1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/mmu.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 */ 7 #include <linux/module.h> 8 #include <linux/kernel.h> 9 #include <linux/errno.h> 10 #include <linux/init.h> 11 #include <linux/mman.h> 12 #include <linux/nodemask.h> 13 #include <linux/memblock.h> 14 #include <linux/fs.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sizes.h> 17 18 #include <asm/cp15.h> 19 #include <asm/cputype.h> 20 #include <asm/cachetype.h> 21 #include <asm/fixmap.h> 22 #include <asm/sections.h> 23 #include <asm/setup.h> 24 #include <asm/smp_plat.h> 25 #include <asm/tlb.h> 26 #include <asm/highmem.h> 27 #include <asm/system_info.h> 28 #include <asm/traps.h> 29 #include <asm/procinfo.h> 30 #include <asm/memory.h> 31 #include <asm/pgalloc.h> 32 33 #include <asm/mach/arch.h> 34 #include <asm/mach/map.h> 35 #include <asm/mach/pci.h> 36 #include <asm/fixmap.h> 37 38 #include "fault.h" 39 #include "mm.h" 40 #include "tcm.h" 41 42 /* 43 * empty_zero_page is a special page that is used for 44 * zero-initialized data and COW. 45 */ 46 struct page *empty_zero_page; 47 EXPORT_SYMBOL(empty_zero_page); 48 49 /* 50 * The pmd table for the upper-most set of pages. 51 */ 52 pmd_t *top_pmd; 53 54 pmdval_t user_pmd_table = _PAGE_USER_TABLE; 55 56 #define CPOLICY_UNCACHED 0 57 #define CPOLICY_BUFFERED 1 58 #define CPOLICY_WRITETHROUGH 2 59 #define CPOLICY_WRITEBACK 3 60 #define CPOLICY_WRITEALLOC 4 61 62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 63 static unsigned int ecc_mask __initdata = 0; 64 pgprot_t pgprot_user; 65 pgprot_t pgprot_kernel; 66 67 EXPORT_SYMBOL(pgprot_user); 68 EXPORT_SYMBOL(pgprot_kernel); 69 70 struct cachepolicy { 71 const char policy[16]; 72 unsigned int cr_mask; 73 pmdval_t pmd; 74 pteval_t pte; 75 }; 76 77 static struct cachepolicy cache_policies[] __initdata = { 78 { 79 .policy = "uncached", 80 .cr_mask = CR_W|CR_C, 81 .pmd = PMD_SECT_UNCACHED, 82 .pte = L_PTE_MT_UNCACHED, 83 }, { 84 .policy = "buffered", 85 .cr_mask = CR_C, 86 .pmd = PMD_SECT_BUFFERED, 87 .pte = L_PTE_MT_BUFFERABLE, 88 }, { 89 .policy = "writethrough", 90 .cr_mask = 0, 91 .pmd = PMD_SECT_WT, 92 .pte = L_PTE_MT_WRITETHROUGH, 93 }, { 94 .policy = "writeback", 95 .cr_mask = 0, 96 .pmd = PMD_SECT_WB, 97 .pte = L_PTE_MT_WRITEBACK, 98 }, { 99 .policy = "writealloc", 100 .cr_mask = 0, 101 .pmd = PMD_SECT_WBWA, 102 .pte = L_PTE_MT_WRITEALLOC, 103 } 104 }; 105 106 #ifdef CONFIG_CPU_CP15 107 static unsigned long initial_pmd_value __initdata = 0; 108 109 /* 110 * Initialise the cache_policy variable with the initial state specified 111 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 112 * the C code sets the page tables up with the same policy as the head 113 * assembly code, which avoids an illegal state where the TLBs can get 114 * confused. See comments in early_cachepolicy() for more information. 115 */ 116 void __init init_default_cache_policy(unsigned long pmd) 117 { 118 int i; 119 120 initial_pmd_value = pmd; 121 122 pmd &= PMD_SECT_CACHE_MASK; 123 124 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 125 if (cache_policies[i].pmd == pmd) { 126 cachepolicy = i; 127 break; 128 } 129 130 if (i == ARRAY_SIZE(cache_policies)) 131 pr_err("ERROR: could not find cache policy\n"); 132 } 133 134 /* 135 * These are useful for identifying cache coherency problems by allowing 136 * the cache or the cache and writebuffer to be turned off. (Note: the 137 * write buffer should not be on and the cache off). 138 */ 139 static int __init early_cachepolicy(char *p) 140 { 141 int i, selected = -1; 142 143 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 144 int len = strlen(cache_policies[i].policy); 145 146 if (memcmp(p, cache_policies[i].policy, len) == 0) { 147 selected = i; 148 break; 149 } 150 } 151 152 if (selected == -1) 153 pr_err("ERROR: unknown or unsupported cache policy\n"); 154 155 /* 156 * This restriction is partly to do with the way we boot; it is 157 * unpredictable to have memory mapped using two different sets of 158 * memory attributes (shared, type, and cache attribs). We can not 159 * change these attributes once the initial assembly has setup the 160 * page tables. 161 */ 162 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 163 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 164 cache_policies[cachepolicy].policy); 165 return 0; 166 } 167 168 if (selected != cachepolicy) { 169 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 170 cachepolicy = selected; 171 flush_cache_all(); 172 set_cr(cr); 173 } 174 return 0; 175 } 176 early_param("cachepolicy", early_cachepolicy); 177 178 static int __init early_nocache(char *__unused) 179 { 180 char *p = "buffered"; 181 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 182 early_cachepolicy(p); 183 return 0; 184 } 185 early_param("nocache", early_nocache); 186 187 static int __init early_nowrite(char *__unused) 188 { 189 char *p = "uncached"; 190 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 191 early_cachepolicy(p); 192 return 0; 193 } 194 early_param("nowb", early_nowrite); 195 196 #ifndef CONFIG_ARM_LPAE 197 static int __init early_ecc(char *p) 198 { 199 if (memcmp(p, "on", 2) == 0) 200 ecc_mask = PMD_PROTECTION; 201 else if (memcmp(p, "off", 3) == 0) 202 ecc_mask = 0; 203 return 0; 204 } 205 early_param("ecc", early_ecc); 206 #endif 207 208 #else /* ifdef CONFIG_CPU_CP15 */ 209 210 static int __init early_cachepolicy(char *p) 211 { 212 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 213 } 214 early_param("cachepolicy", early_cachepolicy); 215 216 static int __init noalign_setup(char *__unused) 217 { 218 pr_warn("noalign kernel parameter not supported without cp15\n"); 219 } 220 __setup("noalign", noalign_setup); 221 222 #endif /* ifdef CONFIG_CPU_CP15 / else */ 223 224 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 225 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 226 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 227 228 static struct mem_type mem_types[] __ro_after_init = { 229 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 230 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 231 L_PTE_SHARED, 