xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 6774def6)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34 
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 #include <asm/fixmap.h>
39 
40 #include "mm.h"
41 #include "tcm.h"
42 
43 /*
44  * empty_zero_page is a special page that is used for
45  * zero-initialized data and COW.
46  */
47 struct page *empty_zero_page;
48 EXPORT_SYMBOL(empty_zero_page);
49 
50 /*
51  * The pmd table for the upper-most set of pages.
52  */
53 pmd_t *top_pmd;
54 
55 #define CPOLICY_UNCACHED	0
56 #define CPOLICY_BUFFERED	1
57 #define CPOLICY_WRITETHROUGH	2
58 #define CPOLICY_WRITEBACK	3
59 #define CPOLICY_WRITEALLOC	4
60 
61 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
62 static unsigned int ecc_mask __initdata = 0;
63 pgprot_t pgprot_user;
64 pgprot_t pgprot_kernel;
65 pgprot_t pgprot_hyp_device;
66 pgprot_t pgprot_s2;
67 pgprot_t pgprot_s2_device;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 	pteval_t	pte_s2;
78 };
79 
80 #ifdef CONFIG_ARM_LPAE
81 #define s2_policy(policy)	policy
82 #else
83 #define s2_policy(policy)	0
84 #endif
85 
86 static struct cachepolicy cache_policies[] __initdata = {
87 	{
88 		.policy		= "uncached",
89 		.cr_mask	= CR_W|CR_C,
90 		.pmd		= PMD_SECT_UNCACHED,
91 		.pte		= L_PTE_MT_UNCACHED,
92 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
93 	}, {
94 		.policy		= "buffered",
95 		.cr_mask	= CR_C,
96 		.pmd		= PMD_SECT_BUFFERED,
97 		.pte		= L_PTE_MT_BUFFERABLE,
98 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
99 	}, {
100 		.policy		= "writethrough",
101 		.cr_mask	= 0,
102 		.pmd		= PMD_SECT_WT,
103 		.pte		= L_PTE_MT_WRITETHROUGH,
104 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
105 	}, {
106 		.policy		= "writeback",
107 		.cr_mask	= 0,
108 		.pmd		= PMD_SECT_WB,
109 		.pte		= L_PTE_MT_WRITEBACK,
110 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
111 	}, {
112 		.policy		= "writealloc",
113 		.cr_mask	= 0,
114 		.pmd		= PMD_SECT_WBWA,
115 		.pte		= L_PTE_MT_WRITEALLOC,
116 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
117 	}
118 };
119 
120 #ifdef CONFIG_CPU_CP15
121 static unsigned long initial_pmd_value __initdata = 0;
122 
123 /*
124  * Initialise the cache_policy variable with the initial state specified
125  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
126  * the C code sets the page tables up with the same policy as the head
127  * assembly code, which avoids an illegal state where the TLBs can get
128  * confused.  See comments in early_cachepolicy() for more information.
129  */
130 void __init init_default_cache_policy(unsigned long pmd)
131 {
132 	int i;
133 
134 	initial_pmd_value = pmd;
135 
136 	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
137 
138 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
139 		if (cache_policies[i].pmd == pmd) {
140 			cachepolicy = i;
141 			break;
142 		}
143 
144 	if (i == ARRAY_SIZE(cache_policies))
145 		pr_err("ERROR: could not find cache policy\n");
146 }
147 
148 /*
149  * These are useful for identifying cache coherency problems by allowing
150  * the cache or the cache and writebuffer to be turned off.  (Note: the
151  * write buffer should not be on and the cache off).
152  */
153 static int __init early_cachepolicy(char *p)
154 {
155 	int i, selected = -1;
156 
157 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
158 		int len = strlen(cache_policies[i].policy);
159 
160 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
161 			selected = i;
162 			break;
163 		}
164 	}
165 
166 	if (selected == -1)
167 		pr_err("ERROR: unknown or unsupported cache policy\n");
168 
169 	/*
170 	 * This restriction is partly to do with the way we boot; it is
171 	 * unpredictable to have memory mapped using two different sets of
172 	 * memory attributes (shared, type, and cache attribs).  We can not
173 	 * change these attributes once the initial assembly has setup the
174 	 * page tables.
175 	 */
176 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
177 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
178 			cache_policies[cachepolicy].policy);
179 		return 0;
180 	}
181 
182 	if (selected != cachepolicy) {
183 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
184 		cachepolicy = selected;
185 		flush_cache_all();
186 		set_cr(cr);
187 	}
188 	return 0;
189 }
190 early_param("cachepolicy", early_cachepolicy);
191 
192 static int __init early_nocache(char *__unused)
193 {
194 	char *p = "buffered";
195 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
196 	early_cachepolicy(p);
197 	return 0;
198 }
199 early_param("nocache", early_nocache);
200 
201 static int __init early_nowrite(char *__unused)
202 {
203 	char *p = "uncached";
204 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
205 	early_cachepolicy(p);
206 	return 0;
207 }
208 early_param("nowb", early_nowrite);
209 
210 #ifndef CONFIG_ARM_LPAE
211 static int __init early_ecc(char *p)
212 {
213 	if (memcmp(p, "on", 2) == 0)
214 		ecc_mask = PMD_PROTECTION;
215 	else if (memcmp(p, "off", 3) == 0)
216 		ecc_mask = 0;
217 	return 0;
218 }
219 early_param("ecc", early_ecc);
220 #endif
221 
222 #else /* ifdef CONFIG_CPU_CP15 */
223 
224 static int __init early_cachepolicy(char *p)
225 {
226 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
227 }
228 early_param("cachepolicy", early_cachepolicy);
