xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 }
216 early_param("cachepolicy", early_cachepolicy);
217 
218 static int __init noalign_setup(char *__unused)
219 {
220 	pr_warn("noalign kernel parameter not supported without cp15\n");
221 }
222 __setup("noalign", noalign_setup);
223 
224 #endif /* ifdef CONFIG_CPU_CP15 / else */
225 
226 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
228 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
229 
230 static struct mem_type mem_types[] __ro_after_init = {
231 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
232 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
233 				  L_PTE_SHARED,
234 		.prot_l1	= PMD_TYPE_TABLE,
235 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
236 		.domain		= DOMAIN_IO,
237 	},
238 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240 		.prot_l1	= PMD_TYPE_TABLE,
241 		.prot_sect	= PROT_SECT_DEVICE,
242 		.domain		= DOMAIN_IO,
243 	},
244 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
245 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246 		.prot_l1	= PMD_TYPE_TABLE,
247 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
248 		.domain		= DOMAIN_IO,
249 	},
250 	[MT_DEVICE_WC] = {	/* ioremap_wc */
251 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252 		.prot_l1	= PMD_TYPE_TABLE,
253 		.prot_sect	= PROT_SECT_DEVICE,
254 		.domain		= DOMAIN_IO,
255 	},
256 	[MT_UNCACHED] = {
257 		.prot_pte	= PROT_PTE_DEVICE,
258 		.prot_l1	= PMD_TYPE_TABLE,
259 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
260 		.domain		= DOMAIN_IO,
261 	},
262 	[MT_CACHECLEAN] = {
263 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 		.domain    = DOMAIN_KERNEL,
265 	},
266 #ifndef CONFIG_ARM_LPAE
267 	[MT_MINICLEAN] = {
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 #endif
272 	[MT_LOW_VECTORS] = {
273 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274 				L_PTE_RDONLY,
275 		.prot_l1   = PMD_TYPE_TABLE,
276 		.domain    = DOMAIN_VECTORS,
277 	},
278 	[MT_HIGH_VECTORS] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280 				L_PTE_USER | L_PTE_RDONLY,
281 		.prot_l1   = PMD_TYPE_TABLE,
282 		.domain    = DOMAIN_VECTORS,
283 	},
284 	[MT_MEMORY_RWX] = {
285 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288 		.domain    = DOMAIN_KERNEL,
289 	},
290 	[MT_MEMORY_RW] = {
291 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 			     L_PTE_XN,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 		.domain    = DOMAIN_KERNEL,
296 	},
297 	[MT_ROM] = {
298 		.prot_sect = PMD_TYPE_SECT,
299 		.domain    = DOMAIN_KERNEL,
300 	},
301 	[MT_MEMORY_RWX_NONCACHED] = {
302 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 				L_PTE_MT_BUFFERABLE,
304 		.prot_l1   = PMD_TYPE_TABLE,
305 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_MEMORY_RW_DTCM] = {
309 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 				L_PTE_XN,
311 		.prot_l1   = PMD_TYPE_TABLE,
312 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
313 		.domain    = DOMAIN_KERNEL,
314 	},
315 	[MT_MEMORY_RWX_ITCM] = {
316 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317 		.prot_l1   = PMD_TYPE_TABLE,
318 		.domain    = DOMAIN_KERNEL,
319 	},
320 	[MT_MEMORY_RW_SO] = {
321 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322 				L_PTE_MT_UNCACHED | L_PTE_XN,
323 		.prot_l1   = PMD_TYPE_TABLE,
324 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
325 				PMD_SECT_UNCACHED | PMD_SECT_XN,
326 		.domain    = DOMAIN_KERNEL,
327 	},
328 	[MT_MEMORY_DMA_READY] = {
329 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
330 				L_PTE_XN,
331 		.prot_l1   = PMD_TYPE_TABLE,
332 		.domain    = DOMAIN_KERNEL,
333 	},
334 };
335 
336 const struct mem_type *get_mem_type(unsigned int type)
337 {
338 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
339 }
340 EXPORT_SYMBOL(get_mem_type);
341 
342 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
343 
344 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
345 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
346 
347 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
348 {
349 	return &bm_pte[pte_index(addr)];
350 }
351 
352 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
353 {
354 	return pte_offset_kernel(dir, addr);
355 }
356 
357 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
358 {
359 	return pmd_off_k(addr);
360 }
361 
362 void __init early_fixmap_init(void)
363 {
364 	pmd_t *pmd;
365 
366 	/*
367 	 * The early fixmap range spans multiple pmds, for which
368 	 * we are not prepared:
369 	 */
370 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
371 		     != FIXADDR_TOP >> PMD_SHIFT);
372 
373 	pmd = fixmap_pmd(FIXADDR_TOP);
374 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
375 
376 	pte_offset_fixmap = pte_offset_early_fixmap;
377 }
378 
379 /*
380  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
381  * As a result, this can only be called with preemption disabled, as under
382  * stop_machine().
383  */
384 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
385 {
386 	unsigned long vaddr = __fix_to_virt(idx);
387 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
388 
389 	/* Make sure fixmap region does not exceed available allocation. */
390 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
391 		     FIXADDR_END);
392 	BUG_ON(idx >= __end_of_fixed_addresses);
393 
394 	/* we only support device mappings until pgprot_kernel has been set */
395 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
396 		    pgprot_val(pgprot_kernel) == 0))
397 		return;
398 
399 	if (pgprot_val(prot))
400 		set_pte_at(NULL, vaddr, pte,
401 			pfn_pte(phys >> PAGE_SHIFT, prot));
402 	else
403 		pte_clear(NULL, vaddr, pte);
404 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
405 }
406 
407 /*
408  * Adjust the PMD section entries according to the CPU in use.
