xref: /openbmc/linux/arch/arm/mm/mmu.c (revision a1e58bbd)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
21 #include <asm/tlb.h>
22 
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
25 
26 #include "mm.h"
27 
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29 
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32 
33 /*
34  * empty_zero_page is a special page that is used for
35  * zero-initialized data and COW.
36  */
37 struct page *empty_zero_page;
38 
39 /*
40  * The pmd table for the upper-most set of pages.
41  */
42 pmd_t *top_pmd;
43 
44 #define CPOLICY_UNCACHED	0
45 #define CPOLICY_BUFFERED	1
46 #define CPOLICY_WRITETHROUGH	2
47 #define CPOLICY_WRITEBACK	3
48 #define CPOLICY_WRITEALLOC	4
49 
50 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51 static unsigned int ecc_mask __initdata = 0;
52 pgprot_t pgprot_user;
53 pgprot_t pgprot_kernel;
54 
55 EXPORT_SYMBOL(pgprot_user);
56 EXPORT_SYMBOL(pgprot_kernel);
57 
58 struct cachepolicy {
59 	const char	policy[16];
60 	unsigned int	cr_mask;
61 	unsigned int	pmd;
62 	unsigned int	pte;
63 };
64 
65 static struct cachepolicy cache_policies[] __initdata = {
66 	{
67 		.policy		= "uncached",
68 		.cr_mask	= CR_W|CR_C,
69 		.pmd		= PMD_SECT_UNCACHED,
70 		.pte		= 0,
71 	}, {
72 		.policy		= "buffered",
73 		.cr_mask	= CR_C,
74 		.pmd		= PMD_SECT_BUFFERED,
75 		.pte		= PTE_BUFFERABLE,
76 	}, {
77 		.policy		= "writethrough",
78 		.cr_mask	= 0,
79 		.pmd		= PMD_SECT_WT,
80 		.pte		= PTE_CACHEABLE,
81 	}, {
82 		.policy		= "writeback",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WB,
85 		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
86 	}, {
87 		.policy		= "writealloc",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WBWA,
90 		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
91 	}
92 };
93 
94 /*
95  * These are useful for identifying cache coherency
96  * problems by allowing the cache or the cache and
97  * writebuffer to be turned off.  (Note: the write
98  * buffer should not be on and the cache off).
99  */
100 static void __init early_cachepolicy(char **p)
101 {
102 	int i;
103 
104 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105 		int len = strlen(cache_policies[i].policy);
106 
107 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
108 			cachepolicy = i;
109 			cr_alignment &= ~cache_policies[i].cr_mask;
110 			cr_no_alignment &= ~cache_policies[i].cr_mask;
111 			*p += len;
112 			break;
113 		}
114 	}
115 	if (i == ARRAY_SIZE(cache_policies))
116 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
118 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
119 		cachepolicy = CPOLICY_WRITEBACK;
120 	}
121 	flush_cache_all();
122 	set_cr(cr_alignment);
123 }
124 __early_param("cachepolicy=", early_cachepolicy);
125 
126 static void __init early_nocache(char **__unused)
127 {
128 	char *p = "buffered";
129 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
130 	early_cachepolicy(&p);
131 }
132 __early_param("nocache", early_nocache);
133 
134 static void __init early_nowrite(char **__unused)
135 {
136 	char *p = "uncached";
137 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
138 	early_cachepolicy(&p);
139 }
140 __early_param("nowb", early_nowrite);
141 
142 static void __init early_ecc(char **p)
143 {
144 	if (memcmp(*p, "on", 2) == 0) {
145 		ecc_mask = PMD_PROTECTION;
146 		*p += 2;
147 	} else if (memcmp(*p, "off", 3) == 0) {
148 		ecc_mask = 0;
149 		*p += 3;
150 	}
151 }
152 __early_param("ecc=", early_ecc);
153 
