xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 4bacd796)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30 
31 #include "mm.h"
32 
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41 
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46 
47 #define CPOLICY_UNCACHED	0
48 #define CPOLICY_BUFFERED	1
49 #define CPOLICY_WRITETHROUGH	2
50 #define CPOLICY_WRITEBACK	3
51 #define CPOLICY_WRITEALLOC	4
52 
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57 
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60 
61 struct cachepolicy {
62 	const char	policy[16];
63 	unsigned int	cr_mask;
64 	unsigned int	pmd;
65 	unsigned int	pte;
66 };
67 
68 static struct cachepolicy cache_policies[] __initdata = {
69 	{
70 		.policy		= "uncached",
71 		.cr_mask	= CR_W|CR_C,
72 		.pmd		= PMD_SECT_UNCACHED,
73 		.pte		= L_PTE_MT_UNCACHED,
74 	}, {
75 		.policy		= "buffered",
76 		.cr_mask	= CR_C,
77 		.pmd		= PMD_SECT_BUFFERED,
78 		.pte		= L_PTE_MT_BUFFERABLE,
79 	}, {
80 		.policy		= "writethrough",
81 		.cr_mask	= 0,
82 		.pmd		= PMD_SECT_WT,
83 		.pte		= L_PTE_MT_WRITETHROUGH,
84 	}, {
85 		.policy		= "writeback",
86 		.cr_mask	= 0,
87 		.pmd		= PMD_SECT_WB,
88 		.pte		= L_PTE_MT_WRITEBACK,
89 	}, {
90 		.policy		= "writealloc",
91 		.cr_mask	= 0,
92 		.pmd		= PMD_SECT_WBWA,
93 		.pte		= L_PTE_MT_WRITEALLOC,
94 	}
95 };
96 
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 		int len = strlen(cache_policies[i].policy);
109 
110 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 			cachepolicy = i;
112 			cr_alignment &= ~cache_policies[i].cr_mask;
113 			cr_no_alignment &= ~cache_policies[i].cr_mask;
114 			break;
115 		}
116 	}
117 	if (i == ARRAY_SIZE(cache_policies))
118 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 	/*
120 	 * This restriction is partly to do with the way we boot; it is
121 	 * unpredictable to have memory mapped using two different sets of
122 	 * memory attributes (shared, type, and cache attribs).  We can not
123 	 * change these attributes once the initial assembly has setup the
124 	 * page tables.
125 	 */
126 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 		cachepolicy = CPOLICY_WRITEBACK;
129 	}
130 	flush_cache_all();
131 	set_cr(cr_alignment);
132 	return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135 
136 static int __init early_nocache(char *__unused)
137 {
138 	char *p = "buffered";
139 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 	early_cachepolicy(p);
141 	return 0;
142 }
143 early_param("nocache", early_nocache);
144 
145 static int __init early_nowrite(char *__unused)
146 {
147 	char *p = "uncached";
148 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 	early_cachepolicy(p);
150 	return 0;
151 }
152 early_param("nowb", early_nowrite);
153 
154 static int __init early_ecc(char *p)
155 {
156 	if (memcmp(p, "on", 2) == 0)
157 		ecc_mask = PMD_PROTECTION;
158 	else if (memcmp(p, "off", 3) == 0)
159 		ecc_mask = 0;
160 	return 0;
161 }
162 early_param("ecc", early_ecc);
163 
164 static int __init noalign_setup(char *__unused)
165 {
166 	cr_alignment &= ~CR_A;
167 	cr_no_alignment &= ~CR_A;
168 	set_cr(cr_alignment);
169 	return 1;
170 }
171 __setup("noalign", noalign_setup);
172 
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176 	unsigned long flags;
177 
178 	mask &= ~CR_A;
179 
180 	set &= mask;
181 
182 	local_irq_save(flags);
183 
184 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 	cr_alignment = (cr_alignment & ~mask) | set;
186 
187 	set_cr((get_cr() & ~mask) | set);
188 
189 	local_irq_restore(flags);
190 }
191 #endif
192 
193 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195 
196 static struct mem_type mem_types[] = {
197 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 				  L_PTE_SHARED,
200 		.prot_l1	= PMD_TYPE_TABLE,
201 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 		.domain		= DOMAIN_IO,
203 	},
204 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 		.prot_l1	= PMD_TYPE_TABLE,
207 		.prot_sect	= PROT_SECT_DEVICE,
208 		.domain		= DOMAIN_IO,
209 	},
