xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 483eb062)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34 
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 
39 #include "mm.h"
40 #include "tcm.h"
41 
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48 
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53 
54 #define CPOLICY_UNCACHED	0
55 #define CPOLICY_BUFFERED	1
56 #define CPOLICY_WRITETHROUGH	2
57 #define CPOLICY_WRITEBACK	3
58 #define CPOLICY_WRITEALLOC	4
59 
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
67 
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
70 
71 struct cachepolicy {
72 	const char	policy[16];
73 	unsigned int	cr_mask;
74 	pmdval_t	pmd;
75 	pteval_t	pte;
76 	pteval_t	pte_s2;
77 };
78 
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy)	policy
81 #else
82 #define s2_policy(policy)	0
83 #endif
84 
85 static struct cachepolicy cache_policies[] __initdata = {
86 	{
87 		.policy		= "uncached",
88 		.cr_mask	= CR_W|CR_C,
89 		.pmd		= PMD_SECT_UNCACHED,
90 		.pte		= L_PTE_MT_UNCACHED,
91 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 	}, {
93 		.policy		= "buffered",
94 		.cr_mask	= CR_C,
95 		.pmd		= PMD_SECT_BUFFERED,
96 		.pte		= L_PTE_MT_BUFFERABLE,
97 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 	}, {
99 		.policy		= "writethrough",
100 		.cr_mask	= 0,
101 		.pmd		= PMD_SECT_WT,
102 		.pte		= L_PTE_MT_WRITETHROUGH,
103 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 	}, {
105 		.policy		= "writeback",
106 		.cr_mask	= 0,
107 		.pmd		= PMD_SECT_WB,
108 		.pte		= L_PTE_MT_WRITEBACK,
109 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 	}, {
111 		.policy		= "writealloc",
112 		.cr_mask	= 0,
113 		.pmd		= PMD_SECT_WBWA,
114 		.pte		= L_PTE_MT_WRITEALLOC,
115 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 	}
117 };
118 
119 #ifdef CONFIG_CPU_CP15
120 /*
121  * These are useful for identifying cache coherency
122  * problems by allowing the cache or the cache and
123  * writebuffer to be turned off.  (Note: the write
124  * buffer should not be on and the cache off).
125  */
126 static int __init early_cachepolicy(char *p)
127 {
128 	int i;
129 
130 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 		int len = strlen(cache_policies[i].policy);
132 
133 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 			cachepolicy = i;
135 			cr_alignment &= ~cache_policies[i].cr_mask;
136 			cr_no_alignment &= ~cache_policies[i].cr_mask;
137 			break;
138 		}
139 	}
140 	if (i == ARRAY_SIZE(cache_policies))
141 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 	/*
143 	 * This restriction is partly to do with the way we boot; it is
144 	 * unpredictable to have memory mapped using two different sets of
145 	 * memory attributes (shared, type, and cache attribs).  We can not
146 	 * change these attributes once the initial assembly has setup the
147 	 * page tables.
148 	 */
149 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 		cachepolicy = CPOLICY_WRITEBACK;
152 	}
153 	flush_cache_all();
154 	set_cr(cr_alignment);
155 	return 0;
156 }
157 early_param("cachepolicy", early_cachepolicy);
158 
159 static int __init early_nocache(char *__unused)
160 {
161 	char *p = "buffered";
162 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 	early_cachepolicy(p);
164 	return 0;
165 }
166 early_param("nocache", early_nocache);
167 
168 static int __init early_nowrite(char *__unused)
169 {
170 	char *p = "uncached";
171 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 	early_cachepolicy(p);
173 	return 0;
174 }
175 early_param("nowb", early_nowrite);
176 
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
179 {
180 	if (memcmp(p, "on", 2) == 0)
181 		ecc_mask = PMD_PROTECTION;
182 	else if (memcmp(p, "off", 3) == 0)
183 		ecc_mask = 0;
184 	return 0;
185 }
186 early_param("ecc", early_ecc);
187 #endif
188 
189 static int __init noalign_setup(char *__unused)
190 {
191 	cr_alignment &= ~CR_A;
192 	cr_no_alignment &= ~CR_A;
193 	set_cr(cr_alignment);
194 	return 1;
195 }
196 __setup("noalign", noalign_setup);
197 
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
200 {
201 	unsigned long flags;
202 
203 	mask &= ~CR_A;
204 
205 	set &= mask;
206 
207 	local_irq_save(flags);
208 
209 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 	cr_alignment = (cr_alignment & ~mask) | set;
211 
212 	set_cr((get_cr() & ~mask) | set);
213 
214 	local_irq_restore(flags);
215 }
216 #endif
217 
218 #else /* ifdef CONFIG_CPU_CP15 */
219 
220 static int __init early_cachepolicy(char *p)
221 {
222 	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223 }
224 early_param("cachepolicy", early_cachepolicy);
225 
226 static int __init noalign_setup(char *__unused)
227 {
228 	pr_warning("noalign kernel parameter not supported without cp15\n");
229 }
230 __setup("noalign", noalign_setup);
231 
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
233 
234 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
236 
237 static struct mem_type mem_types[] = {
238 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
239 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
240 				  L_PTE_SHARED,
241 		.prot_l1	= PMD_TYPE_TABLE,
242 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
243 		.domain		= DOMAIN_IO,
244 	},
245 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
