xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 9d749629)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35 
36 #include "mm.h"
37 
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44 
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49 
50 #define CPOLICY_UNCACHED	0
51 #define CPOLICY_BUFFERED	1
52 #define CPOLICY_WRITETHROUGH	2
53 #define CPOLICY_WRITEBACK	3
54 #define CPOLICY_WRITEALLOC	4
55 
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60 pgprot_t pgprot_hyp_device;
61 pgprot_t pgprot_s2;
62 pgprot_t pgprot_s2_device;
63 
64 EXPORT_SYMBOL(pgprot_user);
65 EXPORT_SYMBOL(pgprot_kernel);
66 
67 struct cachepolicy {
68 	const char	policy[16];
69 	unsigned int	cr_mask;
70 	pmdval_t	pmd;
71 	pteval_t	pte;
72 	pteval_t	pte_s2;
73 };
74 
75 #ifdef CONFIG_ARM_LPAE
76 #define s2_policy(policy)	policy
77 #else
78 #define s2_policy(policy)	0
79 #endif
80 
81 static struct cachepolicy cache_policies[] __initdata = {
82 	{
83 		.policy		= "uncached",
84 		.cr_mask	= CR_W|CR_C,
85 		.pmd		= PMD_SECT_UNCACHED,
86 		.pte		= L_PTE_MT_UNCACHED,
87 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
88 	}, {
89 		.policy		= "buffered",
90 		.cr_mask	= CR_C,
91 		.pmd		= PMD_SECT_BUFFERED,
92 		.pte		= L_PTE_MT_BUFFERABLE,
93 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
94 	}, {
95 		.policy		= "writethrough",
96 		.cr_mask	= 0,
97 		.pmd		= PMD_SECT_WT,
98 		.pte		= L_PTE_MT_WRITETHROUGH,
99 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
100 	}, {
101 		.policy		= "writeback",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WB,
104 		.pte		= L_PTE_MT_WRITEBACK,
105 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
106 	}, {
107 		.policy		= "writealloc",
108 		.cr_mask	= 0,
109 		.pmd		= PMD_SECT_WBWA,
110 		.pte		= L_PTE_MT_WRITEALLOC,
111 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
112 	}
113 };
114 
115 /*
116  * These are useful for identifying cache coherency
117  * problems by allowing the cache or the cache and
118  * writebuffer to be turned off.  (Note: the write
119  * buffer should not be on and the cache off).
120  */
121 static int __init early_cachepolicy(char *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
126 		int len = strlen(cache_policies[i].policy);
127 
128 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
129 			cachepolicy = i;
130 			cr_alignment &= ~cache_policies[i].cr_mask;
131 			cr_no_alignment &= ~cache_policies[i].cr_mask;
132 			break;
133 		}
134 	}
135 	if (i == ARRAY_SIZE(cache_policies))
136 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
137 	/*
138 	 * This restriction is partly to do with the way we boot; it is
139 	 * unpredictable to have memory mapped using two different sets of
140 	 * memory attributes (shared, type, and cache attribs).  We can not
141 	 * change these attributes once the initial assembly has setup the
142 	 * page tables.
143 	 */
144 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
145 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
146 		cachepolicy = CPOLICY_WRITEBACK;
147 	}
148 	flush_cache_all();
149 	set_cr(cr_alignment);
150 	return 0;
151 }
152 early_param("cachepolicy", early_cachepolicy);
153 
154 static int __init early_nocache(char *__unused)
155 {
156 	char *p = "buffered";
157 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
158 	early_cachepolicy(p);
159 	return 0;
160 }
161 early_param("nocache", early_nocache);
162 
163 static int __init early_nowrite(char *__unused)
164 {
165 	char *p = "uncached";
166 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
167 	early_cachepolicy(p);
168 	return 0;
169 }
170 early_param("nowb", early_nowrite);
171 
172 #ifndef CONFIG_ARM_LPAE
173 static int __init early_ecc(char *p)
174 {
175 	if (memcmp(p, "on", 2) == 0)
176 		ecc_mask = PMD_PROTECTION;
177 	else if (memcmp(p, "off", 3) == 0)
178 		ecc_mask = 0;
179 	return 0;
180 }
181 early_param("ecc", early_ecc);
182 #endif
183 
184 static int __init noalign_setup(char *__unused)
185 {
186 	cr_alignment &= ~CR_A;
187 	cr_no_alignment &= ~CR_A;
188 	set_cr(cr_alignment);
189 	return 1;
190 }
191 __setup("noalign", noalign_setup);
192 
193 #ifndef CONFIG_SMP
194 void adjust_cr(unsigned long mask, unsigned long set)
195 {
196 	unsigned long flags;
197 
198 	mask &= ~CR_A;
199 
200 	set &= mask;
201 
202 	local_irq_save(flags);
203 
204 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
205 	cr_alignment = (cr_alignment & ~mask) | set;
206 
