachepolicy cache_policies[] __initdata = {
90 	{
91 		.policy		= "uncached",
92 		.cr_mask	= CR_W|CR_C,
93 		.pmd		= PMD_SECT_UNCACHED,
94 		.pte		= L_PTE_MT_UNCACHED,
95 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
96 	}, {
97 		.policy		= "buffered",
98 		.cr_mask	= CR_C,
99 		.pmd		= PMD_SECT_BUFFERED,
100 		.pte		= L_PTE_MT_BUFFERABLE,
101 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
102 	}, {
103 		.policy		= "writethrough",
104 		.cr_mask	= 0,
105 		.pmd		= PMD_SECT_WT,
106 		.pte		= L_PTE_MT_WRITETHROUGH,
107 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 	}, {
109 		.policy		= "writeback",
110 		.cr_mask	= 0,
111 		.pmd		= PMD_SECT_WB,
112 		.pte		= L_PTE_MT_WRITEBACK,
113 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
114 	}, {
115 		.policy		= "writealloc",
116 		.cr_mask	= 0,
117 		.pmd		= PMD_SECT_WBWA,
118 		.pte		= L_PTE_MT_WRITEALLOC,
119 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
120 	}
121 };
122 
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata = 0;
125 
126 /*
127  * Initialise the cache_policy variable with the initial state specified
128  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
129  * the C code sets the page tables up with the same policy as the head
130  * assembly code, which avoids an illegal state where the TLBs can get
131  * confused.  See comments in early_cachepolicy() for more information.
132  */
133 void __init init_default_cache_policy(unsigned long pmd)
134 {
135 	int i;
136 
137 	initial_pmd_value = pmd;
138 
139 	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
140 
141 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142 		if (cache_policies[i].pmd == pmd) {
143 			cachepolicy = i;
144 			break;
145 		}
146 
147 	if (i == ARRAY_SIZE(cache_policies))
148 		pr_err("ERROR: could not find cache policy\n");
149 }
150 
151 /*
152  * These are useful for identifying cache coherency problems by allowing
153  * the cache or the cache and writebuffer to be turned off.  (Note: the
154  * write buffer should not be on and the cache off).
155  */
156 static int __init early_cachepolicy(char *p)
157 {
158 	int i, selected = -1;
159 
160 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161 		int len = strlen(cache_policies[i].policy);
162 
163 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
164 			selected = i;
165 			break;
166 		}
167 	}
168 
169 	if (selected == -1)
170 		pr_err("ERROR: unknown or unsupported cache policy\n");
171 
172 	/*
173 	 * This restriction is partly to do with the way we boot; it is
174 	 * unpredictable to have memory mapped using two different sets of
175 	 * memory attributes (shared, type, and cache attribs).  We can not
176 	 * change these attributes once the initial assembly has setup the
177 	 * page tables.
178 	 */
179 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 			cache_policies[cachepolicy].policy);
182 		return 0;
183 	}
184 
185 	if (selected != cachepolicy) {
186 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187 		cachepolicy = selected;
188 		flush_cache_all();
189 		set_cr(cr);
190 	}
191 	return 0;
192 }
193 early_param("cachepolicy", early_cachepolicy);
194 
195 static int __init early_nocache(char *__unused)
196 {
197 	char *p = "buffered";
198 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 	early_cachepolicy(p);
200 	return 0;
201 }
202 early_param("nocache", early_nocache);
203 
204 static int __init early_nowrite(char *__unused)
205 {
206 	char *p = "uncached";
207 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 	early_cachepolicy(p);
209 	return 0;
210 }
211 early_param("nowb", early_nowrite);
212 
213 #ifndef CONFIG_ARM_LPAE
214 static int __init early_ecc(char *p)
215 {
216 	if (memcmp(p, "on", 2) == 0)
217 		ecc_mask = PMD_PROTECTION;
218 	else if (memcmp(p, "off", 3) == 0)
219 		ecc_mask = 0;
220 	return 0;
221 }
222 early_param("ecc", early_ecc);
223 #endif
224 
225 #else /* ifdef CONFIG_CPU_CP15 */
226 
227 static int __init early_cachepolicy(char *p)
228 {
229 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
230 }
231 early_param("cachepolicy", early_cachepolicy);
232 
233 static int __init noalign_setup(char *__unused)
234 {
235 	pr_warn("noalign kernel parameter not supported without cp15\n");
236 }
237 __setup("noalign", noalign_setup);
238 
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
240 
241 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
244 
245 static struct mem_type mem_types[] = {
246 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248 				  L_PTE_SHARED,
249 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
250 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251 				  L_PTE_SHARED,
252 		.prot_l1	= PMD_TYPE_TABLE,
253 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
254 		.domain		= DOMAIN_IO,
255 	},
256 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258 		.prot_l1	= PMD_TYPE_TABLE,
259 		.prot_sect	= PROT_SECT_DEVICE,
260 		.domain		= DOMAIN_IO,
261 	},
262 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
263 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 		.prot_l1	= PMD_TYPE_TABLE,
265 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
266 		.domain		= DOMAIN_IO,
267 	},
268 	[MT_DEVICE_WC] = {	/* ioremap_wc */
269 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270 		.prot_l1	= PMD_TYPE_TABLE,
271 		.prot_sect	= PROT_SECT_DEVICE,
272 		.domain		= DOMAIN_IO,
273 	},
274 	[MT_UNCACHED] = {
275 		.prot_pte	= PROT_PTE_DEVICE,
276 		.prot_l1	= PMD_TYPE_TABLE,
277 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
278 		.domain		= DOMAIN_IO,