154 static int __init noalign_setup(char *__unused)
155 {
156 	cr_alignment &= ~CR_A;
157 	cr_no_alignment &= ~CR_A;
158 	set_cr(cr_alignment);
159 	return 1;
160 }
161 __setup("noalign", noalign_setup);
162 
163 #ifndef CONFIG_SMP
164 void adjust_cr(unsigned long mask, unsigned long set)
165 {
166 	unsigned long flags;
167 
168 	mask &= ~CR_A;
169 
170 	set &= mask;
171 
172 	local_irq_save(flags);
173 
174 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
175 	cr_alignment = (cr_alignment & ~mask) | set;
176 
177 	set_cr((get_cr() & ~mask) | set);
178 
179 	local_irq_restore(flags);
180 }
181 #endif
182 
183 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
185 
186 static struct mem_type mem_types[] = {
187 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
188 		.prot_pte	= PROT_PTE_DEVICE,
189 		.prot_l1	= PMD_TYPE_TABLE,
190 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
191 		.domain		= DOMAIN_IO,
192 	},
193 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
194 		.prot_pte	= PROT_PTE_DEVICE,
195 		.prot_pte_ext	= PTE_EXT_TEX(2),
196 		.prot_l1	= PMD_TYPE_TABLE,
197 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
198 		.domain		= DOMAIN_IO,
199 	},
200 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
201 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
202 		.prot_l1	= PMD_TYPE_TABLE,
203 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
204 		.domain		= DOMAIN_IO,
205 	},
206 	[MT_DEVICE_IXP2000] = {	  /* IXP2400 requires XCB=101 for on-chip I/O */
207 		.prot_pte	= PROT_PTE_DEVICE,
208 		.prot_l1	= PMD_TYPE_TABLE,
209 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
210 				  PMD_SECT_TEX(1),
211 		.domain		= DOMAIN_IO,
212 	},
213 	[MT_CACHECLEAN] = {
214 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
215 		.domain    = DOMAIN_KERNEL,
216 	},
217 	[MT_MINICLEAN] = {
218 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
219 		.domain    = DOMAIN_KERNEL,
220 	},
221 	[MT_LOW_VECTORS] = {
222 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
223 				L_PTE_EXEC,
224 		.prot_l1   = PMD_TYPE_TABLE,
225 		.domain    = DOMAIN_USER,
226 	},
227 	[MT_HIGH_VECTORS] = {
228 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
229 				L_PTE_USER | L_PTE_EXEC,
230 		.prot_l1   = PMD_TYPE_TABLE,
231 		.domain    = DOMAIN_USER,
232 	},
233 	[MT_MEMORY] = {
234 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
235 		.domain    = DOMAIN_KERNEL,
236 	},
237 	[MT_ROM] = {
238 		.prot_sect = PMD_TYPE_SECT,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 };
242 
243 const struct mem_type *get_mem_type(unsigned int type)
244 {
245 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
246 }
247 
248 /*
249  * Adjust the PMD section entries according to the CPU in use.
250  */
251 static void __init build_mem_type_table(void)
252 {
253 	struct cachepolicy *cp;
254 	unsigned int cr = get_cr();
255 	unsigned int user_pgprot, kern_pgprot;
256 	int cpu_arch = cpu_architecture();
257 	int i;
258 
259 	if (cpu_arch < CPU_ARCH_ARMv6) {
260 #if defined(CONFIG_CPU_DCACHE_DISABLE)
261 		if (cachepolicy > CPOLICY_BUFFERED)
262 			cachepolicy = CPOLICY_BUFFERED;
263 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
264 		if (cachepolicy > CPOLICY_WRITETHROUGH)
265 			cachepolicy = CPOLICY_WRITETHROUGH;
266 #endif
267 	}
268 	if (cpu_arch < CPU_ARCH_ARMv5) {
269 		if (cachepolicy >= CPOLICY_WRITEALLOC)
270 			cachepolicy = CPOLICY_WRITEBACK;
271 		ecc_mask = 0;
272 	}
273 
274 	/*
275 	 * ARMv5 and lower, bit 4 must be set for page tables.
