xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 7e035230)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 
35 #include "mm.h"
36 
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43 
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48 
49 #define CPOLICY_UNCACHED	0
50 #define CPOLICY_BUFFERED	1
51 #define CPOLICY_WRITETHROUGH	2
52 #define CPOLICY_WRITEBACK	3
53 #define CPOLICY_WRITEALLOC	4
54 
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59 
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62 
63 struct cachepolicy {
64 	const char	policy[16];
65 	unsigned int	cr_mask;
66 	pmdval_t	pmd;
67 	pteval_t	pte;
68 };
69 
70 static struct cachepolicy cache_policies[] __initdata = {
71 	{
72 		.policy		= "uncached",
73 		.cr_mask	= CR_W|CR_C,
74 		.pmd		= PMD_SECT_UNCACHED,
75 		.pte		= L_PTE_MT_UNCACHED,
76 	}, {
77 		.policy		= "buffered",
78 		.cr_mask	= CR_C,
79 		.pmd		= PMD_SECT_BUFFERED,
80 		.pte		= L_PTE_MT_BUFFERABLE,
81 	}, {
82 		.policy		= "writethrough",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WT,
85 		.pte		= L_PTE_MT_WRITETHROUGH,
86 	}, {
87 		.policy		= "writeback",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WB,
90 		.pte		= L_PTE_MT_WRITEBACK,
91 	}, {
92 		.policy		= "writealloc",
93 		.cr_mask	= 0,
94 		.pmd		= PMD_SECT_WBWA,
95 		.pte		= L_PTE_MT_WRITEALLOC,
96 	}
97 };
98 
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 		int len = strlen(cache_policies[i].policy);
111 
112 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 			cachepolicy = i;
114 			cr_alignment &= ~cache_policies[i].cr_mask;
115 			cr_no_alignment &= ~cache_policies[i].cr_mask;
116 			break;
117 		}
118 	}
119 	if (i == ARRAY_SIZE(cache_policies))
120 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 	/*
122 	 * This restriction is partly to do with the way we boot; it is
123 	 * unpredictable to have memory mapped using two different sets of
124 	 * memory attributes (shared, type, and cache attribs).  We can not
125 	 * change these attributes once the initial assembly has setup the
126 	 * page tables.
127 	 */
128 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 		cachepolicy = CPOLICY_WRITEBACK;
131 	}
132 	flush_cache_all();
133 	set_cr(cr_alignment);
134 	return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137 
138 static int __init early_nocache(char *__unused)
139 {
140 	char *p = "buffered";
141 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 	early_cachepolicy(p);
143 	return 0;
144 }
145 early_param("nocache", early_nocache);
146 
147 static int __init early_nowrite(char *__unused)
148 {
149 	char *p = "uncached";
150 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 	early_cachepolicy(p);
152 	return 0;
153 }
154 early_param("nowb", early_nowrite);
155 
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159 	if (memcmp(p, "on", 2) == 0)
160 		ecc_mask = PMD_PROTECTION;
161 	else if (memcmp(p, "off", 3) == 0)
162 		ecc_mask = 0;
163 	return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167 
168 static int __init noalign_setup(char *__unused)
169 {
170 	cr_alignment &= ~CR_A;
171 	cr_no_alignment &= ~CR_A;
172 	set_cr(cr_alignment);
173 	return 1;
174 }
175 __setup("noalign", noalign_setup);
176 
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180 	unsigned long flags;
181 
182 	mask &= ~CR_A;
183 
184 	set &= mask;
185 
186 	local_irq_save(flags);
187 
188 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 	cr_alignment = (cr_alignment & ~mask) | set;
190 
191 	set_cr((get_cr() & ~mask) | set);
192 
193 	local_irq_restore(flags);
194 }
195 #endif
196 
197 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199 
200 static struct mem_type mem_types[] = {
201 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 				  L_PTE_SHARED,
204 		.prot_l1	= PMD_TYPE_TABLE,
205 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 		.domain		= DOMAIN_IO,
207 	},
208 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 		.prot_l1	= PMD_TYPE_TABLE,
211 		.prot_sect	= PROT_SECT_DEVICE,
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 		.prot_l1	= PMD_TYPE_TABLE,
217 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