279 	},
280 	[MT_CACHECLEAN] = {
281 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 		.domain    = DOMAIN_KERNEL,
283 	},
284 #ifndef CONFIG_ARM_LPAE
285 	[MT_MINICLEAN] = {
286 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 		.domain    = DOMAIN_KERNEL,
288 	},
289 #endif
290 	[MT_LOW_VECTORS] = {
291 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 				L_PTE_RDONLY,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.domain    = DOMAIN_VECTORS,
295 	},
296 	[MT_HIGH_VECTORS] = {
297 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298 				L_PTE_USER | L_PTE_RDONLY,
299 		.prot_l1   = PMD_TYPE_TABLE,
300 		.domain    = DOMAIN_VECTORS,
301 	},
302 	[MT_MEMORY_RWX] = {
303 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304 		.prot_l1   = PMD_TYPE_TABLE,
305 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_MEMORY_RW] = {
309 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 			     L_PTE_XN,
311 		.prot_l1   = PMD_TYPE_TABLE,
312 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 		.domain    = DOMAIN_KERNEL,
314 	},
315 	[MT_ROM] = {
316 		.prot_sect = PMD_TYPE_SECT,
317 		.domain    = DOMAIN_KERNEL,
318 	},
319 	[MT_MEMORY_RWX_NONCACHED] = {
320 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 				L_PTE_MT_BUFFERABLE,
322 		.prot_l1   = PMD_TYPE_TABLE,
323 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324 		.domain    = DOMAIN_KERNEL,
325 	},
326 	[MT_MEMORY_RW_DTCM] = {
327 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328 				L_PTE_XN,
329 		.prot_l1   = PMD_TYPE_TABLE,
330 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331 		.domain    = DOMAIN_KERNEL,
332 	},
333 	[MT_MEMORY_RWX_ITCM] = {
334 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335 		.prot_l1   = PMD_TYPE_TABLE,
336 		.domain    = DOMAIN_KERNEL,
337 	},
338 	[MT_MEMORY_RW_SO] = {
339 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340 				L_PTE_MT_UNCACHED | L_PTE_XN,
341 		.prot_l1   = PMD_TYPE_TABLE,
342 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343 				PMD_SECT_UNCACHED | PMD_SECT_XN,
344 		.domain    = DOMAIN_KERNEL,
345 	},
346 	[MT_MEMORY_DMA_READY] = {
347 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 				L_PTE_XN,
349 		.prot_l1   = PMD_TYPE_TABLE,
350 		.domain    = DOMAIN_KERNEL,
351 	},
352 };
353 
354 const struct mem_type *get_mem_type(unsigned int type)
355 {
356 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
357 }
358 EXPORT_SYMBOL(get_mem_type);
359 
360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
361 
362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
363 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
364 
365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
366 {
367 	return &bm_pte[pte_index(addr)];
368 }
369 
370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
371 {
372 	return pte_offset_kernel(dir, addr);
373 }
374 
375 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
376 {
377 	pgd_t *pgd = pgd_offset_k(addr);
378 	pud_t *pud = pud_offset(pgd, addr);
379 	pmd_t *pmd = pmd_offset(pud, addr);
380 
381 	return pmd;
382 }
383 
384 void __init early_fixmap_init(void)
385 {
386 	pmd_t *pmd;
387 
388 	/*
389 	 * The early fixmap range spans multiple pmds, for which
390 	 * we are not prepared:
391 	 */
392 	BUILD_BUG_ON((__fix_to_virt(__end_of_permanent_fixed_addresses) >> PMD_SHIFT)
393 		     != FIXADDR_TOP >> PMD_SHIFT);
394 
395 	pmd = fixmap_pmd(FIXADDR_TOP);
396 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
397 
398 	pte_offset_fixmap = pte_offset_early_fixmap;
399 }
400 
401 /*
402  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
403  * As a result, this can only be called with preemption disabled, as under
404  * stop_machine().
405  */
406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
407 {
408 	unsigned long vaddr = __fix_to_virt(idx);
409 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
410 
411 	/* Make sure fixmap region does not exceed available allocation. */
412 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
413 		     FIXADDR_END);
414 	BUG_ON(idx >= __end_of_fixed_addresses);
415 
416 	if (pgprot_val(prot))
417 		set_pte_at(NULL, vaddr, pte,
418 			pfn_pte(phys >> PAGE_SHIFT, prot));
419 	else
420 		pte_clear(NULL, vaddr, pte);
421 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
422 }
423 
424 /*
425  * Adjust the PMD section entries according to the CPU in use.
426  */
427 static void __init build_mem_type_table(void)
428 {
429 	struct cachepolicy *cp;
430 	unsigned int cr = get_cr();
431 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
432 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
433 	int cpu_arch = cpu_architecture();
434 	int i;
435 
436 	if (cpu_arch < CPU_ARCH_ARMv6) {
437 #if defined(CONFIG_CPU_DCACHE_DISABLE)
438 		if (cachepolicy > CPOLICY_BUFFERED)
439 			cachepolicy = CPOLICY_BUFFERED;
440 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
441 		if (cachepolicy > CPOLICY_WRITETHROUGH)
442 			cachepolicy = CPOLICY_WRITETHROUGH;
443 #endif
444 	}
445 	if (cpu_arch < CPU_ARCH_ARMv5) {
446 		if (cachepolicy >= CPOLICY_WRITEALLOC)
447 			cachepolicy = CPOLICY_WRITEBACK;
448 		ecc_mask = 0;
449 	}
450 
451 	if (is_smp()) {
452 		if (cachepolicy != CPOLICY_WRITEALLOC) {
453 			pr_warn("Forcing write-allocate cache policy for SMP\n");
454 			cachepolicy = CPOLICY_WRITEALLOC;
455 		}
456 		if (!(initial_pmd_value & PMD_SECT_S)) {
457 			pr_warn("Forcing shared mappings for SMP\n");
458 			initial_pmd_value |= PMD_SECT_S;
459 		}
460 	}
461 
462 	/*
463 	 * Strip out features not present on earlier architectures.