229 
230 static int __init noalign_setup(char *__unused)
231 {
232 	pr_warn("noalign kernel parameter not supported without cp15\n");
233 }
234 __setup("noalign", noalign_setup);
235 
236 #endif /* ifdef CONFIG_CPU_CP15 / else */
237 
238 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
239 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
240 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
241 
242 static struct mem_type mem_types[] = {
243 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
244 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
245 				  L_PTE_SHARED,
246 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
247 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
248 				  L_PTE_SHARED,
249 		.prot_l1	= PMD_TYPE_TABLE,
250 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
251 		.domain		= DOMAIN_IO,
252 	},
253 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
254 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
255 		.prot_l1	= PMD_TYPE_TABLE,
256 		.prot_sect	= PROT_SECT_DEVICE,
257 		.domain		= DOMAIN_IO,
258 	},
259 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
260 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
261 		.prot_l1	= PMD_TYPE_TABLE,
262 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
263 		.domain		= DOMAIN_IO,
264 	},
265 	[MT_DEVICE_WC] = {	/* ioremap_wc */
266 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
267 		.prot_l1	= PMD_TYPE_TABLE,
268 		.prot_sect	= PROT_SECT_DEVICE,
269 		.domain		= DOMAIN_IO,
270 	},
271 	[MT_UNCACHED] = {
272 		.prot_pte	= PROT_PTE_DEVICE,
273 		.prot_l1	= PMD_TYPE_TABLE,
274 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
275 		.domain		= DOMAIN_IO,
276 	},
277 	[MT_CACHECLEAN] = {
278 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 		.domain    = DOMAIN_KERNEL,
280 	},
281 #ifndef CONFIG_ARM_LPAE
282 	[MT_MINICLEAN] = {
283 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
284 		.domain    = DOMAIN_KERNEL,
285 	},
286 #endif
287 	[MT_LOW_VECTORS] = {
288 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
289 				L_PTE_RDONLY,
290 		.prot_l1   = PMD_TYPE_TABLE,
291 		.domain    = DOMAIN_USER,
292 	},
293 	[MT_HIGH_VECTORS] = {
294 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295 				L_PTE_USER | L_PTE_RDONLY,
296 		.prot_l1   = PMD_TYPE_TABLE,
297 		.domain    = DOMAIN_USER,
298 	},
299 	[MT_MEMORY_RWX] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
301 		.prot_l1   = PMD_TYPE_TABLE,
302 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303 		.domain    = DOMAIN_KERNEL,
304 	},
305 	[MT_MEMORY_RW] = {
306 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307 			     L_PTE_XN,
308 		.prot_l1   = PMD_TYPE_TABLE,
309 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
310 		.domain    = DOMAIN_KERNEL,
311 	},
312 	[MT_ROM] = {
313 		.prot_sect = PMD_TYPE_SECT,
314 		.domain    = DOMAIN_KERNEL,
315 	},
316 	[MT_MEMORY_RWX_NONCACHED] = {
317 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318 				L_PTE_MT_BUFFERABLE,
319 		.prot_l1   = PMD_TYPE_TABLE,
320 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
321 		.domain    = DOMAIN_KERNEL,
322 	},
323 	[MT_MEMORY_RW_DTCM] = {
324 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
325 				L_PTE_XN,
326 		.prot_l1   = PMD_TYPE_TABLE,
327 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
328 		.domain    = DOMAIN_KERNEL,
329 	},
330 	[MT_MEMORY_RWX_ITCM] = {
331 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
332 		.prot_l1   = PMD_TYPE_TABLE,
333 		.domain    = DOMAIN_KERNEL,
334 	},
335 	[MT_MEMORY_RW_SO] = {
336 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 				L_PTE_MT_UNCACHED | L_PTE_XN,
338 		.prot_l1   = PMD_TYPE_TABLE,
339 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
340 				PMD_SECT_UNCACHED | PMD_SECT_XN,
341 		.domain    = DOMAIN_KERNEL,
342 	},
343 	[MT_MEMORY_DMA_READY] = {
344 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
345 				L_PTE_XN,
346 		.prot_l1   = PMD_TYPE_TABLE,
347 		.domain    = DOMAIN_KERNEL,
348 	},
349 };
350 
351 const struct mem_type *get_mem_type(unsigned int type)
352 {
353 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
354 }
355 EXPORT_SYMBOL(get_mem_type);
356 
357 #define PTE_SET_FN(_name, pteop) \
358 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
359 			void *data) \
360 { \
361 	pte_t pte = pteop(*ptep); \
362 \
363 	set_pte_ext(ptep, pte, 0); \
364 	return 0; \
365 } \
366 
367 #define SET_MEMORY_FN(_name, callback) \
368 int set_memory_##_name(unsigned long addr, int numpages) \
369 { \
370 	unsigned long start = addr; \
371 	unsigned long size = PAGE_SIZE*numpages; \
372 	unsigned end = start + size; \
373 \
374 	if (start < MODULES_VADDR || start >= MODULES_END) \
375 		return -EINVAL;\
376 \
377 	if (end < MODULES_VADDR || end >= MODULES_END) \
378 		return -EINVAL; \
379 \
380 	apply_to_page_range(&init_mm, start, size, callback, NULL); \
381 	flush_tlb_kernel_range(start, end); \
382 	return 0;\
383 }
384 
385 PTE_SET_FN(ro, pte_wrprotect)
386 PTE_SET_FN(rw, pte_mkwrite)
387 PTE_SET_FN(x, pte_mkexec)
388 PTE_SET_FN(nx, pte_mknexec)
389 
390 SET_MEMORY_FN(ro, pte_set_ro)
391 SET_MEMORY_FN(rw, pte_set_rw)
392 SET_MEMORY_FN(x, pte_set_x)
393 SET_MEMORY_FN(nx, pte_set_nx)
394 
395 /*
396  * Adjust the PMD section entries according to the CPU in use.