232 .prot_l1 = PMD_TYPE_TABLE, 233 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 234 .domain = DOMAIN_IO, 235 }, 236 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 237 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 238 .prot_l1 = PMD_TYPE_TABLE, 239 .prot_sect = PROT_SECT_DEVICE, 240 .domain = DOMAIN_IO, 241 }, 242 [MT_DEVICE_CACHED] = { /* ioremap_cache */ 243 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 244 .prot_l1 = PMD_TYPE_TABLE, 245 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 246 .domain = DOMAIN_IO, 247 }, 248 [MT_DEVICE_WC] = { /* ioremap_wc */ 249 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 250 .prot_l1 = PMD_TYPE_TABLE, 251 .prot_sect = PROT_SECT_DEVICE, 252 .domain = DOMAIN_IO, 253 }, 254 [MT_UNCACHED] = { 255 .prot_pte = PROT_PTE_DEVICE, 256 .prot_l1 = PMD_TYPE_TABLE, 257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 258 .domain = DOMAIN_IO, 259 }, 260 [MT_CACHECLEAN] = { 261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 262 .domain = DOMAIN_KERNEL, 263 }, 264 #ifndef CONFIG_ARM_LPAE 265 [MT_MINICLEAN] = { 266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 267 .domain = DOMAIN_KERNEL, 268 }, 269 #endif 270 [MT_LOW_VECTORS] = { 271 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 272 L_PTE_RDONLY, 273 .prot_l1 = PMD_TYPE_TABLE, 274 .domain = DOMAIN_VECTORS, 275 }, 276 [MT_HIGH_VECTORS] = { 277 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 278 L_PTE_USER | L_PTE_RDONLY, 279 .prot_l1 = PMD_TYPE_TABLE, 280 .domain = DOMAIN_VECTORS, 281 }, 282 [MT_MEMORY_RWX] = { 283 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 284 .prot_l1 = PMD_TYPE_TABLE, 285 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 286 .domain = DOMAIN_KERNEL, 287 }, 288 [MT_MEMORY_RW] = { 289 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 290 L_PTE_XN, 291 .prot_l1 = PMD_TYPE_TABLE, 292 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 293 .domain = DOMAIN_KERNEL, 294 }, 295 [MT_ROM] = { 296 .prot_sect = PMD_TYPE_SECT, 297 .domain = DOMAIN_KERNEL, 298 }, 299 [MT_MEMORY_RWX_NONCACHED] = { 300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 301 L_PTE_MT_BUFFERABLE, 302 .prot_l1 = PMD_TYPE_TABLE, 303 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 304 .domain = DOMAIN_KERNEL, 305 }, 306 [MT_MEMORY_RW_DTCM] = { 307 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 308 L_PTE_XN, 309 .prot_l1 = PMD_TYPE_TABLE, 310 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 311 .domain = DOMAIN_KERNEL, 312 }, 313 [MT_MEMORY_RWX_ITCM] = { 314 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 315 .prot_l1 = PMD_TYPE_TABLE, 316 .domain = DOMAIN_KERNEL, 317 }, 318 [MT_MEMORY_RW_SO] = { 319 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 320 L_PTE_MT_UNCACHED | L_PTE_XN, 321 .prot_l1 = PMD_TYPE_TABLE, 322 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 323 PMD_SECT_UNCACHED | PMD_SECT_XN, 324 .domain = DOMAIN_KERNEL, 325 }, 326 [MT_MEMORY_DMA_READY] = { 327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 328 L_PTE_XN, 329 .prot_l1 = PMD_TYPE_TABLE, 330 .domain = DOMAIN_KERNEL, 331 }, 332 }; 333 334 const struct mem_type *get_mem_type(unsigned int type) 335 { 336 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 337 } 338 EXPORT_SYMBOL(get_mem_type); 339 340 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); 341 342 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] 343 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; 344 345 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) 346 { 347 return &bm_pte[pte_index(addr)]; 348 } 349 350 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) 351 { 352 return pte_offset_kernel(dir, addr); 353 } 354 355 static inline pmd_t * __init fixmap_pmd(unsigned long addr) 356 { 357 return pmd_off_k(addr); 358 } 359 360 void __init early_fixmap_init(void) 361 { 362 pmd_t *pmd; 363 364 /* 365 * The early fixmap range spans multiple pmds, for which 366 * we are not prepared: 367 */ 368 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) 369 != FIXADDR_TOP >> PMD_SHIFT); 370 371 pmd = fixmap_pmd(FIXADDR_TOP); 372 pmd_populate_kernel(&init_mm, pmd, bm_pte); 373 374 pte_offset_fixmap = pte_offset_early_fixmap; 375 } 376 377 /* 378 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). 379 * As a result, this can only be called with preemption disabled, as under 380 * stop_machine(). 381 */ 382 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 383 { 384 unsigned long vaddr = __fix_to_virt(idx); 385 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); 386 387 /* Make sure fixmap region does not exceed available allocation. */ 388 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > 389 FIXADDR_END); 390 BUG_ON(idx >= __end_of_fixed_addresses); 391 392 /* we only support device mappings until pgprot_kernel has been set */ 393 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && 394 pgprot_val(pgprot_kernel) == 0)) 395 return; 396 397 if (pgprot_val(prot)) 398 set_pte_at(NULL, vaddr, pte, 399 pfn_pte(phys >> PAGE_SHIFT, prot)); 400 else 401 pte_clear(NULL, vaddr, pte); 402 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); 403 } 404 405 /* 406 * Adjust the PMD section entries according to the CPU in use. 407 */ 408 static void __init build_mem_type_table(void) 409 { 410 struct cachepolicy *cp; 411 unsigned int cr = get_cr(); 412 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 413 int cpu_arch = cpu_architecture(); 414 int i; 415 416 if (cpu_arch < CPU_ARCH_ARMv6) { 417 #if defined(CONFIG_CPU_DCACHE_DISABLE) 418 if (cachepolicy > CPOLICY_BUFFERED) 419 cachepolicy = CPOLICY_BUFFERED; 420 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 421 if (cachepolicy > CPOLICY_WRITETHROUGH) 422 cachepolicy = CPOLICY_WRITETHROUGH; 423 #endif 424 } 425 if (cpu_arch < CPU_ARCH_ARMv5) { 426 if (cachepolicy >= CPOLICY_WRITEALLOC) 427 cachepolicy = CPOLICY_WRITEBACK; 428 ecc_mask = 0; 429 } 430 431 if (is_smp()) { 432 if (cachepolicy != CPOLICY_WRITEALLOC) { 433 pr_warn("Forcing write-allocate cache policy for SMP\n"); 434 cachepolicy = CPOLICY_WRITEALLOC; 435 } 436 if (!