464 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
465 	 * without extended page tables don't have the 'Shared' bit.
466 	 */
467 	if (cpu_arch < CPU_ARCH_ARMv5)
468 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
469 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
470 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
471 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
472 			mem_types[i].prot_sect &= ~PMD_SECT_S;
473 
474 	/*
475 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
476 	 * "update-able on write" bit on ARM610).  However, Xscale and
477 	 * Xscale3 require this bit to be cleared.
478 	 */
479 	if (cpu_is_xscale() || cpu_is_xsc3()) {
480 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 			mem_types[i].prot_sect &= ~PMD_BIT4;
482 			mem_types[i].prot_l1 &= ~PMD_BIT4;
483 		}
484 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
485 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
486 			if (mem_types[i].prot_l1)
487 				mem_types[i].prot_l1 |= PMD_BIT4;
488 			if (mem_types[i].prot_sect)
489 				mem_types[i].prot_sect |= PMD_BIT4;
490 		}
491 	}
492 
493 	/*
494 	 * Mark the device areas according to the CPU/architecture.
495 	 */
496 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
497 		if (!cpu_is_xsc3()) {
498 			/*
499 			 * Mark device regions on ARMv6+ as execute-never
500 			 * to prevent speculative instruction fetches.
501 			 */
502 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
503 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
504 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
505 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
506 
507 			/* Also setup NX memory mapping */
508 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
509 		}
510 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
511 			/*
512 			 * For ARMv7 with TEX remapping,
513 			 * - shared device is SXCB=1100
514 			 * - nonshared device is SXCB=0100
515 			 * - write combine device mem is SXCB=0001
516 			 * (Uncached Normal memory)
517 			 */
518 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
519 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
520 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
521 		} else if (cpu_is_xsc3()) {
522 			/*
523 			 * For Xscale3,
524 			 * - shared device is TEXCB=00101
525 			 * - nonshared device is TEXCB=01000
526 			 * - write combine device mem is TEXCB=00100
527 			 * (Inner/Outer Uncacheable in xsc3 parlance)
528 			 */
529 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
530 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
531 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
532 		} else {
533 			/*
534 			 * For ARMv6 and ARMv7 without TEX remapping,
535 			 * - shared device is TEXCB=00001
536 			 * - nonshared device is TEXCB=01000
537 			 * - write combine device mem is TEXCB=00100
538 			 * (Uncached Normal in ARMv6 parlance).
539 			 */
540 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
541 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
542 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
543 		}
544 	} else {
545 		/*
546 		 * On others, write combining is "Uncached/Buffered"
547 		 */
548 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
549 	}
550 
551 	/*
552 	 * Now deal with the memory-type mappings
553 	 */
554 	cp = &cache_policies[cachepolicy];
555 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
556 	s2_pgprot = cp->pte_s2;
557 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
558 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
559 
560 #ifndef CONFIG_ARM_LPAE
561 	/*
562 	 * We don't use domains on ARMv6 (since this causes problems with
563 	 * v6/v7 kernels), so we must use a separate memory type for user
564 	 * r/o, kernel r/w to map the vectors page.
565 	 */
566 	if (cpu_arch == CPU_ARCH_ARMv6)
567 		vecs_pgprot |= L_PTE_MT_VECTORS;
568 
569 	/*
570 	 * Check is it with support for the PXN bit
571 	 * in the Short-descriptor translation table format descriptors.
572 	 */
573 	if (cpu_arch == CPU_ARCH_ARMv7 &&
574 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
575 		user_pmd_table |= PMD_PXNTABLE;
576 	}
577 #endif
578 
579 	/*
580 	 * ARMv6 and above have extended page tables.
581 	 */
582 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
583 #ifndef CONFIG_ARM_LPAE
584 		/*
585 		 * Mark cache clean areas and XIP ROM read only
586 		 * from SVC mode and no access from userspace.
587 		 */
588 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
589 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
590 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591 #endif
592 
593 		/*
594 		 * If the initial page tables were created with the S bit
595 		 * set, then we need to do the same here for the same
596 		 * reasons given in early_cachepolicy().
597 		 */
598 		if (initial_pmd_value & PMD_SECT_S) {
599 			user_pgprot |= L_PTE_SHARED;
600 			kern_pgprot |= L_PTE_SHARED;
601 			vecs_pgprot |= L_PTE_SHARED;
602 			s2_pgprot |= L_PTE_SHARED;
603 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
604 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
605 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
606 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
607 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
608 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
609 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
610 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
611 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
612 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
613 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
614 		}
615 	}
616 
617 	/*
618 	 * Non-cacheable Normal - intended for memory areas that must
619 	 * not cause dirty cache line writebacks when used
620 	 */
621 	if (cpu_arch >= CPU_ARCH_ARMv6) {
622 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
623 			/* Non-cacheable Normal is XCB = 001 */
624 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
625 				PMD_SECT_BUFFERED;
626 		} else {
627 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
628 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
629 				PMD_SECT_TEX(1);
630 		}
631 	} else {
632 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
633 	}
634 
635 #ifdef CONFIG_ARM_LPAE
636 	/*
637 	 * Do not generate access flag faults for the kernel mappings.