246 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
247 		.prot_l1	= PMD_TYPE_TABLE,
248 		.prot_sect	= PROT_SECT_DEVICE,
249 		.domain		= DOMAIN_IO,
250 	},
251 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
252 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
253 		.prot_l1	= PMD_TYPE_TABLE,
254 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
255 		.domain		= DOMAIN_IO,
256 	},
257 	[MT_DEVICE_WC] = {	/* ioremap_wc */
258 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
259 		.prot_l1	= PMD_TYPE_TABLE,
260 		.prot_sect	= PROT_SECT_DEVICE,
261 		.domain		= DOMAIN_IO,
262 	},
263 	[MT_UNCACHED] = {
264 		.prot_pte	= PROT_PTE_DEVICE,
265 		.prot_l1	= PMD_TYPE_TABLE,
266 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
267 		.domain		= DOMAIN_IO,
268 	},
269 	[MT_CACHECLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #ifndef CONFIG_ARM_LPAE
274 	[MT_MINICLEAN] = {
275 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
276 		.domain    = DOMAIN_KERNEL,
277 	},
278 #endif
279 	[MT_LOW_VECTORS] = {
280 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281 				L_PTE_RDONLY,
282 		.prot_l1   = PMD_TYPE_TABLE,
283 		.domain    = DOMAIN_USER,
284 	},
285 	[MT_HIGH_VECTORS] = {
286 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
287 				L_PTE_USER | L_PTE_RDONLY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.domain    = DOMAIN_USER,
290 	},
291 	[MT_MEMORY_RWX] = {
292 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 		.domain    = DOMAIN_KERNEL,
296 	},
297 	[MT_MEMORY_RW] = {
298 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 			     L_PTE_XN,
300 		.prot_l1   = PMD_TYPE_TABLE,
301 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302 		.domain    = DOMAIN_KERNEL,
303 	},
304 	[MT_ROM] = {
305 		.prot_sect = PMD_TYPE_SECT,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_MEMORY_RWX_NONCACHED] = {
309 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 				L_PTE_MT_BUFFERABLE,
311 		.prot_l1   = PMD_TYPE_TABLE,
312 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 		.domain    = DOMAIN_KERNEL,
314 	},
315 	[MT_MEMORY_RW_DTCM] = {
316 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317 				L_PTE_XN,
318 		.prot_l1   = PMD_TYPE_TABLE,
319 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
320 		.domain    = DOMAIN_KERNEL,
321 	},
322 	[MT_MEMORY_RWX_ITCM] = {
323 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
324 		.prot_l1   = PMD_TYPE_TABLE,
325 		.domain    = DOMAIN_KERNEL,
326 	},
327 	[MT_MEMORY_RW_SO] = {
328 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329 				L_PTE_MT_UNCACHED | L_PTE_XN,
330 		.prot_l1   = PMD_TYPE_TABLE,
331 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
332 				PMD_SECT_UNCACHED | PMD_SECT_XN,
333 		.domain    = DOMAIN_KERNEL,
334 	},
335 	[MT_MEMORY_DMA_READY] = {
336 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 				L_PTE_XN,
338 		.prot_l1   = PMD_TYPE_TABLE,
339 		.domain    = DOMAIN_KERNEL,
340 	},
341 };
342 
343 const struct mem_type *get_mem_type(unsigned int type)
344 {
345 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
346 }
347 EXPORT_SYMBOL(get_mem_type);
348 
349 #define PTE_SET_FN(_name, pteop) \
350 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
351 			void *data) \
352 { \
353 	pte_t pte = pteop(*ptep); \
354 \
355 	set_pte_ext(ptep, pte, 0); \
356 	return 0; \
357 } \
358 
359 #define SET_MEMORY_FN(_name, callback) \
360 int set_memory_##_name(unsigned long addr, int numpages) \
361 { \
362 	unsigned long start = addr; \
363 	unsigned long size = PAGE_SIZE*numpages; \
364 	unsigned end = start + size; \
365 \
366 	if (start < MODULES_VADDR || start >= MODULES_END) \
367 		return -EINVAL;\
368 \
369 	if (end < MODULES_VADDR || end >= MODULES_END) \
370 		return -EINVAL; \
371 \
372 	apply_to_page_range(&init_mm, start, size, callback, NULL); \
373 	flush_tlb_kernel_range(start, end); \
374 	return 0;\
375 }
376 
377 PTE_SET_FN(ro, pte_wrprotect)
378 PTE_SET_FN(rw, pte_mkwrite)
379 PTE_SET_FN(x, pte_mkexec)
380 PTE_SET_FN(nx, pte_mknexec)
381 
382 SET_MEMORY_FN(ro, pte_set_ro)
383 SET_MEMORY_FN(rw, pte_set_rw)
384 SET_MEMORY_FN(x, pte_set_x)
385 SET_MEMORY_FN(nx, pte_set_nx)
386 
387 /*
388  * Adjust the PMD section entries according to the CPU in use.
389  */
390 static void __init build_mem_type_table(void)
391 {
392 	struct cachepolicy *cp;
393 	unsigned int cr = get_cr();
394 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
395 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
396 	int cpu_arch = cpu_architecture();
397 	int i;
398 
399 	if (cpu_arch < CPU_ARCH_ARMv6) {
400 #if defined(CONFIG_CPU_DCACHE_DISABLE)
401 		if (cachepolicy > CPOLICY_BUFFERED)
402 			cachepolicy = CPOLICY_BUFFERED;
403 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
404 		if (cachepolicy > CPOLICY_WRITETHROUGH)
405 			cachepolicy = CPOLICY_WRITETHROUGH;
406 #endif
407 	}
408 	if (cpu_arch < CPU_ARCH_ARMv5) {
409 		if (cachepolicy >= CPOLICY_WRITEALLOC)
410 			cachepolicy = CPOLICY_WRITEBACK;
411 		ecc_mask = 0;
412 	}
413 	if (is_smp())
414 		cachepolicy = CPOLICY_WRITEALLOC;
415 
416 	/*
417 	 * Strip out features not present on earlier architectures.
418 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
419 	 * without extended page tables don't have the 'Shared' bit.
