xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 5499b451)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30 
31 #include "mm.h"
32 
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41 
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46 
47 #define CPOLICY_UNCACHED	0
48 #define CPOLICY_BUFFERED	1
49 #define CPOLICY_WRITETHROUGH	2
50 #define CPOLICY_WRITEBACK	3
51 #define CPOLICY_WRITEALLOC	4
52 
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57 
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60 
61 struct cachepolicy {
62 	const char	policy[16];
63 	unsigned int	cr_mask;
64 	unsigned int	pmd;
65 	unsigned int	pte;
66 };
67 
68 static struct cachepolicy cache_policies[] __initdata = {
69 	{
70 		.policy		= "uncached",
71 		.cr_mask	= CR_W|CR_C,
72 		.pmd		= PMD_SECT_UNCACHED,
73 		.pte		= L_PTE_MT_UNCACHED,
74 	}, {
75 		.policy		= "buffered",
76 		.cr_mask	= CR_C,
77 		.pmd		= PMD_SECT_BUFFERED,
78 		.pte		= L_PTE_MT_BUFFERABLE,
79 	}, {
80 		.policy		= "writethrough",
81 		.cr_mask	= 0,
82 		.pmd		= PMD_SECT_WT,
83 		.pte		= L_PTE_MT_WRITETHROUGH,
84 	}, {
85 		.policy		= "writeback",
86 		.cr_mask	= 0,
87 		.pmd		= PMD_SECT_WB,
88 		.pte		= L_PTE_MT_WRITEBACK,
89 	}, {
90 		.policy		= "writealloc",
91 		.cr_mask	= 0,
92 		.pmd		= PMD_SECT_WBWA,
93 		.pte		= L_PTE_MT_WRITEALLOC,
94 	}
95 };
96 
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static void __init early_cachepolicy(char **p)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 		int len = strlen(cache_policies[i].policy);
109 
110 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111 			cachepolicy = i;
112 			cr_alignment &= ~cache_policies[i].cr_mask;
113 			cr_no_alignment &= ~cache_policies[i].cr_mask;
114 			*p += len;
115 			break;
116 		}
117 	}
118 	if (i == ARRAY_SIZE(cache_policies))
119 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 	/*
121 	 * This restriction is partly to do with the way we boot; it is
122 	 * unpredictable to have memory mapped using two different sets of
123 	 * memory attributes (shared, type, and cache attribs).  We can not
124 	 * change these attributes once the initial assembly has setup the
125 	 * page tables.
126 	 */
127 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 		cachepolicy = CPOLICY_WRITEBACK;
130 	}
131 	flush_cache_all();
132 	set_cr(cr_alignment);
133 }
134 __early_param("cachepolicy=", early_cachepolicy);
135 
136 static void __init early_nocache(char **__unused)
137 {
138 	char *p = "buffered";
139 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 	early_cachepolicy(&p);
141 }
142 __early_param("nocache", early_nocache);
143 
144 static void __init early_nowrite(char **__unused)
145 {
146 	char *p = "uncached";
147 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 	early_cachepolicy(&p);
149 }
150 __early_param("nowb", early_nowrite);
151 
152 static void __init early_ecc(char **p)
153 {
154 	if (memcmp(*p, "on", 2) == 0) {
155 		ecc_mask = PMD_PROTECTION;
156 		*p += 2;
157 	} else if (memcmp(*p, "off", 3) == 0) {
158 		ecc_mask = 0;
159 		*p += 3;
160 	}
161 }
162 __early_param("ecc=", early_ecc);
163 
164 static int __init noalign_setup(char *__unused)
165 {
166 	cr_alignment &= ~CR_A;
167 	cr_no_alignment &= ~CR_A;
168 	set_cr(cr_alignment);
169 	return 1;
170 }
171 __setup("noalign", noalign_setup);
172 
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176 	unsigned long flags;
177 
178 	mask &= ~CR_A;
179 
180 	set &= mask;
181 
182 	local_irq_save(flags);
183 