218 		.domain		= DOMAIN_IO,
219 	},
220 	[MT_DEVICE_WC] = {	/* ioremap_wc */
221 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 		.prot_l1	= PMD_TYPE_TABLE,
223 		.prot_sect	= PROT_SECT_DEVICE,
224 		.domain		= DOMAIN_IO,
225 	},
226 	[MT_UNCACHED] = {
227 		.prot_pte	= PROT_PTE_DEVICE,
228 		.prot_l1	= PMD_TYPE_TABLE,
229 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain		= DOMAIN_IO,
231 	},
232 	[MT_CACHECLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 #ifndef CONFIG_ARM_LPAE
237 	[MT_MINICLEAN] = {
238 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 #endif
242 	[MT_LOW_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_RDONLY,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_HIGH_VECTORS] = {
249 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 				L_PTE_USER | L_PTE_RDONLY,
251 		.prot_l1   = PMD_TYPE_TABLE,
252 		.domain    = DOMAIN_USER,
253 	},
254 	[MT_MEMORY] = {
255 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 		.prot_l1   = PMD_TYPE_TABLE,
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_ROM] = {
261 		.prot_sect = PMD_TYPE_SECT,
262 		.domain    = DOMAIN_KERNEL,
263 	},
264 	[MT_MEMORY_NONCACHED] = {
265 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 				L_PTE_MT_BUFFERABLE,
267 		.prot_l1   = PMD_TYPE_TABLE,
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 	[MT_MEMORY_DTCM] = {
272 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 				L_PTE_XN,
274 		.prot_l1   = PMD_TYPE_TABLE,
275 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 		.domain    = DOMAIN_KERNEL,
277 	},
278 	[MT_MEMORY_ITCM] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 		.prot_l1   = PMD_TYPE_TABLE,
281 		.domain    = DOMAIN_KERNEL,
282 	},
283 	[MT_MEMORY_SO] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_MT_UNCACHED,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 				PMD_SECT_UNCACHED | PMD_SECT_XN,
289 		.domain    = DOMAIN_KERNEL,
290 	},
291 	[MT_MEMORY_DMA_READY] = {
292 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.domain    = DOMAIN_KERNEL,
295 	},
296 };
297 
298 const struct mem_type *get_mem_type(unsigned int type)
299 {
300 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301 }
302 EXPORT_SYMBOL(get_mem_type);
303 
304 /*
305  * Adjust the PMD section entries according to the CPU in use.
306  */
307 static void __init build_mem_type_table(void)
308 {
309 	struct cachepolicy *cp;
310 	unsigned int cr = get_cr();
311 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 	int cpu_arch = cpu_architecture();
313 	int i;
314 
315 	if (cpu_arch < CPU_ARCH_ARMv6) {
316 #if defined(CONFIG_CPU_DCACHE_DISABLE)
317 		if (cachepolicy > CPOLICY_BUFFERED)
318 			cachepolicy = CPOLICY_BUFFERED;
319 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 		if (cachepolicy > CPOLICY_WRITETHROUGH)
321 			cachepolicy = CPOLICY_WRITETHROUGH;
322 #endif
323 	}
324 	if (cpu_arch < CPU_ARCH_ARMv5) {
325 		if (cachepolicy >= CPOLICY_WRITEALLOC)
326 			cachepolicy = CPOLICY_WRITEBACK;
327 		ecc_mask = 0;
328 	}
329 	if (is_smp())
330 		cachepolicy = CPOLICY_WRITEALLOC;
331 
332 	/*
333 	 * Strip out features not present on earlier architectures.
334 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
335 	 * without extended page tables don't have the 'Shared' bit.
336 	 */
337 	if (cpu_arch < CPU_ARCH_ARMv5)
338 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 			mem_types[i].prot_sect &= ~PMD_SECT_S;
343 
344 	/*
345 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 	 * "update-able on write" bit on ARM610).  However, Xscale and
347 	 * Xscale3 require this bit to be cleared.
348 	 */
349 	if (cpu_is_xscale() || cpu_is_xsc3()) {
350 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 			mem_types[i].prot_sect &= ~PMD_BIT4;
352 			mem_types[i].prot_l1 &= ~PMD_BIT4;
353 		}
354 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
355 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 			if (mem_types[i].prot_l1)
357 				mem_types[i].prot_l1 |= PMD_BIT4;
358 			if (mem_types[i].prot_sect)
359 				mem_types[i].prot_sect |= PMD_BIT4;
360 		}
361 	}
362 
363 	/*
364 	 * Mark the device areas according to the CPU/architecture.