397  */
398 static void __init build_mem_type_table(void)
399 {
400 	struct cachepolicy *cp;
401 	unsigned int cr = get_cr();
402 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
403 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
404 	int cpu_arch = cpu_architecture();
405 	int i;
406 
407 	if (cpu_arch < CPU_ARCH_ARMv6) {
408 #if defined(CONFIG_CPU_DCACHE_DISABLE)
409 		if (cachepolicy > CPOLICY_BUFFERED)
410 			cachepolicy = CPOLICY_BUFFERED;
411 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
412 		if (cachepolicy > CPOLICY_WRITETHROUGH)
413 			cachepolicy = CPOLICY_WRITETHROUGH;
414 #endif
415 	}
416 	if (cpu_arch < CPU_ARCH_ARMv5) {
417 		if (cachepolicy >= CPOLICY_WRITEALLOC)
418 			cachepolicy = CPOLICY_WRITEBACK;
419 		ecc_mask = 0;
420 	}
421 
422 	if (is_smp()) {
423 		if (cachepolicy != CPOLICY_WRITEALLOC) {
424 			pr_warn("Forcing write-allocate cache policy for SMP\n");
425 			cachepolicy = CPOLICY_WRITEALLOC;
426 		}
427 		if (!(initial_pmd_value & PMD_SECT_S)) {
428 			pr_warn("Forcing shared mappings for SMP\n");
429 			initial_pmd_value |= PMD_SECT_S;
430 		}
431 	}
432 
433 	/*
434 	 * Strip out features not present on earlier architectures.
435 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
436 	 * without extended page tables don't have the 'Shared' bit.
437 	 */
438 	if (cpu_arch < CPU_ARCH_ARMv5)
439 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
440 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
441 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
442 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
443 			mem_types[i].prot_sect &= ~PMD_SECT_S;
444 
445 	/*
446 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
447 	 * "update-able on write" bit on ARM610).  However, Xscale and
448 	 * Xscale3 require this bit to be cleared.
449 	 */
450 	if (cpu_is_xscale() || cpu_is_xsc3()) {
451 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
452 			mem_types[i].prot_sect &= ~PMD_BIT4;
453 			mem_types[i].prot_l1 &= ~PMD_BIT4;
454 		}
455 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
456 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
457 			if (mem_types[i].prot_l1)
458 				mem_types[i].prot_l1 |= PMD_BIT4;
459 			if (mem_types[i].prot_sect)
460 				mem_types[i].prot_sect |= PMD_BIT4;
461 		}
462 	}
463 
464 	/*
465 	 * Mark the device areas according to the CPU/architecture.
466 	 */
467 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
468 		if (!cpu_is_xsc3()) {
469 			/*
470 			 * Mark device regions on ARMv6+ as execute-never
471 			 * to prevent speculative instruction fetches.
472 			 */
473 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
474 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
475 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
476 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
477 
478 			/* Also setup NX memory mapping */
479 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
480 		}
481 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
482 			/*
483 			 * For ARMv7 with TEX remapping,
484 			 * - shared device is SXCB=1100
485 			 * - nonshared device is SXCB=0100
486 			 * - write combine device mem is SXCB=0001
487 			 * (Uncached Normal memory)
488 			 */
489 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
490 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
491 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
492 		} else if (cpu_is_xsc3()) {
493 			/*
494 			 * For Xscale3,
495 			 * - shared device is TEXCB=00101
496 			 * - nonshared device is TEXCB=01000
497 			 * - write combine device mem is TEXCB=00100
498 			 * (Inner/Outer Uncacheable in xsc3 parlance)
499 			 */
500 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
501 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
502 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
503 		} else {
504 			/*
505 			 * For ARMv6 and ARMv7 without TEX remapping,
506 			 * - shared device is TEXCB=00001
507 			 * - nonshared device is TEXCB=01000
508 			 * - write combine device mem is TEXCB=00100
509 			 * (Uncached Normal in ARMv6 parlance).
510 			 */
511 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
512 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
513 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
514 		}
515 	} else {
516 		/*
517 		 * On others, write combining is "Uncached/Buffered"
518 		 */
519 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
520 	}
521 
522 	/*
523 	 * Now deal with the memory-type mappings
524 	 */
525 	cp = &cache_policies[cachepolicy];
526 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
527 	s2_pgprot = cp->pte_s2;
528 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
529 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
530 
531 	/*
532 	 * We don't use domains on ARMv6 (since this causes problems with
533 	 * v6/v7 kernels), so we must use a separate memory type for user
534 	 * r/o, kernel r/w to map the vectors page.
535 	 */
536 #ifndef CONFIG_ARM_LPAE
537 	if (cpu_arch == CPU_ARCH_ARMv6)
538 		vecs_pgprot |= L_PTE_MT_VECTORS;
539 #endif
540 
541 	/*
542 	 * ARMv6 and above have extended page tables.
543 	 */
544 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
545 #ifndef CONFIG_ARM_LPAE
546 		/*
547 		 * Mark cache clean areas and XIP ROM read only
548 		 * from SVC mode and no access from userspace.
549 		 */
550 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
551 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
552 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
553 #endif
554 
555 		/*
556 		 * If the initial page tables were created with the S bit
557 		 * set, then we need to do the same here for the same
558 		 * reasons given in early_cachepolicy().
559 		 */
560 		if (initial_pmd_value & PMD_SECT_S) {
561 			user_pgprot |= L_PTE_SHARED;
562 			kern_pgprot |= L_PTE_SHARED;
563 			vecs_pgprot |= L_PTE_SHARED;
564 			s2_pgprot |= L_PTE_SHARED;
565 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
566 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
567 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
568 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
569 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
570 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
571 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
572 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
573 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
574 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
575 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
576 		}
577 	}
578 
579 	/*
580 	 * Non-cacheable Normal - intended for memory areas that must
581 	 * not cause dirty cache line writebacks when used
582 	 */
583 	if (cpu_arch >= CPU_ARCH_ARMv6) {
584 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
585 			/* Non-cacheable Normal is XCB = 001 */
586 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
587 				PMD_SECT_BUFFERED;
588 		} else {
589 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
590 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
591 				PMD_SECT_TEX(1);
592 		}
593 	} else {
594 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
595 	}
596 
597 #ifdef CONFIG_ARM_LPAE
598 	/*
599 	 * Do not generate access flag faults for the kernel mappings.