638 	 */
639 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
640 		mem_types[i].prot_pte |= PTE_EXT_AF;
641 		if (mem_types[i].prot_sect)
642 			mem_types[i].prot_sect |= PMD_SECT_AF;
643 	}
644 	kern_pgprot |= PTE_EXT_AF;
645 	vecs_pgprot |= PTE_EXT_AF;
646 
647 	/*
648 	 * Set PXN for user mappings
649 	 */
650 	user_pgprot |= PTE_EXT_PXN;
651 #endif
652 
653 	for (i = 0; i < 16; i++) {
654 		pteval_t v = pgprot_val(protection_map[i]);
655 		protection_map[i] = __pgprot(v | user_pgprot);
656 	}
657 
658 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
659 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
660 
661 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
662 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
663 				 L_PTE_DIRTY | kern_pgprot);
664 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
665 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
666 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
667 
668 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
669 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
670 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
671 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
672 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
673 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
674 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
675 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
676 	mem_types[MT_ROM].prot_sect |= cp->pmd;
677 
678 	switch (cp->pmd) {
679 	case PMD_SECT_WT:
680 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
681 		break;
682 	case PMD_SECT_WB:
683 	case PMD_SECT_WBWA:
684 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
685 		break;
686 	}
687 	pr_info("Memory policy: %sData cache %s\n",
688 		ecc_mask ? "ECC enabled, " : "", cp->policy);
689 
690 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
691 		struct mem_type *t = &mem_types[i];
692 		if (t->prot_l1)
693 			t->prot_l1 |= PMD_DOMAIN(t->domain);
694 		if (t->prot_sect)
695 			t->prot_sect |= PMD_DOMAIN(t->domain);
696 	}
697 }
698 
699 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
700 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
701 			      unsigned long size, pgprot_t vma_prot)
702 {
703 	if (!pfn_valid(pfn))
704 		return pgprot_noncached(vma_prot);
705 	else if (file->f_flags & O_SYNC)
706 		return pgprot_writecombine(vma_prot);
707 	return vma_prot;
708 }
709 EXPORT_SYMBOL(phys_mem_access_prot);
710 #endif
711 
712 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
713 
714 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
715 {
716 	void *ptr = __va(memblock_alloc(sz, align));
717 	memset(ptr, 0, sz);
718 	return ptr;
719 }
720 
721 static void __init *early_alloc(unsigned long sz)
722 {
723 	return early_alloc_aligned(sz, sz);
724 }
725 
726 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
727 {
728 	if (pmd_none(*pmd)) {
729 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
730 		__pmd_populate(pmd, __pa(pte), prot);
731 	}
732 	BUG_ON(pmd_bad(*pmd));
733 	return pte_offset_kernel(pmd, addr);
734 }
735 
736 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
737 				  unsigned long end, unsigned long pfn,
738 				  const struct mem_type *type)
739 {
740 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
741 	do {
742 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
743 		pfn++;
744 	} while (pte++, addr += PAGE_SIZE, addr != end);
745 }
746 
747 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
748 			unsigned long end, phys_addr_t phys,
749 			const struct mem_type *type)
750 {
751 	pmd_t *p = pmd;
752 
753 #ifndef CONFIG_ARM_LPAE
754 	/*
755 	 * In classic MMU format, puds and pmds are folded in to
756 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
757 	 * group of L1 entries making up one logical pointer to
758 	 * an L2 table (2MB), where as PMDs refer to the individual
759 	 * L1 entries (1MB). Hence increment to get the correct
760 	 * offset for odd 1MB sections.
761 	 * (See arch/arm/include/asm/pgtable-2level.h)
762 	 */
763 	if (addr & SECTION_SIZE)
764 		pmd++;
765 #endif
766 	do {
767 		*pmd = __pmd(phys | type->prot_sect);
768 		phys += SECTION_SIZE;
769 	} while (pmd++, addr += SECTION_SIZE, addr != end);
770 
771 	flush_pmd_entry(p);
772 }
773 
774 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
775 				      unsigned long end, phys_addr_t phys,
776 				      const struct mem_type *type)
777 {
778 	pmd_t *pmd = pmd_offset(pud, addr);
779 	unsigned long next;
780 
781 	do {
782 		/*
783 		 * With LPAE, we must loop over to map
784 		 * all the pmds for the given range.
785 		 */
786 		next = pmd_addr_end(addr, end);
787 
788 		/*
789 		 * Try a section mapping - addr, next and phys must all be
790 		 * aligned to a section boundary.
791 		 */
792 		if (type->prot_sect &&
793 				((addr | next | phys) & ~SECTION_MASK) == 0) {
794 			__map_init_section(pmd, addr, next, phys, type);
795 		} else {
796 			alloc_init_pte(pmd, addr, next,
797 						__phys_to_pfn(phys), type);
798 		}
799 
800 		phys += next - addr;
801 
802 	} while (pmd++, addr = next, addr != end);
803 }
804 
805 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
806 				  unsigned long end, phys_addr_t phys,
807 				  const struct mem_type *type)
808 {
809 	pud_t *pud = pud_offset(pgd, addr);
810 	unsigned long next;
811 
812 	do {
813 		next = pud_addr_end(addr, end);
814 		alloc_init_pmd(pud, addr, next, phys, type);
815 		phys += next - addr;
816 	} while (pud++, addr = next, addr != end);
817 }
818 
819 #ifndef CONFIG_ARM_LPAE
820 static void __init create_36bit_mapping(struct map_desc *md,
821 					const struct mem_type *type)
822 {
823 	unsigned long addr, length, end;
824 	phys_addr_t phys;
825 	pgd_t *pgd;
826 
827 	addr = md->virtual;
828 	phys = __pfn_to_phys(md->pfn);
829 	length = PAGE_ALIGN(md->length);
830 
831 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
832 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
833 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
834 		return;
835 	}
836 
837 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
838 	 *	Since domain assignments can in fact be arbitrary, the
839 	 *	'domain == 0' check below is required to insure that ARMv6
840 	 *	supersections are only allocated for domain 0 regardless
841 	 *	of the actual domain assignments in use.
842 	 */
843 	if (type->domain) {
844 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
845 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
846 		return;
847 	}
848 
849 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
850 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
851 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
852 		return;
853 	}
854 
855 	/*
856 	 * Shift bits [35:32] of address into bits [23:20] of PMD
857 	 * (See ARMv6 spec).