365 	 */
366 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 		if (!cpu_is_xsc3()) {
368 			/*
369 			 * Mark device regions on ARMv6+ as execute-never
370 			 * to prevent speculative instruction fetches.
371 			 */
372 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 		}
377 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 			/*
379 			 * For ARMv7 with TEX remapping,
380 			 * - shared device is SXCB=1100
381 			 * - nonshared device is SXCB=0100
382 			 * - write combine device mem is SXCB=0001
383 			 * (Uncached Normal memory)
384 			 */
385 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 		} else if (cpu_is_xsc3()) {
389 			/*
390 			 * For Xscale3,
391 			 * - shared device is TEXCB=00101
392 			 * - nonshared device is TEXCB=01000
393 			 * - write combine device mem is TEXCB=00100
394 			 * (Inner/Outer Uncacheable in xsc3 parlance)
395 			 */
396 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 		} else {
400 			/*
401 			 * For ARMv6 and ARMv7 without TEX remapping,
402 			 * - shared device is TEXCB=00001
403 			 * - nonshared device is TEXCB=01000
404 			 * - write combine device mem is TEXCB=00100
405 			 * (Uncached Normal in ARMv6 parlance).
406 			 */
407 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 		}
411 	} else {
412 		/*
413 		 * On others, write combining is "Uncached/Buffered"
414 		 */
415 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 	}
417 
418 	/*
419 	 * Now deal with the memory-type mappings
420 	 */
421 	cp = &cache_policies[cachepolicy];
422 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423 
424 	/*
425 	 * Enable CPU-specific coherency if supported.
426 	 * (Only available on XSC3 at the moment.)
427 	 */
428 	if (arch_is_coherent() && cpu_is_xsc3()) {
429 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
430 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
431 		mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
432 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 	}
435 	/*
436 	 * ARMv6 and above have extended page tables.
437 	 */
438 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440 		/*
441 		 * Mark cache clean areas and XIP ROM read only
442 		 * from SVC mode and no access from userspace.
443 		 */
444 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448 
449 		if (is_smp()) {
450 			/*
451 			 * Mark memory with the "shared" attribute
452 			 * for SMP systems
453 			 */
454 			user_pgprot |= L_PTE_SHARED;
455 			kern_pgprot |= L_PTE_SHARED;
456 			vecs_pgprot |= L_PTE_SHARED;
457 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
464 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
465 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
466 		}
467 	}
468 
469 	/*
470 	 * Non-cacheable Normal - intended for memory areas that must
471 	 * not cause dirty cache line writebacks when used
472 	 */
473 	if (cpu_arch >= CPU_ARCH_ARMv6) {
474 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
475 			/* Non-cacheable Normal is XCB = 001 */
476 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477 				PMD_SECT_BUFFERED;
478 		} else {
479 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
480 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
481 				PMD_SECT_TEX(1);
482 		}
483 	} else {
484 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
485 	}
486 
487 #ifdef CONFIG_ARM_LPAE
488 	/*
489 	 * Do not generate access flag faults for the kernel mappings.