600 	 */
601 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
602 		mem_types[i].prot_pte |= PTE_EXT_AF;
603 		if (mem_types[i].prot_sect)
604 			mem_types[i].prot_sect |= PMD_SECT_AF;
605 	}
606 	kern_pgprot |= PTE_EXT_AF;
607 	vecs_pgprot |= PTE_EXT_AF;
608 #endif
609 
610 	for (i = 0; i < 16; i++) {
611 		pteval_t v = pgprot_val(protection_map[i]);
612 		protection_map[i] = __pgprot(v | user_pgprot);
613 	}
614 
615 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
616 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
617 
618 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
619 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
620 				 L_PTE_DIRTY | kern_pgprot);
621 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
622 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
623 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
624 
625 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
626 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
627 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
628 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
629 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
630 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
631 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
632 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
633 	mem_types[MT_ROM].prot_sect |= cp->pmd;
634 
635 	switch (cp->pmd) {
636 	case PMD_SECT_WT:
637 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
638 		break;
639 	case PMD_SECT_WB:
640 	case PMD_SECT_WBWA:
641 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
642 		break;
643 	}
644 	pr_info("Memory policy: %sData cache %s\n",
645 		ecc_mask ? "ECC enabled, " : "", cp->policy);
646 
647 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 		struct mem_type *t = &mem_types[i];
649 		if (t->prot_l1)
650 			t->prot_l1 |= PMD_DOMAIN(t->domain);
651 		if (t->prot_sect)
652 			t->prot_sect |= PMD_DOMAIN(t->domain);
653 	}
654 }
655 
656 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
657 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
658 			      unsigned long size, pgprot_t vma_prot)
659 {
660 	if (!pfn_valid(pfn))
661 		return pgprot_noncached(vma_prot);
662 	else if (file->f_flags & O_SYNC)
663 		return pgprot_writecombine(vma_prot);
664 	return vma_prot;
665 }
666 EXPORT_SYMBOL(phys_mem_access_prot);
667 #endif
668 
669 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
670 
671 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
672 {
673 	void *ptr = __va(memblock_alloc(sz, align));
674 	memset(ptr, 0, sz);
675 	return ptr;
676 }
677 
678 static void __init *early_alloc(unsigned long sz)
679 {
680 	return early_alloc_aligned(sz, sz);
681 }
682 
683 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
684 {
685 	if (pmd_none(*pmd)) {
686 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
687 		__pmd_populate(pmd, __pa(pte), prot);
688 	}
689 	BUG_ON(pmd_bad(*pmd));
690 	return pte_offset_kernel(pmd, addr);
691 }
692 
693 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
694 				  unsigned long end, unsigned long pfn,
695 				  const struct mem_type *type)
696 {
697 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
698 	do {
699 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
700 		pfn++;
701 	} while (pte++, addr += PAGE_SIZE, addr != end);
702 }
703 
704 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
705 			unsigned long end, phys_addr_t phys,
706 			const struct mem_type *type)
707 {
708 	pmd_t *p = pmd;
709 
710 #ifndef CONFIG_ARM_LPAE
711 	/*
712 	 * In classic MMU format, puds and pmds are folded in to
713 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
714 	 * group of L1 entries making up one logical pointer to
715 	 * an L2 table (2MB), where as PMDs refer to the individual
716 	 * L1 entries (1MB). Hence increment to get the correct
717 	 * offset for odd 1MB sections.
718 	 * (See arch/arm/include/asm/pgtable-2level.h)
719 	 */
720 	if (addr & SECTION_SIZE)
721 		pmd++;
722 #endif
723 	do {
724 		*pmd = __pmd(phys | type->prot_sect);
725 		phys += SECTION_SIZE;
726 	} while (pmd++, addr += SECTION_SIZE, addr != end);
727 
728 	flush_pmd_entry(p);
729 }
730 
731 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
732 				      unsigned long end, phys_addr_t phys,
733 				      const struct mem_type *type)
734 {
735 	pmd_t *pmd = pmd_offset(pud, addr);
736 	unsigned long next;
737 
738 	do {
739 		/*
740 		 * With LPAE, we must loop over to map
741 		 * all the pmds for the given range.
742 		 */
743 		next = pmd_addr_end(addr, end);
744 
745 		/*
746 		 * Try a section mapping - addr, next and phys must all be
747 		 * aligned to a section boundary.
748 		 */
749 		if (type->prot_sect &&
750 				((addr | next | phys) & ~SECTION_MASK) == 0) {
751 			__map_init_section(pmd, addr, next, phys, type);
752 		} else {
753 			alloc_init_pte(pmd, addr, next,
754 						__phys_to_pfn(phys), type);
755 		}
756 
757 		phys += next - addr;
758 
759 	} while (pmd++, addr = next, addr != end);
760 }
761 
762 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
763 				  unsigned long end, phys_addr_t phys,
764 				  const struct mem_type *type)
765 {
766 	pud_t *pud = pud_offset(pgd, addr);
767 	unsigned long next;
768 
769 	do {
770 		next = pud_addr_end(addr, end);
771 		alloc_init_pmd(pud, addr, next, phys, type);
772 		phys += next - addr;
773 	} while (pud++, addr = next, addr != end);
774 }
775 
776 #ifndef CONFIG_ARM_LPAE
777 static void __init create_36bit_mapping(struct map_desc *md,
778 					const struct mem_type *type)
779 {
780 	unsigned long addr, length, end;
781 	phys_addr_t phys;
782 	pgd_t *pgd;
783 
784 	addr = md->virtual;
785 	phys = __pfn_to_phys(md->pfn);
786 	length = PAGE_ALIGN(md->length);
787 
788 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
789 		printk(KERN_ERR "MM: CPU does not support supersection "
790 		       "mapping for 0x%08llx at 0x%08lx\n",
791 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
792 		return;
793 	}
794 
795 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
796 	 *	Since domain assignments can in fact be arbitrary, the
797 	 *	'domain == 0' check below is required to insure that ARMv6
798 	 *	supersections are only allocated for domain 0 regardless
799 	 *	of the actual domain assignments in use.