858 	 */
859 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
860 
861 	pgd = pgd_offset_k(addr);
862 	end = addr + length;
863 	do {
864 		pud_t *pud = pud_offset(pgd, addr);
865 		pmd_t *pmd = pmd_offset(pud, addr);
866 		int i;
867 
868 		for (i = 0; i < 16; i++)
869 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
870 
871 		addr += SUPERSECTION_SIZE;
872 		phys += SUPERSECTION_SIZE;
873 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
874 	} while (addr != end);
875 }
876 #endif	/* !CONFIG_ARM_LPAE */
877 
878 /*
879  * Create the page directory entries and any necessary
880  * page tables for the mapping specified by `md'.  We
881  * are able to cope here with varying sizes and address
882  * offsets, and we take full advantage of sections and
883  * supersections.
884  */
885 static void __init create_mapping(struct map_desc *md)
886 {
887 	unsigned long addr, length, end;
888 	phys_addr_t phys;
889 	const struct mem_type *type;
890 	pgd_t *pgd;
891 
892 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
893 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
894 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
895 		return;
896 	}
897 
898 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
899 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
900 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
901 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
902 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
903 	}
904 
905 	type = &mem_types[md->type];
906 
907 #ifndef CONFIG_ARM_LPAE
908 	/*
909 	 * Catch 36-bit addresses
910 	 */
911 	if (md->pfn >= 0x100000) {
912 		create_36bit_mapping(md, type);
913 		return;
914 	}
915 #endif
916 
917 	addr = md->virtual & PAGE_MASK;
918 	phys = __pfn_to_phys(md->pfn);
919 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
920 
921 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
922 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
923 			(long long)__pfn_to_phys(md->pfn), addr);
924 		return;
925 	}
926 
927 	pgd = pgd_offset_k(addr);
928 	end = addr + length;
929 	do {
930 		unsigned long next = pgd_addr_end(addr, end);
931 
932 		alloc_init_pud(pgd, addr, next, phys, type);
933 
934 		phys += next - addr;
935 		addr = next;
936 	} while (pgd++, addr != end);
937 }
938 
939 /*
940  * Create the architecture specific mappings
941  */
942 void __init iotable_init(struct map_desc *io_desc, int nr)
943 {
944 	struct map_desc *md;
945 	struct vm_struct *vm;
946 	struct static_vm *svm;
947 
948 	if (!nr)
949 		return;
950 
951 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
952 
953 	for (md = io_desc; nr; md++, nr--) {
954 		create_mapping(md);
955 
956 		vm = &svm->vm;
957 		vm->addr = (void *)(md->virtual & PAGE_MASK);
958 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
959 		vm->phys_addr = __pfn_to_phys(md->pfn);
960 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
961 		vm->flags |= VM_ARM_MTYPE(md->type);
962 		vm->caller = iotable_init;
963 		add_static_vm_early(svm++);
964 	}
965 }
966 
967 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
968 				  void *caller)
969 {
970 	struct vm_struct *vm;
971 	struct static_vm *svm;
972 
973 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
974 
975 	vm = &svm->vm;
976 	vm->addr = (void *)addr;
977 	vm->size = size;
978 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
979 	vm->caller = caller;
980 	add_static_vm_early(svm);
981 }
982 
983 #ifndef CONFIG_ARM_LPAE
984 
985 /*
986  * The Linux PMD is made of two consecutive section entries covering 2MB
987  * (see definition in include/asm/pgtable-2level.h).  However a call to
988  * create_mapping() may optimize static mappings by using individual
989  * 1MB section mappings.  This leaves the actual PMD potentially half
990  * initialized if the top or bottom section entry isn't used, leaving it
991  * open to problems if a subsequent ioremap() or vmalloc() tries to use
992  * the virtual space left free by that unused section entry.
993  *
994  * Let's avoid the issue by inserting dummy vm entries covering the unused
995  * PMD halves once the static mappings are in place.
996  */
997 
998 static void __init pmd_empty_section_gap(unsigned long addr)
999 {
1000 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1001 }
1002 
1003 static void __init fill_pmd_gaps(void)
1004 {
1005 	struct static_vm *svm;
1006 	struct vm_struct *vm;
1007 	unsigned long addr, next = 0;
1008 	pmd_t *pmd;
1009 
1010 	list_for_each_entry(svm, &static_vmlist, list) {
1011 		vm = &svm->vm;
1012 		addr = (unsigned long)vm->addr;
1013 		if (addr < next)
1014 			continue;
1015 
1016 		/*
1017 		 * Check if this vm starts on an odd section boundary.
1018 		 * If so and the first section entry for this PMD is free
1019 		 * then we block the corresponding virtual address.
1020 		 */
1021 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1022 			pmd = pmd_off_k(addr);
1023 			if (pmd_none(*pmd))
1024 				pmd_empty_section_gap(addr & PMD_MASK);
1025 		}
1026 
1027 		/*
1028 		 * Then check if this vm ends on an odd section boundary.
1029 		 * If so and the second section entry for this PMD is empty
1030 		 * then we block the corresponding virtual address.
1031 		 */
1032 		addr += vm->size;
1033 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1034 			pmd = pmd_off_k(addr) + 1;
1035 			if (pmd_none(*pmd))
1036 				pmd_empty_section_gap(addr);
1037 		}
1038 
1039 		/* no need to look at any vm entry until we hit the next PMD */
1040 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1041 	}
1042 }
1043 
1044 #else
1045 #define fill_pmd_gaps() do { } while (0)
1046 #endif
1047 
1048 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1049 static void __init pci_reserve_io(void)
1050 {
1051 	struct static_vm *svm;
1052 
1053 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1054 	if (svm)
1055 		return;
1056 
1057 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1058 }
1059 #else
1060 #define pci_reserve_io() do { } while (0)
1061 #endif
1062 
1063 #ifdef CONFIG_DEBUG_LL
1064 void __init debug_ll_io_init(void)
1065 {
1066 	struct map_desc map;
1067 
1068 	debug_ll_addr(&map.pfn, &map.virtual);
1069 	if (!map.pfn || !map.virtual)
1070 		return;
1071 	map.pfn = __phys_to_pfn(map.pfn);
1072 	map.virtual &= PAGE_MASK;
1073 	map.length = PAGE_SIZE;
1074 	map.type = MT_DEVICE;
1075 	iotable_init(&map, 1);
1076 }
1077 #endif
1078 
1079 static void * __initdata vmalloc_min =
1080 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1081 
1082 /*
1083  * vmalloc=size forces the vmalloc area to be exactly 'size'
1084  * bytes. This can be used to increase (or decrease) the vmalloc
1085  * area - the default is 240m.