184 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 	cr_alignment = (cr_alignment & ~mask) | set;
186 
187 	set_cr((get_cr() & ~mask) | set);
188 
189 	local_irq_restore(flags);
190 }
191 #endif
192 
193 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195 
196 static struct mem_type mem_types[] = {
197 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 				  L_PTE_SHARED,
200 		.prot_l1	= PMD_TYPE_TABLE,
201 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 		.domain		= DOMAIN_IO,
203 	},
204 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 		.prot_l1	= PMD_TYPE_TABLE,
207 		.prot_sect	= PROT_SECT_DEVICE,
208 		.domain		= DOMAIN_IO,
209 	},
210 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 		.prot_l1	= PMD_TYPE_TABLE,
213 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
214 		.domain		= DOMAIN_IO,
215 	},
216 	[MT_DEVICE_WC] = {	/* ioremap_wc */
217 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 		.prot_l1	= PMD_TYPE_TABLE,
219 		.prot_sect	= PROT_SECT_DEVICE,
220 		.domain		= DOMAIN_IO,
221 	},
222 	[MT_UNCACHED] = {
223 		.prot_pte	= PROT_PTE_DEVICE,
224 		.prot_l1	= PMD_TYPE_TABLE,
225 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
226 		.domain		= DOMAIN_IO,
227 	},
228 	[MT_CACHECLEAN] = {
229 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain    = DOMAIN_KERNEL,
231 	},
232 	[MT_MINICLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 	[MT_LOW_VECTORS] = {
237 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 				L_PTE_EXEC,
239 		.prot_l1   = PMD_TYPE_TABLE,
240 		.domain    = DOMAIN_USER,
241 	},
242 	[MT_HIGH_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_USER | L_PTE_EXEC,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_MEMORY] = {
249 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 		.domain    = DOMAIN_KERNEL,
251 	},
252 	[MT_ROM] = {
253 		.prot_sect = PMD_TYPE_SECT,
254 		.domain    = DOMAIN_KERNEL,
255 	},
256 	[MT_MEMORY_NONCACHED] = {
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 };
261 
262 const struct mem_type *get_mem_type(unsigned int type)
263 {
264 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265 }
266 EXPORT_SYMBOL(get_mem_type);
267 
268 /*
269  * Adjust the PMD section entries according to the CPU in use.
270  */
271 static void __init build_mem_type_table(void)
272 {
273 	struct cachepolicy *cp;
274 	unsigned int cr = get_cr();
275 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276 	int cpu_arch = cpu_architecture();
277 	int i;
278 
279 	if (cpu_arch < CPU_ARCH_ARMv6) {
280 #if defined(CONFIG_CPU_DCACHE_DISABLE)
281 		if (cachepolicy > CPOLICY_BUFFERED)
282 			cachepolicy = CPOLICY_BUFFERED;
283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 		if (cachepolicy > CPOLICY_WRITETHROUGH)
285 			cachepolicy = CPOLICY_WRITETHROUGH;
286 #endif
287 	}
288 	if (cpu_arch < CPU_ARCH_ARMv5) {
289 		if (cachepolicy >= CPOLICY_WRITEALLOC)
290 			cachepolicy = CPOLICY_WRITEBACK;
291 		ecc_mask = 0;
292 	}
293 #ifdef CONFIG_SMP
294 	cachepolicy = CPOLICY_WRITEALLOC;
295 #endif
296 
297 	/*
298 	 * Strip out features not present on earlier architectures.
299 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
300 	 * without extended page tables don't have the 'Shared' bit.
301 	 */
302 	if (cpu_arch < CPU_ARCH_ARMv5)
303 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 			mem_types[i].prot_sect &= ~PMD_SECT_S;
308 
309 	/*
310 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 	 * "update-able on write" bit on ARM610).  However, Xscale and
312 	 * Xscale3 require this bit to be cleared.