210 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 		.prot_l1	= PMD_TYPE_TABLE,
213 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
214 		.domain		= DOMAIN_IO,
215 	},
216 	[MT_DEVICE_WC] = {	/* ioremap_wc */
217 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 		.prot_l1	= PMD_TYPE_TABLE,
219 		.prot_sect	= PROT_SECT_DEVICE,
220 		.domain		= DOMAIN_IO,
221 	},
222 	[MT_UNCACHED] = {
223 		.prot_pte	= PROT_PTE_DEVICE,
224 		.prot_l1	= PMD_TYPE_TABLE,
225 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
226 		.domain		= DOMAIN_IO,
227 	},
228 	[MT_CACHECLEAN] = {
229 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain    = DOMAIN_KERNEL,
231 	},
232 	[MT_MINICLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 	[MT_LOW_VECTORS] = {
237 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 				L_PTE_EXEC,
239 		.prot_l1   = PMD_TYPE_TABLE,
240 		.domain    = DOMAIN_USER,
241 	},
242 	[MT_HIGH_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_USER | L_PTE_EXEC,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_MEMORY] = {
249 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 		.domain    = DOMAIN_KERNEL,
251 	},
252 	[MT_ROM] = {
253 		.prot_sect = PMD_TYPE_SECT,
254 		.domain    = DOMAIN_KERNEL,
255 	},
256 	[MT_MEMORY_NONCACHED] = {
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_MEMORY_DTCM] = {
261 		.prot_pte	= L_PTE_PRESENT | L_PTE_YOUNG |
262 		                  L_PTE_DIRTY | L_PTE_WRITE,
263 		.prot_l1	= PMD_TYPE_TABLE,
264 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
265 		.domain		= DOMAIN_KERNEL,
266 	},
267 	[MT_MEMORY_ITCM] = {
268 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
269 				L_PTE_USER | L_PTE_EXEC,
270 		.prot_l1   = PMD_TYPE_TABLE,
271 		.domain    = DOMAIN_IO,
272 	},
273 };
274 
275 const struct mem_type *get_mem_type(unsigned int type)
276 {
277 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
278 }
279 EXPORT_SYMBOL(get_mem_type);
280 
281 /*
282  * Adjust the PMD section entries according to the CPU in use.
283  */
284 static void __init build_mem_type_table(void)
285 {
286 	struct cachepolicy *cp;
287 	unsigned int cr = get_cr();
288 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
289 	int cpu_arch = cpu_architecture();
290 	int i;
291 
292 	if (cpu_arch < CPU_ARCH_ARMv6) {
293 #if defined(CONFIG_CPU_DCACHE_DISABLE)
294 		if (cachepolicy > CPOLICY_BUFFERED)
295 			cachepolicy = CPOLICY_BUFFERED;
296 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
297 		if (cachepolicy > CPOLICY_WRITETHROUGH)
298 			cachepolicy = CPOLICY_WRITETHROUGH;
299 #endif
300 	}
301 	if (cpu_arch < CPU_ARCH_ARMv5) {
302 		if (cachepolicy >= CPOLICY_WRITEALLOC)
303 			cachepolicy = CPOLICY_WRITEBACK;
304 		ecc_mask = 0;
305 	}
306 #ifdef CONFIG_SMP
307 	cachepolicy = CPOLICY_WRITEALLOC;
308 #endif
309 
310 	/*
311 	 * Strip out features not present on earlier architectures.
312 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
313 	 * without extended page tables don't have the 'Shared' bit.
314 	 */
315 	if (cpu_arch < CPU_ARCH_ARMv5)
316 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
317 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
318 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
319 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
320 			mem_types[i].prot_sect &= ~PMD_SECT_S;
321 
322 	/*
323 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
324 	 * "update-able on write" bit on ARM610).  However, Xscale and
325 	 * Xscale3 require this bit to be cleared.
326 	 */
327 	if (cpu_is_xscale() || cpu_is_xsc3()) {
328 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
329 			mem_types[i].prot_sect &= ~PMD_BIT4;
330 			mem_types[i].prot_l1 &= ~PMD_BIT4;
331 		}
332 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
333 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
334 			if (mem_types[i].prot_l1)
335 				mem_types[i].prot_l1 |= PMD_BIT4;
336 			if (mem_types[i].prot_sect)
337 				mem_types[i].prot_sect |= PMD_BIT4;
338 		}
339 	}
340 
341 	/*
342 	 * Mark the device areas according to the CPU/architecture.