420 	 */
421 	if (cpu_arch < CPU_ARCH_ARMv5)
422 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
423 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
424 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
425 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
426 			mem_types[i].prot_sect &= ~PMD_SECT_S;
427 
428 	/*
429 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
430 	 * "update-able on write" bit on ARM610).  However, Xscale and
431 	 * Xscale3 require this bit to be cleared.
432 	 */
433 	if (cpu_is_xscale() || cpu_is_xsc3()) {
434 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
435 			mem_types[i].prot_sect &= ~PMD_BIT4;
436 			mem_types[i].prot_l1 &= ~PMD_BIT4;
437 		}
438 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
439 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440 			if (mem_types[i].prot_l1)
441 				mem_types[i].prot_l1 |= PMD_BIT4;
442 			if (mem_types[i].prot_sect)
443 				mem_types[i].prot_sect |= PMD_BIT4;
444 		}
445 	}
446 
447 	/*
448 	 * Mark the device areas according to the CPU/architecture.
449 	 */
450 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
451 		if (!cpu_is_xsc3()) {
452 			/*
453 			 * Mark device regions on ARMv6+ as execute-never
454 			 * to prevent speculative instruction fetches.
455 			 */
456 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
457 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
458 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
459 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
460 
461 			/* Also setup NX memory mapping */
462 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
463 		}
464 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
465 			/*
466 			 * For ARMv7 with TEX remapping,
467 			 * - shared device is SXCB=1100
468 			 * - nonshared device is SXCB=0100
469 			 * - write combine device mem is SXCB=0001
470 			 * (Uncached Normal memory)
471 			 */
472 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
473 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
474 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
475 		} else if (cpu_is_xsc3()) {
476 			/*
477 			 * For Xscale3,
478 			 * - shared device is TEXCB=00101
479 			 * - nonshared device is TEXCB=01000
480 			 * - write combine device mem is TEXCB=00100
481 			 * (Inner/Outer Uncacheable in xsc3 parlance)
482 			 */
483 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
484 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
485 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
486 		} else {
487 			/*
488 			 * For ARMv6 and ARMv7 without TEX remapping,
489 			 * - shared device is TEXCB=00001
490 			 * - nonshared device is TEXCB=01000
491 			 * - write combine device mem is TEXCB=00100
492 			 * (Uncached Normal in ARMv6 parlance).
493 			 */
494 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
495 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
496 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
497 		}
498 	} else {
499 		/*
500 		 * On others, write combining is "Uncached/Buffered"
501 		 */
502 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
503 	}
504 
505 	/*
506 	 * Now deal with the memory-type mappings
507 	 */
508 	cp = &cache_policies[cachepolicy];
509 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
510 	s2_pgprot = cp->pte_s2;
511 	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
512 
513 	/*
514 	 * ARMv6 and above have extended page tables.
515 	 */
516 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
517 #ifndef CONFIG_ARM_LPAE
518 		/*
519 		 * Mark cache clean areas and XIP ROM read only
520 		 * from SVC mode and no access from userspace.
521 		 */
522 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
523 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
524 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
525 #endif
526 
527 		if (is_smp()) {
528 			/*
529 			 * Mark memory with the "shared" attribute
530 			 * for SMP systems
531 			 */
532 			user_pgprot |= L_PTE_SHARED;
533 			kern_pgprot |= L_PTE_SHARED;
534 			vecs_pgprot |= L_PTE_SHARED;
535 			s2_pgprot |= L_PTE_SHARED;
536 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
537 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
538 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
539 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
540 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
541 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
542 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
543 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
544 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
545 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
546 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
547 		}
548 	}
549 
550 	/*
551 	 * Non-cacheable Normal - intended for memory areas that must
552 	 * not cause dirty cache line writebacks when used
553 	 */
554 	if (cpu_arch >= CPU_ARCH_ARMv6) {
555 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
556 			/* Non-cacheable Normal is XCB = 001 */
557 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
558 				PMD_SECT_BUFFERED;
559 		} else {
560 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
561 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
562 				PMD_SECT_TEX(1);
563 		}
564 	} else {
565 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
566 	}
567 
568 #ifdef CONFIG_ARM_LPAE
569 	/*
570 	 * Do not generate access flag faults for the kernel mappings.