(initial_pmd_value & PMD_SECT_S)) { 437 pr_warn("Forcing shared mappings for SMP\n"); 438 initial_pmd_value |= PMD_SECT_S; 439 } 440 } 441 442 /* 443 * Strip out features not present on earlier architectures. 444 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 445 * without extended page tables don't have the 'Shared' bit. 446 */ 447 if (cpu_arch < CPU_ARCH_ARMv5) 448 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 449 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 450 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 451 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 452 mem_types[i].prot_sect &= ~PMD_SECT_S; 453 454 /* 455 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 456 * "update-able on write" bit on ARM610). However, Xscale and 457 * Xscale3 require this bit to be cleared. 458 */ 459 if (cpu_is_xscale_family()) { 460 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 461 mem_types[i].prot_sect &= ~PMD_BIT4; 462 mem_types[i].prot_l1 &= ~PMD_BIT4; 463 } 464 } else if (cpu_arch < CPU_ARCH_ARMv6) { 465 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 466 if (mem_types[i].prot_l1) 467 mem_types[i].prot_l1 |= PMD_BIT4; 468 if (mem_types[i].prot_sect) 469 mem_types[i].prot_sect |= PMD_BIT4; 470 } 471 } 472 473 /* 474 * Mark the device areas according to the CPU/architecture. 475 */ 476 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 477 if (!cpu_is_xsc3()) { 478 /* 479 * Mark device regions on ARMv6+ as execute-never 480 * to prevent speculative instruction fetches. 481 */ 482 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 483 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 484 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 485 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 486 487 /* Also setup NX memory mapping */ 488 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 489 } 490 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 491 /* 492 * For ARMv7 with TEX remapping, 493 * - shared device is SXCB=1100 494 * - nonshared device is SXCB=0100 495 * - write combine device mem is SXCB=0001 496 * (Uncached Normal memory) 497 */ 498 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 499 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 500 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 501 } else if (cpu_is_xsc3()) { 502 /* 503 * For Xscale3, 504 * - shared device is TEXCB=00101 505 * - nonshared device is TEXCB=01000 506 * - write combine device mem is TEXCB=00100 507 * (Inner/Outer Uncacheable in xsc3 parlance) 508 */ 509 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 510 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 511 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 512 } else { 513 /* 514 * For ARMv6 and ARMv7 without TEX remapping, 515 * - shared device is TEXCB=00001 516 * - nonshared device is TEXCB=01000 517 * - write combine device mem is TEXCB=00100 518 * (Uncached Normal in ARMv6 parlance). 519 */ 520 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 521 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 522 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 523 } 524 } else { 525 /* 526 * On others, write combining is "Uncached/Buffered" 527 */ 528 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 529 } 530 531 /* 532 * Now deal with the memory-type mappings 533 */ 534 cp = &cache_policies[cachepolicy]; 535 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 536 537 #ifndef CONFIG_ARM_LPAE 538 /* 539 * We don't use domains on ARMv6 (since this causes problems with 540 * v6/v7 kernels), so we must use a separate memory type for user 541 * r/o, kernel r/w to map the vectors page. 542 */ 543 if (cpu_arch == CPU_ARCH_ARMv6) 544 vecs_pgprot |= L_PTE_MT_VECTORS; 545 546 /* 547 * Check is it with support for the PXN bit 548 * in the Short-descriptor translation table format descriptors. 549 */ 550 if (cpu_arch == CPU_ARCH_ARMv7 && 551 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { 552 user_pmd_table |= PMD_PXNTABLE; 553 } 554 #endif 555 556 /* 557 * ARMv6 and above have extended page tables. 558 */ 559 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 560 #ifndef CONFIG_ARM_LPAE 561 /* 562 * Mark cache clean areas and XIP ROM read only 563 * from SVC mode and no access from userspace. 564 */ 565 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 566 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 567 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 568 #endif 569 570 /* 571 * If the initial page tables were created with the S bit 572 * set, then we need to do the same here for the same 573 * reasons given in early_cachepolicy(). 574 */ 575 if (initial_pmd_value & PMD_SECT_S) { 576 user_pgprot |= L_PTE_SHARED; 577 kern_pgprot |= L_PTE_SHARED; 578 vecs_pgprot |= L_PTE_SHARED; 579 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 580 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 581 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 582 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 583 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 584 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 585 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 586 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 587 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 588 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 589 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 590 } 591 } 592 593 /* 594 * Non-cacheable Normal - intended for memory areas that must 595 * not cause dirty cache line writebacks when used 596 */ 597 if (cpu_arch >= CPU_ARCH_ARMv6) { 598 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 599 /* Non-cacheable Normal is XCB = 001 */ 600 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 601 PMD_SECT_BUFFERED; 602 } else { 603 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 604 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 605 PMD_SECT_TEX(1); 606 } 607 } else { 608 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 609 } 610 611 #ifdef CONFIG_ARM_LPAE 612 /* 613 * Do not generate access flag faults for the kernel mappings. 