xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 99b4ac9a)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35 
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40 
41 #include "mm.h"
42 #include "tcm.h"
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 #define CPOLICY_UNCACHED	0
57 #define CPOLICY_BUFFERED	1
58 #define CPOLICY_WRITETHROUGH	2
59 #define CPOLICY_WRITEBACK	3
60 #define CPOLICY_WRITEALLOC	4
61 
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
66 pgprot_t pgprot_hyp_device;
67 pgprot_t pgprot_s2;
68 pgprot_t pgprot_s2_device;
69 
70 EXPORT_SYMBOL(pgprot_user);
71 EXPORT_SYMBOL(pgprot_kernel);
72 
73 struct cachepolicy {
74 	const char	policy[16];
75 	unsigned int	cr_mask;
76 	pmdval_t	pmd;
77 	pteval_t	pte;
78 	pteval_t	pte_s2;
79 };
80 
81 #ifdef CONFIG_ARM_LPAE
82 #define s2_policy(policy)	policy
83 #else
84 #define s2_policy(policy)	0
85 #endif
86 
87 static struct cachepolicy cache_policies[] __initdata = {
88 	{
89 		.policy		= "uncached",
90 		.cr_mask	= CR_W|CR_C,
91 		.pmd		= PMD_SECT_UNCACHED,
92 		.pte		= L_PTE_MT_UNCACHED,
93 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
94 	}, {
95 		.policy		= "buffered",
96 		.cr_mask	= CR_C,
97 		.pmd		= PMD_SECT_BUFFERED,
98 		.pte		= L_PTE_MT_BUFFERABLE,
99 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
100 	}, {
101 		.policy		= "writethrough",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WT,
104 		.pte		= L_PTE_MT_WRITETHROUGH,
105 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
106 	}, {
107 		.policy		= "writeback",
108 		.cr_mask	= 0,
109 		.pmd		= PMD_SECT_WB,
110 		.pte		= L_PTE_MT_WRITEBACK,
111 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
112 	}, {
113 		.policy		= "writealloc",
114 		.cr_mask	= 0,
115 		.pmd		= PMD_SECT_WBWA,
116 		.pte		= L_PTE_MT_WRITEALLOC,
117 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
118 	}
119 };
120 
121 #ifdef CONFIG_CPU_CP15
122 static unsigned long initial_pmd_value __initdata = 0;
123 
124 /*
125  * Initialise the cache_policy variable with the initial state specified
126  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
127  * the C code sets the page tables up with the same policy as the head
128  * assembly code, which avoids an illegal state where the TLBs can get
129  * confused.  See comments in early_cachepolicy() for more information.
130  */
131 void __init init_default_cache_policy(unsigned long pmd)
132 {
133 	int i;
134 
135 	initial_pmd_value = pmd;
136 
137 	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
138 
139 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
140 		if (cache_policies[i].pmd == pmd) {
141 			cachepolicy = i;
142 			break;
143 		}
144 
145 	if (i == ARRAY_SIZE(cache_policies))
146 		pr_err("ERROR: could not find cache policy\n");
147 }
148 
149 /*
150  * These are useful for identifying cache coherency problems by allowing
151  * the cache or the cache and writebuffer to be turned off.  (Note: the
152  * write buffer should not be on and the cache off).
153  */
154 static int __init early_cachepolicy(char *p)
155 {
156 	int i, selected = -1;
157 
158 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
159 		int len = strlen(cache_policies[i].policy);
160 
161 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
162 			selected = i;
163 			break;
164 		}
165 	}
166 
167 	if (selected == -1)
168 		pr_err("ERROR: unknown or unsupported cache policy\n");
169 
170 	/*
171 	 * This restriction is partly to do with the way we boot; it is
172 	 * unpredictable to have memory mapped using two different sets of
173 	 * memory attributes (shared, type, and cache attribs).  We can not
174 	 * change these attributes once the initial assembly has setup the
175 	 * page tables.
176 	 */
177 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
178 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
179 			cache_policies[cachepolicy].policy);
180 		return 0;
181 	}
182 
183 	if (selected != cachepolicy) {
184 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
185 		cachepolicy = selected;
186 		flush_cache_all();
187 		set_cr(cr);
188 	}
189 	return 0;
190 }
191 early_param("cachepolicy", early_cachepolicy);
192 
193 static int __init early_nocache(char *__unused)
194 {
195 	char *p = "buffered";
196 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
197 	early_cachepolicy(p);
198 	return 0;
199 }
200 early_param("nocache", early_nocache);
201 
202 static int __init early_nowrite(char *__unused)
203 {
204 	char *p = "uncached";
205 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
206 	early_cachepolicy(p);
207 	return 0;
208 }
209 early_param("nowb", early_nowrite);
210 
211 #ifndef CONFIG_ARM_LPAE
212 static int __init early_ecc(char *p)
213 {
214 	if (memcmp(p, "on", 2) == 0)
215 		ecc_mask = PMD_PROTECTION;
216 	else if (memcmp(p, "off", 3) == 0)
217 		ecc_mask = 0;
218 	return 0;
219 }
220 early_param("ecc", early_ecc);
221 #endif
222 
223 #else /* ifdef CONFIG_CPU_CP15 */
224 
225 static int __init early_cachepolicy(char *p)
226 {
227 	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
228 }
229 early_param("cachepolicy", early_cachepolicy);
230 
231 static int __init noalign_setup(char *__unused)
232 {
233 	pr_warning("noalign kernel parameter not supported without cp15\n");
234 }
235 __setup("noalign", noalign_setup);
236 
237 #endif /* ifdef CONFIG_CPU_CP15 / else */
238 
239 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
240 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
241 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
242 
243 static struct mem_type mem_types[] = {