571 	 */
572 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
573 		mem_types[i].prot_pte |= PTE_EXT_AF;
574 		if (mem_types[i].prot_sect)
575 			mem_types[i].prot_sect |= PMD_SECT_AF;
576 	}
577 	kern_pgprot |= PTE_EXT_AF;
578 	vecs_pgprot |= PTE_EXT_AF;
579 #endif
580 
581 	for (i = 0; i < 16; i++) {
582 		pteval_t v = pgprot_val(protection_map[i]);
583 		protection_map[i] = __pgprot(v | user_pgprot);
584 	}
585 
586 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
587 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
588 
589 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
590 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
591 				 L_PTE_DIRTY | kern_pgprot);
592 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
593 	pgprot_s2_device  = __pgprot(s2_device_pgprot);
594 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
595 
596 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
597 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
598 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
599 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
600 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
601 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
602 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
603 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
604 	mem_types[MT_ROM].prot_sect |= cp->pmd;
605 
606 	switch (cp->pmd) {
607 	case PMD_SECT_WT:
608 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
609 		break;
610 	case PMD_SECT_WB:
611 	case PMD_SECT_WBWA:
612 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
613 		break;
614 	}
615 	pr_info("Memory policy: %sData cache %s\n",
616 		ecc_mask ? "ECC enabled, " : "", cp->policy);
617 
618 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
619 		struct mem_type *t = &mem_types[i];
620 		if (t->prot_l1)
621 			t->prot_l1 |= PMD_DOMAIN(t->domain);
622 		if (t->prot_sect)
623 			t->prot_sect |= PMD_DOMAIN(t->domain);
624 	}
625 }
626 
627 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
628 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
629 			      unsigned long size, pgprot_t vma_prot)
630 {
631 	if (!pfn_valid(pfn))
632 		return pgprot_noncached(vma_prot);
633 	else if (file->f_flags & O_SYNC)
634 		return pgprot_writecombine(vma_prot);
635 	return vma_prot;
636 }
637 EXPORT_SYMBOL(phys_mem_access_prot);
638 #endif
639 
640 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
641 
642 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
643 {
644 	void *ptr = __va(memblock_alloc(sz, align));
645 	memset(ptr, 0, sz);
646 	return ptr;
647 }
648 
649 static void __init *early_alloc(unsigned long sz)
650 {
651 	return early_alloc_aligned(sz, sz);
652 }
653 
654 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
655 {
656 	if (pmd_none(*pmd)) {
657 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
658 		__pmd_populate(pmd, __pa(pte), prot);
659 	}
660 	BUG_ON(pmd_bad(*pmd));
661 	return pte_offset_kernel(pmd, addr);
662 }
663 
664 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
665 				  unsigned long end, unsigned long pfn,
666 				  const struct mem_type *type)
667 {
668 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
669 	do {
670 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
671 		pfn++;
672 	} while (pte++, addr += PAGE_SIZE, addr != end);
673 }
674 
675 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
676 			unsigned long end, phys_addr_t phys,
677 			const struct mem_type *type)
678 {
679 	pmd_t *p = pmd;
680 
681 #ifndef CONFIG_ARM_LPAE
682 	/*
683 	 * In classic MMU format, puds and pmds are folded in to
684 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
685 	 * group of L1 entries making up one logical pointer to
686 	 * an L2 table (2MB), where as PMDs refer to the individual
687 	 * L1 entries (1MB). Hence increment to get the correct
688 	 * offset for odd 1MB sections.
689 	 * (See arch/arm/include/asm/pgtable-2level.h)
690 	 */
691 	if (addr & SECTION_SIZE)
692 		pmd++;
693 #endif
694 	do {
695 		*pmd = __pmd(phys | type->prot_sect);
696 		phys += SECTION_SIZE;
697 	} while (pmd++, addr += SECTION_SIZE, addr != end);
698 
699 	flush_pmd_entry(p);
700 }
701 
702 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
703 				      unsigned long end, phys_addr_t phys,
704 				      const struct mem_type *type)
705 {
706 	pmd_t *pmd = pmd_offset(pud, addr);
707 	unsigned long next;
708 
709 	do {
710 		/*
711 		 * With LPAE, we must loop over to map
712 		 * all the pmds for the given range.
713 		 */
714 		next = pmd_addr_end(addr, end);
715 
716 		/*
717 		 * Try a section mapping - addr, next and phys must all be
718 		 * aligned to a section boundary.
719 		 */
720 		if (type->prot_sect &&
721 				((addr | next | phys) & ~SECTION_MASK) == 0) {
722 			__map_init_section(pmd, addr, next, phys, type);
723 		} else {
724 			alloc_init_pte(pmd, addr, next,
725 						__phys_to_pfn(phys), type);
726 		}
727 
728 		phys += next - addr;
729 
730 	} while (pmd++, addr = next, addr != end);
731 }
732 
733 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
734 				  unsigned long end, phys_addr_t phys,
735 				  const struct mem_type *type)
736 {
737 	pud_t *pud = pud_offset(pgd, addr);
738 	unsigned long next;
739 
740 	do {
741 		next = pud_addr_end(addr, end);
742 		alloc_init_pmd(pud, addr, next, phys, type);
743 		phys += next - addr;
744 	} while (pud++, addr = next, addr != end);
745 }
746 
747 #ifndef CONFIG_ARM_LPAE
748 static void __init create_36bit_mapping(struct map_desc *md,
749 					const struct mem_type *type)
750 {
751 	unsigned long addr, length, end;
752 	phys_addr_t phys;
753 	pgd_t *pgd;
754 
755 	addr = md->virtual;
756 	phys = __pfn_to_phys(md->pfn);
757 	length = PAGE_ALIGN(md->length);
758 
759 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
760 		printk(KERN_ERR "MM: CPU does not support supersection "
761 		       "mapping for 0x%08llx at 0x%08lx\n",
762 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
763 		return;
764 	}
765 
766 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
767 	 *	Since domain assignments can in fact be arbitrary, the
768 	 *	'domain == 0' check below is required to insure that ARMv6
769 	 *	supersections are only allocated for domain 0 regardless
770 	 *	of the actual domain assignments in use.
771 	 */
772 	if (type->domain) {
773 		printk(KERN_ERR "MM: invalid domain in supersection "
774 		       "mapping for 0x%08llx at 0x%08lx\n",
775 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
776 		return;
777 	}
778 
779 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
780 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
781 		       " at 0x%08lx invalid alignment\n",
782 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
783 		return;
784 	}
785 
786 	/*
787 	 * Shift bits [35:32] of address into bits [23:20] of PMD
788 	 * (See ARMv6 spec).
789 	 */
790 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
791 
792 	pgd = pgd_offset_k(addr);
793 	end = addr + length;
794 	do {
795 		pud_t *pud = pud_offset(pgd, addr);
796 		pmd_t *pmd = pmd_offset(pud, addr);
797 		int i;
798 
799 		for (i = 0; i < 16; i++)
800 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
801 
802 		addr += SUPERSECTION_SIZE;
803 		phys += SUPERSECTION_SIZE;
804 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
805 	} while (addr != end);
806 }
807 #endif	/* !CONFIG_ARM_LPAE */
808 
809 /*
810  * Create the page directory entries and any necessary
811  * page tables for the mapping specified by `md'.  We
812  * are able to cope here with varying sizes and address
813  * offsets, and we take full advantage of sections and
814  * supersections.