207 	set_cr((get_cr() & ~mask) | set);
208 
209 	local_irq_restore(flags);
210 }
211 #endif
212 
213 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
214 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
215 
216 static struct mem_type mem_types[] = {
217 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
218 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
219 				  L_PTE_SHARED,
220 		.prot_l1	= PMD_TYPE_TABLE,
221 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
222 		.domain		= DOMAIN_IO,
223 	},
224 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
225 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
226 		.prot_l1	= PMD_TYPE_TABLE,
227 		.prot_sect	= PROT_SECT_DEVICE,
228 		.domain		= DOMAIN_IO,
229 	},
230 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
231 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
232 		.prot_l1	= PMD_TYPE_TABLE,
233 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
234 		.domain		= DOMAIN_IO,
235 	},
236 	[MT_DEVICE_WC] = {	/* ioremap_wc */
237 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
238 		.prot_l1	= PMD_TYPE_TABLE,
239 		.prot_sect	= PROT_SECT_DEVICE,
240 		.domain		= DOMAIN_IO,
241 	},
242 	[MT_UNCACHED] = {
243 		.prot_pte	= PROT_PTE_DEVICE,
244 		.prot_l1	= PMD_TYPE_TABLE,
245 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
246 		.domain		= DOMAIN_IO,
247 	},
248 	[MT_CACHECLEAN] = {
249 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
250 		.domain    = DOMAIN_KERNEL,
251 	},
252 #ifndef CONFIG_ARM_LPAE
253 	[MT_MINICLEAN] = {
254 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
255 		.domain    = DOMAIN_KERNEL,
256 	},
257 #endif
258 	[MT_LOW_VECTORS] = {
259 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
260 				L_PTE_RDONLY,
261 		.prot_l1   = PMD_TYPE_TABLE,
262 		.domain    = DOMAIN_USER,
263 	},
264 	[MT_HIGH_VECTORS] = {
265 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 				L_PTE_USER | L_PTE_RDONLY,
267 		.prot_l1   = PMD_TYPE_TABLE,
268 		.domain    = DOMAIN_USER,
269 	},
270 	[MT_MEMORY] = {
271 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
272 		.prot_l1   = PMD_TYPE_TABLE,
273 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
274 		.domain    = DOMAIN_KERNEL,
275 	},
276 	[MT_ROM] = {
277 		.prot_sect = PMD_TYPE_SECT,
278 		.domain    = DOMAIN_KERNEL,
279 	},
280 	[MT_MEMORY_NONCACHED] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_MT_BUFFERABLE,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
285 		.domain    = DOMAIN_KERNEL,
286 	},
287 	[MT_MEMORY_DTCM] = {
288 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
289 				L_PTE_XN,
290 		.prot_l1   = PMD_TYPE_TABLE,
291 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
292 		.domain    = DOMAIN_KERNEL,
293 	},
294 	[MT_MEMORY_ITCM] = {
295 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
296 		.prot_l1   = PMD_TYPE_TABLE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_SO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 				L_PTE_MT_UNCACHED | L_PTE_XN,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
304 				PMD_SECT_UNCACHED | PMD_SECT_XN,
305 		.domain    = DOMAIN_KERNEL,
306 	},
307 	[MT_MEMORY_DMA_READY] = {
308 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
309 		.prot_l1   = PMD_TYPE_TABLE,
310 		.domain    = DOMAIN_KERNEL,
311 	},
312 };
313 
314 const struct mem_type *get_mem_type(unsigned int type)
315 {
316 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
317 }
318 EXPORT_SYMBOL(get_mem_type);
319 
320 /*
321  * Adjust the PMD section entries according to the CPU in use.
322  */
323 static void __init build_mem_type_table(void)
324 {
325 	struct cachepolicy *cp;
326 	unsigned int cr = get_cr();
327 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
328 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
329 	int cpu_arch = cpu_architecture();
330 	int i;
331 
332 	if (cpu_arch < CPU_ARCH_ARMv6) {
333 #if defined(CONFIG_CPU_DCACHE_DISABLE)
334 		if (cachepolicy > CPOLICY_BUFFERED)
335 			cachepolicy = CPOLICY_BUFFERED;
336 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
337 		if (cachepolicy > CPOLICY_WRITETHROUGH)
338 			cachepolicy = CPOLICY_WRITETHROUGH;
339 #endif
340 	}
341 	if (cpu_arch < CPU_ARCH_ARMv5) {
342 		if (cachepolicy >= CPOLICY_WRITEALLOC)
343 			cachepolicy = CPOLICY_WRITEBACK;
344 		ecc_mask = 0;
345 	}
346 	if (is_smp())
347 		cachepolicy = CPOLICY_WRITEALLOC;
348 
349 	/*
350 	 * Strip out features not present on earlier architectures.