244 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
245 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
246 				  L_PTE_SHARED,
247 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
248 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
249 				  L_PTE_SHARED,
250 		.prot_l1	= PMD_TYPE_TABLE,
251 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
252 		.domain		= DOMAIN_IO,
253 	},
254 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
255 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
256 		.prot_l1	= PMD_TYPE_TABLE,
257 		.prot_sect	= PROT_SECT_DEVICE,
258 		.domain		= DOMAIN_IO,
259 	},
260 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
261 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
262 		.prot_l1	= PMD_TYPE_TABLE,
263 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
264 		.domain		= DOMAIN_IO,
265 	},
266 	[MT_DEVICE_WC] = {	/* ioremap_wc */
267 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
268 		.prot_l1	= PMD_TYPE_TABLE,
269 		.prot_sect	= PROT_SECT_DEVICE,
270 		.domain		= DOMAIN_IO,
271 	},
272 	[MT_UNCACHED] = {
273 		.prot_pte	= PROT_PTE_DEVICE,
274 		.prot_l1	= PMD_TYPE_TABLE,
275 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
276 		.domain		= DOMAIN_IO,
277 	},
278 	[MT_CACHECLEAN] = {
279 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
280 		.domain    = DOMAIN_KERNEL,
281 	},
282 #ifndef CONFIG_ARM_LPAE
283 	[MT_MINICLEAN] = {
284 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
285 		.domain    = DOMAIN_KERNEL,
286 	},
287 #endif
288 	[MT_LOW_VECTORS] = {
289 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
290 				L_PTE_RDONLY,
291 		.prot_l1   = PMD_TYPE_TABLE,
292 		.domain    = DOMAIN_USER,
293 	},
294 	[MT_HIGH_VECTORS] = {
295 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
296 				L_PTE_USER | L_PTE_RDONLY,
297 		.prot_l1   = PMD_TYPE_TABLE,
298 		.domain    = DOMAIN_USER,
299 	},
300 	[MT_MEMORY_RWX] = {
301 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
304 		.domain    = DOMAIN_KERNEL,
305 	},
306 	[MT_MEMORY_RW] = {
307 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
308 			     L_PTE_XN,
309 		.prot_l1   = PMD_TYPE_TABLE,
310 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
311 		.domain    = DOMAIN_KERNEL,
312 	},
313 	[MT_ROM] = {
314 		.prot_sect = PMD_TYPE_SECT,
315 		.domain    = DOMAIN_KERNEL,
316 	},
317 	[MT_MEMORY_RWX_NONCACHED] = {
318 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 				L_PTE_MT_BUFFERABLE,
320 		.prot_l1   = PMD_TYPE_TABLE,
321 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
322 		.domain    = DOMAIN_KERNEL,
323 	},
324 	[MT_MEMORY_RW_DTCM] = {
325 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
326 				L_PTE_XN,
327 		.prot_l1   = PMD_TYPE_TABLE,
328 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
329 		.domain    = DOMAIN_KERNEL,
330 	},
331 	[MT_MEMORY_RWX_ITCM] = {
332 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
333 		.prot_l1   = PMD_TYPE_TABLE,
334 		.domain    = DOMAIN_KERNEL,
335 	},
336 	[MT_MEMORY_RW_SO] = {
337 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
338 				L_PTE_MT_UNCACHED | L_PTE_XN,
339 		.prot_l1   = PMD_TYPE_TABLE,
340 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
341 				PMD_SECT_UNCACHED | PMD_SECT_XN,
342 		.domain    = DOMAIN_KERNEL,
343 	},
344 	[MT_MEMORY_DMA_READY] = {
345 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
346 				L_PTE_XN,
347 		.prot_l1   = PMD_TYPE_TABLE,
348 		.domain    = DOMAIN_KERNEL,
349 	},
350 };
351 
352 const struct mem_type *get_mem_type(unsigned int type)
353 {
354 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
355 }
356 EXPORT_SYMBOL(get_mem_type);
357 
358 #define PTE_SET_FN(_name, pteop) \
359 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
360 			void *data) \
361 { \
362 	pte_t pte = pteop(*ptep); \
363 \
364 	set_pte_ext(ptep, pte, 0); \
365 	return 0; \
366 } \
367 
368 #define SET_MEMORY_FN(_name, callback) \
369 int set_memory_##_name(unsigned long addr, int numpages) \
370 { \
371 	unsigned long start = addr; \
372 	unsigned long size = PAGE_SIZE*numpages; \
373 	unsigned end = start + size; \
374 \
375 	if (start < MODULES_VADDR || start >= MODULES_END) \
376 		return -EINVAL;\
377 \
378 	if (end < MODULES_VADDR || end >= MODULES_END) \
379 		return -EINVAL; \
380 \
381 	apply_to_page_range(&init_mm, start, size, callback, NULL); \
382 	flush_tlb_kernel_range(start, end); \
383 	return 0;\
384 }
385 
386 PTE_SET_FN(ro, pte_wrprotect)
387 PTE_SET_FN(rw, pte_mkwrite)
388 PTE_SET_FN(x, pte_mkexec)
389 PTE_SET_FN(nx, pte_mknexec)
390 
391 SET_MEMORY_FN(ro, pte_set_ro)
392 SET_MEMORY_FN(rw, pte_set_rw)
393 SET_MEMORY_FN(x, pte_set_x)
394 SET_MEMORY_FN(nx, pte_set_nx)
395 
396 /*
397  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
398  * As a result, this can only be called with preemption disabled, as under
399  * stop_machine().
400  */
401 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
402 {
403 	unsigned long vaddr = __fix_to_virt(idx);
404 	pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
405 
406 	/* Make sure fixmap region does not exceed available allocation. */
407 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
408 		     FIXADDR_END);
409 	BUG_ON(idx >= __end_of_fixed_addresses);
410 
411 	if (pgprot_val(prot))
412 		set_pte_at(NULL, vaddr, pte,
413 			pfn_pte(phys >> PAGE_SHIFT, prot));
414 	else
415 		pte_clear(NULL, vaddr, pte);
416 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417 }
418 
419 /*
420  * Adjust the PMD section entries according to the CPU in use.