490 	 */
491 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
492 		mem_types[i].prot_pte |= PTE_EXT_AF;
493 		if (mem_types[i].prot_sect)
494 			mem_types[i].prot_sect |= PMD_SECT_AF;
495 	}
496 	kern_pgprot |= PTE_EXT_AF;
497 	vecs_pgprot |= PTE_EXT_AF;
498 #endif
499 
500 	for (i = 0; i < 16; i++) {
501 		unsigned long v = pgprot_val(protection_map[i]);
502 		protection_map[i] = __pgprot(v | user_pgprot);
503 	}
504 
505 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
506 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
507 
508 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
509 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
510 				 L_PTE_DIRTY | kern_pgprot);
511 
512 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
513 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
514 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
515 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
516 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
517 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
518 	mem_types[MT_ROM].prot_sect |= cp->pmd;
519 
520 	switch (cp->pmd) {
521 	case PMD_SECT_WT:
522 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
523 		break;
524 	case PMD_SECT_WB:
525 	case PMD_SECT_WBWA:
526 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
527 		break;
528 	}
529 	printk("Memory policy: ECC %sabled, Data cache %s\n",
530 		ecc_mask ? "en" : "dis", cp->policy);
531 
532 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
533 		struct mem_type *t = &mem_types[i];
534 		if (t->prot_l1)
535 			t->prot_l1 |= PMD_DOMAIN(t->domain);
536 		if (t->prot_sect)
537 			t->prot_sect |= PMD_DOMAIN(t->domain);
538 	}
539 }
540 
541 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
542 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
543 			      unsigned long size, pgprot_t vma_prot)
544 {
545 	if (!pfn_valid(pfn))
546 		return pgprot_noncached(vma_prot);
547 	else if (file->f_flags & O_SYNC)
548 		return pgprot_writecombine(vma_prot);
549 	return vma_prot;
550 }
551 EXPORT_SYMBOL(phys_mem_access_prot);
552 #endif
553 
554 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
555 
556 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
557 {
558 	void *ptr = __va(memblock_alloc(sz, align));
559 	memset(ptr, 0, sz);
560 	return ptr;
561 }
562 
563 static void __init *early_alloc(unsigned long sz)
564 {
565 	return early_alloc_aligned(sz, sz);
566 }
567 
568 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
569 {
570 	if (pmd_none(*pmd)) {
571 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
572 		__pmd_populate(pmd, __pa(pte), prot);
573 	}
574 	BUG_ON(pmd_bad(*pmd));
575 	return pte_offset_kernel(pmd, addr);
576 }
577 
578 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
579 				  unsigned long end, unsigned long pfn,
580 				  const struct mem_type *type)
581 {
582 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
583 	do {
584 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
585 		pfn++;
586 	} while (pte++, addr += PAGE_SIZE, addr != end);
587 }
588 
589 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
590 				      unsigned long end, phys_addr_t phys,
591 				      const struct mem_type *type)
592 {
593 	pmd_t *pmd = pmd_offset(pud, addr);
594 
595 	/*
596 	 * Try a section mapping - end, addr and phys must all be aligned
597 	 * to a section boundary.  Note that PMDs refer to the individual
598 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
599 	 * up one logical pointer to an L2 table.
600 	 */
601 	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
602 		pmd_t *p = pmd;
603 
604 #ifndef CONFIG_ARM_LPAE
605 		if (addr & SECTION_SIZE)
606 			pmd++;
607 #endif
608 
609 		do {
610 			*pmd = __pmd(phys | type->prot_sect);
611 			phys += SECTION_SIZE;
612 		} while (pmd++, addr += SECTION_SIZE, addr != end);
613 
614 		flush_pmd_entry(p);
615 	} else {
616 		/*
617 		 * No need to loop; pte's aren't interested in the
618 		 * individual L1 entries.
619 		 */
620 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
621 	}
622 }
623 
624 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
625 	unsigned long end, unsigned long phys, const struct mem_type *type)
626 {
627 	pud_t *pud = pud_offset(pgd, addr);
628 	unsigned long next;
629 
630 	do {
631 		next = pud_addr_end(addr, end);
632 		alloc_init_section(pud, addr, next, phys, type);
633 		phys += next - addr;
634 	} while (pud++, addr = next, addr != end);
635 }
636 
637 #ifndef CONFIG_ARM_LPAE
638 static void __init create_36bit_mapping(struct map_desc *md,
639 					const struct mem_type *type)
640 {
641 	unsigned long addr, length, end;
642 	phys_addr_t phys;
643 	pgd_t *pgd;
644 
645 	addr = md->virtual;
646 	phys = __pfn_to_phys(md->pfn);
647 	length = PAGE_ALIGN(md->length);
648 
649 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
650 		printk(KERN_ERR "MM: CPU does not support supersection "
651 		       "mapping for 0x%08llx at 0x%08lx\n",
652 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
653 		return;
654 	}
655 
656 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
657 	 *	Since domain assignments can in fact be arbitrary, the
658 	 *	'domain == 0' check below is required to insure that ARMv6
659 	 *	supersections are only allocated for domain 0 regardless
660 	 *	of the actual domain assignments in use.
661 	 */
662 	if (type->domain) {
663 		printk(KERN_ERR "MM: invalid domain in supersection "
664 		       "mapping for 0x%08llx at 0x%08lx\n",
665 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
666 		return;
667 	}
668 
669 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
670 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
671 		       " at 0x%08lx invalid alignment\n",
672 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
673 		return;
674 	}
675 
676 	/*
677 	 * Shift bits [35:32] of address into bits [23:20] of PMD
678 	 * (See ARMv6 spec).