409  */
410 static void __init build_mem_type_table(void)
411 {
412 	struct cachepolicy *cp;
413 	unsigned int cr = get_cr();
414 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
415 	int cpu_arch = cpu_architecture();
416 	int i;
417 
418 	if (cpu_arch < CPU_ARCH_ARMv6) {
419 #if defined(CONFIG_CPU_DCACHE_DISABLE)
420 		if (cachepolicy > CPOLICY_BUFFERED)
421 			cachepolicy = CPOLICY_BUFFERED;
422 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
423 		if (cachepolicy > CPOLICY_WRITETHROUGH)
424 			cachepolicy = CPOLICY_WRITETHROUGH;
425 #endif
426 	}
427 	if (cpu_arch < CPU_ARCH_ARMv5) {
428 		if (cachepolicy >= CPOLICY_WRITEALLOC)
429 			cachepolicy = CPOLICY_WRITEBACK;
430 		ecc_mask = 0;
431 	}
432 
433 	if (is_smp()) {
434 		if (cachepolicy != CPOLICY_WRITEALLOC) {
435 			pr_warn("Forcing write-allocate cache policy for SMP\n");
436 			cachepolicy = CPOLICY_WRITEALLOC;
437 		}
438 		if (!(initial_pmd_value & PMD_SECT_S)) {
439 			pr_warn("Forcing shared mappings for SMP\n");
440 			initial_pmd_value |= PMD_SECT_S;
441 		}
442 	}
443 
444 	/*
445 	 * Strip out features not present on earlier architectures.
446 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
447 	 * without extended page tables don't have the 'Shared' bit.
448 	 */
449 	if (cpu_arch < CPU_ARCH_ARMv5)
450 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
451 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
452 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
453 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
454 			mem_types[i].prot_sect &= ~PMD_SECT_S;
455 
456 	/*
457 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
458 	 * "update-able on write" bit on ARM610).  However, Xscale and
459 	 * Xscale3 require this bit to be cleared.
460 	 */
461 	if (cpu_is_xscale_family()) {
462 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
463 			mem_types[i].prot_sect &= ~PMD_BIT4;
464 			mem_types[i].prot_l1 &= ~PMD_BIT4;
465 		}
466 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
467 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
468 			if (mem_types[i].prot_l1)
469 				mem_types[i].prot_l1 |= PMD_BIT4;
470 			if (mem_types[i].prot_sect)
471 				mem_types[i].prot_sect |= PMD_BIT4;
472 		}
473 	}
474 
475 	/*
476 	 * Mark the device areas according to the CPU/architecture.
477 	 */
478 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
479 		if (!cpu_is_xsc3()) {
480 			/*
481 			 * Mark device regions on ARMv6+ as execute-never
482 			 * to prevent speculative instruction fetches.
483 			 */
484 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
485 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
486 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
487 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
488 
489 			/* Also setup NX memory mapping */
490 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
491 		}
492 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
493 			/*
494 			 * For ARMv7 with TEX remapping,
495 			 * - shared device is SXCB=1100
496 			 * - nonshared device is SXCB=0100
497 			 * - write combine device mem is SXCB=0001
498 			 * (Uncached Normal memory)
499 			 */
500 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
501 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
502 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
503 		} else if (cpu_is_xsc3()) {
504 			/*
505 			 * For Xscale3,
506 			 * - shared device is TEXCB=00101
507 			 * - nonshared device is TEXCB=01000
508 			 * - write combine device mem is TEXCB=00100
509 			 * (Inner/Outer Uncacheable in xsc3 parlance)
510 			 */
511 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
512 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
513 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
514 		} else {
515 			/*
516 			 * For ARMv6 and ARMv7 without TEX remapping,
517 			 * - shared device is TEXCB=00001
518 			 * - nonshared device is TEXCB=01000
519 			 * - write combine device mem is TEXCB=00100
520 			 * (Uncached Normal in ARMv6 parlance).
521 			 */
522 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
523 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
524 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
525 		}
526 	} else {
527 		/*
528 		 * On others, write combining is "Uncached/Buffered"
529 		 */
530 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
531 	}
532 
533 	/*
534 	 * Now deal with the memory-type mappings
535 	 */
536 	cp = &cache_policies[cachepolicy];
537 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
538 
539 #ifndef CONFIG_ARM_LPAE
540 	/*
541 	 * We don't use domains on ARMv6 (since this causes problems with
542 	 * v6/v7 kernels), so we must use a separate memory type for user
543 	 * r/o, kernel r/w to map the vectors page.
544 	 */
545 	if (cpu_arch == CPU_ARCH_ARMv6)
546 		vecs_pgprot |= L_PTE_MT_VECTORS;
547 
548 	/*
549 	 * Check is it with support for the PXN bit
550 	 * in the Short-descriptor translation table format descriptors.
551 	 */
552 	if (cpu_arch == CPU_ARCH_ARMv7 &&
553 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
554 		user_pmd_table |= PMD_PXNTABLE;
555 	}
556 #endif
557 
558 	/*
559 	 * ARMv6 and above have extended page tables.
560 	 */
561 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
562 #ifndef CONFIG_ARM_LPAE
563 		/*
564 		 * Mark cache clean areas and XIP ROM read only
565 		 * from SVC mode and no access from userspace.
566 		 */
567 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
568 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
569 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
570 #endif
571 
572 		/*
573 		 * If the initial page tables were created with the S bit
574 		 * set, then we need to do the same here for the same
575 		 * reasons given in early_cachepolicy().