421  */
422 static void __init build_mem_type_table(void)
423 {
424 	struct cachepolicy *cp;
425 	unsigned int cr = get_cr();
426 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
427 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
428 	int cpu_arch = cpu_architecture();
429 	int i;
430 
431 	if (cpu_arch < CPU_ARCH_ARMv6) {
432 #if defined(CONFIG_CPU_DCACHE_DISABLE)
433 		if (cachepolicy > CPOLICY_BUFFERED)
434 			cachepolicy = CPOLICY_BUFFERED;
435 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
436 		if (cachepolicy > CPOLICY_WRITETHROUGH)
437 			cachepolicy = CPOLICY_WRITETHROUGH;
438 #endif
439 	}
440 	if (cpu_arch < CPU_ARCH_ARMv5) {
441 		if (cachepolicy >= CPOLICY_WRITEALLOC)
442 			cachepolicy = CPOLICY_WRITEBACK;
443 		ecc_mask = 0;
444 	}
445 
446 	if (is_smp()) {
447 		if (cachepolicy != CPOLICY_WRITEALLOC) {
448 			pr_warn("Forcing write-allocate cache policy for SMP\n");
449 			cachepolicy = CPOLICY_WRITEALLOC;
450 		}
451 		if (!(initial_pmd_value & PMD_SECT_S)) {
452 			pr_warn("Forcing shared mappings for SMP\n");
453 			initial_pmd_value |= PMD_SECT_S;
454 		}
455 	}
456 
457 	/*
458 	 * Strip out features not present on earlier architectures.
459 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
460 	 * without extended page tables don't have the 'Shared' bit.
461 	 */
462 	if (cpu_arch < CPU_ARCH_ARMv5)
463 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
464 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
465 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
466 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
467 			mem_types[i].prot_sect &= ~PMD_SECT_S;
468 
469 	/*
470 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
471 	 * "update-able on write" bit on ARM610).  However, Xscale and
472 	 * Xscale3 require this bit to be cleared.
473 	 */
474 	if (cpu_is_xscale() || cpu_is_xsc3()) {
475 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 			mem_types[i].prot_sect &= ~PMD_BIT4;
477 			mem_types[i].prot_l1 &= ~PMD_BIT4;
478 		}
479 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
480 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 			if (mem_types[i].prot_l1)
482 				mem_types[i].prot_l1 |= PMD_BIT4;
483 			if (mem_types[i].prot_sect)
484 				mem_types[i].prot_sect |= PMD_BIT4;
485 		}
486 	}
487 
488 	/*
489 	 * Mark the device areas according to the CPU/architecture.
490 	 */
491 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
492 		if (!cpu_is_xsc3()) {
493 			/*
494 			 * Mark device regions on ARMv6+ as execute-never
495 			 * to prevent speculative instruction fetches.
496 			 */
497 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
498 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
499 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
500 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
501 
502 			/* Also setup NX memory mapping */
503 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
504 		}
505 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
506 			/*
507 			 * For ARMv7 with TEX remapping,
508 			 * - shared device is SXCB=1100
509 			 * - nonshared device is SXCB=0100
510 			 * - write combine device mem is SXCB=0001
511 			 * (Uncached Normal memory)
512 			 */
513 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
514 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
515 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
516 		} else if (cpu_is_xsc3()) {
517 			/*
518 			 * For Xscale3,
519 			 * - shared device is TEXCB=00101
520 			 * - nonshared device is TEXCB=01000
521 			 * - write combine device mem is TEXCB=00100
522 			 * (Inner/Outer Uncacheable in xsc3 parlance)
523 			 */
524 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
525 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
526 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
527 		} else {
528 			/*
529 			 * For ARMv6 and ARMv7 without TEX remapping,
530 			 * - shared device is TEXCB=00001
531 			 * - nonshared device is TEXCB=01000
532 			 * - write combine device mem is TEXCB=00100
533 			 * (Uncached Normal in ARMv6 parlance).
534 			 */
535 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
536 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
537 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
538 		}
539 	} else {
540 		/*
541 		 * On others, write combining is "Uncached/Buffered"
542 		 */
543 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
544 	}
545 
546 	/*
547 	 * Now deal with the memory-type mappings
548 	 */
549 	cp = &cache_policies[cachepolicy];
550 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
551 	s2_pgprot = cp->pte_s2;
552 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
553 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
554 
555 	/*
556 	 * We don't use domains on ARMv6 (since this causes problems with
557 	 * v6/v7 kernels), so we must use a separate memory type for user
558 	 * r/o, kernel r/w to map the vectors page.
559 	 */
560 #ifndef CONFIG_ARM_LPAE
561 	if (cpu_arch == CPU_ARCH_ARMv6)
562 		vecs_pgprot |= L_PTE_MT_VECTORS;
563 #endif
564 
565 	/*
566 	 * ARMv6 and above have extended page tables.
567 	 */
568 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
569 #ifndef CONFIG_ARM_LPAE
570 		/*
571 		 * Mark cache clean areas and XIP ROM read only
572 		 * from SVC mode and no access from userspace.
573 		 */
574 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
575 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
576 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
577 #endif
578 
579 		/*
580 		 * If the initial page tables were created with the S bit
581 		 * set, then we need to do the same here for the same
582 		 * reasons given in early_cachepolicy().
583 		 */
584 		if (initial_pmd_value & PMD_SECT_S) {
585 			user_pgprot |= L_PTE_SHARED;
586 			kern_pgprot |= L_PTE_SHARED;
587 			vecs_pgprot |= L_PTE_SHARED;
588 			s2_pgprot |= L_PTE_SHARED;
589 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
590 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
591 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
592 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
593 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
594 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
595 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
596 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
597 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
598 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
599 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
600 		}
601 	}
602 
603 	/*
604 	 * Non-cacheable Normal - intended for memory areas that must
605 	 * not cause dirty cache line writebacks when used
606 	 */
607 	if (cpu_arch >= CPU_ARCH_ARMv6) {
608 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
609 			/* Non-cacheable Normal is XCB = 001 */
610 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
611 				PMD_SECT_BUFFERED;
612 		} else {
613 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
614 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
615 				PMD_SECT_TEX(1);
616 		}
617 	} else {
618 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
619 	}
620 
621 #ifdef CONFIG_ARM_LPAE
622 	/*
623 	 * Do not generate access flag faults for the kernel mappings.