313 	 */
314 	if (cpu_is_xscale() || cpu_is_xsc3()) {
315 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316 			mem_types[i].prot_sect &= ~PMD_BIT4;
317 			mem_types[i].prot_l1 &= ~PMD_BIT4;
318 		}
319 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
320 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321 			if (mem_types[i].prot_l1)
322 				mem_types[i].prot_l1 |= PMD_BIT4;
323 			if (mem_types[i].prot_sect)
324 				mem_types[i].prot_sect |= PMD_BIT4;
325 		}
326 	}
327 
328 	/*
329 	 * Mark the device areas according to the CPU/architecture.
330 	 */
331 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 		if (!cpu_is_xsc3()) {
333 			/*
334 			 * Mark device regions on ARMv6+ as execute-never
335 			 * to prevent speculative instruction fetches.
336 			 */
337 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341 		}
342 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343 			/*
344 			 * For ARMv7 with TEX remapping,
345 			 * - shared device is SXCB=1100
346 			 * - nonshared device is SXCB=0100
347 			 * - write combine device mem is SXCB=0001
348 			 * (Uncached Normal memory)
349 			 */
350 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 		} else if (cpu_is_xsc3()) {
354 			/*
355 			 * For Xscale3,
356 			 * - shared device is TEXCB=00101
357 			 * - nonshared device is TEXCB=01000
358 			 * - write combine device mem is TEXCB=00100
359 			 * (Inner/Outer Uncacheable in xsc3 parlance)
360 			 */
361 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 		} else {
365 			/*
366 			 * For ARMv6 and ARMv7 without TEX remapping,
367 			 * - shared device is TEXCB=00001
368 			 * - nonshared device is TEXCB=01000
369 			 * - write combine device mem is TEXCB=00100
370 			 * (Uncached Normal in ARMv6 parlance).
371 			 */
372 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375 		}
376 	} else {
377 		/*
378 		 * On others, write combining is "Uncached/Buffered"
379 		 */
380 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 	}
382 
383 	/*
384 	 * Now deal with the memory-type mappings
385 	 */
386 	cp = &cache_policies[cachepolicy];
387 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388 
389 #ifndef CONFIG_SMP
390 	/*
391 	 * Only use write-through for non-SMP systems
392 	 */
393 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395 #endif
396 
397 	/*
398 	 * Enable CPU-specific coherency if supported.
399 	 * (Only available on XSC3 at the moment.)
400 	 */
401 	if (arch_is_coherent() && cpu_is_xsc3())
402 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
403 
404 	/*
405 	 * ARMv6 and above have extended page tables.
406 	 */
407 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
408 		/*
409 		 * Mark cache clean areas and XIP ROM read only
410 		 * from SVC mode and no access from userspace.