576 		 */
577 		if (initial_pmd_value & PMD_SECT_S) {
578 			user_pgprot |= L_PTE_SHARED;
579 			kern_pgprot |= L_PTE_SHARED;
580 			vecs_pgprot |= L_PTE_SHARED;
581 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
582 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
583 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
584 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
585 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
586 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
587 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
588 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
589 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
590 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
591 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
592 		}
593 	}
594 
595 	/*
596 	 * Non-cacheable Normal - intended for memory areas that must
597 	 * not cause dirty cache line writebacks when used
598 	 */
599 	if (cpu_arch >= CPU_ARCH_ARMv6) {
600 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
601 			/* Non-cacheable Normal is XCB = 001 */
602 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
603 				PMD_SECT_BUFFERED;
604 		} else {
605 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
606 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
607 				PMD_SECT_TEX(1);
608 		}
609 	} else {
610 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
611 	}
612 
613 #ifdef CONFIG_ARM_LPAE
614 	/*
615 	 * Do not generate access flag faults for the kernel mappings.
616 	 */
617 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
618 		mem_types[i].prot_pte |= PTE_EXT_AF;
619 		if (mem_types[i].prot_sect)
620 			mem_types[i].prot_sect |= PMD_SECT_AF;
621 	}
622 	kern_pgprot |= PTE_EXT_AF;
623 	vecs_pgprot |= PTE_EXT_AF;
624 
625 	/*
626 	 * Set PXN for user mappings
627 	 */
628 	user_pgprot |= PTE_EXT_PXN;
629 #endif
630 
631 	for (i = 0; i < 16; i++) {
632 		pteval_t v = pgprot_val(protection_map[i]);
633 		protection_map[i] = __pgprot(v | user_pgprot);
634 	}
635 
636 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
637 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
638 
639 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
640 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
641 				 L_PTE_DIRTY | kern_pgprot);
642 
643 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
644 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
645 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
646 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
647 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
648 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
649 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
650 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
651 	mem_types[MT_ROM].prot_sect |= cp->pmd;
652 
653 	switch (cp->pmd) {
654 	case PMD_SECT_WT:
655 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
656 		break;
657 	case PMD_SECT_WB:
658 	case PMD_SECT_WBWA:
659 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
660 		break;
661 	}
662 	pr_info("Memory policy: %sData cache %s\n",
663 		ecc_mask ? "ECC enabled, " : "", cp->policy);
664 
665 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
666 		struct mem_type *t = &mem_types[i];
667 		if (t->prot_l1)
668 			t->prot_l1 |= PMD_DOMAIN(t->domain);
669 		if (t->prot_sect)
670 			t->prot_sect |= PMD_DOMAIN(t->domain);
671 	}
672 }
673 
674 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
675 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
676 			      unsigned long size, pgprot_t vma_prot)
677 {
678 	if (!pfn_valid(pfn))
679 		return pgprot_noncached(vma_prot);
680 	else if (file->f_flags & O_SYNC)
681 		return pgprot_writecombine(vma_prot);
682 	return vma_prot;
683 }
684 EXPORT_SYMBOL(phys_mem_access_prot);
685 #endif
686 
687 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
688 
689 static void __init *early_alloc(unsigned long sz)
690 {
691 	void *ptr = memblock_alloc(sz, sz);
692 
693 	if (!ptr)
694 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
695 		      __func__, sz, sz);
696 
697 	return ptr;
698 }
699 
700 static void *__init late_alloc(unsigned long sz)
701 {
702 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
703 
704 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
705 		BUG();
706 	return ptr;
707 }
708 
709 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
710 				unsigned long prot,
711 				void *(*alloc)(unsigned long sz))
712 {
713 	if (pmd_none(*pmd)) {
714 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
715 		__pmd_populate(pmd, __pa(pte), prot);
716 	}
717 	BUG_ON(pmd_bad(*pmd));
718 	return pte_offset_kernel(pmd, addr);
719 }
720 
721 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
722 				      unsigned long prot)
723 {
724 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
725 }
726 
727 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
728 				  unsigned long end, unsigned long pfn,
729 				  const struct mem_type *type,
730 				  void *(*alloc)(unsigned long sz),
731 				  bool ng)
732 {
733 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
734 	do {
735 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
736 			    ng ? PTE_EXT_NG : 0);
737 		pfn++;
738 	} while (pte++, addr += PAGE_SIZE, addr != end);
739 }
740 
741 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
742 			unsigned long end, phys_addr_t phys,
743 			const struct mem_type *type, bool ng)
744 {
745 	pmd_t *p = pmd;
746 
747 #ifndef CONFIG_ARM_LPAE
748 	/*
749 	 * In classic MMU format, puds and pmds are folded in to
750 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
751 	 * group of L1 entries making up one logical pointer to
752 	 * an L2 table (2MB), where as PMDs refer to the individual
753 	 * L1 entries (1MB). Hence increment to get the correct
754 	 * offset for odd 1MB sections.
755 	 * (See arch/arm/include/asm/pgtable-2level.h)
756 	 */
757 	if (addr & SECTION_SIZE)
758 		pmd++;
759 #endif
760 	do {
761 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
762 		phys += SECTION_SIZE;
763 	} while (pmd++, addr += SECTION_SIZE, addr != end);
764 
765 	flush_pmd_entry(p);
766 }
767 
768 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
769 				      unsigned long end, phys_addr_t phys,
770 				      const struct mem_type *type,
771 				      void *(*alloc)(unsigned long sz), bool ng)
772 {
773 	pmd_t *pmd = pmd_offset(pud, addr);
774 	unsigned long next;
775 
776 	do {
777 		/*
778 		 * With LPAE, we must loop over to map
779 		 * all the pmds for the given range.