624 	 */
625 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
626 		mem_types[i].prot_pte |= PTE_EXT_AF;
627 		if (mem_types[i].prot_sect)
628 			mem_types[i].prot_sect |= PMD_SECT_AF;
629 	}
630 	kern_pgprot |= PTE_EXT_AF;
631 	vecs_pgprot |= PTE_EXT_AF;
632 #endif
633 
634 	for (i = 0; i < 16; i++) {
635 		pteval_t v = pgprot_val(protection_map[i]);
636 		protection_map[i] = __pgprot(v | user_pgprot);
637 	}
638 
639 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
640 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
641 
642 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
643 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
644 				 L_PTE_DIRTY | kern_pgprot);
645 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
646 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
647 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
648 
649 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
650 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
651 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
652 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
653 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
654 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
655 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
656 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
657 	mem_types[MT_ROM].prot_sect |= cp->pmd;
658 
659 	switch (cp->pmd) {
660 	case PMD_SECT_WT:
661 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
662 		break;
663 	case PMD_SECT_WB:
664 	case PMD_SECT_WBWA:
665 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
666 		break;
667 	}
668 	pr_info("Memory policy: %sData cache %s\n",
669 		ecc_mask ? "ECC enabled, " : "", cp->policy);
670 
671 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
672 		struct mem_type *t = &mem_types[i];
673 		if (t->prot_l1)
674 			t->prot_l1 |= PMD_DOMAIN(t->domain);
675 		if (t->prot_sect)
676 			t->prot_sect |= PMD_DOMAIN(t->domain);
677 	}
678 }
679 
680 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
681 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
682 			      unsigned long size, pgprot_t vma_prot)
683 {
684 	if (!pfn_valid(pfn))
685 		return pgprot_noncached(vma_prot);
686 	else if (file->f_flags & O_SYNC)
687 		return pgprot_writecombine(vma_prot);
688 	return vma_prot;
689 }
690 EXPORT_SYMBOL(phys_mem_access_prot);
691 #endif
692 
693 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
694 
695 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
696 {
697 	void *ptr = __va(memblock_alloc(sz, align));
698 	memset(ptr, 0, sz);
699 	return ptr;
700 }
701 
702 static void __init *early_alloc(unsigned long sz)
703 {
704 	return early_alloc_aligned(sz, sz);
705 }
706 
707 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
708 {
709 	if (pmd_none(*pmd)) {
710 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
711 		__pmd_populate(pmd, __pa(pte), prot);
712 	}
713 	BUG_ON(pmd_bad(*pmd));
714 	return pte_offset_kernel(pmd, addr);
715 }
716 
717 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
718 				  unsigned long end, unsigned long pfn,
719 				  const struct mem_type *type)
720 {
721 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
722 	do {
723 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
724 		pfn++;
725 	} while (pte++, addr += PAGE_SIZE, addr != end);
726 }
727 
728 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
729 			unsigned long end, phys_addr_t phys,
730 			const struct mem_type *type)
731 {
732 	pmd_t *p = pmd;
733 
734 #ifndef CONFIG_ARM_LPAE
735 	/*
736 	 * In classic MMU format, puds and pmds are folded in to
737 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
738 	 * group of L1 entries making up one logical pointer to
739 	 * an L2 table (2MB), where as PMDs refer to the individual
740 	 * L1 entries (1MB). Hence increment to get the correct
741 	 * offset for odd 1MB sections.
742 	 * (See arch/arm/include/asm/pgtable-2level.h)
743 	 */
744 	if (addr & SECTION_SIZE)
745 		pmd++;
746 #endif
747 	do {
748 		*pmd = __pmd(phys | type->prot_sect);
749 		phys += SECTION_SIZE;
750 	} while (pmd++, addr += SECTION_SIZE, addr != end);
751 
752 	flush_pmd_entry(p);
753 }
754 
755 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
756 				      unsigned long end, phys_addr_t phys,
757 				      const struct mem_type *type)
758 {
759 	pmd_t *pmd = pmd_offset(pud, addr);
760 	unsigned long next;
761 
762 	do {
763 		/*
764 		 * With LPAE, we must loop over to map
765 		 * all the pmds for the given range.
766 		 */
767 		next = pmd_addr_end(addr, end);
768 
769 		/*
770 		 * Try a section mapping - addr, next and phys must all be
771 		 * aligned to a section boundary.
772 		 */
773 		if (type->prot_sect &&
774 				((addr | next | phys) & ~SECTION_MASK) == 0) {
775 			__map_init_section(pmd, addr, next, phys, type);
776 		} else {
777 			alloc_init_pte(pmd, addr, next,
778 						__phys_to_pfn(phys), type);
779 		}
780 
781 		phys += next - addr;
782 
783 	} while (pmd++, addr = next, addr != end);
784 }
785 
786 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
787 				  unsigned long end, phys_addr_t phys,
788 				  const struct mem_type *type)
789 {
790 	pud_t *pud = pud_offset(pgd, addr);
791 	unsigned long next;
792 
793 	do {
794 		next = pud_addr_end(addr, end);
795 		alloc_init_pmd(pud, addr, next, phys, type);
796 		phys += next - addr;
797 	} while (pud++, addr = next, addr != end);
798 }
799 
800 #ifndef CONFIG_ARM_LPAE
801 static void __init create_36bit_mapping(struct map_desc *md,
802 					const struct mem_type *type)
803 {
804 	unsigned long addr, length, end;
805 	phys_addr_t phys;
806 	pgd_t *pgd;
807 
808 	addr = md->virtual;
809 	phys = __pfn_to_phys(md->pfn);
810 	length = PAGE_ALIGN(md->length);
811 
812 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
813 		printk(KERN_ERR "MM: CPU does not support supersection "
814 		       "mapping for 0x%08llx at 0x%08lx\n",
815 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
816 		return;
817 	}
818 
819 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
820 	 *	Since domain assignments can in fact be arbitrary, the
821 	 *	'domain == 0' check below is required to insure that ARMv6
822 	 *	supersections are only allocated for domain 0 regardless
823 	 *	of the actual domain assignments in use.
