xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 }
216 early_param("cachepolicy", early_cachepolicy);
217 
218 static int __init noalign_setup(char *__unused)
219 {
220 	pr_warn("noalign kernel parameter not supported without cp15\n");
221 }
222 __setup("noalign", noalign_setup);
223 
224 #endif /* ifdef CONFIG_CPU_CP15 / else */
225 
226 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
228 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
229 
230 static struct mem_type mem_types[] __ro_after_init = {
231 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
232 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
233 				  L_PTE_SHARED,
234 		.prot_l1	= PMD_TYPE_TABLE,
235 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
236 		.domain		= DOMAIN_IO,
237 	},
238 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240 		.prot_l1	= PMD_TYPE_TABLE,
241 		.prot_sect	= PROT_SECT_DEVICE,
242 		.domain		= DOMAIN_IO,
243 	},
244 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
245 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246 		.prot_l1	= PMD_TYPE_TABLE,
247 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
248 		.domain		= DOMAIN_IO,
249 	},
250 	[MT_DEVICE_WC] = {	/* ioremap_wc */
251 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252 		.prot_l1	= PMD_TYPE_TABLE,
253 		.prot_sect	= PROT_SECT_DEVICE,
254 		.domain		= DOMAIN_IO,
255 	},
256 	[MT_UNCACHED] = {
257 		.prot_pte	= PROT_PTE_DEVICE,
258 		.prot_l1	= PMD_TYPE_TABLE,
259 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
260 		.domain		= DOMAIN_IO,
261 	},
262 	[MT_CACHECLEAN] = {
263 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 		.domain    = DOMAIN_KERNEL,
265 	},
266 #ifndef CONFIG_ARM_LPAE
267 	[MT_MINICLEAN] = {
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 #endif
272 	[MT_LOW_VECTORS] = {
273 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274 				L_PTE_RDONLY,
275 		.prot_l1   = PMD_TYPE_TABLE,
276 		.domain    = DOMAIN_VECTORS,
277 	},
278 	[MT_HIGH_VECTORS] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280 				L_PTE_USER | L_PTE_RDONLY,
281 		.prot_l1   = PMD_TYPE_TABLE,
282 		.domain    = DOMAIN_VECTORS,
283 	},
284 	[MT_MEMORY_RWX] = {
285 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288 		.domain    = DOMAIN_KERNEL,
289 	},
290 	[MT_MEMORY_RW] = {
291 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 			     L_PTE_XN,
293 		.prot_l1   = PMD_TYPE_TABLE,
294 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 		.domain    = DOMAIN_KERNEL,
296 	},
297 	[MT_ROM] = {
298 		.prot_sect = PMD_TYPE_SECT,
299 		.domain    = DOMAIN_KERNEL,
300 	},
301 	[MT_MEMORY_RWX_NONCACHED] = {
302 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 				L_PTE_MT_BUFFERABLE,
304 		.prot_l1   = PMD_TYPE_TABLE,
305 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 		.domain    = DOMAIN_KERNEL,
307 	},
308 	[MT_MEMORY_RW_DTCM] = {
309 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 				L_PTE_XN,
311 		.prot_l1   = PMD_TYPE_TABLE,
312 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
313 		.domain    = DOMAIN_KERNEL,
314 	},
315 	[MT_MEMORY_RWX_ITCM] = {
316 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317 		.prot_l1   = PMD_TYPE_TABLE,
318 		.domain    = DOMAIN_KERNEL,
319 	},
320 	[MT_MEMORY_RW_SO] = {
321 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322 				L_PTE_MT_UNCACHED | L_PTE_XN,
323 		.prot_l1   = PMD_TYPE_TABLE,
324 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
325 				PMD_SECT_UNCACHED | PMD_SECT_XN,
326 		.domain    = DOMAIN_KERNEL,
327 	},
328 	[MT_MEMORY_DMA_READY] = {
329 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
330 				L_PTE_XN,
331 		.prot_l1   = PMD_TYPE_TABLE,
332 		.domain    = DOMAIN_KERNEL,
333 	},
334 };
335 
336 const struct mem_type *get_mem_type(unsigned int type)
337 {
338 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
339 }
340 EXPORT_SYMBOL(get_mem_type);
341 
342 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
343 
344 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
345 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
346 
347 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
348 {
349 	return &bm_pte[pte_index(addr)];
350 }
351 
352 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
353 {
354 	return pte_offset_kernel(dir, addr);
355 }
356 
357 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
358 {
359 	return pmd_off_k(addr);
360 }
361 
362 void __init early_fixmap_init(void)
363 {
364 	pmd_t *pmd;
365 
366 	/*
367 	 * The early fixmap range spans multiple pmds, for which
368 	 * we are not prepared:
369 	 */
370 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
371 		     != FIXADDR_TOP >> PMD_SHIFT);
372 
373 	pmd = fixmap_pmd(FIXADDR_TOP);
374 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
375 
376 	pte_offset_fixmap = pte_offset_early_fixmap;
377 }
378 
379 /*
380  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
381  * As a result, this can only be called with preemption disabled, as under
382  * stop_machine().