780 		 */
781 		next = pmd_addr_end(addr, end);
782 
783 		/*
784 		 * Try a section mapping - addr, next and phys must all be
785 		 * aligned to a section boundary.
786 		 */
787 		if (type->prot_sect &&
788 				((addr | next | phys) & ~SECTION_MASK) == 0) {
789 			__map_init_section(pmd, addr, next, phys, type, ng);
790 		} else {
791 			alloc_init_pte(pmd, addr, next,
792 				       __phys_to_pfn(phys), type, alloc, ng);
793 		}
794 
795 		phys += next - addr;
796 
797 	} while (pmd++, addr = next, addr != end);
798 }
799 
800 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
801 				  unsigned long end, phys_addr_t phys,
802 				  const struct mem_type *type,
803 				  void *(*alloc)(unsigned long sz), bool ng)
804 {
805 	pud_t *pud = pud_offset(p4d, addr);
806 	unsigned long next;
807 
808 	do {
809 		next = pud_addr_end(addr, end);
810 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
811 		phys += next - addr;
812 	} while (pud++, addr = next, addr != end);
813 }
814 
815 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
816 				  unsigned long end, phys_addr_t phys,
817 				  const struct mem_type *type,
818 				  void *(*alloc)(unsigned long sz), bool ng)
819 {
820 	p4d_t *p4d = p4d_offset(pgd, addr);
821 	unsigned long next;
822 
823 	do {
824 		next = p4d_addr_end(addr, end);
825 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
826 		phys += next - addr;
827 	} while (p4d++, addr = next, addr != end);
828 }
829 
830 #ifndef CONFIG_ARM_LPAE
831 static void __init create_36bit_mapping(struct mm_struct *mm,
832 					struct map_desc *md,
833 					const struct mem_type *type,
834 					bool ng)
835 {
836 	unsigned long addr, length, end;
837 	phys_addr_t phys;
838 	pgd_t *pgd;
839 
840 	addr = md->virtual;
841 	phys = __pfn_to_phys(md->pfn);
842 	length = PAGE_ALIGN(md->length);
843 
844 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
845 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
846 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
847 		return;
848 	}
849 
850 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
851 	 *	Since domain assignments can in fact be arbitrary, the
852 	 *	'domain == 0' check below is required to insure that ARMv6
853 	 *	supersections are only allocated for domain 0 regardless
854 	 *	of the actual domain assignments in use.
855 	 */
856 	if (type->domain) {
857 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
858 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
859 		return;
860 	}
861 
862 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
863 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
864 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
865 		return;
866 	}
867 
868 	/*
869 	 * Shift bits [35:32] of address into bits [23:20] of PMD
870 	 * (See ARMv6 spec).
871 	 */
872 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
873 
874 	pgd = pgd_offset(mm, addr);
875 	end = addr + length;
876 	do {
877 		p4d_t *p4d = p4d_offset(pgd, addr);
878 		pud_t *pud = pud_offset(p4d, addr);
879 		pmd_t *pmd = pmd_offset(pud, addr);
880 		int i;
881 
882 		for (i = 0; i < 16; i++)
883 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
884 				       (ng ? PMD_SECT_nG : 0));
885 
886 		addr += SUPERSECTION_SIZE;
887 		phys += SUPERSECTION_SIZE;
888 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
889 	} while (addr != end);
890 }
891 #endif	/* !CONFIG_ARM_LPAE */
892 
893 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
894 				    void *(*alloc)(unsigned long sz),
895 				    bool ng)
896 {
897 	unsigned long addr, length, end;
898 	phys_addr_t phys;
899 	const struct mem_type *type;
900 	pgd_t *pgd;
901 
902 	type = &mem_types[md->type];
903 
904 #ifndef CONFIG_ARM_LPAE
905 	/*
906 	 * Catch 36-bit addresses
907 	 */
908 	if (md->pfn >= 0x100000) {
909 		create_36bit_mapping(mm, md, type, ng);
910 		return;
911 	}
912 #endif
913 
914 	addr = md->virtual & PAGE_MASK;
915 	phys = __pfn_to_phys(md->pfn);
916 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
917 
918 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
919 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
920 			(long long)__pfn_to_phys(md->pfn), addr);
921 		return;
922 	}
923 
924 	pgd = pgd_offset(mm, addr);
925 	end = addr + length;
926 	do {
927 		unsigned long next = pgd_addr_end(addr, end);
928 
929 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
930 
931 		phys += next - addr;
932 		addr = next;
933 	} while (pgd++, addr != end);
934 }
935 
936 /*
937  * Create the page directory entries and any necessary
938  * page tables for the mapping specified by `md'.  We
939  * are able to cope here with varying sizes and address
940  * offsets, and we take full advantage of sections and
941  * supersections.