824 	 */
825 	if (type->domain) {
826 		printk(KERN_ERR "MM: invalid domain in supersection "
827 		       "mapping for 0x%08llx at 0x%08lx\n",
828 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
829 		return;
830 	}
831 
832 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
833 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
834 		       " at 0x%08lx invalid alignment\n",
835 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
836 		return;
837 	}
838 
839 	/*
840 	 * Shift bits [35:32] of address into bits [23:20] of PMD
841 	 * (See ARMv6 spec).
842 	 */
843 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
844 
845 	pgd = pgd_offset_k(addr);
846 	end = addr + length;
847 	do {
848 		pud_t *pud = pud_offset(pgd, addr);
849 		pmd_t *pmd = pmd_offset(pud, addr);
850 		int i;
851 
852 		for (i = 0; i < 16; i++)
853 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
854 
855 		addr += SUPERSECTION_SIZE;
856 		phys += SUPERSECTION_SIZE;
857 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
858 	} while (addr != end);
859 }
860 #endif	/* !CONFIG_ARM_LPAE */
861 
862 /*
863  * Create the page directory entries and any necessary
864  * page tables for the mapping specified by `md'.  We
865  * are able to cope here with varying sizes and address
866  * offsets, and we take full advantage of sections and
867  * supersections.
868  */
869 static void __init create_mapping(struct map_desc *md)
870 {
871 	unsigned long addr, length, end;
872 	phys_addr_t phys;
873 	const struct mem_type *type;
874 	pgd_t *pgd;
875 
876 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
877 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
878 		       " at 0x%08lx in user region\n",
879 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
880 		return;
881 	}
882 
883 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
884 	    md->virtual >= PAGE_OFFSET &&
885 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
886 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
887 		       " at 0x%08lx out of vmalloc space\n",
888 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
889 	}
890 
891 	type = &mem_types[md->type];
892 
893 #ifndef CONFIG_ARM_LPAE
894 	/*
895 	 * Catch 36-bit addresses
896 	 */
897 	if (md->pfn >= 0x100000) {
898 		create_36bit_mapping(md, type);
899 		return;
900 	}
901 #endif
902 
903 	addr = md->virtual & PAGE_MASK;
904 	phys = __pfn_to_phys(md->pfn);
905 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
906 
907 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
908 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
909 		       "be mapped using pages, ignoring.\n",
910 		       (long long)__pfn_to_phys(md->pfn), addr);
911 		return;
912 	}
913 
914 	pgd = pgd_offset_k(addr);
915 	end = addr + length;
916 	do {
917 		unsigned long next = pgd_addr_end(addr, end);
918 
919 		alloc_init_pud(pgd, addr, next, phys, type);
920 
921 		phys += next - addr;
922 		addr = next;
923 	} while (pgd++, addr != end);
924 }
925 
926 /*
927  * Create the architecture specific mappings
928  */
929 void __init iotable_init(struct map_desc *io_desc, int nr)
930 {
931 	struct map_desc *md;
932 	struct vm_struct *vm;
933 	struct static_vm *svm;
934 
935 	if (!nr)
936 		return;
937 
938 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
939 
940 	for (md = io_desc; nr; md++, nr--) {
941 		create_mapping(md);
942 
943 		vm = &svm->vm;
944 		vm->addr = (void *)(md->virtual & PAGE_MASK);
945 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
946 		vm->phys_addr = __pfn_to_phys(md->pfn);
947 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
948 		vm->flags |= VM_ARM_MTYPE(md->type);
949 		vm->caller = iotable_init;
950 		add_static_vm_early(svm++);
951 	}
952 }
953 
954 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
955 				  void *caller)
956 {
957 	struct vm_struct *vm;
958 	struct static_vm *svm;
959 
960 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
961 
962 	vm = &svm->vm;
963 	vm->addr = (void *)addr;
964 	vm->size = size;
965 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
966 	vm->caller = caller;
967 	add_static_vm_early(svm);
968 }
969 
970 #ifndef CONFIG_ARM_LPAE
971 
972 /*
973  * The Linux PMD is made of two consecutive section entries covering 2MB
974  * (see definition in include/asm/pgtable-2level.h).  However a call to
975  * create_mapping() may optimize static mappings by using individual
976  * 1MB section mappings.  This leaves the actual PMD potentially half
977  * initialized if the top or bottom section entry isn't used, leaving it
978  * open to problems if a subsequent ioremap() or vmalloc() tries to use
979  * the virtual space left free by that unused section entry.
980  *
981  * Let's avoid the issue by inserting dummy vm entries covering the unused
982  * PMD halves once the static mappings are in place.
983  */
984 
985 static void __init pmd_empty_section_gap(unsigned long addr)
986 {
987 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
988 }
989 
990 static void __init fill_pmd_gaps(void)
991 {
992 	struct static_vm *svm;
993 	struct vm_struct *vm;
994 	unsigned long addr, next = 0;
995 	pmd_t *pmd;
996 
997 	list_for_each_entry(svm, &static_vmlist, list) {
998 		vm = &svm->vm;
999 		addr = (unsigned long)vm->addr;
1000 		if (addr < next)
1001 			continue;
1002 
1003 		/*
1004 		 * Check if this vm starts on an odd section boundary.
1005 		 * If so and the first section entry for this PMD is free
1006 		 * then we block the corresponding virtual address.
1007 		 */
1008 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1009 			pmd = pmd_off_k(addr);
1010 			if (pmd_none(*pmd))
1011 				pmd_empty_section_gap(addr & PMD_MASK);
1012 		}
1013 
1014 		/*
1015 		 * Then check if this vm ends on an odd section boundary.
1016 		 * If so and the second section entry for this PMD is empty
1017 		 * then we block the corresponding virtual address.