800 	 */
801 	if (type->domain) {
802 		printk(KERN_ERR "MM: invalid domain in supersection "
803 		       "mapping for 0x%08llx at 0x%08lx\n",
804 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
805 		return;
806 	}
807 
808 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
809 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
810 		       " at 0x%08lx invalid alignment\n",
811 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
812 		return;
813 	}
814 
815 	/*
816 	 * Shift bits [35:32] of address into bits [23:20] of PMD
817 	 * (See ARMv6 spec).
818 	 */
819 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
820 
821 	pgd = pgd_offset_k(addr);
822 	end = addr + length;
823 	do {
824 		pud_t *pud = pud_offset(pgd, addr);
825 		pmd_t *pmd = pmd_offset(pud, addr);
826 		int i;
827 
828 		for (i = 0; i < 16; i++)
829 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
830 
831 		addr += SUPERSECTION_SIZE;
832 		phys += SUPERSECTION_SIZE;
833 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
834 	} while (addr != end);
835 }
836 #endif	/* !CONFIG_ARM_LPAE */
837 
838 /*
839  * Create the page directory entries and any necessary
840  * page tables for the mapping specified by `md'.  We
841  * are able to cope here with varying sizes and address
842  * offsets, and we take full advantage of sections and
843  * supersections.
844  */
845 static void __init create_mapping(struct map_desc *md)
846 {
847 	unsigned long addr, length, end;
848 	phys_addr_t phys;
849 	const struct mem_type *type;
850 	pgd_t *pgd;
851 
852 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
853 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
854 		       " at 0x%08lx in user region\n",
855 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
856 		return;
857 	}
858 
859 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
860 	    md->virtual >= PAGE_OFFSET &&
861 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
862 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
863 		       " at 0x%08lx out of vmalloc space\n",
864 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
865 	}
866 
867 	type = &mem_types[md->type];
868 
869 #ifndef CONFIG_ARM_LPAE
870 	/*
871 	 * Catch 36-bit addresses
872 	 */
873 	if (md->pfn >= 0x100000) {
874 		create_36bit_mapping(md, type);
875 		return;
876 	}
877 #endif
878 
879 	addr = md->virtual & PAGE_MASK;
880 	phys = __pfn_to_phys(md->pfn);
881 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
882 
883 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
884 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
885 		       "be mapped using pages, ignoring.\n",
886 		       (long long)__pfn_to_phys(md->pfn), addr);
887 		return;
888 	}
889 
890 	pgd = pgd_offset_k(addr);
891 	end = addr + length;
892 	do {
893 		unsigned long next = pgd_addr_end(addr, end);
894 
895 		alloc_init_pud(pgd, addr, next, phys, type);
896 
897 		phys += next - addr;
898 		addr = next;
899 	} while (pgd++, addr != end);
900 }
901 
902 /*
903  * Create the architecture specific mappings
904  */
905 void __init iotable_init(struct map_desc *io_desc, int nr)
906 {
907 	struct map_desc *md;
908 	struct vm_struct *vm;
909 	struct static_vm *svm;
910 
911 	if (!nr)
912 		return;
913 
914 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
915 
916 	for (md = io_desc; nr; md++, nr--) {
917 		create_mapping(md);
918 
919 		vm = &svm->vm;
920 		vm->addr = (void *)(md->virtual & PAGE_MASK);
921 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
922 		vm->phys_addr = __pfn_to_phys(md->pfn);
923 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
924 		vm->flags |= VM_ARM_MTYPE(md->type);
925 		vm->caller = iotable_init;
926 		add_static_vm_early(svm++);
927 	}
928 }
929 
930 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
931 				  void *caller)
932 {
933 	struct vm_struct *vm;
934 	struct static_vm *svm;
935 
936 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
937 
938 	vm = &svm->vm;
939 	vm->addr = (void *)addr;
940 	vm->size = size;
941 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
942 	vm->caller = caller;
943 	add_static_vm_early(svm);
944 }
945 
946 #ifndef CONFIG_ARM_LPAE
947 
948 /*
949  * The Linux PMD is made of two consecutive section entries covering 2MB
950  * (see definition in include/asm/pgtable-2level.h).  However a call to
951  * create_mapping() may optimize static mappings by using individual
952  * 1MB section mappings.  This leaves the actual PMD potentially half
953  * initialized if the top or bottom section entry isn't used, leaving it
954  * open to problems if a subsequent ioremap() or vmalloc() tries to use
955  * the virtual space left free by that unused section entry.
956  *
957  * Let's avoid the issue by inserting dummy vm entries covering the unused
958  * PMD halves once the static mappings are in place.
959  */
960 
961 static void __init pmd_empty_section_gap(unsigned long addr)
962 {
963 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
964 }
965 
966 static void __init fill_pmd_gaps(void)
967 {
968 	struct static_vm *svm;
969 	struct vm_struct *vm;
970 	unsigned long addr, next = 0;
971 	pmd_t *pmd;
972 
973 	list_for_each_entry(svm, &static_vmlist, list) {
974 		vm = &svm->vm;
975 		addr = (unsigned long)vm->addr;
976 		if (addr < next)
977 			continue;
978 
979 		/*
980 		 * Check if this vm starts on an odd section boundary.
981 		 * If so and the first section entry for this PMD is free
982 		 * then we block the corresponding virtual address.
983 		 */
984 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
985 			pmd = pmd_off_k(addr);
986 			if (pmd_none(*pmd))
987 				pmd_empty_section_gap(addr & PMD_MASK);
988 		}
989 
990 		/*
991 		 * Then check if this vm ends on an odd section boundary.
992 		 * If so and the second section entry for this PMD is empty
993 		 * then we block the corresponding virtual address.