1086  */
1087 static int __init early_vmalloc(char *arg)
1088 {
1089 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1090 
1091 	if (vmalloc_reserve < SZ_16M) {
1092 		vmalloc_reserve = SZ_16M;
1093 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1094 			vmalloc_reserve >> 20);
1095 	}
1096 
1097 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1098 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1099 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1100 			vmalloc_reserve >> 20);
1101 	}
1102 
1103 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1104 	return 0;
1105 }
1106 early_param("vmalloc", early_vmalloc);
1107 
1108 phys_addr_t arm_lowmem_limit __initdata = 0;
1109 
1110 void __init sanity_check_meminfo(void)
1111 {
1112 	phys_addr_t memblock_limit = 0;
1113 	int highmem = 0;
1114 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1115 	struct memblock_region *reg;
1116 	bool should_use_highmem = false;
1117 
1118 	for_each_memblock(memory, reg) {
1119 		phys_addr_t block_start = reg->base;
1120 		phys_addr_t block_end = reg->base + reg->size;
1121 		phys_addr_t size_limit = reg->size;
1122 
1123 		if (reg->base >= vmalloc_limit)
1124 			highmem = 1;
1125 		else
1126 			size_limit = vmalloc_limit - reg->base;
1127 
1128 
1129 		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1130 
1131 			if (highmem) {
1132 				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1133 					  &block_start, &block_end);
1134 				memblock_remove(reg->base, reg->size);
1135 				should_use_highmem = true;
1136 				continue;
1137 			}
1138 
1139 			if (reg->size > size_limit) {
1140 				phys_addr_t overlap_size = reg->size - size_limit;
1141 
1142 				pr_notice("Truncating RAM at %pa-%pa to -%pa",
1143 					  &block_start, &block_end, &vmalloc_limit);
1144 				memblock_remove(vmalloc_limit, overlap_size);
1145 				block_end = vmalloc_limit;
1146 				should_use_highmem = true;
1147 			}
1148 		}
1149 
1150 		if (!highmem) {
1151 			if (block_end > arm_lowmem_limit) {
1152 				if (reg->size > size_limit)
1153 					arm_lowmem_limit = vmalloc_limit;
1154 				else
1155 					arm_lowmem_limit = block_end;
1156 			}
1157 
1158 			/*
1159 			 * Find the first non-pmd-aligned page, and point
1160 			 * memblock_limit at it. This relies on rounding the
1161 			 * limit down to be pmd-aligned, which happens at the
1162 			 * end of this function.
1163 			 *
1164 			 * With this algorithm, the start or end of almost any
1165 			 * bank can be non-pmd-aligned. The only exception is
1166 			 * that the start of the bank 0 must be section-
1167 			 * aligned, since otherwise memory would need to be
1168 			 * allocated when mapping the start of bank 0, which
1169 			 * occurs before any free memory is mapped.
1170 			 */
1171 			if (!memblock_limit) {
1172 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1173 					memblock_limit = block_start;
1174 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1175 					memblock_limit = arm_lowmem_limit;
1176 			}
1177 
1178 		}
1179 	}
1180 
1181 	if (should_use_highmem)
1182 		pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1183 
1184 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1185 
1186 	/*
1187 	 * Round the memblock limit down to a pmd size.  This
1188 	 * helps to ensure that we will allocate memory from the
1189 	 * last full pmd, which should be mapped.
1190 	 */
1191 	if (memblock_limit)
1192 		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1193 	if (!memblock_limit)
1194 		memblock_limit = arm_lowmem_limit;
1195 
1196 	memblock_set_current_limit(memblock_limit);
1197 }
1198 
1199 static inline void prepare_page_table(void)
1200 {
1201 	unsigned long addr;
1202 	phys_addr_t end;
1203 
1204 	/*
1205 	 * Clear out all the mappings below the kernel image.
1206 	 */
1207 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1208 		pmd_clear(pmd_off_k(addr));
1209 
1210 #ifdef CONFIG_XIP_KERNEL
1211 	/* The XIP kernel is mapped in the module area -- skip over it */
1212 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1213 #endif
1214 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1215 		pmd_clear(pmd_off_k(addr));
1216 
1217 	/*
1218 	 * Find the end of the first block of lowmem.
1219 	 */
1220 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1221 	if (end >= arm_lowmem_limit)
1222 		end = arm_lowmem_limit;
1223 
1224 	/*
1225 	 * Clear out all the kernel space mappings, except for the first
1226 	 * memory bank, up to the vmalloc region.
1227 	 */
1228 	for (addr = __phys_to_virt(end);
1229 	     addr < VMALLOC_START; addr += PMD_SIZE)
1230 		pmd_clear(pmd_off_k(addr));
1231 }
1232 
1233 #ifdef CONFIG_ARM_LPAE
1234 /* the first page is reserved for pgd */
1235 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1236 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1237 #else
1238 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1239 #endif
1240 
1241 /*
1242  * Reserve the special regions of memory
1243  */
1244 void __init arm_mm_memblock_reserve(void)
1245 {
1246 	/*
1247 	 * Reserve the page tables.  These are already in use,
1248 	 * and can only be in node 0.