614 */ 615 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 616 mem_types[i].prot_pte |= PTE_EXT_AF; 617 if (mem_types[i].prot_sect) 618 mem_types[i].prot_sect |= PMD_SECT_AF; 619 } 620 kern_pgprot |= PTE_EXT_AF; 621 vecs_pgprot |= PTE_EXT_AF; 622 623 /* 624 * Set PXN for user mappings 625 */ 626 user_pgprot |= PTE_EXT_PXN; 627 #endif 628 629 for (i = 0; i < 16; i++) { 630 pteval_t v = pgprot_val(protection_map[i]); 631 protection_map[i] = __pgprot(v | user_pgprot); 632 } 633 634 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 635 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 636 637 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 638 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 639 L_PTE_DIRTY | kern_pgprot); 640 641 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 642 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 643 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 644 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 645 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 646 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 647 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 648 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 649 mem_types[MT_ROM].prot_sect |= cp->pmd; 650 651 switch (cp->pmd) { 652 case PMD_SECT_WT: 653 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 654 break; 655 case PMD_SECT_WB: 656 case PMD_SECT_WBWA: 657 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 658 break; 659 } 660 pr_info("Memory policy: %sData cache %s\n", 661 ecc_mask ? "ECC enabled, " : "", cp->policy); 662 663 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 664 struct mem_type *t = &mem_types[i]; 665 if (t->prot_l1) 666 t->prot_l1 |= PMD_DOMAIN(t->domain); 667 if (t->prot_sect) 668 t->prot_sect |= PMD_DOMAIN(t->domain); 669 } 670 } 671 672 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 673 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 674 unsigned long size, pgprot_t vma_prot) 675 { 676 if (!pfn_valid(pfn)) 677 return pgprot_noncached(vma_prot); 678 else if (file->f_flags & O_SYNC) 679 return pgprot_writecombine(vma_prot); 680 return vma_prot; 681 } 682 EXPORT_SYMBOL(phys_mem_access_prot); 683 #endif 684 685 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 686 687 static void __init *early_alloc(unsigned long sz) 688 { 689 void *ptr = memblock_alloc(sz, sz); 690 691 if (!ptr) 692 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 693 __func__, sz, sz); 694 695 return ptr; 696 } 697 698 static void *__init late_alloc(unsigned long sz) 699 { 700 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz)); 701 702 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr))) 703 BUG(); 704 return ptr; 705 } 706 707 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, 708 unsigned long prot, 709 void *(*alloc)(unsigned long sz)) 710 { 711 if (pmd_none(*pmd)) { 712 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 713 __pmd_populate(pmd, __pa(pte), prot); 714 } 715 BUG_ON(pmd_bad(*pmd)); 716 return pte_offset_kernel(pmd, addr); 717 } 718 719 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, 720 unsigned long prot) 721 { 722 return arm_pte_alloc(pmd, addr, prot, early_alloc); 723 } 724 725 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 726 unsigned long end, unsigned long pfn, 727 const struct mem_type *type, 728 void *(*alloc)(unsigned long sz), 729 bool ng) 730 { 731 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); 732 do { 733 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 734 ng ? PTE_EXT_NG : 0); 735 pfn++; 736 } while (pte++, addr += PAGE_SIZE, addr != end); 737 } 738 739 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 740 unsigned long end, phys_addr_t phys, 741 const struct mem_type *type, bool ng) 742 { 743 pmd_t *p = pmd; 744 745 #ifndef CONFIG_ARM_LPAE 746 /* 747 * In classic MMU format, puds and pmds are folded in to 748 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 749 * group of L1 entries making up one logical pointer to 750 * an L2 table (2MB), where as PMDs refer to the individual 751 * L1 entries (1MB). Hence increment to get the correct 752 * offset for odd 1MB sections. 753 * (See arch/arm/include/asm/pgtable-2level.h) 754 */ 755 if (addr & SECTION_SIZE) 756 pmd++; 757 #endif 758 do { 759 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); 760 phys += SECTION_SIZE; 761 } while (pmd++, addr += SECTION_SIZE, addr != end); 762 763 flush_pmd_entry(p); 764 } 765 766 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 767 unsigned long end, phys_addr_t phys, 768 const struct mem_type *type, 769 void *(*alloc)(unsigned long sz), bool ng) 770 { 771 pmd_t *pmd = pmd_offset(pud, addr); 772 unsigned long next; 773 774 do { 775 /* 776 * With LPAE, we must loop over to map 777 * all the pmds for the given range. 778 */ 779 next = pmd_addr_end(addr, end); 780 781 /* 782 * Try a section mapping - addr, next and phys must all be 783 * aligned to a section boundary. 784 */ 785 if (type->prot_sect && 786 ((addr | next | phys) & ~SECTION_MASK) == 0) { 787 __map_init_section(pmd, addr, next, phys, type, ng); 788 } else { 789 alloc_init_pte(pmd, addr, next, 790 __phys_to_pfn(phys), type, alloc, ng); 791 } 792 793 phys += next - addr; 794 795 } while (pmd++, addr = next, addr != end); 796 } 797 798 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, 799 unsigned long end, phys_addr_t phys, 800 const struct mem_type *type, 801 void *(*alloc)(unsigned long sz), bool ng) 802 { 803 pud_t *pud = pud_offset(p4d, addr); 804 unsigned long next; 805 806 do { 807 next = pud_addr_end(addr, end); 808 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); 809 phys += next - addr; 810 } while (pud++, addr = next, addr != end); 811 } 812 813 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, 814 unsigned long end, phys_addr_t phys, 815 const struct mem_type *type, 816 void *(*alloc)(unsigned long sz), bool ng) 817 { 818 p4d_t *p4d = p4d_offset(pgd, addr); 819 unsigned long next; 820 821 do { 822 next = p4d_addr_end(addr, end); 823 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); 824 phys += next - addr; 825 } while (p4d++, addr = next, addr != end); 826 } 827 828 #ifndef CONFIG_ARM_LPAE 829 static void __init create_36bit_mapping(struct mm_struct *mm, 830 struct map_desc *md, 831 const struct mem_type *type, 832 bool ng) 833 { 834 unsigned long addr, length, end; 835 phys_addr_t phys; 836 pgd_t *pgd; 837 838 addr = md->virtual; 839 phys = __pfn_to_phys(md->pfn); 840 length = PAGE_ALIGN(md->length); 841 842 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 843 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 844 (long long)__pfn_to_phys((u64)md->pfn), addr); 845 return; 846 } 847 848 /* N.B. ARMv6 supersections are only defined to work with domain 0. 