351 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
352 	 * without extended page tables don't have the 'Shared' bit.
353 	 */
354 	if (cpu_arch < CPU_ARCH_ARMv5)
355 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
356 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
357 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
358 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
359 			mem_types[i].prot_sect &= ~PMD_SECT_S;
360 
361 	/*
362 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
363 	 * "update-able on write" bit on ARM610).  However, Xscale and
364 	 * Xscale3 require this bit to be cleared.
365 	 */
366 	if (cpu_is_xscale() || cpu_is_xsc3()) {
367 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
368 			mem_types[i].prot_sect &= ~PMD_BIT4;
369 			mem_types[i].prot_l1 &= ~PMD_BIT4;
370 		}
371 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
372 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
373 			if (mem_types[i].prot_l1)
374 				mem_types[i].prot_l1 |= PMD_BIT4;
375 			if (mem_types[i].prot_sect)
376 				mem_types[i].prot_sect |= PMD_BIT4;
377 		}
378 	}
379 
380 	/*
381 	 * Mark the device areas according to the CPU/architecture.
382 	 */
383 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
384 		if (!cpu_is_xsc3()) {
385 			/*
386 			 * Mark device regions on ARMv6+ as execute-never
387 			 * to prevent speculative instruction fetches.
388 			 */
389 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
390 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
391 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
392 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
393 		}
394 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
395 			/*
396 			 * For ARMv7 with TEX remapping,
397 			 * - shared device is SXCB=1100
398 			 * - nonshared device is SXCB=0100
399 			 * - write combine device mem is SXCB=0001
400 			 * (Uncached Normal memory)
401 			 */
402 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
403 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
404 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
405 		} else if (cpu_is_xsc3()) {
406 			/*
407 			 * For Xscale3,
408 			 * - shared device is TEXCB=00101
409 			 * - nonshared device is TEXCB=01000
410 			 * - write combine device mem is TEXCB=00100
411 			 * (Inner/Outer Uncacheable in xsc3 parlance)
412 			 */
413 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
414 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
415 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
416 		} else {
417 			/*
418 			 * For ARMv6 and ARMv7 without TEX remapping,
419 			 * - shared device is TEXCB=00001
420 			 * - nonshared device is TEXCB=01000
421 			 * - write combine device mem is TEXCB=00100
422 			 * (Uncached Normal in ARMv6 parlance).
423 			 */
424 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
425 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
426 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
427 		}
428 	} else {
429 		/*
430 		 * On others, write combining is "Uncached/Buffered"
431 		 */
432 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
433 	}
434 
435 	/*
436 	 * Now deal with the memory-type mappings
437 	 */
438 	cp = &cache_policies[cachepolicy];
439 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
440 	s2_pgprot = cp->pte_s2;
441 	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
442 
443 	/*
444 	 * ARMv6 and above have extended page tables.
445 	 */
446 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
447 #ifndef CONFIG_ARM_LPAE
448 		/*
449 		 * Mark cache clean areas and XIP ROM read only
450 		 * from SVC mode and no access from userspace.
451 		 */
452 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
455 #endif
456 
457 		if (is_smp()) {
458 			/*
459 			 * Mark memory with the "shared" attribute
460 			 * for SMP systems
461 			 */
462 			user_pgprot |= L_PTE_SHARED;
463 			kern_pgprot |= L_PTE_SHARED;
464 			vecs_pgprot |= L_PTE_SHARED;
465 			s2_pgprot |= L_PTE_SHARED;
466 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
467 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
468 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
469 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
470 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
471 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
472 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
473 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
474 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
475 		}
476 	}
477 
478 	/*
479 	 * Non-cacheable Normal - intended for memory areas that must
480 	 * not cause dirty cache line writebacks when used
481 	 */
482 	if (cpu_arch >= CPU_ARCH_ARMv6) {
483 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
484 			/* Non-cacheable Normal is XCB = 001 */
485 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
486 				PMD_SECT_BUFFERED;
487 		} else {
488 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
489 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
490 				PMD_SECT_TEX(1);
491 		}
492 	} else {
493 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
494 	}
495 
496 #ifdef CONFIG_ARM_LPAE
497 	/*
498 	 * Do not generate access flag faults for the kernel mappings.