383  */
384 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
385 {
386 	unsigned long vaddr = __fix_to_virt(idx);
387 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
388 
389 	/* Make sure fixmap region does not exceed available allocation. */
390 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
391 	BUG_ON(idx >= __end_of_fixed_addresses);
392 
393 	/* We support only device mappings before pgprot_kernel is set. */
394 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
395 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
396 		return;
397 
398 	if (pgprot_val(prot))
399 		set_pte_at(NULL, vaddr, pte,
400 			pfn_pte(phys >> PAGE_SHIFT, prot));
401 	else
402 		pte_clear(NULL, vaddr, pte);
403 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
404 }
405 
406 /*
407  * Adjust the PMD section entries according to the CPU in use.
408  */
409 static void __init build_mem_type_table(void)
410 {
411 	struct cachepolicy *cp;
412 	unsigned int cr = get_cr();
413 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
414 	int cpu_arch = cpu_architecture();
415 	int i;
416 
417 	if (cpu_arch < CPU_ARCH_ARMv6) {
418 #if defined(CONFIG_CPU_DCACHE_DISABLE)
419 		if (cachepolicy > CPOLICY_BUFFERED)
420 			cachepolicy = CPOLICY_BUFFERED;
421 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
422 		if (cachepolicy > CPOLICY_WRITETHROUGH)
423 			cachepolicy = CPOLICY_WRITETHROUGH;
424 #endif
425 	}
426 	if (cpu_arch < CPU_ARCH_ARMv5) {
427 		if (cachepolicy >= CPOLICY_WRITEALLOC)
428 			cachepolicy = CPOLICY_WRITEBACK;
429 		ecc_mask = 0;
430 	}
431 
432 	if (is_smp()) {
433 		if (cachepolicy != CPOLICY_WRITEALLOC) {
434 			pr_warn("Forcing write-allocate cache policy for SMP\n");
435 			cachepolicy = CPOLICY_WRITEALLOC;
436 		}
437 		if (!(initial_pmd_value & PMD_SECT_S)) {
438 			pr_warn("Forcing shared mappings for SMP\n");
439 			initial_pmd_value |= PMD_SECT_S;
440 		}
441 	}
442 
443 	/*
444 	 * Strip out features not present on earlier architectures.
445 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
446 	 * without extended page tables don't have the 'Shared' bit.
447 	 */
448 	if (cpu_arch < CPU_ARCH_ARMv5)
449 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
450 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
451 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
452 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
453 			mem_types[i].prot_sect &= ~PMD_SECT_S;
454 
455 	/*
456 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
457 	 * "update-able on write" bit on ARM610).  However, Xscale and
458 	 * Xscale3 require this bit to be cleared.
459 	 */
460 	if (cpu_is_xscale_family()) {
461 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
462 			mem_types[i].prot_sect &= ~PMD_BIT4;
463 			mem_types[i].prot_l1 &= ~PMD_BIT4;
464 		}
465 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
466 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
467 			if (mem_types[i].prot_l1)
468 				mem_types[i].prot_l1 |= PMD_BIT4;
469 			if (mem_types[i].prot_sect)
470 				mem_types[i].prot_sect |= PMD_BIT4;
471 		}
472 	}
473 
474 	/*
475 	 * Mark the device areas according to the CPU/architecture.
476 	 */
477 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
478 		if (!cpu_is_xsc3()) {
479 			/*
480 			 * Mark device regions on ARMv6+ as execute-never
481 			 * to prevent speculative instruction fetches.