411 		 */
412 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415 
416 #ifdef CONFIG_SMP
417 		/*
418 		 * Mark memory with the "shared" attribute for SMP systems
419 		 */
420 		user_pgprot |= L_PTE_SHARED;
421 		kern_pgprot |= L_PTE_SHARED;
422 		vecs_pgprot |= L_PTE_SHARED;
423 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425 #endif
426 	}
427 
428 	/*
429 	 * Non-cacheable Normal - intended for memory areas that must
430 	 * not cause dirty cache line writebacks when used
431 	 */
432 	if (cpu_arch >= CPU_ARCH_ARMv6) {
433 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
434 			/* Non-cacheable Normal is XCB = 001 */
435 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
436 				PMD_SECT_BUFFERED;
437 		} else {
438 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
439 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 				PMD_SECT_TEX(1);
441 		}
442 	} else {
443 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
444 	}
445 
446 	for (i = 0; i < 16; i++) {
447 		unsigned long v = pgprot_val(protection_map[i]);
448 		protection_map[i] = __pgprot(v | user_pgprot);
449 	}
450 
451 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
452 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
453 
454 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
455 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
456 				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
457 
458 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
459 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
460 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
461 	mem_types[MT_ROM].prot_sect |= cp->pmd;
462 
463 	switch (cp->pmd) {
464 	case PMD_SECT_WT:
465 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
466 		break;
467 	case PMD_SECT_WB:
468 	case PMD_SECT_WBWA:
469 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
470 		break;
471 	}
472 	printk("Memory policy: ECC %sabled, Data cache %s\n",
473 		ecc_mask ? "en" : "dis", cp->policy);
474 
475 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 		struct mem_type *t = &mem_types[i];
477 		if (t->prot_l1)
478 			t->prot_l1 |= PMD_DOMAIN(t->domain);
479 		if (t->prot_sect)
480 			t->prot_sect |= PMD_DOMAIN(t->domain);
481 	}
482 }
483 
484 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
485 
486 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
487 				  unsigned long end, unsigned long pfn,
488 				  const struct mem_type *type)
489 {
490 	pte_t *pte;
491 
492 	if (pmd_none(*pmd)) {
493 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
494 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
495 	}
496 
497 	pte = pte_offset_kernel(pmd, addr);
498 	do {
499 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
500 		pfn++;
501 	} while (pte++, addr += PAGE_SIZE, addr != end);
502 }
503 
504 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
505 				      unsigned long end, unsigned long phys,
506 				      const struct mem_type *type)
507 {
508 	pmd_t *pmd = pmd_offset(pgd, addr);
509 
510 	/*
511 	 * Try a section mapping - end, addr and phys must all be aligned
512 	 * to a section boundary.  Note that PMDs refer to the individual
513 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
514 	 * up one logical pointer to an L2 table.
515 	 */
516 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
517 		pmd_t *p = pmd;
518 
519 		if (addr & SECTION_SIZE)
520 			pmd++;
521 
522 		do {
523 			*pmd = __pmd(phys | type->prot_sect);
524 			phys += SECTION_SIZE;
525 		} while (pmd++, addr += SECTION_SIZE, addr != end);
526 
527 		flush_pmd_entry(p);
528 	} else {
529 		/*
530 		 * No need to loop; pte's aren't interested in the
531 		 * individual L1 entries.
532 		 */
533 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
534 	}
535 }
536 
537 static void __init create_36bit_mapping(struct map_desc *md,
538 					const struct mem_type *type)
539 {
540 	unsigned long phys, addr, length, end;
541 	pgd_t *pgd;
542 
543 	addr = md->virtual;
544 	phys = (unsigned long)__pfn_to_phys(md->pfn);
545 	length = PAGE_ALIGN(md->length);
546 
547 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
548 		printk(KERN_ERR "MM: CPU does not support supersection "
549 		       "mapping for 0x%08llx at 0x%08lx\n",
550 		       __pfn_to_phys((u64)md->pfn), addr);
551 		return;
552 	}
553 
554 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
555 	 *	Since domain assignments can in fact be arbitrary, the
556 	 *	'domain == 0' check below is required to insure that ARMv6
557 	 *	supersections are only allocated for domain 0 regardless
558 	 *	of the actual domain assignments in use.
559 	 */
560 	if (type->domain) {
561 		printk(KERN_ERR "MM: invalid domain in supersection "
562 		       "mapping for 0x%08llx at 0x%08lx\n",
563 		       __pfn_to_phys((u64)md->pfn), addr);
564 		return;
565 	}
566 
567 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
568 		printk(KERN_ERR "MM: cannot create mapping for "
569 		       "0x%08llx at 0x%08lx invalid alignment\n",
570 		       __pfn_to_phys((u64)md->pfn), addr);
571 		return;
572 	}
573 
574 	/*
575 	 * Shift bits [35:32] of address into bits [23:20] of PMD
576 	 * (See ARMv6 spec).