679 	 */
680 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
681 
682 	pgd = pgd_offset_k(addr);
683 	end = addr + length;
684 	do {
685 		pud_t *pud = pud_offset(pgd, addr);
686 		pmd_t *pmd = pmd_offset(pud, addr);
687 		int i;
688 
689 		for (i = 0; i < 16; i++)
690 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
691 
692 		addr += SUPERSECTION_SIZE;
693 		phys += SUPERSECTION_SIZE;
694 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
695 	} while (addr != end);
696 }
697 #endif	/* !CONFIG_ARM_LPAE */
698 
699 /*
700  * Create the page directory entries and any necessary
701  * page tables for the mapping specified by `md'.  We
702  * are able to cope here with varying sizes and address
703  * offsets, and we take full advantage of sections and
704  * supersections.
705  */
706 static void __init create_mapping(struct map_desc *md)
707 {
708 	unsigned long addr, length, end;
709 	phys_addr_t phys;
710 	const struct mem_type *type;
711 	pgd_t *pgd;
712 
713 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
714 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
715 		       " at 0x%08lx in user region\n",
716 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
717 		return;
718 	}
719 
720 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
721 	    md->virtual >= PAGE_OFFSET &&
722 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
723 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
724 		       " at 0x%08lx out of vmalloc space\n",
725 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
726 	}
727 
728 	type = &mem_types[md->type];
729 
730 #ifndef CONFIG_ARM_LPAE
731 	/*
732 	 * Catch 36-bit addresses
733 	 */
734 	if (md->pfn >= 0x100000) {
735 		create_36bit_mapping(md, type);
736 		return;
737 	}
738 #endif
739 
740 	addr = md->virtual & PAGE_MASK;
741 	phys = __pfn_to_phys(md->pfn);
742 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
743 
744 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
745 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
746 		       "be mapped using pages, ignoring.\n",
747 		       (long long)__pfn_to_phys(md->pfn), addr);
748 		return;
749 	}
750 
751 	pgd = pgd_offset_k(addr);
752 	end = addr + length;
753 	do {
754 		unsigned long next = pgd_addr_end(addr, end);
755 
756 		alloc_init_pud(pgd, addr, next, phys, type);
757 
758 		phys += next - addr;
759 		addr = next;
760 	} while (pgd++, addr != end);
761 }
762 
763 /*
764  * Create the architecture specific mappings
765  */
766 void __init iotable_init(struct map_desc *io_desc, int nr)
767 {
768 	struct map_desc *md;
769 	struct vm_struct *vm;
770 
771 	if (!nr)
772 		return;
773 
774 	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
775 
776 	for (md = io_desc; nr; md++, nr--) {
777 		create_mapping(md);
778 		vm->addr = (void *)(md->virtual & PAGE_MASK);
779 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
780 		vm->phys_addr = __pfn_to_phys(md->pfn);
781 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
782 		vm->flags |= VM_ARM_MTYPE(md->type);
783 		vm->caller = iotable_init;
784 		vm_area_add_early(vm++);
785 	}
786 }
787 
788 #ifndef CONFIG_ARM_LPAE
789 
790 /*
791  * The Linux PMD is made of two consecutive section entries covering 2MB
792  * (see definition in include/asm/pgtable-2level.h).  However a call to
793  * create_mapping() may optimize static mappings by using individual
794  * 1MB section mappings.  This leaves the actual PMD potentially half
795  * initialized if the top or bottom section entry isn't used, leaving it
796  * open to problems if a subsequent ioremap() or vmalloc() tries to use
797  * the virtual space left free by that unused section entry.
798  *
799  * Let's avoid the issue by inserting dummy vm entries covering the unused
800  * PMD halves once the static mappings are in place.
801  */
802 
803 static void __init pmd_empty_section_gap(unsigned long addr)
804 {
805 	struct vm_struct *vm;
806 
807 	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
808 	vm->addr = (void *)addr;
809 	vm->size = SECTION_SIZE;
810 	vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
811 	vm->caller = pmd_empty_section_gap;
812 	vm_area_add_early(vm);
813 }
814 
815 static void __init fill_pmd_gaps(void)
816 {
817 	struct vm_struct *vm;
818 	unsigned long addr, next = 0;
819 	pmd_t *pmd;
820 
821 	/* we're still single threaded hence no lock needed here */
822 	for (vm = vmlist; vm; vm = vm->next) {
823 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
824 			continue;
825 		addr = (unsigned long)vm->addr;
826 		if (addr < next)
827 			continue;
828 
829 		/*
830 		 * Check if this vm starts on an odd section boundary.