499 	 */
500 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
501 		mem_types[i].prot_pte |= PTE_EXT_AF;
502 		if (mem_types[i].prot_sect)
503 			mem_types[i].prot_sect |= PMD_SECT_AF;
504 	}
505 	kern_pgprot |= PTE_EXT_AF;
506 	vecs_pgprot |= PTE_EXT_AF;
507 #endif
508 
509 	for (i = 0; i < 16; i++) {
510 		pteval_t v = pgprot_val(protection_map[i]);
511 		protection_map[i] = __pgprot(v | user_pgprot);
512 	}
513 
514 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
515 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
516 
517 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
518 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
519 				 L_PTE_DIRTY | kern_pgprot);
520 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
521 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
522 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
523 
524 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
525 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
526 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
527 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
528 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
529 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
530 	mem_types[MT_ROM].prot_sect |= cp->pmd;
531 
532 	switch (cp->pmd) {
533 	case PMD_SECT_WT:
534 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
535 		break;
536 	case PMD_SECT_WB:
537 	case PMD_SECT_WBWA:
538 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
539 		break;
540 	}
541 	printk("Memory policy: ECC %sabled, Data cache %s\n",
542 		ecc_mask ? "en" : "dis", cp->policy);
543 
544 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
545 		struct mem_type *t = &mem_types[i];
546 		if (t->prot_l1)
547 			t->prot_l1 |= PMD_DOMAIN(t->domain);
548 		if (t->prot_sect)
549 			t->prot_sect |= PMD_DOMAIN(t->domain);
550 	}
551 }
552 
553 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
554 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
555 			      unsigned long size, pgprot_t vma_prot)
556 {
557 	if (!pfn_valid(pfn))
558 		return pgprot_noncached(vma_prot);
559 	else if (file->f_flags & O_SYNC)
560 		return pgprot_writecombine(vma_prot);
561 	return vma_prot;
562 }
563 EXPORT_SYMBOL(phys_mem_access_prot);
564 #endif
565 
566 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
567 
568 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
569 {
570 	void *ptr = __va(memblock_alloc(sz, align));
571 	memset(ptr, 0, sz);
572 	return ptr;
573 }
574 
575 static void __init *early_alloc(unsigned long sz)
576 {
577 	return early_alloc_aligned(sz, sz);
578 }
579 
580 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
581 {
582 	if (pmd_none(*pmd)) {
583 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
584 		__pmd_populate(pmd, __pa(pte), prot);
585 	}
586 	BUG_ON(pmd_bad(*pmd));
587 	return pte_offset_kernel(pmd, addr);
588 }
589 
590 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
591 				  unsigned long end, unsigned long pfn,
592 				  const struct mem_type *type)
593 {
594 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
595 	do {
596 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
597 		pfn++;
598 	} while (pte++, addr += PAGE_SIZE, addr != end);
599 }
600 
601 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
602 				      unsigned long end, phys_addr_t phys,
603 				      const struct mem_type *type)
604 {
605 	pmd_t *pmd = pmd_offset(pud, addr);
606 
607 	/*
608 	 * Try a section mapping - end, addr and phys must all be aligned
609 	 * to a section boundary.  Note that PMDs refer to the individual
610 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
611 	 * up one logical pointer to an L2 table.
612 	 */
613 	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
614 		pmd_t *p = pmd;
615 
616 #ifndef CONFIG_ARM_LPAE
617 		if (addr & SECTION_SIZE)
618 			pmd++;
619 #endif
620 
621 		do {
622 			*pmd = __pmd(phys | type->prot_sect);
623 			phys += SECTION_SIZE;
624 		} while (pmd++, addr += SECTION_SIZE, addr != end);
625 
626 		flush_pmd_entry(p);
627 	} else {
628 		/*
629 		 * No need to loop; pte's aren't interested in the
630 		 * individual L1 entries.
631 		 */
632 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
633 	}
634 }
635 
636 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
637 	unsigned long end, unsigned long phys, const struct mem_type *type)
638 {
639 	pud_t *pud = pud_offset(pgd, addr);
640 	unsigned long next;
641 
642 	do {
643 		next = pud_addr_end(addr, end);
644 		alloc_init_section(pud, addr, next, phys, type);
645 		phys += next - addr;
646 	} while (pud++, addr = next, addr != end);
647 }
648 
649 #ifndef CONFIG_ARM_LPAE
650 static void __init create_36bit_mapping(struct map_desc *md,
651 					const struct mem_type *type)
652 {
653 	unsigned long addr, length, end;
654 	phys_addr_t phys;
655 	pgd_t *pgd;
656 
657 	addr = md->virtual;
658 	phys = __pfn_to_phys(md->pfn);
659 	length = PAGE_ALIGN(md->length);
660 
661 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
662 		printk(KERN_ERR "MM: CPU does not support supersection "
663 		       "mapping for 0x%08llx at 0x%08lx\n",
664 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
665 		return;
666 	}
667 
668 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
669 	 *	Since domain assignments can in fact be arbitrary, the
670 	 *	'domain == 0' check below is required to insure that ARMv6
671 	 *	supersections are only allocated for domain 0 regardless
672 	 *	of the actual domain assignments in use.