343 	 */
344 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
345 		if (!cpu_is_xsc3()) {
346 			/*
347 			 * Mark device regions on ARMv6+ as execute-never
348 			 * to prevent speculative instruction fetches.
349 			 */
350 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
351 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
352 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
353 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
354 		}
355 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
356 			/*
357 			 * For ARMv7 with TEX remapping,
358 			 * - shared device is SXCB=1100
359 			 * - nonshared device is SXCB=0100
360 			 * - write combine device mem is SXCB=0001
361 			 * (Uncached Normal memory)
362 			 */
363 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
364 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
365 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
366 		} else if (cpu_is_xsc3()) {
367 			/*
368 			 * For Xscale3,
369 			 * - shared device is TEXCB=00101
370 			 * - nonshared device is TEXCB=01000
371 			 * - write combine device mem is TEXCB=00100
372 			 * (Inner/Outer Uncacheable in xsc3 parlance)
373 			 */
374 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
375 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
376 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
377 		} else {
378 			/*
379 			 * For ARMv6 and ARMv7 without TEX remapping,
380 			 * - shared device is TEXCB=00001
381 			 * - nonshared device is TEXCB=01000
382 			 * - write combine device mem is TEXCB=00100
383 			 * (Uncached Normal in ARMv6 parlance).
384 			 */
385 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
386 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388 		}
389 	} else {
390 		/*
391 		 * On others, write combining is "Uncached/Buffered"
392 		 */
393 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
394 	}
395 
396 	/*
397 	 * Now deal with the memory-type mappings
398 	 */
399 	cp = &cache_policies[cachepolicy];
400 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
401 
402 #ifndef CONFIG_SMP
403 	/*
404 	 * Only use write-through for non-SMP systems
405 	 */
406 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
407 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
408 #endif
409 
410 	/*
411 	 * Enable CPU-specific coherency if supported.
412 	 * (Only available on XSC3 at the moment.)
413 	 */
414 	if (arch_is_coherent() && cpu_is_xsc3())
415 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416 
417 	/*
418 	 * ARMv6 and above have extended page tables.
419 	 */
420 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
421 		/*
422 		 * Mark cache clean areas and XIP ROM read only
423 		 * from SVC mode and no access from userspace.
424 		 */
425 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428 
429 #ifdef CONFIG_SMP
430 		/*
431 		 * Mark memory with the "shared" attribute for SMP systems
432 		 */
433 		user_pgprot |= L_PTE_SHARED;
434 		kern_pgprot |= L_PTE_SHARED;
435 		vecs_pgprot |= L_PTE_SHARED;
436 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
437 		mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
438 		mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
439 		mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
440 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
441 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
442 #endif
443 	}
444 
445 	/*
446 	 * Non-cacheable Normal - intended for memory areas that must
447 	 * not cause dirty cache line writebacks when used
448 	 */
449 	if (cpu_arch >= CPU_ARCH_ARMv6) {
450 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
451 			/* Non-cacheable Normal is XCB = 001 */
452 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
453 				PMD_SECT_BUFFERED;
454 		} else {
455 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
456 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
457 				PMD_SECT_TEX(1);
458 		}
459 	} else {
460 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
461 	}
462 
463 	for (i = 0; i < 16; i++) {
464 		unsigned long v = pgprot_val(protection_map[i]);
465 		protection_map[i] = __pgprot(v | user_pgprot);
466 	}
467 
468 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
469 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
470 
471 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
472 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
473 				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
474 
475 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
476 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
477 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
478 	mem_types[MT_ROM].prot_sect |= cp->pmd;
479 
480 	switch (cp->pmd) {
481 	case PMD_SECT_WT:
482 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
483 		break;
484 	case PMD_SECT_WB:
485 	case PMD_SECT_WBWA:
486 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
487 		break;
488 	}
489 	printk("Memory policy: ECC %sabled, Data cache %s\n",
490 		ecc_mask ? "en" : "dis", cp->policy);
491 
492 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
493 		struct mem_type *t = &mem_types[i];
494 		if (t->prot_l1)
495 			t->prot_l1 |= PMD_DOMAIN(t->domain);
496 		if (t->prot_sect)
497 			t->prot_sect |= PMD_DOMAIN(t->domain);
498 	}
499 }
500 
501 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
502 
503 static void __init *early_alloc(unsigned long sz)
504 {
505 	void *ptr = __va(memblock_alloc(sz, sz));
506 	memset(ptr, 0, sz);
507 	return ptr;
508 }
509 
510 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
511 {
512 	if (pmd_none(*pmd)) {
513 		pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
514 		__pmd_populate(pmd, __pa(pte) | prot);
515 	}
516 	BUG_ON(pmd_bad(*pmd));
517 	return pte_offset_kernel(pmd, addr);
518 }
519 
520 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
521 				  unsigned long end, unsigned long pfn,
522 				  const struct mem_type *type)
523 {
524 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
525 	do {
526 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
527 		pfn++;
528 	} while (pte++, addr += PAGE_SIZE, addr != end);
529 }
530 
531 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
532 				      unsigned long end, unsigned long phys,
533 				      const struct mem_type *type)
534 {
535 	pmd_t *pmd = pmd_offset(pgd, addr);
536 
537 	/*
538 	 * Try a section mapping - end, addr and phys must all be aligned
539 	 * to a section boundary.  Note that PMDs refer to the individual
540 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
541 	 * up one logical pointer to an L2 table.