849 * Since domain assignments can in fact be arbitrary, the 850 * 'domain == 0' check below is required to insure that ARMv6 851 * supersections are only allocated for domain 0 regardless 852 * of the actual domain assignments in use. 853 */ 854 if (type->domain) { 855 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 856 (long long)__pfn_to_phys((u64)md->pfn), addr); 857 return; 858 } 859 860 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 861 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 862 (long long)__pfn_to_phys((u64)md->pfn), addr); 863 return; 864 } 865 866 /* 867 * Shift bits [35:32] of address into bits [23:20] of PMD 868 * (See ARMv6 spec). 869 */ 870 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 871 872 pgd = pgd_offset(mm, addr); 873 end = addr + length; 874 do { 875 p4d_t *p4d = p4d_offset(pgd, addr); 876 pud_t *pud = pud_offset(p4d, addr); 877 pmd_t *pmd = pmd_offset(pud, addr); 878 int i; 879 880 for (i = 0; i < 16; i++) 881 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | 882 (ng ? PMD_SECT_nG : 0)); 883 884 addr += SUPERSECTION_SIZE; 885 phys += SUPERSECTION_SIZE; 886 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 887 } while (addr != end); 888 } 889 #endif /* !CONFIG_ARM_LPAE */ 890 891 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, 892 void *(*alloc)(unsigned long sz), 893 bool ng) 894 { 895 unsigned long addr, length, end; 896 phys_addr_t phys; 897 const struct mem_type *type; 898 pgd_t *pgd; 899 900 type = &mem_types[md->type]; 901 902 #ifndef CONFIG_ARM_LPAE 903 /* 904 * Catch 36-bit addresses 905 */ 906 if (md->pfn >= 0x100000) { 907 create_36bit_mapping(mm, md, type, ng); 908 return; 909 } 910 #endif 911 912 addr = md->virtual & PAGE_MASK; 913 phys = __pfn_to_phys(md->pfn); 914 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 915 916 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 917 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 918 (long long)__pfn_to_phys(md->pfn), addr); 919 return; 920 } 921 922 pgd = pgd_offset(mm, addr); 923 end = addr + length; 924 do { 925 unsigned long next = pgd_addr_end(addr, end); 926 927 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); 928 929 phys += next - addr; 930 addr = next; 931 } while (pgd++, addr != end); 932 } 933 934 /* 935 * Create the page directory entries and any necessary 936 * page tables for the mapping specified by `md'. We 937 * are able to cope here with varying sizes and address 938 * offsets, and we take full advantage of sections and 939 * supersections. 940 */ 941 static void __init create_mapping(struct map_desc *md) 942 { 943 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 944 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 945 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 946 return; 947 } 948 949 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 950 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && 951 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 952 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 953 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 954 } 955 956 __create_mapping(&init_mm, md, early_alloc, false); 957 } 958 959 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, 960 bool ng) 961 { 962 #ifdef CONFIG_ARM_LPAE 963 p4d_t *p4d; 964 pud_t *pud; 965 966 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); 967 if (WARN_ON(!p4d)) 968 return; 969 pud = pud_alloc(mm, p4d, md->virtual); 970 if (WARN_ON(!pud)) 971 return; 972 pmd_alloc(mm, pud, 0); 973 #endif 974 __create_mapping(mm, md, late_alloc, ng); 975 } 976 977 /* 978 * Create the architecture specific mappings 979 */ 980 void __init iotable_init(struct map_desc *io_desc, int nr) 981 { 982 struct map_desc *md; 983 struct vm_struct *vm; 984 struct static_vm *svm; 985 986 if (!nr) 987 return; 988 989 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); 990 if (!svm) 991 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 992 __func__, sizeof(*svm) * nr, __alignof__(*svm)); 993 994 for (md = io_desc; nr; md++, nr--) { 995 create_mapping(md); 996 997 vm = &svm->vm; 998 vm->addr = (void *)(md->virtual & PAGE_MASK); 999 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 1000 vm->phys_addr = __pfn_to_phys(md->pfn); 1001 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 1002 vm->flags |= VM_ARM_MTYPE(md->type); 1003 vm->caller = iotable_init; 1004 add_static_vm_early(svm++); 1005 } 1006 } 1007 1008 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 1009 void *caller) 1010 { 1011 struct vm_struct *vm; 1012 struct static_vm *svm; 1013 1014 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); 1015 if (!svm) 1016 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1017 __func__, sizeof(*svm), __alignof__(*svm)); 1018 1019 vm = &svm->vm; 1020 vm->addr = (void *)addr; 1021 vm->size = size; 1022 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 1023 vm->caller = caller; 1024 add_static_vm_early(svm); 1025 } 1026 1027 #ifndef CONFIG_ARM_LPAE 1028 1029 /* 1030 * The Linux PMD is made of two consecutive section entries covering 2MB 1031 * (see definition in include/asm/pgtable-2level.h). However a call to 1032 * create_mapping() may optimize static mappings by using individual 1033 * 1MB section mappings. This leaves the actual PMD potentially half 1034 * initialized if the top or bottom section entry isn't used, leaving it 1035 * open to problems if a subsequent ioremap() or vmalloc() tries to use 1036 * the virtual space left free by that unused section entry. 