577 	 */
578 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
579 
580 	pgd = pgd_offset_k(addr);
581 	end = addr + length;
582 	do {
583 		pmd_t *pmd = pmd_offset(pgd, addr);
584 		int i;
585 
586 		for (i = 0; i < 16; i++)
587 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
588 
589 		addr += SUPERSECTION_SIZE;
590 		phys += SUPERSECTION_SIZE;
591 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
592 	} while (addr != end);
593 }
594 
595 /*
596  * Create the page directory entries and any necessary
597  * page tables for the mapping specified by `md'.  We
598  * are able to cope here with varying sizes and address
599  * offsets, and we take full advantage of sections and
600  * supersections.
601  */
602 void __init create_mapping(struct map_desc *md)
603 {
604 	unsigned long phys, addr, length, end;
605 	const struct mem_type *type;
606 	pgd_t *pgd;
607 
608 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
609 		printk(KERN_WARNING "BUG: not creating mapping for "
610 		       "0x%08llx at 0x%08lx in user region\n",
611 		       __pfn_to_phys((u64)md->pfn), md->virtual);
612 		return;
613 	}
614 
615 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
616 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
617 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
618 		       "overlaps vmalloc space\n",
619 		       __pfn_to_phys((u64)md->pfn), md->virtual);
620 	}
621 
622 	type = &mem_types[md->type];
623 
624 	/*
625 	 * Catch 36-bit addresses
626 	 */
627 	if (md->pfn >= 0x100000) {
628 		create_36bit_mapping(md, type);
629 		return;
630 	}
631 
632 	addr = md->virtual & PAGE_MASK;
633 	phys = (unsigned long)__pfn_to_phys(md->pfn);
634 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
635 
636 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
637 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
638 		       "be mapped using pages, ignoring.\n",
639 		       __pfn_to_phys(md->pfn), addr);
640 		return;
641 	}
642 
643 	pgd = pgd_offset_k(addr);
644 	end = addr + length;
645 	do {
646 		unsigned long next = pgd_addr_end(addr, end);
647 
648 		alloc_init_section(pgd, addr, next, phys, type);
649 
650 		phys += next - addr;
651 		addr = next;
652 	} while (pgd++, addr != end);
653 }
654 
655 /*
656  * Create the architecture specific mappings
657  */
658 void __init iotable_init(struct map_desc *io_desc, int nr)
659 {
660 	int i;
661 
662 	for (i = 0; i < nr; i++)
663 		create_mapping(io_desc + i);
664 }
665 
666 static unsigned long __initdata vmalloc_reserve = SZ_128M;
667 
668 /*
669  * vmalloc=size forces the vmalloc area to be exactly 'size'
670  * bytes. This can be used to increase (or decrease) the vmalloc
671  * area - the default is 128m.
672  */
673 static void __init early_vmalloc(char **arg)
674 {
675 	vmalloc_reserve = memparse(*arg, arg);
676 
677 	if (vmalloc_reserve < SZ_16M) {
678 		vmalloc_reserve = SZ_16M;
679 		printk(KERN_WARNING
680 			"vmalloc area too small, limiting to %luMB\n",
681 			vmalloc_reserve >> 20);
682 	}
683 
684 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
685 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
686 		printk(KERN_WARNING
687 			"vmalloc area is too big, limiting to %luMB\n",
688 			vmalloc_reserve >> 20);
689 	}
690 }
691 __early_param("vmalloc=", early_vmalloc);
692 
693 #define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)
694 
695 static void __init sanity_check_meminfo(void)
696 {
697 	int i, j, highmem = 0;
698 
699 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
700 		struct membank *bank = &meminfo.bank[j];
701 		*bank = meminfo.bank[i];
702 
703 #ifdef CONFIG_HIGHMEM
704 		if (__va(bank->start) > VMALLOC_MIN ||
705 		    __va(bank->start) < (void *)PAGE_OFFSET)
706 			highmem = 1;
707 
708 		bank->highmem = highmem;
709 
710 		/*
711 		 * Split those memory banks which are partially overlapping
712 		 * the vmalloc area greatly simplifying things later.