831 		 * If so and the first section entry for this PMD is free
832 		 * then we block the corresponding virtual address.
833 		 */
834 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
835 			pmd = pmd_off_k(addr);
836 			if (pmd_none(*pmd))
837 				pmd_empty_section_gap(addr & PMD_MASK);
838 		}
839 
840 		/*
841 		 * Then check if this vm ends on an odd section boundary.
842 		 * If so and the second section entry for this PMD is empty
843 		 * then we block the corresponding virtual address.
844 		 */
845 		addr += vm->size;
846 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
847 			pmd = pmd_off_k(addr) + 1;
848 			if (pmd_none(*pmd))
849 				pmd_empty_section_gap(addr);
850 		}
851 
852 		/* no need to look at any vm entry until we hit the next PMD */
853 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
854 	}
855 }
856 
857 #else
858 #define fill_pmd_gaps() do { } while (0)
859 #endif
860 
861 static void * __initdata vmalloc_min =
862 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
863 
864 /*
865  * vmalloc=size forces the vmalloc area to be exactly 'size'
866  * bytes. This can be used to increase (or decrease) the vmalloc
867  * area - the default is 240m.
868  */
869 static int __init early_vmalloc(char *arg)
870 {
871 	unsigned long vmalloc_reserve = memparse(arg, NULL);
872 
873 	if (vmalloc_reserve < SZ_16M) {
874 		vmalloc_reserve = SZ_16M;
875 		printk(KERN_WARNING
876 			"vmalloc area too small, limiting to %luMB\n",
877 			vmalloc_reserve >> 20);
878 	}
879 
880 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
881 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
882 		printk(KERN_WARNING
883 			"vmalloc area is too big, limiting to %luMB\n",
884 			vmalloc_reserve >> 20);
885 	}
886 
887 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
888 	return 0;
889 }
890 early_param("vmalloc", early_vmalloc);
891 
892 phys_addr_t arm_lowmem_limit __initdata = 0;
893 
894 void __init sanity_check_meminfo(void)
895 {
896 	int i, j, highmem = 0;
897 
898 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
899 		struct membank *bank = &meminfo.bank[j];
900 		*bank = meminfo.bank[i];
901 
902 		if (bank->start > ULONG_MAX)
903 			highmem = 1;
904 
905 #ifdef CONFIG_HIGHMEM
906 		if (__va(bank->start) >= vmalloc_min ||
907 		    __va(bank->start) < (void *)PAGE_OFFSET)
908 			highmem = 1;
909 
910 		bank->highmem = highmem;
911 
912 		/*
913 		 * Split those memory banks which are partially overlapping
914 		 * the vmalloc area greatly simplifying things later.
915 		 */
916 		if (!highmem && __va(bank->start) < vmalloc_min &&
917 		    bank->size > vmalloc_min - __va(bank->start)) {
918 			if (meminfo.nr_banks >= NR_BANKS) {
919 				printk(KERN_CRIT "NR_BANKS too low, "
920 						 "ignoring high memory\n");
921 			} else {
922 				memmove(bank + 1, bank,
923 					(meminfo.nr_banks - i) * sizeof(*bank));
924 				meminfo.nr_banks++;
925 				i++;
926 				bank[1].size -= vmalloc_min - __va(bank->start);
927 				bank[1].start = __pa(vmalloc_min - 1) + 1;
928 				bank[1].highmem = highmem = 1;
929 				j++;
930 			}
931 			bank->size = vmalloc_min - __va(bank->start);
932 		}
933 #else
934 		bank->highmem = highmem;
935 
936 		/*
937 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
938 		 */
939 		if (highmem) {
940 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
941 			       "(!CONFIG_HIGHMEM).\n",
942 			       (unsigned long long)bank->start,
943 			       (unsigned long long)bank->start + bank->size - 1);
944 			continue;
945 		}
946 
947 		/*
948 		 * Check whether this memory bank would entirely overlap
949 		 * the vmalloc area.