276 	 * (was: cache "update-able on write" bit on ARM610)
277 	 * However, Xscale cores require this bit to be cleared.
278 	 */
279 	if (cpu_is_xscale()) {
280 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
281 			mem_types[i].prot_sect &= ~PMD_BIT4;
282 			mem_types[i].prot_l1 &= ~PMD_BIT4;
283 		}
284 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
285 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
286 			if (mem_types[i].prot_l1)
287 				mem_types[i].prot_l1 |= PMD_BIT4;
288 			if (mem_types[i].prot_sect)
289 				mem_types[i].prot_sect |= PMD_BIT4;
290 		}
291 	}
292 
293 	cp = &cache_policies[cachepolicy];
294 	kern_pgprot = user_pgprot = cp->pte;
295 
296 	/*
297 	 * Enable CPU-specific coherency if supported.
298 	 * (Only available on XSC3 at the moment.)
299 	 */
300 	if (arch_is_coherent()) {
301 		if (cpu_is_xsc3()) {
302 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
303 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
304 		}
305 	}
306 
307 	/*
308 	 * ARMv6 and above have extended page tables.
309 	 */
310 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
311 		/*
312 		 * Mark cache clean areas and XIP ROM read only
313 		 * from SVC mode and no access from userspace.
314 		 */
315 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
316 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
317 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
318 
319 		/*
320 		 * Mark the device area as "shared device"
321 		 */
322 		mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
323 		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
324 
325 #ifdef CONFIG_SMP
326 		/*
327 		 * Mark memory with the "shared" attribute for SMP systems
328 		 */
329 		user_pgprot |= L_PTE_SHARED;
330 		kern_pgprot |= L_PTE_SHARED;
331 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
332 #endif
333 	}
334 
335 	for (i = 0; i < 16; i++) {
336 		unsigned long v = pgprot_val(protection_map[i]);
337 		v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
338 		protection_map[i] = __pgprot(v);
339 	}
340 
341 	mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
342 	mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
343 
344 	if (cpu_arch >= CPU_ARCH_ARMv5) {
345 #ifndef CONFIG_SMP
346 		/*
347 		 * Only use write-through for non-SMP systems
348 		 */
349 		mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
350 		mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
351 #endif
352 	} else {
353 		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
354 	}
355 
356 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
357 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
358 				 L_PTE_DIRTY | L_PTE_WRITE |
359 				 L_PTE_EXEC | kern_pgprot);
360 
361 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
362 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
363 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
364 	mem_types[MT_ROM].prot_sect |= cp->pmd;
365 
366 	switch (cp->pmd) {
367 	case PMD_SECT_WT:
368 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
369 		break;
370 	case PMD_SECT_WB:
371 	case PMD_SECT_WBWA:
372 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
373 		break;
374 	}
375 	printk("Memory policy: ECC %sabled, Data cache %s\n",
376 		ecc_mask ? "en" : "dis", cp->policy);
377 
378 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
379 		struct mem_type *t = &mem_types[i];
380 		if (t->prot_l1)
381 			t->prot_l1 |= PMD_DOMAIN(t->domain);
382 		if (t->prot_sect)
383 			t->prot_sect |= PMD_DOMAIN(t->domain);
384 	}
385 }
386 
387 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
388 
389 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
390 				  unsigned long end, unsigned long pfn,
391 				  const struct mem_type *type)
392 {
393 	pte_t *pte;
394 
395 	if (pmd_none(*pmd)) {
396 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
397 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
398 	}
399 
400 	pte = pte_offset_kernel(pmd, addr);
401 	do {
402 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
403 			    type->prot_pte_ext);
404 		pfn++;
405 	} while (pte++, addr += PAGE_SIZE, addr != end);
406 }
407 
408 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
409 				      unsigned long end, unsigned long phys,
410 				      const struct mem_type *type)
411 {
412 	pmd_t *pmd = pmd_offset(pgd, addr);
413 
414 	/*
415 	 * Try a section mapping - end, addr and phys must all be aligned
416 	 * to a section boundary.  Note that PMDs refer to the individual
417 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
418 	 * up one logical pointer to an L2 table.