1037 * 1038 * Let's avoid the issue by inserting dummy vm entries covering the unused 1039 * PMD halves once the static mappings are in place. 1040 */ 1041 1042 static void __init pmd_empty_section_gap(unsigned long addr) 1043 { 1044 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 1045 } 1046 1047 static void __init fill_pmd_gaps(void) 1048 { 1049 struct static_vm *svm; 1050 struct vm_struct *vm; 1051 unsigned long addr, next = 0; 1052 pmd_t *pmd; 1053 1054 list_for_each_entry(svm, &static_vmlist, list) { 1055 vm = &svm->vm; 1056 addr = (unsigned long)vm->addr; 1057 if (addr < next) 1058 continue; 1059 1060 /* 1061 * Check if this vm starts on an odd section boundary. 1062 * If so and the first section entry for this PMD is free 1063 * then we block the corresponding virtual address. 1064 */ 1065 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1066 pmd = pmd_off_k(addr); 1067 if (pmd_none(*pmd)) 1068 pmd_empty_section_gap(addr & PMD_MASK); 1069 } 1070 1071 /* 1072 * Then check if this vm ends on an odd section boundary. 1073 * If so and the second section entry for this PMD is empty 1074 * then we block the corresponding virtual address. 1075 */ 1076 addr += vm->size; 1077 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1078 pmd = pmd_off_k(addr) + 1; 1079 if (pmd_none(*pmd)) 1080 pmd_empty_section_gap(addr); 1081 } 1082 1083 /* no need to look at any vm entry until we hit the next PMD */ 1084 next = (addr + PMD_SIZE - 1) & PMD_MASK; 1085 } 1086 } 1087 1088 #else 1089 #define fill_pmd_gaps() do { } while (0) 1090 #endif 1091 1092 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1093 static void __init pci_reserve_io(void) 1094 { 1095 struct static_vm *svm; 1096 1097 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1098 if (svm) 1099 return; 1100 1101 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1102 } 1103 #else 1104 #define pci_reserve_io() do { } while (0) 1105 #endif 1106 1107 #ifdef CONFIG_DEBUG_LL 1108 void __init debug_ll_io_init(void) 1109 { 1110 struct map_desc map; 1111 1112 debug_ll_addr(&map.pfn, &map.virtual); 1113 if (!map.pfn || !map.virtual) 1114 return; 1115 map.pfn = __phys_to_pfn(map.pfn); 1116 map.virtual &= PAGE_MASK; 1117 map.length = PAGE_SIZE; 1118 map.type = MT_DEVICE; 1119 iotable_init(&map, 1); 1120 } 1121 #endif 1122 1123 static void * __initdata vmalloc_min = 1124 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1125 1126 /* 1127 * vmalloc=size forces the vmalloc area to be exactly 'size' 1128 * bytes. This can be used to increase (or decrease) the vmalloc 1129 * area - the default is 240m. 1130 */ 1131 static int __init early_vmalloc(char *arg) 1132 { 1133 unsigned long vmalloc_reserve = memparse(arg, NULL); 1134 1135 if (vmalloc_reserve < SZ_16M) { 1136 vmalloc_reserve = SZ_16M; 1137 pr_warn("vmalloc area too small, limiting to %luMB\n", 1138 vmalloc_reserve >> 20); 1139 } 1140 1141 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1142 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1143 pr_warn("vmalloc area is too big, limiting to %luMB\n", 1144 vmalloc_reserve >> 20); 1145 } 1146 1147 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1148 return 0; 1149 } 1150 early_param("vmalloc", early_vmalloc); 1151 1152 phys_addr_t arm_lowmem_limit __initdata = 0; 1153 1154 void __init adjust_lowmem_bounds(void) 1155 { 1156 phys_addr_t block_start, block_end, memblock_limit = 0; 1157 u64 vmalloc_limit, i; 1158 phys_addr_t lowmem_limit = 0; 1159 1160 /* 1161 * Let's use our own (unoptimized) equivalent of __pa() that is 1162 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. 1163 * The result is used as the upper bound on physical memory address 1164 * and may itself be outside the valid range for which phys_addr_t 1165 * and therefore __pa() is defined. 1166 */ 1167 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; 1168 1169 /* 1170 * The first usable region must be PMD aligned. Mark its start 1171 * as MEMBLOCK_NOMAP if it isn't 1172 */ 1173 for_each_mem_range(i, &block_start, &block_end) { 1174 if (!IS_ALIGNED(block_start, PMD_SIZE)) { 1175 phys_addr_t len; 1176 1177 len = round_up(block_start, PMD_SIZE) - block_start; 1178 memblock_mark_nomap(block_start, len); 1179 } 1180 break; 1181 } 1182 1183 for_each_mem_range(i, &block_start, &block_end) { 1184 if (block_start < vmalloc_limit) { 1185 if (block_end > lowmem_limit) 1186 /* 1187 * Compare as u64 to ensure vmalloc_limit does 1188 * not get truncated. block_end should always 1189 * fit in phys_addr_t so there should be no 1190 * issue with assignment. 1191 */ 1192 lowmem_limit = min_t(u64, 1193 vmalloc_limit, 1194 block_end); 1195 1196 /* 1197 * Find the first non-pmd-aligned page, and point 1198 * memblock_limit at it. This relies on rounding the 1199 * limit down to be pmd-aligned, which happens at the 1200 * end of this function. 1201 * 1202 * With this algorithm, the start or end of almost any 1203 * bank can be non-pmd-aligned. The only exception is 1204 * that the start of the bank 0 must be section- 1205 * aligned, since otherwise memory would need to be 1206 * allocated when mapping the start of bank 0, which 1207 * occurs before any free memory is mapped. 1208 */ 1209 if (!memblock_limit) { 1210 if (!IS_ALIGNED(block_start, PMD_SIZE)) 1211 memblock_limit = block_start; 1212 else if (!IS_ALIGNED(block_end, PMD_SIZE)) 1213 memblock_limit = lowmem_limit; 1214 } 1215 1216 } 1217 } 1218 1219 arm_lowmem_limit = lowmem_limit; 1220 1221 high_memory = __va(arm_lowmem_limit - 1) + 1; 1222 1223 if (!memblock_limit) 1224 memblock_limit = arm_lowmem_limit; 1225 1226 /* 1227 * Round the memblock limit down to a pmd size. This 1228 * helps to ensure that we will allocate memory from the 1229 * last full pmd, which should be mapped. 1230 */ 1231 memblock_limit = round_down(memblock_limit, PMD_SIZE); 1232 1233 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1234 if (memblock_end_of_DRAM() > arm_lowmem_limit) { 1235 phys_addr_t end = memblock_end_of_DRAM(); 1236 1237 pr_notice("Ignoring RAM at %pa-%pa\n", 1238 &memblock_limit, &end); 1239 pr_notice("Consider using a HIGHMEM enabled kernel.