815  */
816 static void __init create_mapping(struct map_desc *md)
817 {
818 	unsigned long addr, length, end;
819 	phys_addr_t phys;
820 	const struct mem_type *type;
821 	pgd_t *pgd;
822 
823 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
824 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
825 		       " at 0x%08lx in user region\n",
826 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
827 		return;
828 	}
829 
830 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
831 	    md->virtual >= PAGE_OFFSET &&
832 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
833 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
834 		       " at 0x%08lx out of vmalloc space\n",
835 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
836 	}
837 
838 	type = &mem_types[md->type];
839 
840 #ifndef CONFIG_ARM_LPAE
841 	/*
842 	 * Catch 36-bit addresses
843 	 */
844 	if (md->pfn >= 0x100000) {
845 		create_36bit_mapping(md, type);
846 		return;
847 	}
848 #endif
849 
850 	addr = md->virtual & PAGE_MASK;
851 	phys = __pfn_to_phys(md->pfn);
852 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
853 
854 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
855 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
856 		       "be mapped using pages, ignoring.\n",
857 		       (long long)__pfn_to_phys(md->pfn), addr);
858 		return;
859 	}
860 
861 	pgd = pgd_offset_k(addr);
862 	end = addr + length;
863 	do {
864 		unsigned long next = pgd_addr_end(addr, end);
865 
866 		alloc_init_pud(pgd, addr, next, phys, type);
867 
868 		phys += next - addr;
869 		addr = next;
870 	} while (pgd++, addr != end);
871 }
872 
873 /*
874  * Create the architecture specific mappings
875  */
876 void __init iotable_init(struct map_desc *io_desc, int nr)
877 {
878 	struct map_desc *md;
879 	struct vm_struct *vm;
880 	struct static_vm *svm;
881 
882 	if (!nr)
883 		return;
884 
885 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
886 
887 	for (md = io_desc; nr; md++, nr--) {
888 		create_mapping(md);
889 
890 		vm = &svm->vm;
891 		vm->addr = (void *)(md->virtual & PAGE_MASK);
892 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
893 		vm->phys_addr = __pfn_to_phys(md->pfn);
894 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
895 		vm->flags |= VM_ARM_MTYPE(md->type);
896 		vm->caller = iotable_init;
897 		add_static_vm_early(svm++);
898 	}
899 }
900 
901 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
902 				  void *caller)
903 {
904 	struct vm_struct *vm;
905 	struct static_vm *svm;
906 
907 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
908 
909 	vm = &svm->vm;
910 	vm->addr = (void *)addr;
911 	vm->size = size;
912 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
913 	vm->caller = caller;
914 	add_static_vm_early(svm);
915 }
916 
917 #ifndef CONFIG_ARM_LPAE
918 
919 /*
920  * The Linux PMD is made of two consecutive section entries covering 2MB
921  * (see definition in include/asm/pgtable-2level.h).  However a call to
922  * create_mapping() may optimize static mappings by using individual
923  * 1MB section mappings.  This leaves the actual PMD potentially half
924  * initialized if the top or bottom section entry isn't used, leaving it
925  * open to problems if a subsequent ioremap() or vmalloc() tries to use
926  * the virtual space left free by that unused section entry.
927  *
928  * Let's avoid the issue by inserting dummy vm entries covering the unused
929  * PMD halves once the static mappings are in place.
930  */
931 
932 static void __init pmd_empty_section_gap(unsigned long addr)
933 {
934 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
935 }
936 
937 static void __init fill_pmd_gaps(void)
938 {
939 	struct static_vm *svm;
940 	struct vm_struct *vm;
941 	unsigned long addr, next = 0;
942 	pmd_t *pmd;
943 
944 	list_for_each_entry(svm, &static_vmlist, list) {
945 		vm = &svm->vm;
946 		addr = (unsigned long)vm->addr;
947 		if (addr < next)
948 			continue;
949 
950 		/*
951 		 * Check if this vm starts on an odd section boundary.
952 		 * If so and the first section entry for this PMD is free
953 		 * then we block the corresponding virtual address.
954 		 */
955 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
956 			pmd = pmd_off_k(addr);
957 			if (pmd_none(*pmd))
958 				pmd_empty_section_gap(addr & PMD_MASK);
959 		}
960 
961 		/*
962 		 * Then check if this vm ends on an odd section boundary.
963 		 * If so and the second section entry for this PMD is empty
964 		 * then we block the corresponding virtual address.
965 		 */
966 		addr += vm->size;
967 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
968 			pmd = pmd_off_k(addr) + 1;
969 			if (pmd_none(*pmd))
970 				pmd_empty_section_gap(addr);
971 		}
972 
973 		/* no need to look at any vm entry until we hit the next PMD */
974 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
975 	}
976 }
977 
978 #else
979 #define fill_pmd_gaps() do { } while (0)
980 #endif
981 
982 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
983 static void __init pci_reserve_io(void)
984 {
985 	struct static_vm *svm;
986 
987 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
988 	if (svm)
989 		return;
990 
991 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
992 }
993 #else
994 #define pci_reserve_io() do { } while (0)
995 #endif
996 
997 #ifdef CONFIG_DEBUG_LL
998 void __init debug_ll_io_init(void)
999 {
1000 	struct map_desc map;
1001 
1002 	debug_ll_addr(&map.pfn, &map.virtual);
1003 	if (!map.pfn || !map.virtual)
1004 		return;
1005 	map.pfn = __phys_to_pfn(map.pfn);
1006 	map.virtual &= PAGE_MASK;
1007 	map.length = PAGE_SIZE;
1008 	map.type = MT_DEVICE;
1009 	iotable_init(&map, 1);
1010 }
1011 #endif
1012 
1013 static void * __initdata vmalloc_min =
1014 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1015 
1016 /*
1017  * vmalloc=size forces the vmalloc area to be exactly 'size'
1018  * bytes. This can be used to increase (or decrease) the vmalloc
1019  * area - the default is 240m.