542 	 */
543 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
544 		pmd_t *p = pmd;
545 
546 		if (addr & SECTION_SIZE)
547 			pmd++;
548 
549 		do {
550 			*pmd = __pmd(phys | type->prot_sect);
551 			phys += SECTION_SIZE;
552 		} while (pmd++, addr += SECTION_SIZE, addr != end);
553 
554 		flush_pmd_entry(p);
555 	} else {
556 		/*
557 		 * No need to loop; pte's aren't interested in the
558 		 * individual L1 entries.
559 		 */
560 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
561 	}
562 }
563 
564 static void __init create_36bit_mapping(struct map_desc *md,
565 					const struct mem_type *type)
566 {
567 	unsigned long phys, addr, length, end;
568 	pgd_t *pgd;
569 
570 	addr = md->virtual;
571 	phys = (unsigned long)__pfn_to_phys(md->pfn);
572 	length = PAGE_ALIGN(md->length);
573 
574 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
575 		printk(KERN_ERR "MM: CPU does not support supersection "
576 		       "mapping for 0x%08llx at 0x%08lx\n",
577 		       __pfn_to_phys((u64)md->pfn), addr);
578 		return;
579 	}
580 
581 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
582 	 *	Since domain assignments can in fact be arbitrary, the
583 	 *	'domain == 0' check below is required to insure that ARMv6
584 	 *	supersections are only allocated for domain 0 regardless
585 	 *	of the actual domain assignments in use.
586 	 */
587 	if (type->domain) {
588 		printk(KERN_ERR "MM: invalid domain in supersection "
589 		       "mapping for 0x%08llx at 0x%08lx\n",
590 		       __pfn_to_phys((u64)md->pfn), addr);
591 		return;
592 	}
593 
594 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
595 		printk(KERN_ERR "MM: cannot create mapping for "
596 		       "0x%08llx at 0x%08lx invalid alignment\n",
597 		       __pfn_to_phys((u64)md->pfn), addr);
598 		return;
599 	}
600 
601 	/*
602 	 * Shift bits [35:32] of address into bits [23:20] of PMD
603 	 * (See ARMv6 spec).
604 	 */
605 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
606 
607 	pgd = pgd_offset_k(addr);
608 	end = addr + length;
609 	do {
610 		pmd_t *pmd = pmd_offset(pgd, addr);
611 		int i;
612 
613 		for (i = 0; i < 16; i++)
614 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
615 
616 		addr += SUPERSECTION_SIZE;
617 		phys += SUPERSECTION_SIZE;
618 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
619 	} while (addr != end);
620 }
621 
622 /*
623  * Create the page directory entries and any necessary
624  * page tables for the mapping specified by `md'.  We
625  * are able to cope here with varying sizes and address
626  * offsets, and we take full advantage of sections and
627  * supersections.