482 			 */
483 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
484 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
485 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
486 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
487 
488 			/* Also setup NX memory mapping */
489 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
490 		}
491 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
492 			/*
493 			 * For ARMv7 with TEX remapping,
494 			 * - shared device is SXCB=1100
495 			 * - nonshared device is SXCB=0100
496 			 * - write combine device mem is SXCB=0001
497 			 * (Uncached Normal memory)
498 			 */
499 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
500 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
501 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
502 		} else if (cpu_is_xsc3()) {
503 			/*
504 			 * For Xscale3,
505 			 * - shared device is TEXCB=00101
506 			 * - nonshared device is TEXCB=01000
507 			 * - write combine device mem is TEXCB=00100
508 			 * (Inner/Outer Uncacheable in xsc3 parlance)
509 			 */
510 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
511 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
512 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
513 		} else {
514 			/*
515 			 * For ARMv6 and ARMv7 without TEX remapping,
516 			 * - shared device is TEXCB=00001
517 			 * - nonshared device is TEXCB=01000
518 			 * - write combine device mem is TEXCB=00100
519 			 * (Uncached Normal in ARMv6 parlance).
520 			 */
521 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
522 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
523 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
524 		}
525 	} else {
526 		/*
527 		 * On others, write combining is "Uncached/Buffered"
528 		 */
529 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
530 	}
531 
532 	/*
533 	 * Now deal with the memory-type mappings
534 	 */
535 	cp = &cache_policies[cachepolicy];
536 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
537 
538 #ifndef CONFIG_ARM_LPAE
539 	/*
540 	 * We don't use domains on ARMv6 (since this causes problems with
541 	 * v6/v7 kernels), so we must use a separate memory type for user
542 	 * r/o, kernel r/w to map the vectors page.
543 	 */
544 	if (cpu_arch == CPU_ARCH_ARMv6)
545 		vecs_pgprot |= L_PTE_MT_VECTORS;
546 
547 	/*
548 	 * Check is it with support for the PXN bit
549 	 * in the Short-descriptor translation table format descriptors.
550 	 */
551 	if (cpu_arch == CPU_ARCH_ARMv7 &&
552 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
553 		user_pmd_table |= PMD_PXNTABLE;
554 	}
555 #endif
556 
557 	/*
558 	 * ARMv6 and above have extended page tables.
559 	 */
560 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
561 #ifndef CONFIG_ARM_LPAE
562 		/*
563 		 * Mark cache clean areas and XIP ROM read only
564 		 * from SVC mode and no access from userspace.
565 		 */
566 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
567 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
568 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
569 #endif
570 
571 		/*
572 		 * If the initial page tables were created with the S bit
573 		 * set, then we need to do the same here for the same
574 		 * reasons given in early_cachepolicy().
575 		 */
576 		if (initial_pmd_value & PMD_SECT_S) {
577 			user_pgprot |= L_PTE_SHARED;
578 			kern_pgprot |= L_PTE_SHARED;
579 			vecs_pgprot |= L_PTE_SHARED;
580 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
581 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
582 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
583 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
584 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
585 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
586 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
587 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
588 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
589 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
590 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
591 		}
592 	}
593 
594 	/*
595 	 * Non-cacheable Normal - intended for memory areas that must
596 	 * not cause dirty cache line writebacks when used
597 	 */
598 	if (cpu_arch >= CPU_ARCH_ARMv6) {
599 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
600 			/* Non-cacheable Normal is XCB = 001 */
601 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
602 				PMD_SECT_BUFFERED;
603 		} else {
604 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
605 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
606 				PMD_SECT_TEX(1);
607 		}
608 	} else {
609 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
610 	}
611 
612 #ifdef CONFIG_ARM_LPAE
613 	/*
614 	 * Do not generate access flag faults for the kernel mappings.