1020  */
1021 static int __init early_vmalloc(char *arg)
1022 {
1023 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1024 
1025 	if (vmalloc_reserve < SZ_16M) {
1026 		vmalloc_reserve = SZ_16M;
1027 		printk(KERN_WARNING
1028 			"vmalloc area too small, limiting to %luMB\n",
1029 			vmalloc_reserve >> 20);
1030 	}
1031 
1032 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1033 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1034 		printk(KERN_WARNING
1035 			"vmalloc area is too big, limiting to %luMB\n",
1036 			vmalloc_reserve >> 20);
1037 	}
1038 
1039 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1040 	return 0;
1041 }
1042 early_param("vmalloc", early_vmalloc);
1043 
1044 phys_addr_t arm_lowmem_limit __initdata = 0;
1045 
1046 void __init sanity_check_meminfo(void)
1047 {
1048 	phys_addr_t memblock_limit = 0;
1049 	int i, j, highmem = 0;
1050 	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1051 
1052 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1053 		struct membank *bank = &meminfo.bank[j];
1054 		phys_addr_t size_limit;
1055 
1056 		*bank = meminfo.bank[i];
1057 		size_limit = bank->size;
1058 
1059 		if (bank->start >= vmalloc_limit)
1060 			highmem = 1;
1061 		else
1062 			size_limit = vmalloc_limit - bank->start;
1063 
1064 		bank->highmem = highmem;
1065 
1066 #ifdef CONFIG_HIGHMEM
1067 		/*
1068 		 * Split those memory banks which are partially overlapping
1069 		 * the vmalloc area greatly simplifying things later.
1070 		 */
1071 		if (!highmem && bank->size > size_limit) {
1072 			if (meminfo.nr_banks >= NR_BANKS) {
1073 				printk(KERN_CRIT "NR_BANKS too low, "
1074 						 "ignoring high memory\n");
1075 			} else {
1076 				memmove(bank + 1, bank,
1077 					(meminfo.nr_banks - i) * sizeof(*bank));
1078 				meminfo.nr_banks++;
1079 				i++;
1080 				bank[1].size -= size_limit;
1081 				bank[1].start = vmalloc_limit;
1082 				bank[1].highmem = highmem = 1;
1083 				j++;
1084 			}
1085 			bank->size = size_limit;
1086 		}
1087 #else
1088 		/*
1089 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1090 		 */
1091 		if (highmem) {
1092 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1093 			       "(!CONFIG_HIGHMEM).\n",
1094 			       (unsigned long long)bank->start,
1095 			       (unsigned long long)bank->start + bank->size - 1);
1096 			continue;
1097 		}
1098 
1099 		/*
1100 		 * Check whether this memory bank would partially overlap
1101 		 * the vmalloc area.
1102 		 */
1103 		if (bank->size > size_limit) {
1104 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1105 			       "to -%.8llx (vmalloc region overlap).\n",
1106 			       (unsigned long long)bank->start,
1107 			       (unsigned long long)bank->start + bank->size - 1,
1108 			       (unsigned long long)bank->start + size_limit - 1);
1109 			bank->size = size_limit;
1110 		}
1111 #endif
1112 		if (!bank->highmem) {
1113 			phys_addr_t bank_end = bank->start + bank->size;
1114 
1115 			if (bank_end > arm_lowmem_limit)
1116 				arm_lowmem_limit = bank_end;
1117 
1118 			/*
1119 			 * Find the first non-section-aligned page, and point
1120 			 * memblock_limit at it. This relies on rounding the
1121 			 * limit down to be section-aligned, which happens at
1122 			 * the end of this function.
1123 			 *
1124 			 * With this algorithm, the start or end of almost any
1125 			 * bank can be non-section-aligned. The only exception
1126 			 * is that the start of the bank 0 must be section-
1127 			 * aligned, since otherwise memory would need to be
1128 			 * allocated when mapping the start of bank 0, which
1129 			 * occurs before any free memory is mapped.
1130 			 */
1131 			if (!memblock_limit) {
1132 				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1133 					memblock_limit = bank->start;
1134 				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1135 					memblock_limit = bank_end;
1136 			}
1137 		}
1138 		j++;
1139 	}
1140 #ifdef CONFIG_HIGHMEM
1141 	if (highmem) {
1142 		const char *reason = NULL;
1143 
1144 		if (cache_is_vipt_aliasing()) {
1145 			/*
1146 			 * Interactions between kmap and other mappings
1147 			 * make highmem support with aliasing VIPT caches
1148 			 * rather difficult.
1149 			 */
1150 			reason = "with VIPT aliasing cache";
1151 		}
1152 		if (reason) {
1153 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1154 				reason);
1155 			while (j > 0 && meminfo.bank[j - 1].highmem)
1156 				j--;
1157 		}
1158 	}
1159 #endif
1160 	meminfo.nr_banks = j;
1161 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1162 
1163 	/*
1164 	 * Round the memblock limit down to a section size.  This
1165 	 * helps to ensure that we will allocate memory from the
1166 	 * last full section, which should be mapped.
1167 	 */
1168 	if (memblock_limit)
1169 		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1170 	if (!memblock_limit)
1171 		memblock_limit = arm_lowmem_limit;
1172 
1173 	memblock_set_current_limit(memblock_limit);
1174 }
1175 
1176 static inline void prepare_page_table(void)
1177 {
1178 	unsigned long addr;
1179 	phys_addr_t end;
1180 
1181 	/*
1182 	 * Clear out all the mappings below the kernel image.