942  */
943 static void __init create_mapping(struct map_desc *md)
944 {
945 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
946 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
947 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
948 		return;
949 	}
950 
951 	if (md->type == MT_DEVICE &&
952 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
953 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
954 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
955 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
956 	}
957 
958 	__create_mapping(&init_mm, md, early_alloc, false);
959 }
960 
961 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
962 				bool ng)
963 {
964 #ifdef CONFIG_ARM_LPAE
965 	p4d_t *p4d;
966 	pud_t *pud;
967 
968 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
969 	if (WARN_ON(!p4d))
970 		return;
971 	pud = pud_alloc(mm, p4d, md->virtual);
972 	if (WARN_ON(!pud))
973 		return;
974 	pmd_alloc(mm, pud, 0);
975 #endif
976 	__create_mapping(mm, md, late_alloc, ng);
977 }
978 
979 /*
980  * Create the architecture specific mappings
981  */
982 void __init iotable_init(struct map_desc *io_desc, int nr)
983 {
984 	struct map_desc *md;
985 	struct vm_struct *vm;
986 	struct static_vm *svm;
987 
988 	if (!nr)
989 		return;
990 
991 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
992 	if (!svm)
993 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
994 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
995 
996 	for (md = io_desc; nr; md++, nr--) {
997 		create_mapping(md);
998 
999 		vm = &svm->vm;
1000 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1001 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1002 		vm->phys_addr = __pfn_to_phys(md->pfn);
1003 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1004 		vm->flags |= VM_ARM_MTYPE(md->type);
1005 		vm->caller = iotable_init;
1006 		add_static_vm_early(svm++);
1007 	}
1008 }
1009 
1010 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1011 				  void *caller)
1012 {
1013 	struct vm_struct *vm;
1014 	struct static_vm *svm;
1015 
1016 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1017 	if (!svm)
1018 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1019 		      __func__, sizeof(*svm), __alignof__(*svm));
1020 
1021 	vm = &svm->vm;
1022 	vm->addr = (void *)addr;
1023 	vm->size = size;
1024 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1025 	vm->caller = caller;
1026 	add_static_vm_early(svm);
1027 }
1028 
1029 #ifndef CONFIG_ARM_LPAE
1030 
1031 /*
1032  * The Linux PMD is made of two consecutive section entries covering 2MB
1033  * (see definition in include/asm/pgtable-2level.h).  However a call to
1034  * create_mapping() may optimize static mappings by using individual
1035  * 1MB section mappings.  This leaves the actual PMD potentially half
1036  * initialized if the top or bottom section entry isn't used, leaving it
1037  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1038  * the virtual space left free by that unused section entry.
1039  *
1040  * Let's avoid the issue by inserting dummy vm entries covering the unused
1041  * PMD halves once the static mappings are in place.
1042  */
1043 
1044 static void __init pmd_empty_section_gap(unsigned long addr)
1045 {
1046 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1047 }
1048 
1049 static void __init fill_pmd_gaps(void)
1050 {
1051 	struct static_vm *svm;
1052 	struct vm_struct *vm;
1053 	unsigned long addr, next = 0;
1054 	pmd_t *pmd;
1055 
1056 	list_for_each_entry(svm, &static_vmlist, list) {
1057 		vm = &svm->vm;
1058 		addr = (unsigned long)vm->addr;
1059 		if (addr < next)
1060 			continue;
1061 
1062 		/*
1063 		 * Check if this vm starts on an odd section boundary.
1064 		 * If so and the first section entry for this PMD is free
1065 		 * then we block the corresponding virtual address.
1066 		 */
1067 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1068 			pmd = pmd_off_k(addr);
1069 			if (pmd_none(*pmd))
1070 				pmd_empty_section_gap(addr & PMD_MASK);
1071 		}
1072 
1073 		/*
1074 		 * Then check if this vm ends on an odd section boundary.
1075 		 * If so and the second section entry for this PMD is empty
1076 		 * then we block the corresponding virtual address.
1077 		 */
1078 		addr += vm->size;
1079 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1080 			pmd = pmd_off_k(addr) + 1;
1081 			if (pmd_none(*pmd))
1082 				pmd_empty_section_gap(addr);
1083 		}
1084 
1085 		/* no need to look at any vm entry until we hit the next PMD */
1086 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1087 	}
1088 }
1089 
1090 #else
1091 #define fill_pmd_gaps() do { } while (0)
1092 #endif
1093 
1094 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1095 static void __init pci_reserve_io(void)
1096 {
1097 	struct static_vm *svm;
1098 
1099 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1100 	if (svm)
1101 		return;
1102 
1103 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1104 }
1105 #else
1106 #define pci_reserve_io() do { } while (0)
1107 #endif
1108 
1109 #ifdef CONFIG_DEBUG_LL
1110 void __init debug_ll_io_init(void)
1111 {
1112 	struct map_desc map;
1113 
1114 	debug_ll_addr(&map.pfn, &map.virtual);
1115 	if (!map.pfn || !map.virtual)
1116 		return;
1117 	map.pfn = __phys_to_pfn(map.pfn);
1118 	map.virtual &= PAGE_MASK;
1119 	map.length = PAGE_SIZE;
1120 	map.type = MT_DEVICE;
1121 	iotable_init(&map, 1);
1122 }
1123 #endif
1124 
1125 static void * __initdata vmalloc_min =
1126 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1127 
1128 /*
1129  * vmalloc=size forces the vmalloc area to be exactly 'size'
1130  * bytes. This can be used to increase (or decrease) the vmalloc
1131  * area - the default is 240m.
1132  */
1133 static int __init early_vmalloc(char *arg)
1134 {
1135 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1136 
1137 	if (vmalloc_reserve < SZ_16M) {
1138 		vmalloc_reserve = SZ_16M;
1139 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1140 			vmalloc_reserve >> 20);
1141 	}
1142 
1143 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1144 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1145 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1146 			vmalloc_reserve >> 20);
1147 	}
1148 
1149 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1150 	return 0;
1151 }
1152 early_param("vmalloc", early_vmalloc);
1153 
1154 phys_addr_t arm_lowmem_limit __initdata = 0;
1155 
1156 void __init adjust_lowmem_bounds(void)
1157 {
1158 	phys_addr_t block_start, block_end, memblock_limit = 0;
1159 	u64 vmalloc_limit, i;
1160 	phys_addr_t lowmem_limit = 0;
1161 
1162 	/*
1163 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1164 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165 	 * The result is used as the upper bound on physical memory address
1166 	 * and may itself be outside the valid range for which phys_addr_t
1167 	 * and therefore __pa() is defined.