1018 		 */
1019 		addr += vm->size;
1020 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1021 			pmd = pmd_off_k(addr) + 1;
1022 			if (pmd_none(*pmd))
1023 				pmd_empty_section_gap(addr);
1024 		}
1025 
1026 		/* no need to look at any vm entry until we hit the next PMD */
1027 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1028 	}
1029 }
1030 
1031 #else
1032 #define fill_pmd_gaps() do { } while (0)
1033 #endif
1034 
1035 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1036 static void __init pci_reserve_io(void)
1037 {
1038 	struct static_vm *svm;
1039 
1040 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1041 	if (svm)
1042 		return;
1043 
1044 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1045 }
1046 #else
1047 #define pci_reserve_io() do { } while (0)
1048 #endif
1049 
1050 #ifdef CONFIG_DEBUG_LL
1051 void __init debug_ll_io_init(void)
1052 {
1053 	struct map_desc map;
1054 
1055 	debug_ll_addr(&map.pfn, &map.virtual);
1056 	if (!map.pfn || !map.virtual)
1057 		return;
1058 	map.pfn = __phys_to_pfn(map.pfn);
1059 	map.virtual &= PAGE_MASK;
1060 	map.length = PAGE_SIZE;
1061 	map.type = MT_DEVICE;
1062 	iotable_init(&map, 1);
1063 }
1064 #endif
1065 
1066 static void * __initdata vmalloc_min =
1067 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1068 
1069 /*
1070  * vmalloc=size forces the vmalloc area to be exactly 'size'
1071  * bytes. This can be used to increase (or decrease) the vmalloc
1072  * area - the default is 240m.
1073  */
1074 static int __init early_vmalloc(char *arg)
1075 {
1076 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1077 
1078 	if (vmalloc_reserve < SZ_16M) {
1079 		vmalloc_reserve = SZ_16M;
1080 		printk(KERN_WARNING
1081 			"vmalloc area too small, limiting to %luMB\n",
1082 			vmalloc_reserve >> 20);
1083 	}
1084 
1085 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1086 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1087 		printk(KERN_WARNING
1088 			"vmalloc area is too big, limiting to %luMB\n",
1089 			vmalloc_reserve >> 20);
1090 	}
1091 
1092 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1093 	return 0;
1094 }
1095 early_param("vmalloc", early_vmalloc);
1096 
1097 phys_addr_t arm_lowmem_limit __initdata = 0;
1098 
1099 void __init sanity_check_meminfo(void)
1100 {
1101 	phys_addr_t memblock_limit = 0;
1102 	int highmem = 0;
1103 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1104 	struct memblock_region *reg;
1105 
1106 	for_each_memblock(memory, reg) {
1107 		phys_addr_t block_start = reg->base;
1108 		phys_addr_t block_end = reg->base + reg->size;
1109 		phys_addr_t size_limit = reg->size;
1110 
1111 		if (reg->base >= vmalloc_limit)
1112 			highmem = 1;
1113 		else
1114 			size_limit = vmalloc_limit - reg->base;
1115 
1116 
1117 		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1118 
1119 			if (highmem) {
1120 				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1121 					&block_start, &block_end);
1122 				memblock_remove(reg->base, reg->size);
1123 				continue;
1124 			}
1125 
1126 			if (reg->size > size_limit) {
1127 				phys_addr_t overlap_size = reg->size - size_limit;
1128 
1129 				pr_notice("Truncating RAM at %pa-%pa to -%pa",
1130 				      &block_start, &block_end, &vmalloc_limit);
1131 				memblock_remove(vmalloc_limit, overlap_size);
1132 				block_end = vmalloc_limit;
1133 			}
1134 		}
1135 
1136 		if (!highmem) {
1137 			if (block_end > arm_lowmem_limit) {
1138 				if (reg->size > size_limit)
1139 					arm_lowmem_limit = vmalloc_limit;
1140 				else
1141 					arm_lowmem_limit = block_end;
1142 			}
1143 
1144 			/*
1145 			 * Find the first non-section-aligned page, and point
1146 			 * memblock_limit at it. This relies on rounding the
1147 			 * limit down to be section-aligned, which happens at
1148 			 * the end of this function.
1149 			 *
1150 			 * With this algorithm, the start or end of almost any
1151 			 * bank can be non-section-aligned. The only exception
1152 			 * is that the start of the bank 0 must be section-
1153 			 * aligned, since otherwise memory would need to be
1154 			 * allocated when mapping the start of bank 0, which
1155 			 * occurs before any free memory is mapped.
1156 			 */
1157 			if (!memblock_limit) {
1158 				if (!IS_ALIGNED(block_start, SECTION_SIZE))
1159 					memblock_limit = block_start;
1160 				else if (!IS_ALIGNED(block_end, SECTION_SIZE))
1161 					memblock_limit = arm_lowmem_limit;
1162 			}
1163 
1164 		}
1165 	}
1166 
1167 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1168 
1169 	/*
1170 	 * Round the memblock limit down to a section size.  This
1171 	 * helps to ensure that we will allocate memory from the
1172 	 * last full section, which should be mapped.
1173 	 */
1174 	if (memblock_limit)
1175 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1176 	if (!memblock_limit)
1177 		memblock_limit = arm_lowmem_limit;
1178 
1179 	memblock_set_current_limit(memblock_limit);
1180 }
1181 
1182 static inline void prepare_page_table(void)
1183 {
1184 	unsigned long addr;
1185 	phys_addr_t end;
1186 
1187 	/*
1188 	 * Clear out all the mappings below the kernel image.
1189 	 */
1190 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1191 		pmd_clear(pmd_off_k(addr));
1192 
1193 #ifdef CONFIG_XIP_KERNEL
1194 	/* The XIP kernel is mapped in the module area -- skip over it */
1195 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1196 #endif
1197 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1198 		pmd_clear(pmd_off_k(addr));
1199 
1200 	/*
1201 	 * Find the end of the first block of lowmem.
1202 	 */
1203 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1204 	if (end >= arm_lowmem_limit)
1205 		end = arm_lowmem_limit;
1206 
1207 	/*
1208 	 * Clear out all the kernel space mappings, except for the first
1209 	 * memory bank, up to the vmalloc region.