713 		 */
714 		if (__va(bank->start) < VMALLOC_MIN &&
715 		    bank->size > VMALLOC_MIN - __va(bank->start)) {
716 			if (meminfo.nr_banks >= NR_BANKS) {
717 				printk(KERN_CRIT "NR_BANKS too low, "
718 						 "ignoring high memory\n");
719 			} else {
720 				memmove(bank + 1, bank,
721 					(meminfo.nr_banks - i) * sizeof(*bank));
722 				meminfo.nr_banks++;
723 				i++;
724 				bank[1].size -= VMALLOC_MIN - __va(bank->start);
725 				bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
726 				bank[1].highmem = highmem = 1;
727 				j++;
728 			}
729 			bank->size = VMALLOC_MIN - __va(bank->start);
730 		}
731 #else
732 		bank->highmem = highmem;
733 
734 		/*
735 		 * Check whether this memory bank would entirely overlap
736 		 * the vmalloc area.
737 		 */
738 		if (__va(bank->start) >= VMALLOC_MIN ||
739 		    __va(bank->start) < (void *)PAGE_OFFSET) {
740 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
741 			       "(vmalloc region overlap).\n",
742 			       bank->start, bank->start + bank->size - 1);
743 			continue;
744 		}
745 
746 		/*
747 		 * Check whether this memory bank would partially overlap
748 		 * the vmalloc area.
749 		 */
750 		if (__va(bank->start + bank->size) > VMALLOC_MIN ||
751 		    __va(bank->start + bank->size) < __va(bank->start)) {
752 			unsigned long newsize = VMALLOC_MIN - __va(bank->start);
753 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
754 			       "to -%.8lx (vmalloc region overlap).\n",
755 			       bank->start, bank->start + bank->size - 1,
756 			       bank->start + newsize - 1);
757 			bank->size = newsize;
758 		}
759 #endif
760 		j++;
761 	}
762 #ifdef CONFIG_HIGHMEM
763 	if (highmem) {
764 		const char *reason = NULL;
765 
766 		if (cache_is_vipt_aliasing()) {
767 			/*
768 			 * Interactions between kmap and other mappings
769 			 * make highmem support with aliasing VIPT caches
770 			 * rather difficult.
771 			 */
772 			reason = "with VIPT aliasing cache";
773 #ifdef CONFIG_SMP
774 		} else if (tlb_ops_need_broadcast()) {
775 			/*
776 			 * kmap_high needs to occasionally flush TLB entries,
777 			 * however, if the TLB entries need to be broadcast
778 			 * we may deadlock:
779 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
780 			 *  flush_tlb_kernel_range->smp_call_function_many
781 			 *   (must not be called with irqs off)
782 			 */
783 			reason = "without hardware TLB ops broadcasting";
784 #endif
785 		}
786 		if (reason) {
787 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
788 				reason);
789 			while (j > 0 && meminfo.bank[j - 1].highmem)
790 				j--;
791 		}
792 	}
793 #endif
794 	meminfo.nr_banks = j;
795 }
796 
797 static inline void prepare_page_table(void)
798 {
799 	unsigned long addr;
800 
801 	/*
802 	 * Clear out all the mappings below the kernel image.
803 	 */
804 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
805 		pmd_clear(pmd_off_k(addr));
806 
807 #ifdef CONFIG_XIP_KERNEL
808 	/* The XIP kernel is mapped in the module area -- skip over it */
809 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
810 #endif
811 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
812 		pmd_clear(pmd_off_k(addr));
813 
814 	/*
815 	 * Clear out all the kernel space mappings, except for the first
816 	 * memory bank, up to the end of the vmalloc region.