615 	 */
616 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
617 		mem_types[i].prot_pte |= PTE_EXT_AF;
618 		if (mem_types[i].prot_sect)
619 			mem_types[i].prot_sect |= PMD_SECT_AF;
620 	}
621 	kern_pgprot |= PTE_EXT_AF;
622 	vecs_pgprot |= PTE_EXT_AF;
623 
624 	/*
625 	 * Set PXN for user mappings
626 	 */
627 	user_pgprot |= PTE_EXT_PXN;
628 #endif
629 
630 	for (i = 0; i < 16; i++) {
631 		pteval_t v = pgprot_val(protection_map[i]);
632 		protection_map[i] = __pgprot(v | user_pgprot);
633 	}
634 
635 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
636 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
637 
638 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
639 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
640 				 L_PTE_DIRTY | kern_pgprot);
641 
642 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
643 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
644 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
645 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
646 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
647 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
648 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
649 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
650 	mem_types[MT_ROM].prot_sect |= cp->pmd;
651 
652 	switch (cp->pmd) {
653 	case PMD_SECT_WT:
654 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
655 		break;
656 	case PMD_SECT_WB:
657 	case PMD_SECT_WBWA:
658 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
659 		break;
660 	}
661 	pr_info("Memory policy: %sData cache %s\n",
662 		ecc_mask ? "ECC enabled, " : "", cp->policy);
663 
664 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
665 		struct mem_type *t = &mem_types[i];
666 		if (t->prot_l1)
667 			t->prot_l1 |= PMD_DOMAIN(t->domain);
668 		if (t->prot_sect)
669 			t->prot_sect |= PMD_DOMAIN(t->domain);
670 	}
671 }
672 
673 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
674 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
675 			      unsigned long size, pgprot_t vma_prot)
676 {
677 	if (!pfn_valid(pfn))
678 		return pgprot_noncached(vma_prot);
679 	else if (file->f_flags & O_SYNC)
680 		return pgprot_writecombine(vma_prot);
681 	return vma_prot;
682 }
683 EXPORT_SYMBOL(phys_mem_access_prot);
684 #endif
685 
686 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
687 
688 static void __init *early_alloc(unsigned long sz)
689 {
690 	void *ptr = memblock_alloc(sz, sz);
691 
692 	if (!ptr)
693 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
694 		      __func__, sz, sz);
695 
696 	return ptr;
697 }
698 
699 static void *__init late_alloc(unsigned long sz)
700 {
701 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
702 
703 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
704 		BUG();
705 	return ptr;
706 }
707 
708 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
709 				unsigned long prot,
710 				void *(*alloc)(unsigned long sz))
711 {
712 	if (pmd_none(*pmd)) {
713 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
714 		__pmd_populate(pmd, __pa(pte), prot);
715 	}
716 	BUG_ON(pmd_bad(*pmd));
717 	return pte_offset_kernel(pmd, addr);
718 }
719 
720 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
721 				      unsigned long prot)
722 {
723 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
724 }
725 
726 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
727 				  unsigned long end, unsigned long pfn,
728 				  const struct mem_type *type,
729 				  void *(*alloc)(unsigned long sz),
730 				  bool ng)
731 {
732 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
733 	do {
734 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
735 			    ng ? PTE_EXT_NG : 0);
736 		pfn++;
737 	} while (pte++, addr += PAGE_SIZE, addr != end);
738 }
739 
740 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
741 			unsigned long end, phys_addr_t phys,
742 			const struct mem_type *type, bool ng)
743 {
744 	pmd_t *p = pmd;
745 
746 #ifndef CONFIG_ARM_LPAE
747 	/*
748 	 * In classic MMU format, puds and pmds are folded in to
749 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
750 	 * group of L1 entries making up one logical pointer to
751 	 * an L2 table (2MB), where as PMDs refer to the individual
752 	 * L1 entries (1MB). Hence increment to get the correct
753 	 * offset for odd 1MB sections.
754 	 * (See arch/arm/include/asm/pgtable-2level.h)
755 	 */
756 	if (addr & SECTION_SIZE)
757 		pmd++;
758 #endif
759 	do {
760 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
761 		phys += SECTION_SIZE;
762 	} while (pmd++, addr += SECTION_SIZE, addr != end);
763 
764 	flush_pmd_entry(p);
765 }
766 
767 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
768 				      unsigned long end, phys_addr_t phys,
769 				      const struct mem_type *type,
770 				      void *(*alloc)(unsigned long sz), bool ng)
771 {
772 	pmd_t *pmd = pmd_offset(pud, addr);
773 	unsigned long next;
774 
775 	do {
776 		/*
777 		 * With LPAE, we must loop over to map
778 		 * all the pmds for the given range.
779 		 */
780 		next = pmd_addr_end(addr, end);
781 
782 		/*
783 		 * Try a section mapping - addr, next and phys must all be
784 		 * aligned to a section boundary.