628  */
629 static void __init create_mapping(struct map_desc *md)
630 {
631 	unsigned long phys, addr, length, end;
632 	const struct mem_type *type;
633 	pgd_t *pgd;
634 
635 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
636 		printk(KERN_WARNING "BUG: not creating mapping for "
637 		       "0x%08llx at 0x%08lx in user region\n",
638 		       __pfn_to_phys((u64)md->pfn), md->virtual);
639 		return;
640 	}
641 
642 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
643 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
644 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
645 		       "overlaps vmalloc space\n",
646 		       __pfn_to_phys((u64)md->pfn), md->virtual);
647 	}
648 
649 	type = &mem_types[md->type];
650 
651 	/*
652 	 * Catch 36-bit addresses
653 	 */
654 	if (md->pfn >= 0x100000) {
655 		create_36bit_mapping(md, type);
656 		return;
657 	}
658 
659 	addr = md->virtual & PAGE_MASK;
660 	phys = (unsigned long)__pfn_to_phys(md->pfn);
661 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
662 
663 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
664 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
665 		       "be mapped using pages, ignoring.\n",
666 		       __pfn_to_phys(md->pfn), addr);
667 		return;
668 	}
669 
670 	pgd = pgd_offset_k(addr);
671 	end = addr + length;
672 	do {
673 		unsigned long next = pgd_addr_end(addr, end);
674 
675 		alloc_init_section(pgd, addr, next, phys, type);
676 
677 		phys += next - addr;
678 		addr = next;
679 	} while (pgd++, addr != end);
680 }
681 
682 /*
683  * Create the architecture specific mappings
684  */
685 void __init iotable_init(struct map_desc *io_desc, int nr)
686 {
687 	int i;
688 
689 	for (i = 0; i < nr; i++)
690 		create_mapping(io_desc + i);
691 }
692 
693 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
694 
695 /*
696  * vmalloc=size forces the vmalloc area to be exactly 'size'
697  * bytes. This can be used to increase (or decrease) the vmalloc
698  * area - the default is 128m.
699  */
700 static int __init early_vmalloc(char *arg)
701 {
702 	unsigned long vmalloc_reserve = memparse(arg, NULL);
703 
704 	if (vmalloc_reserve < SZ_16M) {
705 		vmalloc_reserve = SZ_16M;
706 		printk(KERN_WARNING
707 			"vmalloc area too small, limiting to %luMB\n",
708 			vmalloc_reserve >> 20);
709 	}
710 
711 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
712 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
713 		printk(KERN_WARNING
714 			"vmalloc area is too big, limiting to %luMB\n",
715 			vmalloc_reserve >> 20);
716 	}
717 
718 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
719 	return 0;
720 }
721 early_param("vmalloc", early_vmalloc);
722 
723 phys_addr_t lowmem_end_addr;
724 
725 static void __init sanity_check_meminfo(void)
726 {
727 	int i, j, highmem = 0;
728 
729 	lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
730 
731 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
732 		struct membank *bank = &meminfo.bank[j];
733 		*bank = meminfo.bank[i];
734 
735 #ifdef CONFIG_HIGHMEM
736 		if (__va(bank->start) > vmalloc_min ||
737 		    __va(bank->start) < (void *)PAGE_OFFSET)
738 			highmem = 1;
739 
740 		bank->highmem = highmem;
741 
742 		/*
743 		 * Split those memory banks which are partially overlapping
744 		 * the vmalloc area greatly simplifying things later.
745 		 */
746 		if (__va(bank->start) < vmalloc_min &&
747 		    bank->size > vmalloc_min - __va(bank->start)) {
748 			if (meminfo.nr_banks >= NR_BANKS) {
749 				printk(KERN_CRIT "NR_BANKS too low, "
750 						 "ignoring high memory\n");
751 			} else {
752 				memmove(bank + 1, bank,
753 					(meminfo.nr_banks - i) * sizeof(*bank));
754 				meminfo.nr_banks++;
755 				i++;
756 				bank[1].size -= vmalloc_min - __va(bank->start);
757 				bank[1].start = __pa(vmalloc_min - 1) + 1;
758 				bank[1].highmem = highmem = 1;
759 				j++;
760 			}
761 			bank->size = vmalloc_min - __va(bank->start);
762 		}
763 #else
764 		bank->highmem = highmem;
765 
766 		/*
767 		 * Check whether this memory bank would entirely overlap
768 		 * the vmalloc area.
769 		 */
770 		if (__va(bank->start) >= vmalloc_min ||
771 		    __va(bank->start) < (void *)PAGE_OFFSET) {
772 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
773 			       "(vmalloc region overlap).\n",
774 			       bank->start, bank->start + bank->size - 1);
775 			continue;
776 		}
777 
778 		/*
779 		 * Check whether this memory bank would partially overlap
780 		 * the vmalloc area.