1249 	 */
1250 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1251 
1252 #ifdef CONFIG_SA1111
1253 	/*
1254 	 * Because of the SA1111 DMA bug, we want to preserve our
1255 	 * precious DMA-able memory...
1256 	 */
1257 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1258 #endif
1259 }
1260 
1261 /*
1262  * Set up the device mappings.  Since we clear out the page tables for all
1263  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1264  * device mappings.  This means earlycon can be used to debug this function
1265  * Any other function or debugging method which may touch any device _will_
1266  * crash the kernel.
1267  */
1268 static void __init devicemaps_init(const struct machine_desc *mdesc)
1269 {
1270 	struct map_desc map;
1271 	unsigned long addr;
1272 	void *vectors;
1273 
1274 	/*
1275 	 * Allocate the vector page early.
1276 	 */
1277 	vectors = early_alloc(PAGE_SIZE * 2);
1278 
1279 	early_trap_init(vectors);
1280 
1281 	/*
1282 	 * Clear page table except top pmd used by early fixmaps
1283 	 */
1284 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1285 		pmd_clear(pmd_off_k(addr));
1286 
1287 	/*
1288 	 * Map the kernel if it is XIP.
1289 	 * It is always first in the modulearea.
1290 	 */
1291 #ifdef CONFIG_XIP_KERNEL
1292 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1293 	map.virtual = MODULES_VADDR;
1294 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1295 	map.type = MT_ROM;
1296 	create_mapping(&map);
1297 #endif
1298 
1299 	/*
1300 	 * Map the cache flushing regions.
1301 	 */
1302 #ifdef FLUSH_BASE
1303 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1304 	map.virtual = FLUSH_BASE;
1305 	map.length = SZ_1M;
1306 	map.type = MT_CACHECLEAN;
1307 	create_mapping(&map);
1308 #endif
1309 #ifdef FLUSH_BASE_MINICACHE
1310 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1311 	map.virtual = FLUSH_BASE_MINICACHE;
1312 	map.length = SZ_1M;
1313 	map.type = MT_MINICLEAN;
1314 	create_mapping(&map);
1315 #endif
1316 
1317 	/*
1318 	 * Create a mapping for the machine vectors at the high-vectors
1319 	 * location (0xffff0000).  If we aren't using high-vectors, also
1320 	 * create a mapping at the low-vectors virtual address.
1321 	 */
1322 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1323 	map.virtual = 0xffff0000;
1324 	map.length = PAGE_SIZE;
1325 #ifdef CONFIG_KUSER_HELPERS
1326 	map.type = MT_HIGH_VECTORS;
1327 #else
1328 	map.type = MT_LOW_VECTORS;
1329 #endif
1330 	create_mapping(&map);
1331 
1332 	if (!vectors_high()) {
1333 		map.virtual = 0;
1334 		map.length = PAGE_SIZE * 2;
1335 		map.type = MT_LOW_VECTORS;
1336 		create_mapping(&map);
1337 	}
1338 
1339 	/* Now create a kernel read-only mapping */
1340 	map.pfn += 1;
1341 	map.virtual = 0xffff0000 + PAGE_SIZE;
1342 	map.length = PAGE_SIZE;
1343 	map.type = MT_LOW_VECTORS;
1344 	create_mapping(&map);
1345 
1346 	/*
1347 	 * Ask the machine support to map in the statically mapped devices.
1348 	 */
1349 	if (mdesc->map_io)
1350 		mdesc->map_io();
1351 	else
1352 		debug_ll_io_init();
1353 	fill_pmd_gaps();
1354 
1355 	/* Reserve fixed i/o space in VMALLOC region */
1356 	pci_reserve_io();
1357 
1358 	/*
1359 	 * Finally flush the caches and tlb to ensure that we're in a
1360 	 * consistent state wrt the writebuffer.  This also ensures that
1361 	 * any write-allocated cache lines in the vector page are written
1362 	 * back.  After this point, we can start to touch devices again.
1363 	 */
1364 	local_flush_tlb_all();
1365 	flush_cache_all();
1366 }
1367 
1368 static void __init kmap_init(void)
1369 {
1370 #ifdef CONFIG_HIGHMEM
1371 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1372 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1373 #endif
1374 
1375 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1376 			_PAGE_KERNEL_TABLE);
1377 }
1378 
1379 static void __init map_lowmem(void)
1380 {
1381 	struct memblock_region *reg;
1382 	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1383 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1384 
1385 	/* Map all the lowmem memory banks. */
1386 	for_each_memblock(memory, reg) {
1387 		phys_addr_t start = reg->base;
1388 		phys_addr_t end = start + reg->size;
1389 		struct map_desc map;
1390 
1391 		if (end > arm_lowmem_limit)
1392 			end = arm_lowmem_limit;
1393 		if (start >= end)
1394 			break;
1395 
1396 		if (end < kernel_x_start) {
1397 			map.pfn = __phys_to_pfn(start);
1398 			map.virtual = __phys_to_virt(start);
1399 			map.length = end - start;
1400 			map.type = MT_MEMORY_RWX;
1401 
1402 			create_mapping(&map);
1403 		} else if (start >= kernel_x_end) {
1404 			map.pfn = __phys_to_pfn(start);
1405 			map.virtual = __phys_to_virt(start);
1406 			map.length = end - start;
1407 			map.type = MT_MEMORY_RW;
1408 
1409 			create_mapping(&map);
1410 		} else {
1411 			/* This better cover the entire kernel */
1412 			if (start < kernel_x_start) {
1413 				map.pfn = __phys_to_pfn(start);
1414 				map.virtual = __phys_to_virt(start);
1415 				map.length = kernel_x_start - start;
1416 				map.type = MT_MEMORY_RW;
1417 
1418 				create_mapping(&map);
1419 			}
1420 
1421 			map.pfn = __phys_to_pfn(kernel_x_start);
1422 			map.virtual = __phys_to_virt(kernel_x_start);