1168 	 */
1169 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1170 
1171 	/*
1172 	 * The first usable region must be PMD aligned. Mark its start
1173 	 * as MEMBLOCK_NOMAP if it isn't
1174 	 */
1175 	for_each_mem_range(i, &block_start, &block_end) {
1176 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1177 			phys_addr_t len;
1178 
1179 			len = round_up(block_start, PMD_SIZE) - block_start;
1180 			memblock_mark_nomap(block_start, len);
1181 		}
1182 		break;
1183 	}
1184 
1185 	for_each_mem_range(i, &block_start, &block_end) {
1186 		if (block_start < vmalloc_limit) {
1187 			if (block_end > lowmem_limit)
1188 				/*
1189 				 * Compare as u64 to ensure vmalloc_limit does
1190 				 * not get truncated. block_end should always
1191 				 * fit in phys_addr_t so there should be no
1192 				 * issue with assignment.
1193 				 */
1194 				lowmem_limit = min_t(u64,
1195 							 vmalloc_limit,
1196 							 block_end);
1197 
1198 			/*
1199 			 * Find the first non-pmd-aligned page, and point
1200 			 * memblock_limit at it. This relies on rounding the
1201 			 * limit down to be pmd-aligned, which happens at the
1202 			 * end of this function.
1203 			 *
1204 			 * With this algorithm, the start or end of almost any
1205 			 * bank can be non-pmd-aligned. The only exception is
1206 			 * that the start of the bank 0 must be section-
1207 			 * aligned, since otherwise memory would need to be
1208 			 * allocated when mapping the start of bank 0, which
1209 			 * occurs before any free memory is mapped.
1210 			 */
1211 			if (!memblock_limit) {
1212 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1213 					memblock_limit = block_start;
1214 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1215 					memblock_limit = lowmem_limit;
1216 			}
1217 
1218 		}
1219 	}
1220 
1221 	arm_lowmem_limit = lowmem_limit;
1222 
1223 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1224 
1225 	if (!memblock_limit)
1226 		memblock_limit = arm_lowmem_limit;
1227 
1228 	/*
1229 	 * Round the memblock limit down to a pmd size.  This
1230 	 * helps to ensure that we will allocate memory from the
1231 	 * last full pmd, which should be mapped.
1232 	 */
1233 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1234 
1235 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1236 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1237 			phys_addr_t end = memblock_end_of_DRAM();
1238 
1239 			pr_notice("Ignoring RAM at %pa-%pa\n",
1240 				  &memblock_limit, &end);
1241 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1242 
1243 			memblock_remove(memblock_limit, end - memblock_limit);
1244 		}
1245 	}
1246 
1247 	memblock_set_current_limit(memblock_limit);
1248 }
1249 
1250 static inline void prepare_page_table(void)
1251 {
1252 	unsigned long addr;
1253 	phys_addr_t end;
1254 
1255 	/*
1256 	 * Clear out all the mappings below the kernel image.
1257 	 */
1258 #ifdef CONFIG_KASAN
1259 	/*
1260 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1261 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1262 	 */
1263 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1264 		pmd_clear(pmd_off_k(addr));
1265 	/*
1266 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1267 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1268 	 * are using a thumb-compiled kernel, there there will be 8MB more
1269 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1270 	 */
1271 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1272 		pmd_clear(pmd_off_k(addr));
1273 #else
1274 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1275 		pmd_clear(pmd_off_k(addr));
1276 #endif
1277 
1278 #ifdef CONFIG_XIP_KERNEL
1279 	/* The XIP kernel is mapped in the module area -- skip over it */
1280 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1281 #endif
1282 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1283 		pmd_clear(pmd_off_k(addr));
1284 
1285 	/*
1286 	 * Find the end of the first block of lowmem.
1287 	 */
1288 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1289 	if (end >= arm_lowmem_limit)
1290 		end = arm_lowmem_limit;
1291 
1292 	/*
1293 	 * Clear out all the kernel space mappings, except for the first
1294 	 * memory bank, up to the vmalloc region.
1295 	 */
1296 	for (addr = __phys_to_virt(end);
1297 	     addr < VMALLOC_START; addr += PMD_SIZE)
1298 		pmd_clear(pmd_off_k(addr));
1299 }
1300 
1301 #ifdef CONFIG_ARM_LPAE
1302 /* the first page is reserved for pgd */
1303 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1304 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1305 #else
1306 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1307 #endif
1308 
1309 /*
1310  * Reserve the special regions of memory
1311  */
1312 void __init arm_mm_memblock_reserve(void)
1313 {
1314 	/*
1315 	 * Reserve the page tables.  These are already in use,
1316 	 * and can only be in node 0.
1317 	 */
1318 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1319 
1320 #ifdef CONFIG_SA1111
1321 	/*
1322 	 * Because of the SA1111 DMA bug, we want to preserve our
1323 	 * precious DMA-able memory...
1324 	 */
1325 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1326 #endif
1327 }
1328 
1329 /*
1330  * Set up the device mappings.  Since we clear out the page tables for all
1331  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332  * device mappings.  This means earlycon can be used to debug this function
1333  * Any other function or debugging method which may touch any device _will_
1334  * crash the kernel.
1335  */
1336 static void __init devicemaps_init(const struct machine_desc *mdesc)
1337 {
1338 	struct map_desc map;
1339 	unsigned long addr;
1340 	void *vectors;
1341 
1342 	/*
1343 	 * Allocate the vector page early.