1210 	 */
1211 	for (addr = __phys_to_virt(end);
1212 	     addr < VMALLOC_START; addr += PMD_SIZE)
1213 		pmd_clear(pmd_off_k(addr));
1214 }
1215 
1216 #ifdef CONFIG_ARM_LPAE
1217 /* the first page is reserved for pgd */
1218 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1219 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1220 #else
1221 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1222 #endif
1223 
1224 /*
1225  * Reserve the special regions of memory
1226  */
1227 void __init arm_mm_memblock_reserve(void)
1228 {
1229 	/*
1230 	 * Reserve the page tables.  These are already in use,
1231 	 * and can only be in node 0.
1232 	 */
1233 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1234 
1235 #ifdef CONFIG_SA1111
1236 	/*
1237 	 * Because of the SA1111 DMA bug, we want to preserve our
1238 	 * precious DMA-able memory...
1239 	 */
1240 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1241 #endif
1242 }
1243 
1244 /*
1245  * Set up the device mappings.  Since we clear out the page tables for all
1246  * mappings above VMALLOC_START, we will remove any debug device mappings.
1247  * This means you have to be careful how you debug this function, or any
1248  * called function.  This means you can't use any function or debugging
1249  * method which may touch any device, otherwise the kernel _will_ crash.
1250  */
1251 static void __init devicemaps_init(const struct machine_desc *mdesc)
1252 {
1253 	struct map_desc map;
1254 	unsigned long addr;
1255 	void *vectors;
1256 
1257 	/*
1258 	 * Allocate the vector page early.
1259 	 */
1260 	vectors = early_alloc(PAGE_SIZE * 2);
1261 
1262 	early_trap_init(vectors);
1263 
1264 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1265 		pmd_clear(pmd_off_k(addr));
1266 
1267 	/*
1268 	 * Map the kernel if it is XIP.
1269 	 * It is always first in the modulearea.
1270 	 */
1271 #ifdef CONFIG_XIP_KERNEL
1272 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1273 	map.virtual = MODULES_VADDR;
1274 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1275 	map.type = MT_ROM;
1276 	create_mapping(&map);
1277 #endif
1278 
1279 	/*
1280 	 * Map the cache flushing regions.
1281 	 */
1282 #ifdef FLUSH_BASE
1283 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1284 	map.virtual = FLUSH_BASE;
1285 	map.length = SZ_1M;
1286 	map.type = MT_CACHECLEAN;
1287 	create_mapping(&map);
1288 #endif
1289 #ifdef FLUSH_BASE_MINICACHE
1290 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1291 	map.virtual = FLUSH_BASE_MINICACHE;
1292 	map.length = SZ_1M;
1293 	map.type = MT_MINICLEAN;
1294 	create_mapping(&map);
1295 #endif
1296 
1297 	/*
1298 	 * Create a mapping for the machine vectors at the high-vectors
1299 	 * location (0xffff0000).  If we aren't using high-vectors, also
1300 	 * create a mapping at the low-vectors virtual address.
1301 	 */
1302 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1303 	map.virtual = 0xffff0000;
1304 	map.length = PAGE_SIZE;
1305 #ifdef CONFIG_KUSER_HELPERS
1306 	map.type = MT_HIGH_VECTORS;
1307 #else
1308 	map.type = MT_LOW_VECTORS;
1309 #endif
1310 	create_mapping(&map);
1311 
1312 	if (!vectors_high()) {
1313 		map.virtual = 0;
1314 		map.length = PAGE_SIZE * 2;
1315 		map.type = MT_LOW_VECTORS;
1316 		create_mapping(&map);
1317 	}
1318 
1319 	/* Now create a kernel read-only mapping */
1320 	map.pfn += 1;
1321 	map.virtual = 0xffff0000 + PAGE_SIZE;
1322 	map.length = PAGE_SIZE;
1323 	map.type = MT_LOW_VECTORS;
1324 	create_mapping(&map);
1325 
1326 	/*
1327 	 * Ask the machine support to map in the statically mapped devices.
1328 	 */
1329 	if (mdesc->map_io)
1330 		mdesc->map_io();
1331 	else
1332 		debug_ll_io_init();
1333 	fill_pmd_gaps();
1334 
1335 	/* Reserve fixed i/o space in VMALLOC region */
1336 	pci_reserve_io();
1337 
1338 	/*
1339 	 * Finally flush the caches and tlb to ensure that we're in a
1340 	 * consistent state wrt the writebuffer.  This also ensures that
1341 	 * any write-allocated cache lines in the vector page are written
1342 	 * back.  After this point, we can start to touch devices again.