673 	 */
674 	if (type->domain) {
675 		printk(KERN_ERR "MM: invalid domain in supersection "
676 		       "mapping for 0x%08llx at 0x%08lx\n",
677 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
678 		return;
679 	}
680 
681 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
682 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
683 		       " at 0x%08lx invalid alignment\n",
684 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
685 		return;
686 	}
687 
688 	/*
689 	 * Shift bits [35:32] of address into bits [23:20] of PMD
690 	 * (See ARMv6 spec).
691 	 */
692 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
693 
694 	pgd = pgd_offset_k(addr);
695 	end = addr + length;
696 	do {
697 		pud_t *pud = pud_offset(pgd, addr);
698 		pmd_t *pmd = pmd_offset(pud, addr);
699 		int i;
700 
701 		for (i = 0; i < 16; i++)
702 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
703 
704 		addr += SUPERSECTION_SIZE;
705 		phys += SUPERSECTION_SIZE;
706 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
707 	} while (addr != end);
708 }
709 #endif	/* !CONFIG_ARM_LPAE */
710 
711 /*
712  * Create the page directory entries and any necessary
713  * page tables for the mapping specified by `md'.  We
714  * are able to cope here with varying sizes and address
715  * offsets, and we take full advantage of sections and
716  * supersections.
717  */
718 static void __init create_mapping(struct map_desc *md)
719 {
720 	unsigned long addr, length, end;
721 	phys_addr_t phys;
722 	const struct mem_type *type;
723 	pgd_t *pgd;
724 
725 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
726 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
727 		       " at 0x%08lx in user region\n",
728 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
729 		return;
730 	}
731 
732 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
733 	    md->virtual >= PAGE_OFFSET &&
734 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
735 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
736 		       " at 0x%08lx out of vmalloc space\n",
737 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
738 	}
739 
740 	type = &mem_types[md->type];
741 
742 #ifndef CONFIG_ARM_LPAE
743 	/*
744 	 * Catch 36-bit addresses
745 	 */
746 	if (md->pfn >= 0x100000) {
747 		create_36bit_mapping(md, type);
748 		return;
749 	}
750 #endif
751 
752 	addr = md->virtual & PAGE_MASK;
753 	phys = __pfn_to_phys(md->pfn);
754 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
755 
756 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
757 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
758 		       "be mapped using pages, ignoring.\n",
759 		       (long long)__pfn_to_phys(md->pfn), addr);
760 		return;
761 	}
762 
763 	pgd = pgd_offset_k(addr);
764 	end = addr + length;
765 	do {
766 		unsigned long next = pgd_addr_end(addr, end);
767 
768 		alloc_init_pud(pgd, addr, next, phys, type);
769 
770 		phys += next - addr;
771 		addr = next;
772 	} while (pgd++, addr != end);
773 }
774 
775 /*
776  * Create the architecture specific mappings
777  */
778 void __init iotable_init(struct map_desc *io_desc, int nr)
779 {
780 	struct map_desc *md;
781 	struct vm_struct *vm;
782 	struct static_vm *svm;
783 
784 	if (!nr)
785 		return;
786 
787 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
788 
789 	for (md = io_desc; nr; md++, nr--) {
790 		create_mapping(md);
791 
792 		vm = &svm->vm;
793 		vm->addr = (void *)(md->virtual & PAGE_MASK);
794 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
795 		vm->phys_addr = __pfn_to_phys(md->pfn);
796 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
797 		vm->flags |= VM_ARM_MTYPE(md->type);
798 		vm->caller = iotable_init;
799 		add_static_vm_early(svm++);
800 	}
801 }
802 
803 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
804 				  void *caller)
805 {
806 	struct vm_struct *vm;
807 	struct static_vm *svm;
808 
809 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
810 
811 	vm = &svm->vm;
812 	vm->addr = (void *)addr;
813 	vm->size = size;
814 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
815 	vm->caller = caller;
816 	add_static_vm_early(svm);
817 }
818 
819 #ifndef CONFIG_ARM_LPAE
820 
821 /*
822  * The Linux PMD is made of two consecutive section entries covering 2MB
823  * (see definition in include/asm/pgtable-2level.h).  However a call to
824  * create_mapping() may optimize static mappings by using individual
825  * 1MB section mappings.  This leaves the actual PMD potentially half
826  * initialized if the top or bottom section entry isn't used, leaving it
827  * open to problems if a subsequent ioremap() or vmalloc() tries to use
828  * the virtual space left free by that unused section entry.
829  *
830  * Let's avoid the issue by inserting dummy vm entries covering the unused
831  * PMD halves once the static mappings are in place.