1344 	 */
1345 	vectors = early_alloc(PAGE_SIZE * 2);
1346 
1347 	early_trap_init(vectors);
1348 
1349 	/*
1350 	 * Clear page table except top pmd used by early fixmaps
1351 	 */
1352 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1353 		pmd_clear(pmd_off_k(addr));
1354 
1355 	if (__atags_pointer) {
1356 		/* create a read-only mapping of the device tree */
1357 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1358 		map.virtual = FDT_FIXED_BASE;
1359 		map.length = FDT_FIXED_SIZE;
1360 		map.type = MT_ROM;
1361 		create_mapping(&map);
1362 	}
1363 
1364 	/*
1365 	 * Map the kernel if it is XIP.
1366 	 * It is always first in the modulearea.
1367 	 */
1368 #ifdef CONFIG_XIP_KERNEL
1369 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1370 	map.virtual = MODULES_VADDR;
1371 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1372 	map.type = MT_ROM;
1373 	create_mapping(&map);
1374 #endif
1375 
1376 	/*
1377 	 * Map the cache flushing regions.
1378 	 */
1379 #ifdef FLUSH_BASE
1380 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1381 	map.virtual = FLUSH_BASE;
1382 	map.length = SZ_1M;
1383 	map.type = MT_CACHECLEAN;
1384 	create_mapping(&map);
1385 #endif
1386 #ifdef FLUSH_BASE_MINICACHE
1387 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1388 	map.virtual = FLUSH_BASE_MINICACHE;
1389 	map.length = SZ_1M;
1390 	map.type = MT_MINICLEAN;
1391 	create_mapping(&map);
1392 #endif
1393 
1394 	/*
1395 	 * Create a mapping for the machine vectors at the high-vectors
1396 	 * location (0xffff0000).  If we aren't using high-vectors, also
1397 	 * create a mapping at the low-vectors virtual address.
1398 	 */
1399 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1400 	map.virtual = 0xffff0000;
1401 	map.length = PAGE_SIZE;
1402 #ifdef CONFIG_KUSER_HELPERS
1403 	map.type = MT_HIGH_VECTORS;
1404 #else
1405 	map.type = MT_LOW_VECTORS;
1406 #endif
1407 	create_mapping(&map);
1408 
1409 	if (!vectors_high()) {
1410 		map.virtual = 0;
1411 		map.length = PAGE_SIZE * 2;
1412 		map.type = MT_LOW_VECTORS;
1413 		create_mapping(&map);
1414 	}
1415 
1416 	/* Now create a kernel read-only mapping */
1417 	map.pfn += 1;
1418 	map.virtual = 0xffff0000 + PAGE_SIZE;
1419 	map.length = PAGE_SIZE;
1420 	map.type = MT_LOW_VECTORS;
1421 	create_mapping(&map);
1422 
1423 	/*
1424 	 * Ask the machine support to map in the statically mapped devices.
1425 	 */
1426 	if (mdesc->map_io)
1427 		mdesc->map_io();
1428 	else
1429 		debug_ll_io_init();
1430 	fill_pmd_gaps();
1431 
1432 	/* Reserve fixed i/o space in VMALLOC region */
1433 	pci_reserve_io();
1434 
1435 	/*
1436 	 * Finally flush the caches and tlb to ensure that we're in a
1437 	 * consistent state wrt the writebuffer.  This also ensures that
1438 	 * any write-allocated cache lines in the vector page are written
1439 	 * back.  After this point, we can start to touch devices again.
1440 	 */
1441 	local_flush_tlb_all();
1442 	flush_cache_all();
1443 
1444 	/* Enable asynchronous aborts */
1445 	early_abt_enable();
1446 }
1447 
1448 static void __init kmap_init(void)
1449 {
1450 #ifdef CONFIG_HIGHMEM
1451 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1452 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1453 #endif
1454 
1455 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1456 			_PAGE_KERNEL_TABLE);
1457 }
1458 
1459 static void __init map_lowmem(void)
1460 {
1461 	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1462 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1463 	phys_addr_t start, end;
1464 	u64 i;
1465 
1466 	/* Map all the lowmem memory banks. */
1467 	for_each_mem_range(i, &start, &end) {
1468 		struct map_desc map;
1469 
1470 		if (end > arm_lowmem_limit)
1471 			end = arm_lowmem_limit;
1472 		if (start >= end)
1473 			break;
1474 
1475 		if (end < kernel_x_start) {
1476 			map.pfn = __phys_to_pfn(start);
1477 			map.virtual = __phys_to_virt(start);
1478 			map.length = end - start;
1479 			map.type = MT_MEMORY_RWX;
1480 
1481 			create_mapping(&map);
1482 		} else if (start >= kernel_x_end) {
1483 			map.pfn = __phys_to_pfn(start);
1484 			map.virtual = __phys_to_virt(start);
1485 			map.length = end - start;
1486 			map.type = MT_MEMORY_RW;
1487 
1488 			create_mapping(&map);
1489 		} else {
1490 			/* This better cover the entire kernel */
1491 			if (start < kernel_x_start) {
1492 				map.pfn = __phys_to_pfn(start);
1493 				map.virtual = __phys_to_virt(start);
1494 				map.length = kernel_x_start - start;
1495 				map.type = MT_MEMORY_RW;
1496 
1497 				create_mapping(&map);
1498 			}
1499 
1500 			map.pfn = __phys_to_pfn(kernel_x_start);
1501 			map.virtual = __phys_to_virt(kernel_x_start);
1502 			map.length = kernel_x_end - kernel_x_start;
1503 			map.type = MT_MEMORY_RWX;
1504 
1505 			create_mapping(&map);
1506 
1507 			if (kernel_x_end < end) {
1508 				map.pfn = __phys_to_pfn(kernel_x_end);
1509 				map.virtual = __phys_to_virt(kernel_x_end);
1510 				map.length = end - kernel_x_end;
1511 				map.type = MT_MEMORY_RW;
1512 
1513 				create_mapping(&map);
1514 			}
1515 		}
1516 	}
1517 }
1518 
1519 #ifdef CONFIG_ARM_PV_FIXUP
1520 typedef void pgtables_remap(long long offset, unsigned long pgd);
1521 pgtables_remap lpae_pgtables_remap_asm;
1522 
1523 /*
1524  * early_paging_init() recreates boot time page table setup, allowing machines
1525  * to switch over to a high (>4G) address space on LPAE systems
1526  */
1527 static void __init early_paging_init(const struct machine_desc *mdesc)
1528 {
1529 	pgtables_remap *lpae_pgtables_remap;
1530 	unsigned long pa_pgd;
1531 	unsigned int cr, ttbcr;
1532 	long long offset;
1533 
1534 	if (!mdesc->pv_fixup)
1535 		return;
1536 
1537 	offset = mdesc->pv_fixup();
1538 	if (offset == 0)
1539 		return;
1540 
1541 	/*
1542 	 * Get the address of the remap function in the 1:1 identity
1543 	 * mapping setup by the early page table assembly code.  We
1544 	 * must get this prior to the pv update.  The following barrier
1545 	 * ensures that this is complete before we fixup any P:V offsets.