994 		 */
995 		addr += vm->size;
996 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
997 			pmd = pmd_off_k(addr) + 1;
998 			if (pmd_none(*pmd))
999 				pmd_empty_section_gap(addr);
1000 		}
1001 
1002 		/* no need to look at any vm entry until we hit the next PMD */
1003 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1004 	}
1005 }
1006 
1007 #else
1008 #define fill_pmd_gaps() do { } while (0)
1009 #endif
1010 
1011 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1012 static void __init pci_reserve_io(void)
1013 {
1014 	struct static_vm *svm;
1015 
1016 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1017 	if (svm)
1018 		return;
1019 
1020 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1021 }
1022 #else
1023 #define pci_reserve_io() do { } while (0)
1024 #endif
1025 
1026 #ifdef CONFIG_DEBUG_LL
1027 void __init debug_ll_io_init(void)
1028 {
1029 	struct map_desc map;
1030 
1031 	debug_ll_addr(&map.pfn, &map.virtual);
1032 	if (!map.pfn || !map.virtual)
1033 		return;
1034 	map.pfn = __phys_to_pfn(map.pfn);
1035 	map.virtual &= PAGE_MASK;
1036 	map.length = PAGE_SIZE;
1037 	map.type = MT_DEVICE;
1038 	iotable_init(&map, 1);
1039 }
1040 #endif
1041 
1042 static void * __initdata vmalloc_min =
1043 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1044 
1045 /*
1046  * vmalloc=size forces the vmalloc area to be exactly 'size'
1047  * bytes. This can be used to increase (or decrease) the vmalloc
1048  * area - the default is 240m.
1049  */
1050 static int __init early_vmalloc(char *arg)
1051 {
1052 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1053 
1054 	if (vmalloc_reserve < SZ_16M) {
1055 		vmalloc_reserve = SZ_16M;
1056 		printk(KERN_WARNING
1057 			"vmalloc area too small, limiting to %luMB\n",
1058 			vmalloc_reserve >> 20);
1059 	}
1060 
1061 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1062 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1063 		printk(KERN_WARNING
1064 			"vmalloc area is too big, limiting to %luMB\n",
1065 			vmalloc_reserve >> 20);
1066 	}
1067 
1068 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1069 	return 0;
1070 }
1071 early_param("vmalloc", early_vmalloc);
1072 
1073 phys_addr_t arm_lowmem_limit __initdata = 0;
1074 
1075 void __init sanity_check_meminfo(void)
1076 {
1077 	phys_addr_t memblock_limit = 0;
1078 	int highmem = 0;
1079 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1080 	struct memblock_region *reg;
1081 
1082 	for_each_memblock(memory, reg) {
1083 		phys_addr_t block_start = reg->base;
1084 		phys_addr_t block_end = reg->base + reg->size;
1085 		phys_addr_t size_limit = reg->size;
1086 
1087 		if (reg->base >= vmalloc_limit)
1088 			highmem = 1;
1089 		else
1090 			size_limit = vmalloc_limit - reg->base;
1091 
1092 
1093 		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1094 
1095 			if (highmem) {
1096 				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1097 					&block_start, &block_end);
1098 				memblock_remove(reg->base, reg->size);
1099 				continue;
1100 			}
1101 
1102 			if (reg->size > size_limit) {
1103 				phys_addr_t overlap_size = reg->size - size_limit;
1104 
1105 				pr_notice("Truncating RAM at %pa-%pa to -%pa",
1106 				      &block_start, &block_end, &vmalloc_limit);
1107 				memblock_remove(vmalloc_limit, overlap_size);
1108 				block_end = vmalloc_limit;
1109 			}
1110 		}
1111 
1112 		if (!highmem) {
1113 			if (block_end > arm_lowmem_limit) {
1114 				if (reg->size > size_limit)
1115 					arm_lowmem_limit = vmalloc_limit;
1116 				else
1117 					arm_lowmem_limit = block_end;
1118 			}
1119 
1120 			/*
1121 			 * Find the first non-section-aligned page, and point
1122 			 * memblock_limit at it. This relies on rounding the
1123 			 * limit down to be section-aligned, which happens at
1124 			 * the end of this function.
1125 			 *
1126 			 * With this algorithm, the start or end of almost any
1127 			 * bank can be non-section-aligned. The only exception
1128 			 * is that the start of the bank 0 must be section-
1129 			 * aligned, since otherwise memory would need to be
1130 			 * allocated when mapping the start of bank 0, which
1131 			 * occurs before any free memory is mapped.
1132 			 */
1133 			if (!memblock_limit) {
1134 				if (!IS_ALIGNED(block_start, SECTION_SIZE))
1135 					memblock_limit = block_start;
1136 				else if (!IS_ALIGNED(block_end, SECTION_SIZE))
1137 					memblock_limit = arm_lowmem_limit;
1138 			}
1139 
1140 		}
1141 	}
1142 
1143 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1144 
1145 	/*
1146 	 * Round the memblock limit down to a section size.  This
1147 	 * helps to ensure that we will allocate memory from the
1148 	 * last full section, which should be mapped.
1149 	 */
1150 	if (memblock_limit)
1151 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1152 	if (!memblock_limit)
1153 		memblock_limit = arm_lowmem_limit;
1154 
1155 	memblock_set_current_limit(memblock_limit);
1156 }
1157 
1158 static inline void prepare_page_table(void)
1159 {
1160 	unsigned long addr;
1161 	phys_addr_t end;
1162 
1163 	/*
1164 	 * Clear out all the mappings below the kernel image.
1165 	 */
1166 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1167 		pmd_clear(pmd_off_k(addr));
1168 
1169 #ifdef CONFIG_XIP_KERNEL
1170 	/* The XIP kernel is mapped in the module area -- skip over it */
1171 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1172 #endif
1173 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1174 		pmd_clear(pmd_off_k(addr));
1175 
1176 	/*
1177 	 * Find the end of the first block of lowmem.
1178 	 */
1179 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1180 	if (end >= arm_lowmem_limit)
1181 		end = arm_lowmem_limit;
1182 
1183 	/*
1184 	 * Clear out all the kernel space mappings, except for the first
1185 	 * memory bank, up to the vmalloc region.
1186 	 */
1187 	for (addr = __phys_to_virt(end);
1188 	     addr < VMALLOC_START; addr += PMD_SIZE)
1189 		pmd_clear(pmd_off_k(addr));
1190 }
1191 
1192 #ifdef CONFIG_ARM_LPAE
1193 /* the first page is reserved for pgd */
1194 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1195 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1196 #else
1197 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1198 #endif
1199 
1200 /*
1201  * Reserve the special regions of memory
1202  */
1203 void __init arm_mm_memblock_reserve(void)
1204 {
1205 	/*
1206 	 * Reserve the page tables.  These are already in use,
1207 	 * and can only be in node 0.