817 	 */
818 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
819 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
820 		pmd_clear(pmd_off_k(addr));
821 }
822 
823 /*
824  * Reserve the various regions of node 0
825  */
826 void __init reserve_node_zero(pg_data_t *pgdat)
827 {
828 	unsigned long res_size = 0;
829 
830 	/*
831 	 * Register the kernel text and data with bootmem.
832 	 * Note that this can only be in node 0.
833 	 */
834 #ifdef CONFIG_XIP_KERNEL
835 	reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
836 			BOOTMEM_DEFAULT);
837 #else
838 	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
839 			BOOTMEM_DEFAULT);
840 #endif
841 
842 	/*
843 	 * Reserve the page tables.  These are already in use,
844 	 * and can only be in node 0.
845 	 */
846 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
847 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
848 
849 	/*
850 	 * Hmm... This should go elsewhere, but we really really need to
851 	 * stop things allocating the low memory; ideally we need a better
852 	 * implementation of GFP_DMA which does not assume that DMA-able
853 	 * memory starts at zero.
854 	 */
855 	if (machine_is_integrator() || machine_is_cintegrator())
856 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
857 
858 	/*
859 	 * These should likewise go elsewhere.  They pre-reserve the
860 	 * screen memory region at the start of main system memory.
861 	 */
862 	if (machine_is_edb7211())
863 		res_size = 0x00020000;
864 	if (machine_is_p720t())
865 		res_size = 0x00014000;
866 
867 	/* H1940 and RX3715 need to reserve this for suspend */
868 
869 	if (machine_is_h1940() || machine_is_rx3715()) {
870 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
871 				BOOTMEM_DEFAULT);
872 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
873 				BOOTMEM_DEFAULT);
874 	}
875 
876 	if (machine_is_palmld() || machine_is_palmtx()) {
877 		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
878 				BOOTMEM_EXCLUSIVE);
879 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
880 				BOOTMEM_EXCLUSIVE);
881 	}
882 
883 	if (machine_is_treo680() || machine_is_centro()) {
884 		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
885 				BOOTMEM_EXCLUSIVE);
886 		reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
887 				BOOTMEM_EXCLUSIVE);
888 	}
889 
890 	if (machine_is_palmt5())
891 		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
892 				BOOTMEM_EXCLUSIVE);
893 
894 	/*
895 	 * U300 - This platform family can share physical memory
896 	 * between two ARM cpus, one running Linux and the other
897 	 * running another OS.
898 	 */
899 	if (machine_is_u300()) {
900 #ifdef CONFIG_MACH_U300_SINGLE_RAM
901 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&	\
902 	CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
903 		res_size = 0x00100000;
904 #endif
905 #endif
906 	}
907 
908 #ifdef CONFIG_SA1111
909 	/*
910 	 * Because of the SA1111 DMA bug, we want to preserve our
911 	 * precious DMA-able memory...
912 	 */
913 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
914 #endif
915 	if (res_size)
916 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
917 				BOOTMEM_DEFAULT);
918 }
919 
920 /*
921  * Set up device the mappings.  Since we clear out the page tables for all
922  * mappings above VMALLOC_END, we will remove any debug device mappings.
923  * This means you have to be careful how you debug this function, or any
924  * called function.  This means you can't use any function or debugging
925  * method which may touch any device, otherwise the kernel _will_ crash.
926  */
927 static void __init devicemaps_init(struct machine_desc *mdesc)
928 {
929 	struct map_desc map;
930 	unsigned long addr;
931 	void *vectors;
932 
933 	/*
934 	 * Allocate the vector page early.
935 	 */
936 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
937 
938 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
939 		pmd_clear(pmd_off_k(addr));
940 
941 	/*
942 	 * Map the kernel if it is XIP.
943 	 * It is always first in the modulearea.
944 	 */
945 #ifdef CONFIG_XIP_KERNEL
946 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
947 	map.virtual = MODULES_VADDR;
948 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
949 	map.type = MT_ROM;
950 	create_mapping(&map);
951 #endif
952 
953 	/*
954 	 * Map the cache flushing regions.