1183 	 */
1184 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1185 		pmd_clear(pmd_off_k(addr));
1186 
1187 #ifdef CONFIG_XIP_KERNEL
1188 	/* The XIP kernel is mapped in the module area -- skip over it */
1189 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1190 #endif
1191 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1192 		pmd_clear(pmd_off_k(addr));
1193 
1194 	/*
1195 	 * Find the end of the first block of lowmem.
1196 	 */
1197 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1198 	if (end >= arm_lowmem_limit)
1199 		end = arm_lowmem_limit;
1200 
1201 	/*
1202 	 * Clear out all the kernel space mappings, except for the first
1203 	 * memory bank, up to the vmalloc region.
1204 	 */
1205 	for (addr = __phys_to_virt(end);
1206 	     addr < VMALLOC_START; addr += PMD_SIZE)
1207 		pmd_clear(pmd_off_k(addr));
1208 }
1209 
1210 #ifdef CONFIG_ARM_LPAE
1211 /* the first page is reserved for pgd */
1212 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1213 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1214 #else
1215 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1216 #endif
1217 
1218 /*
1219  * Reserve the special regions of memory
1220  */
1221 void __init arm_mm_memblock_reserve(void)
1222 {
1223 	/*
1224 	 * Reserve the page tables.  These are already in use,
1225 	 * and can only be in node 0.
1226 	 */
1227 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1228 
1229 #ifdef CONFIG_SA1111
1230 	/*
1231 	 * Because of the SA1111 DMA bug, we want to preserve our
1232 	 * precious DMA-able memory...
1233 	 */
1234 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1235 #endif
1236 }
1237 
1238 /*
1239  * Set up the device mappings.  Since we clear out the page tables for all
1240  * mappings above VMALLOC_START, we will remove any debug device mappings.
1241  * This means you have to be careful how you debug this function, or any
1242  * called function.  This means you can't use any function or debugging
1243  * method which may touch any device, otherwise the kernel _will_ crash.
1244  */
1245 static void __init devicemaps_init(const struct machine_desc *mdesc)
1246 {
1247 	struct map_desc map;
1248 	unsigned long addr;
1249 	void *vectors;
1250 
1251 	/*
1252 	 * Allocate the vector page early.
1253 	 */
1254 	vectors = early_alloc(PAGE_SIZE * 2);
1255 
1256 	early_trap_init(vectors);
1257 
1258 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1259 		pmd_clear(pmd_off_k(addr));
1260 
1261 	/*
1262 	 * Map the kernel if it is XIP.
1263 	 * It is always first in the modulearea.
1264 	 */
1265 #ifdef CONFIG_XIP_KERNEL
1266 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1267 	map.virtual = MODULES_VADDR;
1268 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1269 	map.type = MT_ROM;
1270 	create_mapping(&map);
1271 #endif
1272 
1273 	/*
1274 	 * Map the cache flushing regions.
1275 	 */
1276 #ifdef FLUSH_BASE
1277 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1278 	map.virtual = FLUSH_BASE;
1279 	map.length = SZ_1M;
1280 	map.type = MT_CACHECLEAN;
1281 	create_mapping(&map);
1282 #endif
1283 #ifdef FLUSH_BASE_MINICACHE
1284 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1285 	map.virtual = FLUSH_BASE_MINICACHE;
1286 	map.length = SZ_1M;
1287 	map.type = MT_MINICLEAN;
1288 	create_mapping(&map);
1289 #endif
1290 
1291 	/*
1292 	 * Create a mapping for the machine vectors at the high-vectors
1293 	 * location (0xffff0000).  If we aren't using high-vectors, also
1294 	 * create a mapping at the low-vectors virtual address.
1295 	 */
1296 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1297 	map.virtual = 0xffff0000;
1298 	map.length = PAGE_SIZE;
1299 #ifdef CONFIG_KUSER_HELPERS
1300 	map.type = MT_HIGH_VECTORS;
1301 #else
1302 	map.type = MT_LOW_VECTORS;
1303 #endif
1304 	create_mapping(&map);
1305 
1306 	if (!vectors_high()) {
1307 		map.virtual = 0;
1308 		map.length = PAGE_SIZE * 2;
1309 		map.type = MT_LOW_VECTORS;
1310 		create_mapping(&map);
1311 	}
1312 
1313 	/* Now create a kernel read-only mapping */
1314 	map.pfn += 1;
1315 	map.virtual = 0xffff0000 + PAGE_SIZE;
1316 	map.length = PAGE_SIZE;
1317 	map.type = MT_LOW_VECTORS;
1318 	create_mapping(&map);
1319 
1320 	/*
1321 	 * Ask the machine support to map in the statically mapped devices.
1322 	 */
1323 	if (mdesc->map_io)
1324 		mdesc->map_io();
1325 	else
1326 		debug_ll_io_init();
1327 	fill_pmd_gaps();
1328 
1329 	/* Reserve fixed i/o space in VMALLOC region */
1330 	pci_reserve_io();
1331 
1332 	/*
1333 	 * Finally flush the caches and tlb to ensure that we're in a
1334 	 * consistent state wrt the writebuffer.  This also ensures that
1335 	 * any write-allocated cache lines in the vector page are written
1336 	 * back.  After this point, we can start to touch devices again.