1343 	 */
1344 	local_flush_tlb_all();
1345 	flush_cache_all();
1346 }
1347 
1348 static void __init kmap_init(void)
1349 {
1350 #ifdef CONFIG_HIGHMEM
1351 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1352 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1353 #endif
1354 
1355 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1356 			_PAGE_KERNEL_TABLE);
1357 }
1358 
1359 static void __init map_lowmem(void)
1360 {
1361 	struct memblock_region *reg;
1362 	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1363 	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1364 
1365 	/* Map all the lowmem memory banks. */
1366 	for_each_memblock(memory, reg) {
1367 		phys_addr_t start = reg->base;
1368 		phys_addr_t end = start + reg->size;
1369 		struct map_desc map;
1370 
1371 		if (end > arm_lowmem_limit)
1372 			end = arm_lowmem_limit;
1373 		if (start >= end)
1374 			break;
1375 
1376 		if (end < kernel_x_start || start >= kernel_x_end) {
1377 			map.pfn = __phys_to_pfn(start);
1378 			map.virtual = __phys_to_virt(start);
1379 			map.length = end - start;
1380 			map.type = MT_MEMORY_RWX;
1381 
1382 			create_mapping(&map);
1383 		} else {
1384 			/* This better cover the entire kernel */
1385 			if (start < kernel_x_start) {
1386 				map.pfn = __phys_to_pfn(start);
1387 				map.virtual = __phys_to_virt(start);
1388 				map.length = kernel_x_start - start;
1389 				map.type = MT_MEMORY_RW;
1390 
1391 				create_mapping(&map);
1392 			}
1393 
1394 			map.pfn = __phys_to_pfn(kernel_x_start);
1395 			map.virtual = __phys_to_virt(kernel_x_start);
1396 			map.length = kernel_x_end - kernel_x_start;
1397 			map.type = MT_MEMORY_RWX;
1398 
1399 			create_mapping(&map);
1400 
1401 			if (kernel_x_end < end) {
1402 				map.pfn = __phys_to_pfn(kernel_x_end);
1403 				map.virtual = __phys_to_virt(kernel_x_end);
1404 				map.length = end - kernel_x_end;
1405 				map.type = MT_MEMORY_RW;
1406 
1407 				create_mapping(&map);
1408 			}
1409 		}
1410 	}
1411 }
1412 
1413 #ifdef CONFIG_ARM_LPAE
1414 /*
1415  * early_paging_init() recreates boot time page table setup, allowing machines
1416  * to switch over to a high (>4G) address space on LPAE systems
1417  */
1418 void __init early_paging_init(const struct machine_desc *mdesc,
1419 			      struct proc_info_list *procinfo)
1420 {
1421 	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1422 	unsigned long map_start, map_end;
1423 	pgd_t *pgd0, *pgdk;
1424 	pud_t *pud0, *pudk, *pud_start;
1425 	pmd_t *pmd0, *pmdk;
1426 	phys_addr_t phys;
1427 	int i;
1428 
1429 	if (!(mdesc->init_meminfo))
1430 		return;
1431 
1432 	/* remap kernel code and data */
1433 	map_start = init_mm.start_code & PMD_MASK;
1434 	map_end   = ALIGN(init_mm.brk, PMD_SIZE);
1435 
1436 	/* get a handle on things... */
1437 	pgd0 = pgd_offset_k(0);
1438 	pud_start = pud0 = pud_offset(pgd0, 0);
1439 	pmd0 = pmd_offset(pud0, 0);
1440 
1441 	pgdk = pgd_offset_k(map_start);
1442 	pudk = pud_offset(pgdk, map_start);
1443 	pmdk = pmd_offset(pudk, map_start);
1444 
1445 	mdesc->init_meminfo();
1446 
1447 	/* Run the patch stub to update the constants */
1448 	fixup_pv_table(&__pv_table_begin,
1449 		(&__pv_table_end - &__pv_table_begin) << 2);
1450 
1451 	/*
1452 	 * Cache cleaning operations for self-modifying code
1453 	 * We should clean the entries by MVA but running a
1454 	 * for loop over every pv_table entry pointer would
1455 	 * just complicate the code.
1456 	 */
1457 	flush_cache_louis();
1458 	dsb(ishst);
1459 	isb();
1460 
1461 	/*
1462 	 * FIXME: This code is not architecturally compliant: we modify
1463 	 * the mappings in-place, indeed while they are in use by this
1464 	 * very same code.  This may lead to unpredictable behaviour of
1465 	 * the CPU.
1466 	 *
1467 	 * Even modifying the mappings in a separate page table does
1468 	 * not resolve this.
1469 	 *
1470 	 * The architecture strongly recommends that when a mapping is
1471 	 * changed, that it is changed by first going via an invalid
1472 	 * mapping and back to the new mapping.  This is to ensure that
1473 	 * no TLB conflicts (caused by the TLB having more than one TLB
1474 	 * entry match a translation) can occur.  However, doing that
1475 	 * here will result in unmapping the code we are running.
1476 	 */
1477 	pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1478 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1479 
1480 	/*
1481 	 * Remap level 1 table.  This changes the physical addresses
1482 	 * used to refer to the level 2 page tables to the high
1483 	 * physical address alias, leaving everything else the same.
1484 	 */
1485 	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1486 		set_pud(pud0,
1487 			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1488 		pmd0 += PTRS_PER_PMD;
1489 	}
1490 
1491 	/*
1492 	 * Remap the level 2 table, pointing the mappings at the high
1493 	 * physical address alias of these pages.
1494 	 */
1495 	phys = __pa(map_start);
1496 	do {
1497 		*pmdk++ = __pmd(phys | pmdprot);
1498 		phys += PMD_SIZE;
1499 	} while (phys < map_end);
1500 
1501 	/*
1502 	 * Ensure that the above updates are flushed out of the cache.
1503 	 * This is not strictly correct; on a system where the caches
1504 	 * are coherent with each other, but the MMU page table walks
1505 	 * may not be coherent, flush_cache_all() may be a no-op, and
1506 	 * this will fail.
1507 	 */
1508 	flush_cache_all();
1509 
1510 	/*
1511 	 * Re-write the TTBR values to point them at the high physical
1512 	 * alias of the page tables.  We expect __va() will work on
1513 	 * cpu_get_pgd(), which returns the value of TTBR0.
1514 	 */
1515 	cpu_switch_mm(pgd0, &init_mm);
1516 	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1517 
1518 	/* Finally flush any stale TLB values. */
1519 	local_flush_bp_all();
1520 	local_flush_tlb_all();
1521 }
1522 
1523 #else
1524 
1525 void __init early_paging_init(const struct machine_desc *mdesc,
1526 			      struct proc_info_list *procinfo)
1527 {
1528 	if (mdesc->init_meminfo)
1529 		mdesc->init_meminfo();
1530 }
1531 
1532 #endif
1533 
1534 /*
1535  * paging_init() sets up the page tables, initialises the zone memory
1536  * maps, and sets up the zero page, bad page and bad page tables.
1537  */
1538 void __init paging_init(const struct machine_desc *mdesc)
1539 {
1540 	void *zero_page;
1541 
1542 	build_mem_type_table();
1543 	prepare_page_table();
1544 	map_lowmem();
1545 	dma_contiguous_remap();
1546 	devicemaps_init(mdesc);
1547 	kmap_init();
1548 	tcm_init();
1549 
1550 	top_pmd = pmd_off_k(0xffff0000);
1551 
1552 	/* allocate the zero page. */
1553 	zero_page = early_alloc(PAGE_SIZE);
1554 
1555 	bootmem_init();
1556 
1557 	empty_zero_page = virt_to_page(zero_page);
1558 	__flush_dcache_page(NULL, empty_zero_page);
1559 }
1560