781 		 */
782 		if (__va(bank->start + bank->size) > vmalloc_min ||
783 		    __va(bank->start + bank->size) < __va(bank->start)) {
784 			unsigned long newsize = vmalloc_min - __va(bank->start);
785 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
786 			       "to -%.8lx (vmalloc region overlap).\n",
787 			       bank->start, bank->start + bank->size - 1,
788 			       bank->start + newsize - 1);
789 			bank->size = newsize;
790 		}
791 #endif
792 		j++;
793 	}
794 #ifdef CONFIG_HIGHMEM
795 	if (highmem) {
796 		const char *reason = NULL;
797 
798 		if (cache_is_vipt_aliasing()) {
799 			/*
800 			 * Interactions between kmap and other mappings
801 			 * make highmem support with aliasing VIPT caches
802 			 * rather difficult.
803 			 */
804 			reason = "with VIPT aliasing cache";
805 #ifdef CONFIG_SMP
806 		} else if (tlb_ops_need_broadcast()) {
807 			/*
808 			 * kmap_high needs to occasionally flush TLB entries,
809 			 * however, if the TLB entries need to be broadcast
810 			 * we may deadlock:
811 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
812 			 *  flush_tlb_kernel_range->smp_call_function_many
813 			 *   (must not be called with irqs off)
814 			 */
815 			reason = "without hardware TLB ops broadcasting";
816 #endif
817 		}
818 		if (reason) {
819 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
820 				reason);
821 			while (j > 0 && meminfo.bank[j - 1].highmem)
822 				j--;
823 		}
824 	}
825 #endif
826 	meminfo.nr_banks = j;
827 }
828 
829 static inline void prepare_page_table(void)
830 {
831 	unsigned long addr;
832 
833 	/*
834 	 * Clear out all the mappings below the kernel image.
835 	 */
836 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
837 		pmd_clear(pmd_off_k(addr));
838 
839 #ifdef CONFIG_XIP_KERNEL
840 	/* The XIP kernel is mapped in the module area -- skip over it */
841 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
842 #endif
843 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
844 		pmd_clear(pmd_off_k(addr));
845 
846 	/*
847 	 * Clear out all the kernel space mappings, except for the first
848 	 * memory bank, up to the end of the vmalloc region.
849 	 */
850 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
851 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
852 		pmd_clear(pmd_off_k(addr));
853 }
854 
855 /*
856  * Reserve the special regions of memory
857  */
858 void __init arm_mm_memblock_reserve(void)
859 {
860 	/*
861 	 * Reserve the page tables.  These are already in use,
862 	 * and can only be in node 0.
863 	 */
864 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
865 
866 #ifdef CONFIG_SA1111
867 	/*
868 	 * Because of the SA1111 DMA bug, we want to preserve our
869 	 * precious DMA-able memory...
870 	 */
871 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
872 #endif
873 }
874 
875 /*
876  * Set up device the mappings.  Since we clear out the page tables for all
877  * mappings above VMALLOC_END, we will remove any debug device mappings.
878  * This means you have to be careful how you debug this function, or any
879  * called function.  This means you can't use any function or debugging
880  * method which may touch any device, otherwise the kernel _will_ crash.
881  */
882 static void __init devicemaps_init(struct machine_desc *mdesc)
883 {
884 	struct map_desc map;
885 	unsigned long addr;
886 	void *vectors;
887 
888 	/*
889 	 * Allocate the vector page early.
890 	 */
891 	vectors = early_alloc(PAGE_SIZE);
892 
893 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
894 		pmd_clear(pmd_off_k(addr));
895 
896 	/*
897 	 * Map the kernel if it is XIP.
898 	 * It is always first in the modulearea.
899 	 */
900 #ifdef CONFIG_XIP_KERNEL
901 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
902 	map.virtual = MODULES_VADDR;
903 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
904 	map.type = MT_ROM;
905 	create_mapping(&map);
906 #endif
907 
908 	/*
909 	 * Map the cache flushing regions.