1423 			map.length = kernel_x_end - kernel_x_start;
1424 			map.type = MT_MEMORY_RWX;
1425 
1426 			create_mapping(&map);
1427 
1428 			if (kernel_x_end < end) {
1429 				map.pfn = __phys_to_pfn(kernel_x_end);
1430 				map.virtual = __phys_to_virt(kernel_x_end);
1431 				map.length = end - kernel_x_end;
1432 				map.type = MT_MEMORY_RW;
1433 
1434 				create_mapping(&map);
1435 			}
1436 		}
1437 	}
1438 }
1439 
1440 #ifdef CONFIG_ARM_PV_FIXUP
1441 extern unsigned long __atags_pointer;
1442 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1443 pgtables_remap lpae_pgtables_remap_asm;
1444 
1445 /*
1446  * early_paging_init() recreates boot time page table setup, allowing machines
1447  * to switch over to a high (>4G) address space on LPAE systems
1448  */
1449 void __init early_paging_init(const struct machine_desc *mdesc)
1450 {
1451 	pgtables_remap *lpae_pgtables_remap;
1452 	unsigned long pa_pgd;
1453 	unsigned int cr, ttbcr;
1454 	long long offset;
1455 	void *boot_data;
1456 
1457 	if (!mdesc->pv_fixup)
1458 		return;
1459 
1460 	offset = mdesc->pv_fixup();
1461 	if (offset == 0)
1462 		return;
1463 
1464 	/*
1465 	 * Get the address of the remap function in the 1:1 identity
1466 	 * mapping setup by the early page table assembly code.  We
1467 	 * must get this prior to the pv update.  The following barrier
1468 	 * ensures that this is complete before we fixup any P:V offsets.
1469 	 */
1470 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1471 	pa_pgd = __pa(swapper_pg_dir);
1472 	boot_data = __va(__atags_pointer);
1473 	barrier();
1474 
1475 	pr_info("Switching physical address space to 0x%08llx\n",
1476 		(u64)PHYS_OFFSET + offset);
1477 
1478 	/* Re-set the phys pfn offset, and the pv offset */
1479 	__pv_offset += offset;
1480 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1481 
1482 	/* Run the patch stub to update the constants */
1483 	fixup_pv_table(&__pv_table_begin,
1484 		(&__pv_table_end - &__pv_table_begin) << 2);
1485 
1486 	/*
1487 	 * We changing not only the virtual to physical mapping, but also
1488 	 * the physical addresses used to access memory.  We need to flush
1489 	 * all levels of cache in the system with caching disabled to
1490 	 * ensure that all data is written back, and nothing is prefetched
1491 	 * into the caches.  We also need to prevent the TLB walkers
1492 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1493 	 * specific.
1494 	 */
1495 	cr = get_cr();
1496 	set_cr(cr & ~(CR_I | CR_C));
1497 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1498 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1499 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1500 	flush_cache_all();
1501 
1502 	/*
1503 	 * Fixup the page tables - this must be in the idmap region as
1504 	 * we need to disable the MMU to do this safely, and hence it
1505 	 * needs to be assembly.  It's fairly simple, as we're using the
1506 	 * temporary tables setup by the initial assembly code.
1507 	 */
1508 	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1509 
1510 	/* Re-enable the caches and cacheable TLB walks */
1511 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1512 	set_cr(cr);
1513 }
1514 
1515 #else
1516 
1517 void __init early_paging_init(const struct machine_desc *mdesc)
1518 {
1519 	long long offset;
1520 
1521 	if (!mdesc->pv_fixup)
1522 		return;
1523 
1524 	offset = mdesc->pv_fixup();
1525 	if (offset == 0)
1526 		return;
1527 
1528 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1529 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1530 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1531 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1532 }
1533 
1534 #endif
1535 
1536 static void __init early_fixmap_shutdown(void)
1537 {
1538 	int i;
1539 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1540 
1541 	pte_offset_fixmap = pte_offset_late_fixmap;
1542 	pmd_clear(fixmap_pmd(va));
1543 	local_flush_tlb_kernel_page(va);
1544 
1545 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1546 		pte_t *pte;
1547 		struct map_desc map;
1548 
1549 		map.virtual = fix_to_virt(i);
1550 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1551 
1552 		/* Only i/o device mappings are supported ATM */
1553 		if (pte_none(*pte) ||
1554 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1555 			continue;
1556 
1557 		map.pfn = pte_pfn(*pte);
1558 		map.type = MT_DEVICE;
1559 		map.length = PAGE_SIZE;
1560 
1561 		create_mapping(&map);
1562 	}
1563 }
1564 
1565 /*
1566  * paging_init() sets up the page tables, initialises the zone memory
1567  * maps, and sets up the zero page, bad page and bad page tables.
1568  */
1569 void __init paging_init(const struct machine_desc *mdesc)
1570 {
1571 	void *zero_page;
1572 
1573 	build_mem_type_table();
1574 	prepare_page_table();
1575 	map_lowmem();
1576 	memblock_set_current_limit(arm_lowmem_limit);
1577 	dma_contiguous_remap();
1578 	early_fixmap_shutdown();
1579 	devicemaps_init(mdesc);
1580 	kmap_init();
1581 	tcm_init();
1582 
1583 	top_pmd = pmd_off_k(0xffff0000);
1584 
1585 	/* allocate the zero page. */
1586 	zero_page = early_alloc(PAGE_SIZE);
1587 
1588 	bootmem_init();
1589 
1590 	empty_zero_page = virt_to_page(zero_page);
1591 	__flush_dcache_page(NULL, empty_zero_page);
1592 }
1593