1337 	 */
1338 	local_flush_tlb_all();
1339 	flush_cache_all();
1340 }
1341 
1342 static void __init kmap_init(void)
1343 {
1344 #ifdef CONFIG_HIGHMEM
1345 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1346 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1347 #endif
1348 }
1349 
1350 static void __init map_lowmem(void)
1351 {
1352 	struct memblock_region *reg;
1353 	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1354 	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1355 
1356 	/* Map all the lowmem memory banks. */
1357 	for_each_memblock(memory, reg) {
1358 		phys_addr_t start = reg->base;
1359 		phys_addr_t end = start + reg->size;
1360 		struct map_desc map;
1361 
1362 		if (end > arm_lowmem_limit)
1363 			end = arm_lowmem_limit;
1364 		if (start >= end)
1365 			break;
1366 
1367 		if (end < kernel_x_start || start >= kernel_x_end) {
1368 			map.pfn = __phys_to_pfn(start);
1369 			map.virtual = __phys_to_virt(start);
1370 			map.length = end - start;
1371 			map.type = MT_MEMORY_RWX;
1372 
1373 			create_mapping(&map);
1374 		} else {
1375 			/* This better cover the entire kernel */
1376 			if (start < kernel_x_start) {
1377 				map.pfn = __phys_to_pfn(start);
1378 				map.virtual = __phys_to_virt(start);
1379 				map.length = kernel_x_start - start;
1380 				map.type = MT_MEMORY_RW;
1381 
1382 				create_mapping(&map);
1383 			}
1384 
1385 			map.pfn = __phys_to_pfn(kernel_x_start);
1386 			map.virtual = __phys_to_virt(kernel_x_start);
1387 			map.length = kernel_x_end - kernel_x_start;
1388 			map.type = MT_MEMORY_RWX;
1389 
1390 			create_mapping(&map);
1391 
1392 			if (kernel_x_end < end) {
1393 				map.pfn = __phys_to_pfn(kernel_x_end);
1394 				map.virtual = __phys_to_virt(kernel_x_end);
1395 				map.length = end - kernel_x_end;
1396 				map.type = MT_MEMORY_RW;
1397 
1398 				create_mapping(&map);
1399 			}
1400 		}
1401 	}
1402 }
1403 
1404 #ifdef CONFIG_ARM_LPAE
1405 /*
1406  * early_paging_init() recreates boot time page table setup, allowing machines
1407  * to switch over to a high (>4G) address space on LPAE systems
1408  */
1409 void __init early_paging_init(const struct machine_desc *mdesc,
1410 			      struct proc_info_list *procinfo)
1411 {
1412 	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1413 	unsigned long map_start, map_end;
1414 	pgd_t *pgd0, *pgdk;
1415 	pud_t *pud0, *pudk, *pud_start;
1416 	pmd_t *pmd0, *pmdk;
1417 	phys_addr_t phys;
1418 	int i;
1419 
1420 	if (!(mdesc->init_meminfo))
1421 		return;
1422 
1423 	/* remap kernel code and data */
1424 	map_start = init_mm.start_code;
1425 	map_end   = init_mm.brk;
1426 
1427 	/* get a handle on things... */
1428 	pgd0 = pgd_offset_k(0);
1429 	pud_start = pud0 = pud_offset(pgd0, 0);
1430 	pmd0 = pmd_offset(pud0, 0);
1431 
1432 	pgdk = pgd_offset_k(map_start);
1433 	pudk = pud_offset(pgdk, map_start);
1434 	pmdk = pmd_offset(pudk, map_start);
1435 
1436 	mdesc->init_meminfo();
1437 
1438 	/* Run the patch stub to update the constants */
1439 	fixup_pv_table(&__pv_table_begin,
1440 		(&__pv_table_end - &__pv_table_begin) << 2);
1441 
1442 	/*
1443 	 * Cache cleaning operations for self-modifying code
1444 	 * We should clean the entries by MVA but running a
1445 	 * for loop over every pv_table entry pointer would
1446 	 * just complicate the code.
1447 	 */
1448 	flush_cache_louis();
1449 	dsb();
1450 	isb();
1451 
1452 	/* remap level 1 table */
1453 	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1454 		set_pud(pud0,
1455 			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1456 		pmd0 += PTRS_PER_PMD;
1457 	}
1458 
1459 	/* remap pmds for kernel mapping */
1460 	phys = __pa(map_start) & PMD_MASK;
1461 	do {
1462 		*pmdk++ = __pmd(phys | pmdprot);
1463 		phys += PMD_SIZE;
1464 	} while (phys < map_end);
1465 
1466 	flush_cache_all();
1467 	cpu_switch_mm(pgd0, &init_mm);
1468 	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1469 	local_flush_bp_all();
1470 	local_flush_tlb_all();
1471 }
1472 
1473 #else
1474 
1475 void __init early_paging_init(const struct machine_desc *mdesc,
1476 			      struct proc_info_list *procinfo)
1477 {
1478 	if (mdesc->init_meminfo)
1479 		mdesc->init_meminfo();
1480 }
1481 
1482 #endif
1483 
1484 /*
1485  * paging_init() sets up the page tables, initialises the zone memory
1486  * maps, and sets up the zero page, bad page and bad page tables.
1487  */
1488 void __init paging_init(const struct machine_desc *mdesc)
1489 {
1490 	void *zero_page;
1491 
1492 	build_mem_type_table();
1493 	prepare_page_table();
1494 	map_lowmem();
1495 	dma_contiguous_remap();
1496 	devicemaps_init(mdesc);
1497 	kmap_init();
1498 	tcm_init();
1499 
1500 	top_pmd = pmd_off_k(0xffff0000);
1501 
1502 	/* allocate the zero page. */
1503 	zero_page = early_alloc(PAGE_SIZE);
1504 
1505 	bootmem_init();
1506 
1507 	empty_zero_page = virt_to_page(zero_page);
1508 	__flush_dcache_page(NULL, empty_zero_page);
1509 }
1510