1208 	 */
1209 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1210 
1211 #ifdef CONFIG_SA1111
1212 	/*
1213 	 * Because of the SA1111 DMA bug, we want to preserve our
1214 	 * precious DMA-able memory...
1215 	 */
1216 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1217 #endif
1218 }
1219 
1220 /*
1221  * Set up the device mappings.  Since we clear out the page tables for all
1222  * mappings above VMALLOC_START, we will remove any debug device mappings.
1223  * This means you have to be careful how you debug this function, or any
1224  * called function.  This means you can't use any function or debugging
1225  * method which may touch any device, otherwise the kernel _will_ crash.
1226  */
1227 static void __init devicemaps_init(const struct machine_desc *mdesc)
1228 {
1229 	struct map_desc map;
1230 	unsigned long addr;
1231 	void *vectors;
1232 
1233 	/*
1234 	 * Allocate the vector page early.
1235 	 */
1236 	vectors = early_alloc(PAGE_SIZE * 2);
1237 
1238 	early_trap_init(vectors);
1239 
1240 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1241 		pmd_clear(pmd_off_k(addr));
1242 
1243 	/*
1244 	 * Map the kernel if it is XIP.
1245 	 * It is always first in the modulearea.
1246 	 */
1247 #ifdef CONFIG_XIP_KERNEL
1248 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1249 	map.virtual = MODULES_VADDR;
1250 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1251 	map.type = MT_ROM;
1252 	create_mapping(&map);
1253 #endif
1254 
1255 	/*
1256 	 * Map the cache flushing regions.
1257 	 */
1258 #ifdef FLUSH_BASE
1259 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1260 	map.virtual = FLUSH_BASE;
1261 	map.length = SZ_1M;
1262 	map.type = MT_CACHECLEAN;
1263 	create_mapping(&map);
1264 #endif
1265 #ifdef FLUSH_BASE_MINICACHE
1266 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1267 	map.virtual = FLUSH_BASE_MINICACHE;
1268 	map.length = SZ_1M;
1269 	map.type = MT_MINICLEAN;
1270 	create_mapping(&map);
1271 #endif
1272 
1273 	/*
1274 	 * Create a mapping for the machine vectors at the high-vectors
1275 	 * location (0xffff0000).  If we aren't using high-vectors, also
1276 	 * create a mapping at the low-vectors virtual address.
1277 	 */
1278 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1279 	map.virtual = 0xffff0000;
1280 	map.length = PAGE_SIZE;
1281 #ifdef CONFIG_KUSER_HELPERS
1282 	map.type = MT_HIGH_VECTORS;
1283 #else
1284 	map.type = MT_LOW_VECTORS;
1285 #endif
1286 	create_mapping(&map);
1287 
1288 	if (!vectors_high()) {
1289 		map.virtual = 0;
1290 		map.length = PAGE_SIZE * 2;
1291 		map.type = MT_LOW_VECTORS;
1292 		create_mapping(&map);
1293 	}
1294 
1295 	/* Now create a kernel read-only mapping */
1296 	map.pfn += 1;
1297 	map.virtual = 0xffff0000 + PAGE_SIZE;
1298 	map.length = PAGE_SIZE;
1299 	map.type = MT_LOW_VECTORS;
1300 	create_mapping(&map);
1301 
1302 	/*
1303 	 * Ask the machine support to map in the statically mapped devices.
1304 	 */
1305 	if (mdesc->map_io)
1306 		mdesc->map_io();
1307 	else
1308 		debug_ll_io_init();
1309 	fill_pmd_gaps();
1310 
1311 	/* Reserve fixed i/o space in VMALLOC region */
1312 	pci_reserve_io();
1313 
1314 	/*
1315 	 * Finally flush the caches and tlb to ensure that we're in a
1316 	 * consistent state wrt the writebuffer.  This also ensures that
1317 	 * any write-allocated cache lines in the vector page are written
1318 	 * back.  After this point, we can start to touch devices again.