950 		 */
951 		if (__va(bank->start) >= vmalloc_min ||
952 		    __va(bank->start) < (void *)PAGE_OFFSET) {
953 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
954 			       "(vmalloc region overlap).\n",
955 			       (unsigned long long)bank->start,
956 			       (unsigned long long)bank->start + bank->size - 1);
957 			continue;
958 		}
959 
960 		/*
961 		 * Check whether this memory bank would partially overlap
962 		 * the vmalloc area.
963 		 */
964 		if (__va(bank->start + bank->size) > vmalloc_min ||
965 		    __va(bank->start + bank->size) < __va(bank->start)) {
966 			unsigned long newsize = vmalloc_min - __va(bank->start);
967 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
968 			       "to -%.8llx (vmalloc region overlap).\n",
969 			       (unsigned long long)bank->start,
970 			       (unsigned long long)bank->start + bank->size - 1,
971 			       (unsigned long long)bank->start + newsize - 1);
972 			bank->size = newsize;
973 		}
974 #endif
975 		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
976 			arm_lowmem_limit = bank->start + bank->size;
977 
978 		j++;
979 	}
980 #ifdef CONFIG_HIGHMEM
981 	if (highmem) {
982 		const char *reason = NULL;
983 
984 		if (cache_is_vipt_aliasing()) {
985 			/*
986 			 * Interactions between kmap and other mappings
987 			 * make highmem support with aliasing VIPT caches
988 			 * rather difficult.
989 			 */
990 			reason = "with VIPT aliasing cache";
991 		}
992 		if (reason) {
993 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
994 				reason);
995 			while (j > 0 && meminfo.bank[j - 1].highmem)
996 				j--;
997 		}
998 	}
999 #endif
1000 	meminfo.nr_banks = j;
1001 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1002 	memblock_set_current_limit(arm_lowmem_limit);
1003 }
1004 
1005 static inline void prepare_page_table(void)
1006 {
1007 	unsigned long addr;
1008 	phys_addr_t end;
1009 
1010 	/*
1011 	 * Clear out all the mappings below the kernel image.
1012 	 */
1013 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1014 		pmd_clear(pmd_off_k(addr));
1015 
1016 #ifdef CONFIG_XIP_KERNEL
1017 	/* The XIP kernel is mapped in the module area -- skip over it */
1018 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1019 #endif
1020 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1021 		pmd_clear(pmd_off_k(addr));
1022 
1023 	/*
1024 	 * Find the end of the first block of lowmem.
1025 	 */
1026 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1027 	if (end >= arm_lowmem_limit)
1028 		end = arm_lowmem_limit;
1029 
1030 	/*
1031 	 * Clear out all the kernel space mappings, except for the first
1032 	 * memory bank, up to the vmalloc region.
1033 	 */
1034 	for (addr = __phys_to_virt(end);
1035 	     addr < VMALLOC_START; addr += PMD_SIZE)
1036 		pmd_clear(pmd_off_k(addr));
1037 }
1038 
1039 #ifdef CONFIG_ARM_LPAE
1040 /* the first page is reserved for pgd */
1041 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1042 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1043 #else
1044 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1045 #endif
1046 
1047 /*
1048  * Reserve the special regions of memory
1049  */
1050 void __init arm_mm_memblock_reserve(void)
1051 {
1052 	/*
1053 	 * Reserve the page tables.  These are already in use,
1054 	 * and can only be in node 0.
1055 	 */
1056 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1057 
1058 #ifdef CONFIG_SA1111
1059 	/*
1060 	 * Because of the SA1111 DMA bug, we want to preserve our
1061 	 * precious DMA-able memory...
1062 	 */
1063 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1064 #endif
1065 }
1066 
1067 /*
1068  * Set up the device mappings.  Since we clear out the page tables for all
1069  * mappings above VMALLOC_START, we will remove any debug device mappings.
1070  * This means you have to be careful how you debug this function, or any
1071  * called function.  This means you can't use any function or debugging
1072  * method which may touch any device, otherwise the kernel _will_ crash.
1073  */
1074 static void __init devicemaps_init(struct machine_desc *mdesc)
1075 {
1076 	struct map_desc map;
1077 	unsigned long addr;
1078 	void *vectors;
1079 
1080 	/*
1081 	 * Allocate the vector page early.