785 		 */
786 		if (type->prot_sect &&
787 				((addr | next | phys) & ~SECTION_MASK) == 0) {
788 			__map_init_section(pmd, addr, next, phys, type, ng);
789 		} else {
790 			alloc_init_pte(pmd, addr, next,
791 				       __phys_to_pfn(phys), type, alloc, ng);
792 		}
793 
794 		phys += next - addr;
795 
796 	} while (pmd++, addr = next, addr != end);
797 }
798 
799 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
800 				  unsigned long end, phys_addr_t phys,
801 				  const struct mem_type *type,
802 				  void *(*alloc)(unsigned long sz), bool ng)
803 {
804 	pud_t *pud = pud_offset(p4d, addr);
805 	unsigned long next;
806 
807 	do {
808 		next = pud_addr_end(addr, end);
809 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
810 		phys += next - addr;
811 	} while (pud++, addr = next, addr != end);
812 }
813 
814 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
815 				  unsigned long end, phys_addr_t phys,
816 				  const struct mem_type *type,
817 				  void *(*alloc)(unsigned long sz), bool ng)
818 {
819 	p4d_t *p4d = p4d_offset(pgd, addr);
820 	unsigned long next;
821 
822 	do {
823 		next = p4d_addr_end(addr, end);
824 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
825 		phys += next - addr;
826 	} while (p4d++, addr = next, addr != end);
827 }
828 
829 #ifndef CONFIG_ARM_LPAE
830 static void __init create_36bit_mapping(struct mm_struct *mm,
831 					struct map_desc *md,
832 					const struct mem_type *type,
833 					bool ng)
834 {
835 	unsigned long addr, length, end;
836 	phys_addr_t phys;
837 	pgd_t *pgd;
838 
839 	addr = md->virtual;
840 	phys = __pfn_to_phys(md->pfn);
841 	length = PAGE_ALIGN(md->length);
842 
843 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
844 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
845 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
846 		return;
847 	}
848 
849 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
850 	 *	Since domain assignments can in fact be arbitrary, the
851 	 *	'domain == 0' check below is required to insure that ARMv6
852 	 *	supersections are only allocated for domain 0 regardless
853 	 *	of the actual domain assignments in use.
854 	 */
855 	if (type->domain) {
856 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
857 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
858 		return;
859 	}
860 
861 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
862 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
863 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
864 		return;
865 	}
866 
867 	/*
868 	 * Shift bits [35:32] of address into bits [23:20] of PMD
869 	 * (See ARMv6 spec).
870 	 */
871 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
872 
873 	pgd = pgd_offset(mm, addr);
874 	end = addr + length;
875 	do {
876 		p4d_t *p4d = p4d_offset(pgd, addr);
877 		pud_t *pud = pud_offset(p4d, addr);
878 		pmd_t *pmd = pmd_offset(pud, addr);
879 		int i;
880 
881 		for (i = 0; i < 16; i++)
882 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
883 				       (ng ? PMD_SECT_nG : 0));
884 
885 		addr += SUPERSECTION_SIZE;
886 		phys += SUPERSECTION_SIZE;
887 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
888 	} while (addr != end);
889 }
890 #endif	/* !CONFIG_ARM_LPAE */
891 
892 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
893 				    void *(*alloc)(unsigned long sz),
894 				    bool ng)
895 {
896 	unsigned long addr, length, end;
897 	phys_addr_t phys;
898 	const struct mem_type *type;
899 	pgd_t *pgd;
900 
901 	type = &mem_types[md->type];
902 
903 #ifndef CONFIG_ARM_LPAE
904 	/*
905 	 * Catch 36-bit addresses
906 	 */
907 	if (md->pfn >= 0x100000) {
908 		create_36bit_mapping(mm, md, type, ng);
909 		return;
910 	}
911 #endif
912 
913 	addr = md->virtual & PAGE_MASK;
914 	phys = __pfn_to_phys(md->pfn);
915 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
916 
917 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
918 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
919 			(long long)__pfn_to_phys(md->pfn), addr);
920 		return;
921 	}
922 
923 	pgd = pgd_offset(mm, addr);
924 	end = addr + length;
925 	do {
926 		unsigned long next = pgd_addr_end(addr, end);
927 
928 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
929 
930 		phys += next - addr;
931 		addr = next;
932 	} while (pgd++, addr != end);
933 }
934 
935 /*
936  * Create the page directory entries and any necessary
937  * page tables for the mapping specified by `md'.  We
938  * are able to cope here with varying sizes and address
939  * offsets, and we take full advantage of sections and
940  * supersections.