1546 	 */
1547 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1548 	pa_pgd = __pa(swapper_pg_dir);
1549 	barrier();
1550 
1551 	pr_info("Switching physical address space to 0x%08llx\n",
1552 		(u64)PHYS_OFFSET + offset);
1553 
1554 	/* Re-set the phys pfn offset, and the pv offset */
1555 	__pv_offset += offset;
1556 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1557 
1558 	/* Run the patch stub to update the constants */
1559 	fixup_pv_table(&__pv_table_begin,
1560 		(&__pv_table_end - &__pv_table_begin) << 2);
1561 
1562 	/*
1563 	 * We changing not only the virtual to physical mapping, but also
1564 	 * the physical addresses used to access memory.  We need to flush
1565 	 * all levels of cache in the system with caching disabled to
1566 	 * ensure that all data is written back, and nothing is prefetched
1567 	 * into the caches.  We also need to prevent the TLB walkers
1568 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1569 	 * specific.
1570 	 */
1571 	cr = get_cr();
1572 	set_cr(cr & ~(CR_I | CR_C));
1573 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1574 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1575 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1576 	flush_cache_all();
1577 
1578 	/*
1579 	 * Fixup the page tables - this must be in the idmap region as
1580 	 * we need to disable the MMU to do this safely, and hence it
1581 	 * needs to be assembly.  It's fairly simple, as we're using the
1582 	 * temporary tables setup by the initial assembly code.
1583 	 */
1584 	lpae_pgtables_remap(offset, pa_pgd);
1585 
1586 	/* Re-enable the caches and cacheable TLB walks */
1587 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1588 	set_cr(cr);
1589 }
1590 
1591 #else
1592 
1593 static void __init early_paging_init(const struct machine_desc *mdesc)
1594 {
1595 	long long offset;
1596 
1597 	if (!mdesc->pv_fixup)
1598 		return;
1599 
1600 	offset = mdesc->pv_fixup();
1601 	if (offset == 0)
1602 		return;
1603 
1604 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1605 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1606 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1607 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1608 }
1609 
1610 #endif
1611 
1612 static void __init early_fixmap_shutdown(void)
1613 {
1614 	int i;
1615 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1616 
1617 	pte_offset_fixmap = pte_offset_late_fixmap;
1618 	pmd_clear(fixmap_pmd(va));
1619 	local_flush_tlb_kernel_page(va);
1620 
1621 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1622 		pte_t *pte;
1623 		struct map_desc map;
1624 
1625 		map.virtual = fix_to_virt(i);
1626 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1627 
1628 		/* Only i/o device mappings are supported ATM */
1629 		if (pte_none(*pte) ||
1630 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1631 			continue;
1632 
1633 		map.pfn = pte_pfn(*pte);
1634 		map.type = MT_DEVICE;
1635 		map.length = PAGE_SIZE;
1636 
1637 		create_mapping(&map);
1638 	}
1639 }
1640 
1641 /*
1642  * paging_init() sets up the page tables, initialises the zone memory
1643  * maps, and sets up the zero page, bad page and bad page tables.
1644  */
1645 void __init paging_init(const struct machine_desc *mdesc)
1646 {
1647 	void *zero_page;
1648 
1649 	prepare_page_table();
1650 	map_lowmem();
1651 	memblock_set_current_limit(arm_lowmem_limit);
1652 	dma_contiguous_remap();
1653 	early_fixmap_shutdown();
1654 	devicemaps_init(mdesc);
1655 	kmap_init();
1656 	tcm_init();
1657 
1658 	top_pmd = pmd_off_k(0xffff0000);
1659 
1660 	/* allocate the zero page. */
1661 	zero_page = early_alloc(PAGE_SIZE);
1662 
1663 	bootmem_init();
1664 
1665 	empty_zero_page = virt_to_page(zero_page);
1666 	__flush_dcache_page(NULL, empty_zero_page);
1667 }
1668 
1669 void __init early_mm_init(const struct machine_desc *mdesc)
1670 {
1671 	build_mem_type_table();
1672 	early_paging_init(mdesc);
1673 }
1674 
1675 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1676 			      pte_t *ptep, pte_t pteval)
1677 {
1678 	unsigned long ext = 0;
1679 
1680 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1681 		if (!pte_special(pteval))
1682 			__sync_icache_dcache(pteval);
1683 		ext |= PTE_EXT_NG;
1684 	}
1685 
1686 	set_pte_ext(ptep, pteval, ext);
1687 }
1688