832  */
833 
834 static void __init pmd_empty_section_gap(unsigned long addr)
835 {
836 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
837 }
838 
839 static void __init fill_pmd_gaps(void)
840 {
841 	struct static_vm *svm;
842 	struct vm_struct *vm;
843 	unsigned long addr, next = 0;
844 	pmd_t *pmd;
845 
846 	list_for_each_entry(svm, &static_vmlist, list) {
847 		vm = &svm->vm;
848 		addr = (unsigned long)vm->addr;
849 		if (addr < next)
850 			continue;
851 
852 		/*
853 		 * Check if this vm starts on an odd section boundary.
854 		 * If so and the first section entry for this PMD is free
855 		 * then we block the corresponding virtual address.
856 		 */
857 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
858 			pmd = pmd_off_k(addr);
859 			if (pmd_none(*pmd))
860 				pmd_empty_section_gap(addr & PMD_MASK);
861 		}
862 
863 		/*
864 		 * Then check if this vm ends on an odd section boundary.
865 		 * If so and the second section entry for this PMD is empty
866 		 * then we block the corresponding virtual address.
867 		 */
868 		addr += vm->size;
869 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
870 			pmd = pmd_off_k(addr) + 1;
871 			if (pmd_none(*pmd))
872 				pmd_empty_section_gap(addr);
873 		}
874 
875 		/* no need to look at any vm entry until we hit the next PMD */
876 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
877 	}
878 }
879 
880 #else
881 #define fill_pmd_gaps() do { } while (0)
882 #endif
883 
884 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
885 static void __init pci_reserve_io(void)
886 {
887 	struct static_vm *svm;
888 
889 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
890 	if (svm)
891 		return;
892 
893 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
894 }
895 #else
896 #define pci_reserve_io() do { } while (0)
897 #endif
898 
899 #ifdef CONFIG_DEBUG_LL
900 void __init debug_ll_io_init(void)
901 {
902 	struct map_desc map;
903 
904 	debug_ll_addr(&map.pfn, &map.virtual);
905 	if (!map.pfn || !map.virtual)
906 		return;
907 	map.pfn = __phys_to_pfn(map.pfn);
908 	map.virtual &= PAGE_MASK;
909 	map.length = PAGE_SIZE;
910 	map.type = MT_DEVICE;
911 	create_mapping(&map);
912 }
913 #endif
914 
915 static void * __initdata vmalloc_min =
916 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
917 
918 /*
919  * vmalloc=size forces the vmalloc area to be exactly 'size'
920  * bytes. This can be used to increase (or decrease) the vmalloc
921  * area - the default is 240m.
922  */
923 static int __init early_vmalloc(char *arg)
924 {
925 	unsigned long vmalloc_reserve = memparse(arg, NULL);
926 
927 	if (vmalloc_reserve < SZ_16M) {
928 		vmalloc_reserve = SZ_16M;
929 		printk(KERN_WARNING
930 			"vmalloc area too small, limiting to %luMB\n",
931 			vmalloc_reserve >> 20);
932 	}
933 
934 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
935 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
936 		printk(KERN_WARNING
937 			"vmalloc area is too big, limiting to %luMB\n",
938 			vmalloc_reserve >> 20);
939 	}
940 
941 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
942 	return 0;
943 }
944 early_param("vmalloc", early_vmalloc);
945 
946 phys_addr_t arm_lowmem_limit __initdata = 0;
947 
948 void __init sanity_check_meminfo(void)
949 {
950 	int i, j, highmem = 0;
951 
952 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
953 		struct membank *bank = &meminfo.bank[j];
954 		*bank = meminfo.bank[i];
955 
956 		if (bank->start > ULONG_MAX)
957 			highmem = 1;
958 
959 #ifdef CONFIG_HIGHMEM
960 		if (__va(bank->start) >= vmalloc_min ||
961 		    __va(bank->start) < (void *)PAGE_OFFSET)
962 			highmem = 1;
963 
964 		bank->highmem = highmem;
965 
966 		/*
967 		 * Split those memory banks which are partially overlapping
968 		 * the vmalloc area greatly simplifying things later.