941  */
942 static void __init create_mapping(struct map_desc *md)
943 {
944 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
945 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
946 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
947 		return;
948 	}
949 
950 	if (md->type == MT_DEVICE &&
951 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
952 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
953 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
954 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
955 	}
956 
957 	__create_mapping(&init_mm, md, early_alloc, false);
958 }
959 
960 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
961 				bool ng)
962 {
963 #ifdef CONFIG_ARM_LPAE
964 	p4d_t *p4d;
965 	pud_t *pud;
966 
967 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
968 	if (WARN_ON(!p4d))
969 		return;
970 	pud = pud_alloc(mm, p4d, md->virtual);
971 	if (WARN_ON(!pud))
972 		return;
973 	pmd_alloc(mm, pud, 0);
974 #endif
975 	__create_mapping(mm, md, late_alloc, ng);
976 }
977 
978 /*
979  * Create the architecture specific mappings
980  */
981 void __init iotable_init(struct map_desc *io_desc, int nr)
982 {
983 	struct map_desc *md;
984 	struct vm_struct *vm;
985 	struct static_vm *svm;
986 
987 	if (!nr)
988 		return;
989 
990 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
991 	if (!svm)
992 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
993 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
994 
995 	for (md = io_desc; nr; md++, nr--) {
996 		create_mapping(md);
997 
998 		vm = &svm->vm;
999 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1000 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1001 		vm->phys_addr = __pfn_to_phys(md->pfn);
1002 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1003 		vm->flags |= VM_ARM_MTYPE(md->type);
1004 		vm->caller = iotable_init;
1005 		add_static_vm_early(svm++);
1006 	}
1007 }
1008 
1009 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1010 				  void *caller)
1011 {
1012 	struct vm_struct *vm;
1013 	struct static_vm *svm;
1014 
1015 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1016 	if (!svm)
1017 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1018 		      __func__, sizeof(*svm), __alignof__(*svm));
1019 
1020 	vm = &svm->vm;
1021 	vm->addr = (void *)addr;
1022 	vm->size = size;
1023 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024 	vm->caller = caller;
1025 	add_static_vm_early(svm);
1026 }
1027 
1028 #ifndef CONFIG_ARM_LPAE
1029 
1030 /*
1031  * The Linux PMD is made of two consecutive section entries covering 2MB
1032  * (see definition in include/asm/pgtable-2level.h).  However a call to
1033  * create_mapping() may optimize static mappings by using individual
1034  * 1MB section mappings.  This leaves the actual PMD potentially half
1035  * initialized if the top or bottom section entry isn't used, leaving it
1036  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037  * the virtual space left free by that unused section entry.
1038  *
1039  * Let's avoid the issue by inserting dummy vm entries covering the unused
1040  * PMD halves once the static mappings are in place.
1041  */
1042 
1043 static void __init pmd_empty_section_gap(unsigned long addr)
1044 {
1045 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 }
1047 
1048 static void __init fill_pmd_gaps(void)
1049 {
1050 	struct static_vm *svm;
1051 	struct vm_struct *vm;
1052 	unsigned long addr, next = 0;
1053 	pmd_t *pmd;
1054 
1055 	list_for_each_entry(svm, &static_vmlist, list) {
1056 		vm = &svm->vm;
1057 		addr = (unsigned long)vm->addr;
1058 		if (addr < next)
1059 			continue;
1060 
1061 		/*
1062 		 * Check if this vm starts on an odd section boundary.
1063 		 * If so and the first section entry for this PMD is free
1064 		 * then we block the corresponding virtual address.
1065 		 */
1066 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067 			pmd = pmd_off_k(addr);
1068 			if (pmd_none(*pmd))
1069 				pmd_empty_section_gap(addr & PMD_MASK);
1070 		}
1071 
1072 		/*
1073 		 * Then check if this vm ends on an odd section boundary.
1074 		 * If so and the second section entry for this PMD is empty
1075 		 * then we block the corresponding virtual address.