910 	 */
911 #ifdef FLUSH_BASE
912 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
913 	map.virtual = FLUSH_BASE;
914 	map.length = SZ_1M;
915 	map.type = MT_CACHECLEAN;
916 	create_mapping(&map);
917 #endif
918 #ifdef FLUSH_BASE_MINICACHE
919 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
920 	map.virtual = FLUSH_BASE_MINICACHE;
921 	map.length = SZ_1M;
922 	map.type = MT_MINICLEAN;
923 	create_mapping(&map);
924 #endif
925 
926 	/*
927 	 * Create a mapping for the machine vectors at the high-vectors
928 	 * location (0xffff0000).  If we aren't using high-vectors, also
929 	 * create a mapping at the low-vectors virtual address.
930 	 */
931 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
932 	map.virtual = 0xffff0000;
933 	map.length = PAGE_SIZE;
934 	map.type = MT_HIGH_VECTORS;
935 	create_mapping(&map);
936 
937 	if (!vectors_high()) {
938 		map.virtual = 0;
939 		map.type = MT_LOW_VECTORS;
940 		create_mapping(&map);
941 	}
942 
943 	/*
944 	 * Ask the machine support to map in the statically mapped devices.
945 	 */
946 	if (mdesc->map_io)
947 		mdesc->map_io();
948 
949 	/*
950 	 * Finally flush the caches and tlb to ensure that we're in a
951 	 * consistent state wrt the writebuffer.  This also ensures that
952 	 * any write-allocated cache lines in the vector page are written
953 	 * back.  After this point, we can start to touch devices again.
954 	 */
955 	local_flush_tlb_all();
956 	flush_cache_all();
957 }
958 
959 static void __init kmap_init(void)
960 {
961 #ifdef CONFIG_HIGHMEM
962 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
963 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
964 #endif
965 }
966 
967 static inline void map_memory_bank(struct membank *bank)
968 {
969 	struct map_desc map;
970 
971 	map.pfn = bank_pfn_start(bank);
972 	map.virtual = __phys_to_virt(bank_phys_start(bank));
973 	map.length = bank_phys_size(bank);
974 	map.type = MT_MEMORY;
975 
976 	create_mapping(&map);
977 }
978 
979 static void __init map_lowmem(void)
980 {
981 	struct meminfo *mi = &meminfo;
982 	int i;
983 
984 	/* Map all the lowmem memory banks. */
985 	for (i = 0; i < mi->nr_banks; i++) {
986 		struct membank *bank = &mi->bank[i];
987 
988 		if (!bank->highmem)
989 			map_memory_bank(bank);
990 	}
991 }
992 
993 static int __init meminfo_cmp(const void *_a, const void *_b)
994 {
995 	const struct membank *a = _a, *b = _b;
996 	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
997 	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
998 }
999 
1000 /*
1001  * paging_init() sets up the page tables, initialises the zone memory
1002  * maps, and sets up the zero page, bad page and bad page tables.
1003  */
1004 void __init paging_init(struct machine_desc *mdesc)
1005 {
1006 	void *zero_page;
1007 
1008 	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1009 
1010 	build_mem_type_table();
1011 	sanity_check_meminfo();
1012 	prepare_page_table();
1013 	map_lowmem();
1014 	devicemaps_init(mdesc);
1015 	kmap_init();
1016 
1017 	top_pmd = pmd_off_k(0xffff0000);
1018 
1019 	/* allocate the zero page. */
1020 	zero_page = early_alloc(PAGE_SIZE);
1021 
1022 	bootmem_init();
1023 
1024 	empty_zero_page = virt_to_page(zero_page);
1025 	__flush_dcache_page(NULL, empty_zero_page);
1026 }
1027 
1028 /*
1029  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1030  * the user-mode pages.  This will then ensure that we have predictable
1031  * results when turning the mmu off
1032  */
1033 void setup_mm_for_reboot(char mode)
1034 {
1035 	unsigned long base_pmdval;
1036 	pgd_t *pgd;
1037 	int i;
1038 
1039 	/*
1040 	 * We need to access to user-mode page tables here. For kernel threads
1041 	 * we don't have any user-mode mappings so we use the context that we
1042 	 * "borrowed".
1043 	 */
1044 	pgd = current->active_mm->pgd;
1045 
1046 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1047 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1048 		base_pmdval |= PMD_BIT4;
1049 
1050 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1051 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1052 		pmd_t *pmd;
1053 
1054 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1055 		pmd[0] = __pmd(pmdval);
1056 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1057 		flush_pmd_entry(pmd);
1058 	}
1059 
1060 	local_flush_tlb_all();
1061 }
1062