969 		 */
970 		if (!highmem && __va(bank->start) < vmalloc_min &&
971 		    bank->size > vmalloc_min - __va(bank->start)) {
972 			if (meminfo.nr_banks >= NR_BANKS) {
973 				printk(KERN_CRIT "NR_BANKS too low, "
974 						 "ignoring high memory\n");
975 			} else {
976 				memmove(bank + 1, bank,
977 					(meminfo.nr_banks - i) * sizeof(*bank));
978 				meminfo.nr_banks++;
979 				i++;
980 				bank[1].size -= vmalloc_min - __va(bank->start);
981 				bank[1].start = __pa(vmalloc_min - 1) + 1;
982 				bank[1].highmem = highmem = 1;
983 				j++;
984 			}
985 			bank->size = vmalloc_min - __va(bank->start);
986 		}
987 #else
988 		bank->highmem = highmem;
989 
990 		/*
991 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
992 		 */
993 		if (highmem) {
994 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
995 			       "(!CONFIG_HIGHMEM).\n",
996 			       (unsigned long long)bank->start,
997 			       (unsigned long long)bank->start + bank->size - 1);
998 			continue;
999 		}
1000 
1001 		/*
1002 		 * Check whether this memory bank would entirely overlap
1003 		 * the vmalloc area.
1004 		 */
1005 		if (__va(bank->start) >= vmalloc_min ||
1006 		    __va(bank->start) < (void *)PAGE_OFFSET) {
1007 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1008 			       "(vmalloc region overlap).\n",
1009 			       (unsigned long long)bank->start,
1010 			       (unsigned long long)bank->start + bank->size - 1);
1011 			continue;
1012 		}
1013 
1014 		/*
1015 		 * Check whether this memory bank would partially overlap
1016 		 * the vmalloc area.
1017 		 */
1018 		if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1019 		    __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1020 			unsigned long newsize = vmalloc_min - __va(bank->start);
1021 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1022 			       "to -%.8llx (vmalloc region overlap).\n",
1023 			       (unsigned long long)bank->start,
1024 			       (unsigned long long)bank->start + bank->size - 1,
1025 			       (unsigned long long)bank->start + newsize - 1);
1026 			bank->size = newsize;
1027 		}
1028 #endif
1029 		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1030 			arm_lowmem_limit = bank->start + bank->size;
1031 
1032 		j++;
1033 	}
1034 #ifdef CONFIG_HIGHMEM
1035 	if (highmem) {
1036 		const char *reason = NULL;
1037 
1038 		if (cache_is_vipt_aliasing()) {
1039 			/*
1040 			 * Interactions between kmap and other mappings
1041 			 * make highmem support with aliasing VIPT caches
1042 			 * rather difficult.
1043 			 */
1044 			reason = "with VIPT aliasing cache";
1045 		}
1046 		if (reason) {
1047 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1048 				reason);
1049 			while (j > 0 && meminfo.bank[j - 1].highmem)
1050 				j--;
1051 		}
1052 	}
1053 #endif
1054 	meminfo.nr_banks = j;
1055 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1056 	memblock_set_current_limit(arm_lowmem_limit);
1057 }
1058 
1059 static inline void prepare_page_table(void)
1060 {
1061 	unsigned long addr;
1062 	phys_addr_t end;
1063 
1064 	/*
1065 	 * Clear out all the mappings below the kernel image.
1066 	 */
1067 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1068 		pmd_clear(pmd_off_k(addr));
1069 
1070 #ifdef CONFIG_XIP_KERNEL
1071 	/* The XIP kernel is mapped in the module area -- skip over it */
1072 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1073 #endif
1074 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1075 		pmd_clear(pmd_off_k(addr));
1076 
1077 	/*
1078 	 * Find the end of the first block of lowmem.
1079 	 */
1080 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1081 	if (end >= arm_lowmem_limit)
1082 		end = arm_lowmem_limit;
1083 
1084 	/*
1085 	 * Clear out all the kernel space mappings, except for the first
1086 	 * memory bank, up to the vmalloc region.
1087 	 */
1088 	for (addr = __phys_to_virt(end);
1089 	     addr < VMALLOC_START; addr += PMD_SIZE)
1090 		pmd_clear(pmd_off_k(addr));
1091 }
1092 
1093 #ifdef CONFIG_ARM_LPAE
1094 /* the first page is reserved for pgd */
1095 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1096 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1097 #else
1098 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1099 #endif
1100 
1101 /*
1102  * Reserve the special regions of memory
1103  */
1104 void __init arm_mm_memblock_reserve(void)
1105 {
1106 	/*
1107 	 * Reserve the page tables.  These are already in use,
1108 	 * and can only be in node 0.
1109 	 */
1110 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1111 
1112 #ifdef CONFIG_SA1111
1113 	/*
1114 	 * Because of the SA1111 DMA bug, we want to preserve our
1115 	 * precious DMA-able memory...
1116 	 */
1117 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1118 #endif
1119 }
1120 
1121 /*
1122  * Set up the device mappings.  Since we clear out the page tables for all
1123  * mappings above VMALLOC_START, we will remove any debug device mappings.
1124  * This means you have to be careful how you debug this function, or any
1125  * called function.  This means you can't use any function or debugging
1126  * method which may touch any device, otherwise the kernel _will_ crash.