\n"); 1240 1241 memblock_remove(memblock_limit, end - memblock_limit); 1242 } 1243 } 1244 1245 memblock_set_current_limit(memblock_limit); 1246 } 1247 1248 static inline void prepare_page_table(void) 1249 { 1250 unsigned long addr; 1251 phys_addr_t end; 1252 1253 /* 1254 * Clear out all the mappings below the kernel image. 1255 */ 1256 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1257 pmd_clear(pmd_off_k(addr)); 1258 1259 #ifdef CONFIG_XIP_KERNEL 1260 /* The XIP kernel is mapped in the module area -- skip over it */ 1261 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; 1262 #endif 1263 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1264 pmd_clear(pmd_off_k(addr)); 1265 1266 /* 1267 * Find the end of the first block of lowmem. 1268 */ 1269 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1270 if (end >= arm_lowmem_limit) 1271 end = arm_lowmem_limit; 1272 1273 /* 1274 * Clear out all the kernel space mappings, except for the first 1275 * memory bank, up to the vmalloc region. 1276 */ 1277 for (addr = __phys_to_virt(end); 1278 addr < VMALLOC_START; addr += PMD_SIZE) 1279 pmd_clear(pmd_off_k(addr)); 1280 } 1281 1282 #ifdef CONFIG_ARM_LPAE 1283 /* the first page is reserved for pgd */ 1284 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1285 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1286 #else 1287 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1288 #endif 1289 1290 /* 1291 * Reserve the special regions of memory 1292 */ 1293 void __init arm_mm_memblock_reserve(void) 1294 { 1295 /* 1296 * Reserve the page tables. These are already in use, 1297 * and can only be in node 0. 1298 */ 1299 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1300 1301 #ifdef CONFIG_SA1111 1302 /* 1303 * Because of the SA1111 DMA bug, we want to preserve our 1304 * precious DMA-able memory... 1305 */ 1306 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1307 #endif 1308 } 1309 1310 /* 1311 * Set up the device mappings. Since we clear out the page tables for all 1312 * mappings above VMALLOC_START, except early fixmap, we might remove debug 1313 * device mappings. This means earlycon can be used to debug this function 1314 * Any other function or debugging method which may touch any device _will_ 1315 * crash the kernel. 1316 */ 1317 static void __init devicemaps_init(const struct machine_desc *mdesc) 1318 { 1319 struct map_desc map; 1320 unsigned long addr; 1321 void *vectors; 1322 1323 /* 1324 * Allocate the vector page early. 1325 */ 1326 vectors = early_alloc(PAGE_SIZE * 2); 1327 1328 early_trap_init(vectors); 1329 1330 /* 1331 * Clear page table except top pmd used by early fixmaps 1332 */ 1333 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) 1334 pmd_clear(pmd_off_k(addr)); 1335 1336 /* 1337 * Map the kernel if it is XIP. 1338 * It is always first in the modulearea. 1339 */ 1340 #ifdef CONFIG_XIP_KERNEL 1341 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1342 map.virtual = MODULES_VADDR; 1343 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1344 map.type = MT_ROM; 1345 create_mapping(&map); 1346 #endif 1347 1348 /* 1349 * Map the cache flushing regions. 1350 */ 1351 #ifdef FLUSH_BASE 1352 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1353 map.virtual = FLUSH_BASE; 1354 map.length = SZ_1M; 1355 map.type = MT_CACHECLEAN; 1356 create_mapping(&map); 1357 #endif 1358 #ifdef FLUSH_BASE_MINICACHE 1359 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1360 map.virtual = FLUSH_BASE_MINICACHE; 1361 map.length = SZ_1M; 1362 map.type = MT_MINICLEAN; 1363 create_mapping(&map); 1364 #endif 1365 1366 /* 1367 * Create a mapping for the machine vectors at the high-vectors 1368 * location (0xffff0000). If we aren't using high-vectors, also 1369 * create a mapping at the low-vectors virtual address. 1370 */ 1371 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1372 map.virtual = 0xffff0000; 1373 map.length = PAGE_SIZE; 1374 #ifdef CONFIG_KUSER_HELPERS 1375 map.type = MT_HIGH_VECTORS; 1376 #else 1377 map.type = MT_LOW_VECTORS; 1378 #endif 1379 create_mapping(&map); 1380 1381 if (!vectors_high()) { 1382 map.virtual = 0; 1383 map.length = PAGE_SIZE * 2; 1384 map.type = MT_LOW_VECTORS; 1385 create_mapping(&map); 1386 } 1387 1388 /* Now create a kernel read-only mapping */ 1389 map.pfn += 1; 1390 map.virtual = 0xffff0000 + PAGE_SIZE; 1391 map.length = PAGE_SIZE; 1392 map.type = MT_LOW_VECTORS; 1393 create_mapping(&map); 1394 1395 /* 1396 * Ask the machine support to map in the statically mapped devices. 1397 */ 1398 if (mdesc->map_io) 1399 mdesc->map_io(); 1400 else 1401 debug_ll_io_init(); 1402 fill_pmd_gaps(); 1403 1404 /* Reserve fixed i/o space in VMALLOC region */ 1405 pci_reserve_io(); 1406 1407 /* 1408 * Finally flush the caches and tlb to ensure that we're in a 1409 * consistent state wrt the writebuffer. This also ensures that 1410 * any write-allocated cache lines in the vector page are written 1411 * back. After this point, we can start to touch devices again. 1412 */ 1413 local_flush_tlb_all(); 1414 flush_cache_all(); 1415 1416 /* Enable asynchronous aborts */ 1417 early_abt_enable(); 1418 } 1419 1420 static void __init kmap_init(void) 1421 { 1422 #ifdef CONFIG_HIGHMEM 1423 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1424 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1425 #endif 1426 1427 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, 1428 _PAGE_KERNEL_TABLE); 1429 } 1430 1431 static void __init map_lowmem(void) 1432 { 1433 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); 1434 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1435 phys_addr_t start, end; 1436 u64 i; 1437 1438 /* Map all the lowmem memory banks. */ 1439 for_each_mem_range(i, &start, &end) { 1440 struct map_desc map; 1441 1442 if (end > arm_lowmem_limit) 1443 end = arm_lowmem_limit; 1444 if (start >= end) 1445 break; 1446 1447 if (end < kernel_x_start) { 1448 map.pfn = __phys_to_pfn(start); 1449 map.virtual = __phys_to_virt(start); 1450 map.length = end - start; 1451 map.type = MT_MEMORY_RWX; 1452 1453 create_mapping(&map); 1454 } else if (start >= kernel_x_end) { 1455 map.pfn = __phys_to_pfn(start); 1456 map.virtual = __phys_to_virt(start); 1457 map.length = end - start; 1458 map.type = MT_MEMORY_RW; 1459 1460 create_mapping(&map); 1461 } else { 1462 /* This better cover the entire kernel */ 1463 if (start < kernel_x_start) { 1464 map.pfn = __phys_to_pfn(start); 1465 map.virtual = __phys_to_virt(start); 1466 map.length = kernel_x_start - start; 1467 map.type = MT_MEMORY_RW; 1468 1469 create_mapping(&map); 1470 } 1471 1472 map.pfn = __phys_to_pfn(kernel_x_start); 1473 map.virtual = __phys_to_virt(kernel_x_start); 1474 map.length = kernel_x_end - kernel_x_start; 1475 map.type = MT_MEMORY_RWX; 1476 1477 create_mapping(&map); 1478 1479 if (kernel_x_end < end) { 1480 map.pfn = __phys_to_pfn(kernel_x_end); 1481 map.virtual = __phys_to_virt(kernel_x_end); 1482 map.length = end - kernel_x_end; 1483 map.type = MT_MEMORY_RW; 1484 1485 create_mapping(&map); 1486 } 1487 } 1488 } 1489 } 1490 1491 #ifdef CONFIG_ARM_PV_FIXUP 1492 extern unsigned long __atags_pointer; 1493 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); 1494 pgtables_remap lpae_pgtables_remap_asm; 1495 1496 /* 1497 * early_paging_init() recreates boot time page table setup, allowing machines 1498 * to switch over to a high (>4G) address space on LPAE systems 1499 */ 1500 static void __init early_paging_init(const struct machine_desc *mdesc) 1501 { 1502 pgtables_remap *lpae_pgtables_remap; 1503 unsigned long pa_pgd; 1504 unsigned int cr, ttbcr; 1505 long long offset; 1506 void *boot_data; 1507 1508 if (!mdesc->pv_fixup) 1509 return; 1510 1511 offset = mdesc->pv_fixup(); 1512 if (offset == 0) 1513 return; 1514 1515 /* 1516 * Get the address of the remap function in the 1:1 identity 1517 * mapping setup by the early page table assembly code. We 1518 * must get this prior to the pv update. The following barrier 1519 * ensures that this is complete before we fixup any P:V offsets. 1520 */ 1521 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); 1522 pa_pgd = __pa(swapper_pg_dir); 1523 boot_data = __va(__atags_pointer); 1524 barrier(); 1525 1526 pr_info("Switching physical address space to 0x%08llx\n", 1527 (u64)PHYS_OFFSET + offset); 1528 1529 /* Re-set the phys pfn offset, and the pv offset */ 1530 __pv_offset += offset; 1531 __pv_phys_pfn_offset += PFN_DOWN(offset); 1532 1533 /* Run the patch stub to update the constants */ 1534 fixup_pv_table(&__pv_table_begin, 1535 (&__pv_table_end - &__pv_table_begin) << 2); 1536 1537 /* 1538 * We changing not only the virtual to physical mapping, but also 1539 * the physical addresses used to access memory. We need to flush 1540 * all levels of cache in the system with caching disabled to 1541 * ensure that all data is written back, and nothing is prefetched 1542 * into the caches. We also need to prevent the TLB walkers 1543 * allocating into the caches too. Note that this is ARMv7 LPAE 1544 * specific. 1545 */ 1546 cr = get_cr(); 1547 set_cr(cr & ~(CR_I | CR_C)); 1548 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); 1549 asm volatile("mcr p15, 0, %0, c2, c0, 2" 1550 : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); 1551 flush_cache_all(); 1552 1553 /* 1554 * Fixup the page tables - this must be in the idmap region as 1555 * we need to disable the MMU to do this safely, and hence it 1556 * needs to be assembly. It's fairly simple, as we're using the 1557 * temporary tables setup by the initial assembly code. 1558 */ 1559 lpae_pgtables_remap(offset, pa_pgd, boot_data); 1560 1561 /* Re-enable the caches and cacheable TLB walks */ 1562 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); 1563 set_cr(cr); 1564 } 1565 1566 #else 1567 1568 static void __init early_paging_init(const struct machine_desc *mdesc) 1569 { 1570 long long offset; 1571 1572 if (!mdesc->pv_fixup) 1573 return; 1574 1575 offset = mdesc->pv_fixup(); 1576 if (offset == 0) 1577 return; 1578 1579 pr_crit("Physical address space modification is only to support Keystone2.\n"); 1580 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); 1581 pr_crit("feature. Your kernel may crash now, have a good day.\n"); 1582 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1583 } 1584 1585 #endif 1586 1587 static void __init early_fixmap_shutdown(void) 1588 { 1589 int i; 1590 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); 1591 1592 pte_offset_fixmap = pte_offset_late_fixmap; 1593 pmd_clear(fixmap_pmd(va)); 1594 local_flush_tlb_kernel_page(va); 1595 1596 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { 1597 pte_t *pte; 1598 struct map_desc map; 1599 1600 map.virtual = fix_to_virt(i); 1601 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); 1602 1603 /* Only i/o device mappings are supported ATM */ 1604 if (pte_none(*pte) || 1605 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) 1606 continue; 1607 1608 map.pfn = pte_pfn(*pte); 1609 map.type = MT_DEVICE; 1610 map.length = PAGE_SIZE; 1611 1612 create_mapping(&map); 1613 } 1614 } 1615 1616 /* 1617 * paging_init() sets up the page tables, initialises the zone memory 1618 * maps, and sets up the zero page, bad page and bad page tables. 1619 */ 1620 void __init paging_init(const struct machine_desc *mdesc) 1621 { 1622 void *zero_page; 1623 1624 prepare_page_table(); 1625 map_lowmem(); 1626 memblock_set_current_limit(arm_lowmem_limit); 1627 dma_contiguous_remap(); 1628 early_fixmap_shutdown(); 1629 devicemaps_init(mdesc); 1630 kmap_init(); 1631 tcm_init(); 1632 1633 top_pmd = pmd_off_k(0xffff0000); 1634 1635 /* allocate the zero page. */ 1636 zero_page = early_alloc(PAGE_SIZE); 1637 1638 bootmem_init(); 1639 1640 empty_zero_page = virt_to_page(zero_page); 1641 __flush_dcache_page(NULL, empty_zero_page); 1642 } 1643 1644 void __init early_mm_init(const struct machine_desc *mdesc) 1645 { 1646 build_mem_type_table(); 1647 early_paging_init(mdesc); 1648 } 1649 1650 void set_pte_at(struct mm_struct *mm, unsigned long addr, 1651 pte_t *ptep, pte_t pteval) 1652 { 1653 unsigned long ext = 0; 1654 1655 if (addr < TASK_SIZE && pte_valid_user(pteval)) { 1656 if (!pte_special(pteval)) 1657 __sync_icache_dcache(pteval); 1658 ext |= PTE_EXT_NG; 1659 } 1660 1661 set_pte_ext(ptep, pteval, ext); 1662 } 1663