1082 	 */
1083 	vectors = early_alloc(PAGE_SIZE);
1084 
1085 	early_trap_init(vectors);
1086 
1087 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1088 		pmd_clear(pmd_off_k(addr));
1089 
1090 	/*
1091 	 * Map the kernel if it is XIP.
1092 	 * It is always first in the modulearea.
1093 	 */
1094 #ifdef CONFIG_XIP_KERNEL
1095 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1096 	map.virtual = MODULES_VADDR;
1097 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1098 	map.type = MT_ROM;
1099 	create_mapping(&map);
1100 #endif
1101 
1102 	/*
1103 	 * Map the cache flushing regions.
1104 	 */
1105 #ifdef FLUSH_BASE
1106 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1107 	map.virtual = FLUSH_BASE;
1108 	map.length = SZ_1M;
1109 	map.type = MT_CACHECLEAN;
1110 	create_mapping(&map);
1111 #endif
1112 #ifdef FLUSH_BASE_MINICACHE
1113 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1114 	map.virtual = FLUSH_BASE_MINICACHE;
1115 	map.length = SZ_1M;
1116 	map.type = MT_MINICLEAN;
1117 	create_mapping(&map);
1118 #endif
1119 
1120 	/*
1121 	 * Create a mapping for the machine vectors at the high-vectors
1122 	 * location (0xffff0000).  If we aren't using high-vectors, also
1123 	 * create a mapping at the low-vectors virtual address.
1124 	 */
1125 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1126 	map.virtual = 0xffff0000;
1127 	map.length = PAGE_SIZE;
1128 	map.type = MT_HIGH_VECTORS;
1129 	create_mapping(&map);
1130 
1131 	if (!vectors_high()) {
1132 		map.virtual = 0;
1133 		map.type = MT_LOW_VECTORS;
1134 		create_mapping(&map);
1135 	}
1136 
1137 	/*
1138 	 * Ask the machine support to map in the statically mapped devices.
1139 	 */
1140 	if (mdesc->map_io)
1141 		mdesc->map_io();
1142 	fill_pmd_gaps();
1143 
1144 	/*
1145 	 * Finally flush the caches and tlb to ensure that we're in a
1146 	 * consistent state wrt the writebuffer.  This also ensures that
1147 	 * any write-allocated cache lines in the vector page are written
1148 	 * back.  After this point, we can start to touch devices again.
1149 	 */
1150 	local_flush_tlb_all();
1151 	flush_cache_all();
1152 }
1153 
1154 static void __init kmap_init(void)
1155 {
1156 #ifdef CONFIG_HIGHMEM
1157 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1158 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1159 #endif
1160 }
1161 
1162 static void __init map_lowmem(void)
1163 {
1164 	struct memblock_region *reg;
1165 
1166 	/* Map all the lowmem memory banks. */
1167 	for_each_memblock(memory, reg) {
1168 		phys_addr_t start = reg->base;
1169 		phys_addr_t end = start + reg->size;
1170 		struct map_desc map;
1171 
1172 		if (end > arm_lowmem_limit)
1173 			end = arm_lowmem_limit;
1174 		if (start >= end)
1175 			break;
1176 
1177 		map.pfn = __phys_to_pfn(start);
1178 		map.virtual = __phys_to_virt(start);
1179 		map.length = end - start;
1180 		map.type = MT_MEMORY;
1181 
1182 		create_mapping(&map);
1183 	}
1184 }
1185 
1186 /*
1187  * paging_init() sets up the page tables, initialises the zone memory
1188  * maps, and sets up the zero page, bad page and bad page tables.
1189  */
1190 void __init paging_init(struct machine_desc *mdesc)
1191 {
1192 	void *zero_page;
1193 
1194 	memblock_set_current_limit(arm_lowmem_limit);
1195 
1196 	build_mem_type_table();
1197 	prepare_page_table();
1198 	map_lowmem();
1199 	dma_contiguous_remap();
1200 	devicemaps_init(mdesc);
1201 	kmap_init();
1202 
1203 	top_pmd = pmd_off_k(0xffff0000);
1204 
1205 	/* allocate the zero page. */
1206 	zero_page = early_alloc(PAGE_SIZE);
1207 
1208 	bootmem_init();
1209 
1210 	empty_zero_page = virt_to_page(zero_page);
1211 	__flush_dcache_page(NULL, empty_zero_page);
1212 }
1213