1076 		 */
1077 		addr += vm->size;
1078 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079 			pmd = pmd_off_k(addr) + 1;
1080 			if (pmd_none(*pmd))
1081 				pmd_empty_section_gap(addr);
1082 		}
1083 
1084 		/* no need to look at any vm entry until we hit the next PMD */
1085 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086 	}
1087 }
1088 
1089 #else
1090 #define fill_pmd_gaps() do { } while (0)
1091 #endif
1092 
1093 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094 static void __init pci_reserve_io(void)
1095 {
1096 	struct static_vm *svm;
1097 
1098 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099 	if (svm)
1100 		return;
1101 
1102 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103 }
1104 #else
1105 #define pci_reserve_io() do { } while (0)
1106 #endif
1107 
1108 #ifdef CONFIG_DEBUG_LL
1109 void __init debug_ll_io_init(void)
1110 {
1111 	struct map_desc map;
1112 
1113 	debug_ll_addr(&map.pfn, &map.virtual);
1114 	if (!map.pfn || !map.virtual)
1115 		return;
1116 	map.pfn = __phys_to_pfn(map.pfn);
1117 	map.virtual &= PAGE_MASK;
1118 	map.length = PAGE_SIZE;
1119 	map.type = MT_DEVICE;
1120 	iotable_init(&map, 1);
1121 }
1122 #endif
1123 
1124 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1125 
1126 /*
1127  * vmalloc=size forces the vmalloc area to be exactly 'size'
1128  * bytes. This can be used to increase (or decrease) the vmalloc
1129  * area - the default is 240MiB.
1130  */
1131 static int __init early_vmalloc(char *arg)
1132 {
1133 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1134 	unsigned long vmalloc_max;
1135 
1136 	if (vmalloc_reserve < SZ_16M) {
1137 		vmalloc_reserve = SZ_16M;
1138 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1139 			vmalloc_reserve >> 20);
1140 	}
1141 
1142 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1143 	if (vmalloc_reserve > vmalloc_max) {
1144 		vmalloc_reserve = vmalloc_max;
1145 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1146 			vmalloc_reserve >> 20);
1147 	}
1148 
1149 	vmalloc_size = vmalloc_reserve;
1150 	return 0;
1151 }
1152 early_param("vmalloc", early_vmalloc);
1153 
1154 phys_addr_t arm_lowmem_limit __initdata = 0;
1155 
1156 void __init adjust_lowmem_bounds(void)
1157 {
1158 	phys_addr_t block_start, block_end, memblock_limit = 0;
1159 	u64 vmalloc_limit, i;
1160 	phys_addr_t lowmem_limit = 0;
1161 
1162 	/*
1163 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1164 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165 	 * The result is used as the upper bound on physical memory address
1166 	 * and may itself be outside the valid range for which phys_addr_t
1167 	 * and therefore __pa() is defined.
1168 	 */
1169 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1170 			PAGE_OFFSET + PHYS_OFFSET;
1171 
1172 	/*
1173 	 * The first usable region must be PMD aligned. Mark its start
1174 	 * as MEMBLOCK_NOMAP if it isn't
1175 	 */
1176 	for_each_mem_range(i, &block_start, &block_end) {
1177 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1178 			phys_addr_t len;
1179 
1180 			len = round_up(block_start, PMD_SIZE) - block_start;
1181 			memblock_mark_nomap(block_start, len);
1182 		}
1183 		break;
1184 	}
1185 
1186 	for_each_mem_range(i, &block_start, &block_end) {
1187 		if (block_start < vmalloc_limit) {
1188 			if (block_end > lowmem_limit)
1189 				/*
1190 				 * Compare as u64 to ensure vmalloc_limit does
1191 				 * not get truncated. block_end should always
1192 				 * fit in phys_addr_t so there should be no
1193 				 * issue with assignment.
1194 				 */
1195 				lowmem_limit = min_t(u64,
1196 							 vmalloc_limit,
1197 							 block_end);
1198 
1199 			/*
1200 			 * Find the first non-pmd-aligned page, and point
1201 			 * memblock_limit at it. This relies on rounding the
1202 			 * limit down to be pmd-aligned, which happens at the
1203 			 * end of this function.
1204 			 *
1205 			 * With this algorithm, the start or end of almost any
1206 			 * bank can be non-pmd-aligned. The only exception is
1207 			 * that the start of the bank 0 must be section-
1208 			 * aligned, since otherwise memory would need to be
1209 			 * allocated when mapping the start of bank 0, which
1210 			 * occurs before any free memory is mapped.
1211 			 */
1212 			if (!memblock_limit) {
1213 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1214 					memblock_limit = block_start;
1215 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1216 					memblock_limit = lowmem_limit;
1217 			}
1218 
1219 		}
1220 	}
1221 
1222 	arm_lowmem_limit = lowmem_limit;
1223 
1224 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1225 
1226 	if (!memblock_limit)
1227 		memblock_limit = arm_lowmem_limit;
1228 
1229 	/*
1230 	 * Round the memblock limit down to a pmd size.  This
1231 	 * helps to ensure that we will allocate memory from the
1232 	 * last full pmd, which should be mapped.