955 	 */
956 #ifdef FLUSH_BASE
957 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
958 	map.virtual = FLUSH_BASE;
959 	map.length = SZ_1M;
960 	map.type = MT_CACHECLEAN;
961 	create_mapping(&map);
962 #endif
963 #ifdef FLUSH_BASE_MINICACHE
964 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
965 	map.virtual = FLUSH_BASE_MINICACHE;
966 	map.length = SZ_1M;
967 	map.type = MT_MINICLEAN;
968 	create_mapping(&map);
969 #endif
970 
971 	/*
972 	 * Create a mapping for the machine vectors at the high-vectors
973 	 * location (0xffff0000).  If we aren't using high-vectors, also
974 	 * create a mapping at the low-vectors virtual address.
975 	 */
976 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
977 	map.virtual = 0xffff0000;
978 	map.length = PAGE_SIZE;
979 	map.type = MT_HIGH_VECTORS;
980 	create_mapping(&map);
981 
982 	if (!vectors_high()) {
983 		map.virtual = 0;
984 		map.type = MT_LOW_VECTORS;
985 		create_mapping(&map);
986 	}
987 
988 	/*
989 	 * Ask the machine support to map in the statically mapped devices.
990 	 */
991 	if (mdesc->map_io)
992 		mdesc->map_io();
993 
994 	/*
995 	 * Finally flush the caches and tlb to ensure that we're in a
996 	 * consistent state wrt the writebuffer.  This also ensures that
997 	 * any write-allocated cache lines in the vector page are written
998 	 * back.  After this point, we can start to touch devices again.
999 	 */
1000 	local_flush_tlb_all();
1001 	flush_cache_all();
1002 }
1003 
1004 static void __init kmap_init(void)
1005 {
1006 #ifdef CONFIG_HIGHMEM
1007 	pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1008 	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1009 	BUG_ON(!pmd_none(*pmd) || !pte);
1010 	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1011 	pkmap_page_table = pte + PTRS_PER_PTE;
1012 #endif
1013 }
1014 
1015 /*
1016  * paging_init() sets up the page tables, initialises the zone memory
1017  * maps, and sets up the zero page, bad page and bad page tables.
1018  */
1019 void __init paging_init(struct machine_desc *mdesc)
1020 {
1021 	void *zero_page;
1022 
1023 	build_mem_type_table();
1024 	sanity_check_meminfo();
1025 	prepare_page_table();
1026 	bootmem_init();
1027 	devicemaps_init(mdesc);
1028 	kmap_init();
1029 
1030 	top_pmd = pmd_off_k(0xffff0000);
1031 
1032 	/*
1033 	 * allocate the zero page.  Note that this always succeeds and
1034 	 * returns a zeroed result.
1035 	 */
1036 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1037 	empty_zero_page = virt_to_page(zero_page);
1038 	__flush_dcache_page(NULL, empty_zero_page);
1039 }
1040 
1041 /*
1042  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1043  * the user-mode pages.  This will then ensure that we have predictable
1044  * results when turning the mmu off
1045  */
1046 void setup_mm_for_reboot(char mode)
1047 {
1048 	unsigned long base_pmdval;
1049 	pgd_t *pgd;
1050 	int i;
1051 
1052 	if (current->mm && current->mm->pgd)
1053 		pgd = current->mm->pgd;
1054 	else
1055 		pgd = init_mm.pgd;
1056 
1057 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1058 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1059 		base_pmdval |= PMD_BIT4;
1060 
1061 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1062 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1063 		pmd_t *pmd;
1064 
1065 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1066 		pmd[0] = __pmd(pmdval);
1067 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1068 		flush_pmd_entry(pmd);
1069 	}
1070 
1071 	local_flush_tlb_all();
1072 }
1073