1127  */
1128 static void __init devicemaps_init(struct machine_desc *mdesc)
1129 {
1130 	struct map_desc map;
1131 	unsigned long addr;
1132 	void *vectors;
1133 
1134 	/*
1135 	 * Allocate the vector page early.
1136 	 */
1137 	vectors = early_alloc(PAGE_SIZE);
1138 
1139 	early_trap_init(vectors);
1140 
1141 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1142 		pmd_clear(pmd_off_k(addr));
1143 
1144 	/*
1145 	 * Map the kernel if it is XIP.
1146 	 * It is always first in the modulearea.
1147 	 */
1148 #ifdef CONFIG_XIP_KERNEL
1149 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1150 	map.virtual = MODULES_VADDR;
1151 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1152 	map.type = MT_ROM;
1153 	create_mapping(&map);
1154 #endif
1155 
1156 	/*
1157 	 * Map the cache flushing regions.
1158 	 */
1159 #ifdef FLUSH_BASE
1160 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1161 	map.virtual = FLUSH_BASE;
1162 	map.length = SZ_1M;
1163 	map.type = MT_CACHECLEAN;
1164 	create_mapping(&map);
1165 #endif
1166 #ifdef FLUSH_BASE_MINICACHE
1167 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1168 	map.virtual = FLUSH_BASE_MINICACHE;
1169 	map.length = SZ_1M;
1170 	map.type = MT_MINICLEAN;
1171 	create_mapping(&map);
1172 #endif
1173 
1174 	/*
1175 	 * Create a mapping for the machine vectors at the high-vectors
1176 	 * location (0xffff0000).  If we aren't using high-vectors, also
1177 	 * create a mapping at the low-vectors virtual address.
1178 	 */
1179 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1180 	map.virtual = 0xffff0000;
1181 	map.length = PAGE_SIZE;
1182 	map.type = MT_HIGH_VECTORS;
1183 	create_mapping(&map);
1184 
1185 	if (!vectors_high()) {
1186 		map.virtual = 0;
1187 		map.type = MT_LOW_VECTORS;
1188 		create_mapping(&map);
1189 	}
1190 
1191 	/*
1192 	 * Ask the machine support to map in the statically mapped devices.
1193 	 */
1194 	if (mdesc->map_io)
1195 		mdesc->map_io();
1196 	fill_pmd_gaps();
1197 
1198 	/* Reserve fixed i/o space in VMALLOC region */
1199 	pci_reserve_io();
1200 
1201 	/*
1202 	 * Finally flush the caches and tlb to ensure that we're in a
1203 	 * consistent state wrt the writebuffer.  This also ensures that
1204 	 * any write-allocated cache lines in the vector page are written
1205 	 * back.  After this point, we can start to touch devices again.
1206 	 */
1207 	local_flush_tlb_all();
1208 	flush_cache_all();
1209 }
1210 
1211 static void __init kmap_init(void)
1212 {
1213 #ifdef CONFIG_HIGHMEM
1214 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1215 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1216 #endif
1217 }
1218 
1219 static void __init map_lowmem(void)
1220 {
1221 	struct memblock_region *reg;
1222 
1223 	/* Map all the lowmem memory banks. */
1224 	for_each_memblock(memory, reg) {
1225 		phys_addr_t start = reg->base;
1226 		phys_addr_t end = start + reg->size;
1227 		struct map_desc map;
1228 
1229 		if (end > arm_lowmem_limit)
1230 			end = arm_lowmem_limit;
1231 		if (start >= end)
1232 			break;
1233 
1234 		map.pfn = __phys_to_pfn(start);
1235 		map.virtual = __phys_to_virt(start);
1236 		map.length = end - start;
1237 		map.type = MT_MEMORY;
1238 
1239 		create_mapping(&map);
1240 	}
1241 }
1242 
1243 /*
1244  * paging_init() sets up the page tables, initialises the zone memory
1245  * maps, and sets up the zero page, bad page and bad page tables.
1246  */
1247 void __init paging_init(struct machine_desc *mdesc)
1248 {
1249 	void *zero_page;
1250 
1251 	memblock_set_current_limit(arm_lowmem_limit);
1252 
1253 	build_mem_type_table();
1254 	prepare_page_table();
1255 	map_lowmem();
1256 	dma_contiguous_remap();
1257 	devicemaps_init(mdesc);
1258 	kmap_init();
1259 
1260 	top_pmd = pmd_off_k(0xffff0000);
1261 
1262 	/* allocate the zero page. */
1263 	zero_page = early_alloc(PAGE_SIZE);
1264 
1265 	bootmem_init();
1266 
1267 	empty_zero_page = virt_to_page(zero_page);
1268 	__flush_dcache_page(NULL, empty_zero_page);
1269 }
1270