419 	 */
420 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
421 		pmd_t *p = pmd;
422 
423 		if (addr & SECTION_SIZE)
424 			pmd++;
425 
426 		do {
427 			*pmd = __pmd(phys | type->prot_sect);
428 			phys += SECTION_SIZE;
429 		} while (pmd++, addr += SECTION_SIZE, addr != end);
430 
431 		flush_pmd_entry(p);
432 	} else {
433 		/*
434 		 * No need to loop; pte's aren't interested in the
435 		 * individual L1 entries.
436 		 */
437 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
438 	}
439 }
440 
441 static void __init create_36bit_mapping(struct map_desc *md,
442 					const struct mem_type *type)
443 {
444 	unsigned long phys, addr, length, end;
445 	pgd_t *pgd;
446 
447 	addr = md->virtual;
448 	phys = (unsigned long)__pfn_to_phys(md->pfn);
449 	length = PAGE_ALIGN(md->length);
450 
451 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
452 		printk(KERN_ERR "MM: CPU does not support supersection "
453 		       "mapping for 0x%08llx at 0x%08lx\n",
454 		       __pfn_to_phys((u64)md->pfn), addr);
455 		return;
456 	}
457 
458 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
459 	 *	Since domain assignments can in fact be arbitrary, the
460 	 *	'domain == 0' check below is required to insure that ARMv6
461 	 *	supersections are only allocated for domain 0 regardless
462 	 *	of the actual domain assignments in use.
463 	 */
464 	if (type->domain) {
465 		printk(KERN_ERR "MM: invalid domain in supersection "
466 		       "mapping for 0x%08llx at 0x%08lx\n",
467 		       __pfn_to_phys((u64)md->pfn), addr);
468 		return;
469 	}
470 
471 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
472 		printk(KERN_ERR "MM: cannot create mapping for "
473 		       "0x%08llx at 0x%08lx invalid alignment\n",
474 		       __pfn_to_phys((u64)md->pfn), addr);
475 		return;
476 	}
477 
478 	/*
479 	 * Shift bits [35:32] of address into bits [23:20] of PMD
480 	 * (See ARMv6 spec).
481 	 */
482 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
483 
484 	pgd = pgd_offset_k(addr);
485 	end = addr + length;
486 	do {
487 		pmd_t *pmd = pmd_offset(pgd, addr);
488 		int i;
489 
490 		for (i = 0; i < 16; i++)
491 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
492 
493 		addr += SUPERSECTION_SIZE;
494 		phys += SUPERSECTION_SIZE;
495 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
496 	} while (addr != end);
497 }
498 
499 /*
500  * Create the page directory entries and any necessary
501  * page tables for the mapping specified by `md'.  We
502  * are able to cope here with varying sizes and address
503  * offsets, and we take full advantage of sections and
504  * supersections.