1319 	 */
1320 	local_flush_tlb_all();
1321 	flush_cache_all();
1322 }
1323 
1324 static void __init kmap_init(void)
1325 {
1326 #ifdef CONFIG_HIGHMEM
1327 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1328 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1329 
1330 	fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START),
1331 		FIXADDR_START, _PAGE_KERNEL_TABLE);
1332 #endif
1333 }
1334 
1335 static void __init map_lowmem(void)
1336 {
1337 	struct memblock_region *reg;
1338 	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1339 	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1340 
1341 	/* Map all the lowmem memory banks. */
1342 	for_each_memblock(memory, reg) {
1343 		phys_addr_t start = reg->base;
1344 		phys_addr_t end = start + reg->size;
1345 		struct map_desc map;
1346 
1347 		if (end > arm_lowmem_limit)
1348 			end = arm_lowmem_limit;
1349 		if (start >= end)
1350 			break;
1351 
1352 		if (end < kernel_x_start || start >= kernel_x_end) {
1353 			map.pfn = __phys_to_pfn(start);
1354 			map.virtual = __phys_to_virt(start);
1355 			map.length = end - start;
1356 			map.type = MT_MEMORY_RWX;
1357 
1358 			create_mapping(&map);
1359 		} else {
1360 			/* This better cover the entire kernel */
1361 			if (start < kernel_x_start) {
1362 				map.pfn = __phys_to_pfn(start);
1363 				map.virtual = __phys_to_virt(start);
1364 				map.length = kernel_x_start - start;
1365 				map.type = MT_MEMORY_RW;
1366 
1367 				create_mapping(&map);
1368 			}
1369 
1370 			map.pfn = __phys_to_pfn(kernel_x_start);
1371 			map.virtual = __phys_to_virt(kernel_x_start);
1372 			map.length = kernel_x_end - kernel_x_start;
1373 			map.type = MT_MEMORY_RWX;
1374 
1375 			create_mapping(&map);
1376 
1377 			if (kernel_x_end < end) {
1378 				map.pfn = __phys_to_pfn(kernel_x_end);
1379 				map.virtual = __phys_to_virt(kernel_x_end);
1380 				map.length = end - kernel_x_end;
1381 				map.type = MT_MEMORY_RW;
1382 
1383 				create_mapping(&map);
1384 			}
1385 		}
1386 	}
1387 }
1388 
1389 #ifdef CONFIG_ARM_LPAE
1390 /*
1391  * early_paging_init() recreates boot time page table setup, allowing machines
1392  * to switch over to a high (>4G) address space on LPAE systems
1393  */
1394 void __init early_paging_init(const struct machine_desc *mdesc,
1395 			      struct proc_info_list *procinfo)
1396 {
1397 	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1398 	unsigned long map_start, map_end;
1399 	pgd_t *pgd0, *pgdk;
1400 	pud_t *pud0, *pudk, *pud_start;
1401 	pmd_t *pmd0, *pmdk;
1402 	phys_addr_t phys;
1403 	int i;
1404 
1405 	if (!(mdesc->init_meminfo))
1406 		return;
1407 
1408 	/* remap kernel code and data */
1409 	map_start = init_mm.start_code & PMD_MASK;
1410 	map_end   = ALIGN(init_mm.brk, PMD_SIZE);
1411 
1412 	/* get a handle on things... */
1413 	pgd0 = pgd_offset_k(0);
1414 	pud_start = pud0 = pud_offset(pgd0, 0);
1415 	pmd0 = pmd_offset(pud0, 0);
1416 
1417 	pgdk = pgd_offset_k(map_start);
1418 	pudk = pud_offset(pgdk, map_start);
1419 	pmdk = pmd_offset(pudk, map_start);
1420 
1421 	mdesc->init_meminfo();
1422 
1423 	/* Run the patch stub to update the constants */
1424 	fixup_pv_table(&__pv_table_begin,
1425 		(&__pv_table_end - &__pv_table_begin) << 2);
1426 
1427 	/*
1428 	 * Cache cleaning operations for self-modifying code
1429 	 * We should clean the entries by MVA but running a
1430 	 * for loop over every pv_table entry pointer would
1431 	 * just complicate the code.
1432 	 */
1433 	flush_cache_louis();
1434 	dsb(ishst);
1435 	isb();
1436 
1437 	/*
1438 	 * FIXME: This code is not architecturally compliant: we modify
1439 	 * the mappings in-place, indeed while they are in use by this
1440 	 * very same code.  This may lead to unpredictable behaviour of
1441 	 * the CPU.
1442 	 *
1443 	 * Even modifying the mappings in a separate page table does
1444 	 * not resolve this.
1445 	 *
1446 	 * The architecture strongly recommends that when a mapping is
1447 	 * changed, that it is changed by first going via an invalid
1448 	 * mapping and back to the new mapping.  This is to ensure that
1449 	 * no TLB conflicts (caused by the TLB having more than one TLB
1450 	 * entry match a translation) can occur.  However, doing that
1451 	 * here will result in unmapping the code we are running.
1452 	 */
1453 	pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1454 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1455 
1456 	/*
1457 	 * Remap level 1 table.  This changes the physical addresses
1458 	 * used to refer to the level 2 page tables to the high
1459 	 * physical address alias, leaving everything else the same.
1460 	 */
1461 	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1462 		set_pud(pud0,
1463 			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1464 		pmd0 += PTRS_PER_PMD;
1465 	}
1466 
1467 	/*
1468 	 * Remap the level 2 table, pointing the mappings at the high
1469 	 * physical address alias of these pages.
1470 	 */
1471 	phys = __pa(map_start);
1472 	do {
1473 		*pmdk++ = __pmd(phys | pmdprot);
1474 		phys += PMD_SIZE;
1475 	} while (phys < map_end);
1476 
1477 	/*
1478 	 * Ensure that the above updates are flushed out of the cache.
1479 	 * This is not strictly correct; on a system where the caches
1480 	 * are coherent with each other, but the MMU page table walks
1481 	 * may not be coherent, flush_cache_all() may be a no-op, and
1482 	 * this will fail.
1483 	 */
1484 	flush_cache_all();
1485 
1486 	/*
1487 	 * Re-write the TTBR values to point them at the high physical
1488 	 * alias of the page tables.  We expect __va() will work on
1489 	 * cpu_get_pgd(), which returns the value of TTBR0.
1490 	 */
1491 	cpu_switch_mm(pgd0, &init_mm);
1492 	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1493 
1494 	/* Finally flush any stale TLB values. */
1495 	local_flush_bp_all();
1496 	local_flush_tlb_all();
1497 }
1498 
1499 #else
1500 
1501 void __init early_paging_init(const struct machine_desc *mdesc,
1502 			      struct proc_info_list *procinfo)
1503 {
1504 	if (mdesc->init_meminfo)
1505 		mdesc->init_meminfo();
1506 }
1507 
1508 #endif
1509 
1510 /*
1511  * paging_init() sets up the page tables, initialises the zone memory
1512  * maps, and sets up the zero page, bad page and bad page tables.
1513  */
1514 void __init paging_init(const struct machine_desc *mdesc)
1515 {
1516 	void *zero_page;
1517 
1518 	build_mem_type_table();
1519 	prepare_page_table();
1520 	map_lowmem();
1521 	dma_contiguous_remap();
1522 	devicemaps_init(mdesc);
1523 	kmap_init();
1524 	tcm_init();
1525 
1526 	top_pmd = pmd_off_k(0xffff0000);
1527 
1528 	/* allocate the zero page. */
1529 	zero_page = early_alloc(PAGE_SIZE);
1530 
1531 	bootmem_init();
1532 
1533 	empty_zero_page = virt_to_page(zero_page);
1534 	__flush_dcache_page(NULL, empty_zero_page);
1535 }
1536