505  */
506 void __init create_mapping(struct map_desc *md)
507 {
508 	unsigned long phys, addr, length, end;
509 	const struct mem_type *type;
510 	pgd_t *pgd;
511 
512 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
513 		printk(KERN_WARNING "BUG: not creating mapping for "
514 		       "0x%08llx at 0x%08lx in user region\n",
515 		       __pfn_to_phys((u64)md->pfn), md->virtual);
516 		return;
517 	}
518 
519 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
520 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
521 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
522 		       "overlaps vmalloc space\n",
523 		       __pfn_to_phys((u64)md->pfn), md->virtual);
524 	}
525 
526 	type = &mem_types[md->type];
527 
528 	/*
529 	 * Catch 36-bit addresses
530 	 */
531 	if (md->pfn >= 0x100000) {
532 		create_36bit_mapping(md, type);
533 		return;
534 	}
535 
536 	addr = md->virtual & PAGE_MASK;
537 	phys = (unsigned long)__pfn_to_phys(md->pfn);
538 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
539 
540 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
541 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
542 		       "be mapped using pages, ignoring.\n",
543 		       __pfn_to_phys(md->pfn), addr);
544 		return;
545 	}
546 
547 	pgd = pgd_offset_k(addr);
548 	end = addr + length;
549 	do {
550 		unsigned long next = pgd_addr_end(addr, end);
551 
552 		alloc_init_section(pgd, addr, next, phys, type);
553 
554 		phys += next - addr;
555 		addr = next;
556 	} while (pgd++, addr != end);
557 }
558 
559 /*
560  * Create the architecture specific mappings
561  */
562 void __init iotable_init(struct map_desc *io_desc, int nr)
563 {
564 	int i;
565 
566 	for (i = 0; i < nr; i++)
567 		create_mapping(io_desc + i);
568 }
569 
570 static inline void prepare_page_table(struct meminfo *mi)
571 {
572 	unsigned long addr;
573 
574 	/*
575 	 * Clear out all the mappings below the kernel image.
576 	 */
577 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
578 		pmd_clear(pmd_off_k(addr));
579 
580 #ifdef CONFIG_XIP_KERNEL
581 	/* The XIP kernel is mapped in the module area -- skip over it */
582 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
583 #endif
584 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
585 		pmd_clear(pmd_off_k(addr));
586 
587 	/*
588 	 * Clear out all the kernel space mappings, except for the first
589 	 * memory bank, up to the end of the vmalloc region.
590 	 */
591 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
592 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
593 		pmd_clear(pmd_off_k(addr));
594 }
595 
596 /*
597  * Reserve the various regions of node 0
598  */
599 void __init reserve_node_zero(pg_data_t *pgdat)
600 {
601 	unsigned long res_size = 0;
602 
603 	/*
604 	 * Register the kernel text and data with bootmem.
605 	 * Note that this can only be in node 0.
606 	 */
607 #ifdef CONFIG_XIP_KERNEL
608 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
609 			BOOTMEM_DEFAULT);
610 #else
611 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
612 			BOOTMEM_DEFAULT);
613 #endif
614 
615 	/*
616 	 * Reserve the page tables.  These are already in use,
617 	 * and can only be in node 0.
618 	 */
619 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
620 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
621 
622 	/*
623 	 * Hmm... This should go elsewhere, but we really really need to
624 	 * stop things allocating the low memory; ideally we need a better
625 	 * implementation of GFP_DMA which does not assume that DMA-able
626 	 * memory starts at zero.
627 	 */
628 	if (machine_is_integrator() || machine_is_cintegrator())
629 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
630 
631 	/*
632 	 * These should likewise go elsewhere.  They pre-reserve the
633 	 * screen memory region at the start of main system memory.
634 	 */
635 	if (machine_is_edb7211())
636 		res_size = 0x00020000;
637 	if (machine_is_p720t())
638 		res_size = 0x00014000;
639 
640 	/* H1940 and RX3715 need to reserve this for suspend */
641 
642 	if (machine_is_h1940() || machine_is_rx3715()) {
643 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
644 				BOOTMEM_DEFAULT);
645 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
646 				BOOTMEM_DEFAULT);
647 	}
648 
649 #ifdef CONFIG_SA1111
650 	/*
651 	 * Because of the SA1111 DMA bug, we want to preserve our
652 	 * precious DMA-able memory...
653 	 */
654 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
655 #endif
656 	if (res_size)
657 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
658 				BOOTMEM_DEFAULT);
659 }
660 
661 /*
662  * Set up device the mappings.  Since we clear out the page tables for all
663  * mappings above VMALLOC_END, we will remove any debug device mappings.
664  * This means you have to be careful how you debug this function, or any
665  * called function.  This means you can't use any function or debugging
666  * method which may touch any device, otherwise the kernel _will_ crash.
667  */
668 static void __init devicemaps_init(struct machine_desc *mdesc)
669 {
670 	struct map_desc map;
671 	unsigned long addr;
672 	void *vectors;
673 
674 	/*
675 	 * Allocate the vector page early.
676 	 */
677 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
678 	BUG_ON(!vectors);
679 
680 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
681 		pmd_clear(pmd_off_k(addr));
682 
683 	/*
684 	 * Map the kernel if it is XIP.
685 	 * It is always first in the modulearea.
686 	 */
687 #ifdef CONFIG_XIP_KERNEL
688 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
689 	map.virtual = MODULE_START;
690 	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
691 	map.type = MT_ROM;
692 	create_mapping(&map);
693 #endif
694 
695 	/*
696 	 * Map the cache flushing regions.
697 	 */
698 #ifdef FLUSH_BASE
699 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
700 	map.virtual = FLUSH_BASE;
701 	map.length = SZ_1M;
702 	map.type = MT_CACHECLEAN;
703 	create_mapping(&map);
704 #endif
705 #ifdef FLUSH_BASE_MINICACHE
706 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
707 	map.virtual = FLUSH_BASE_MINICACHE;
708 	map.length = SZ_1M;
709 	map.type = MT_MINICLEAN;
710 	create_mapping(&map);
711 #endif
712 
713 	/*
714 	 * Create a mapping for the machine vectors at the high-vectors
715 	 * location (0xffff0000).  If we aren't using high-vectors, also
716 	 * create a mapping at the low-vectors virtual address.
717 	 */
718 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
719 	map.virtual = 0xffff0000;
720 	map.length = PAGE_SIZE;
721 	map.type = MT_HIGH_VECTORS;
722 	create_mapping(&map);
723 
724 	if (!vectors_high()) {
725 		map.virtual = 0;
726 		map.type = MT_LOW_VECTORS;
727 		create_mapping(&map);
728 	}
729 
730 	/*
731 	 * Ask the machine support to map in the statically mapped devices.
732 	 */
733 	if (mdesc->map_io)
734 		mdesc->map_io();
735 
736 	/*
737 	 * Finally flush the caches and tlb to ensure that we're in a
738 	 * consistent state wrt the writebuffer.  This also ensures that
739 	 * any write-allocated cache lines in the vector page are written
740 	 * back.  After this point, we can start to touch devices again.
741 	 */
742 	local_flush_tlb_all();
743 	flush_cache_all();
744 }
745 
746 /*
747  * paging_init() sets up the page tables, initialises the zone memory
748  * maps, and sets up the zero page, bad page and bad page tables.
749  */
750 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
751 {
752 	void *zero_page;
753 
754 	build_mem_type_table();
755 	prepare_page_table(mi);
756 	bootmem_init(mi);
757 	devicemaps_init(mdesc);
758 
759 	top_pmd = pmd_off_k(0xffff0000);
760 
761 	/*
762 	 * allocate the zero page.  Note that we count on this going ok.
763 	 */
764 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
765 	memzero(zero_page, PAGE_SIZE);
766 	empty_zero_page = virt_to_page(zero_page);
767 	flush_dcache_page(empty_zero_page);
768 }
769 
770 /*
771  * In order to soft-boot, we need to insert a 1:1 mapping in place of
772  * the user-mode pages.  This will then ensure that we have predictable
773  * results when turning the mmu off
774  */
775 void setup_mm_for_reboot(char mode)
776 {
777 	unsigned long base_pmdval;
778 	pgd_t *pgd;
779 	int i;
780 
781 	if (current->mm && current->mm->pgd)
782 		pgd = current->mm->pgd;
783 	else
784 		pgd = init_mm.pgd;
785 
786 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
787 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
788 		base_pmdval |= PMD_BIT4;
789 
790 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
791 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
792 		pmd_t *pmd;
793 
794 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
795 		pmd[0] = __pmd(pmdval);
796 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
797 		flush_pmd_entry(pmd);
798 	}
799 }
800