1233 	 */
1234 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1235 
1236 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1237 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1238 			phys_addr_t end = memblock_end_of_DRAM();
1239 
1240 			pr_notice("Ignoring RAM at %pa-%pa\n",
1241 				  &memblock_limit, &end);
1242 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1243 
1244 			memblock_remove(memblock_limit, end - memblock_limit);
1245 		}
1246 	}
1247 
1248 	memblock_set_current_limit(memblock_limit);
1249 }
1250 
1251 static __init void prepare_page_table(void)
1252 {
1253 	unsigned long addr;
1254 	phys_addr_t end;
1255 
1256 	/*
1257 	 * Clear out all the mappings below the kernel image.
1258 	 */
1259 #ifdef CONFIG_KASAN
1260 	/*
1261 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1262 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1263 	 */
1264 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1265 		pmd_clear(pmd_off_k(addr));
1266 	/*
1267 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1268 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1269 	 * are using a thumb-compiled kernel, there there will be 8MB more
1270 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1271 	 */
1272 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1273 		pmd_clear(pmd_off_k(addr));
1274 #else
1275 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276 		pmd_clear(pmd_off_k(addr));
1277 #endif
1278 
1279 #ifdef CONFIG_XIP_KERNEL
1280 	/* The XIP kernel is mapped in the module area -- skip over it */
1281 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1282 #endif
1283 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1284 		pmd_clear(pmd_off_k(addr));
1285 
1286 	/*
1287 	 * Find the end of the first block of lowmem.
1288 	 */
1289 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1290 	if (end >= arm_lowmem_limit)
1291 		end = arm_lowmem_limit;
1292 
1293 	/*
1294 	 * Clear out all the kernel space mappings, except for the first
1295 	 * memory bank, up to the vmalloc region.
1296 	 */
1297 	for (addr = __phys_to_virt(end);
1298 	     addr < VMALLOC_START; addr += PMD_SIZE)
1299 		pmd_clear(pmd_off_k(addr));
1300 }
1301 
1302 #ifdef CONFIG_ARM_LPAE
1303 /* the first page is reserved for pgd */
1304 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1305 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1306 #else
1307 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1308 #endif
1309 
1310 /*
1311  * Reserve the special regions of memory
1312  */
1313 void __init arm_mm_memblock_reserve(void)
1314 {
1315 	/*
1316 	 * Reserve the page tables.  These are already in use,
1317 	 * and can only be in node 0.
1318 	 */
1319 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1320 
1321 #ifdef CONFIG_SA1111
1322 	/*
1323 	 * Because of the SA1111 DMA bug, we want to preserve our
1324 	 * precious DMA-able memory...
1325 	 */
1326 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1327 #endif
1328 }
1329 
1330 /*
1331  * Set up the device mappings.  Since we clear out the page tables for all
1332  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1333  * device mappings.  This means earlycon can be used to debug this function
1334  * Any other function or debugging method which may touch any device _will_
1335  * crash the kernel.
1336  */
1337 static void __init devicemaps_init(const struct machine_desc *mdesc)
1338 {
1339 	struct map_desc map;
1340 	unsigned long addr;
1341 	void *vectors;
1342 
1343 	/*
1344 	 * Allocate the vector page early.
1345 	 */
1346 	vectors = early_alloc(PAGE_SIZE * 2);
1347 
1348 	early_trap_init(vectors);
1349 
1350 	/*
1351 	 * Clear page table except top pmd used by early fixmaps
1352 	 */
1353 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1354 		pmd_clear(pmd_off_k(addr));
1355 
1356 	if (__atags_pointer) {
1357 		/* create a read-only mapping of the device tree */
1358 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1359 		map.virtual = FDT_FIXED_BASE;
1360 		map.length = FDT_FIXED_SIZE;
1361 		map.type = MT_ROM;
1362 		create_mapping(&map);
1363 	}
1364 
1365 	/*
1366 	 * Map the kernel if it is XIP.
1367 	 * It is always first in the modulearea.
1368 	 */
1369 #ifdef CONFIG_XIP_KERNEL
1370 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1371 	map.virtual = MODULES_VADDR;
1372 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1373 	map.type = MT_ROM;
1374 	create_mapping(&map);
1375 #endif
1376 
1377 	/*
1378 	 * Map the cache flushing regions.
1379 	 */
1380 #ifdef FLUSH_BASE
1381 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1382 	map.virtual = FLUSH_BASE;
1383 	map.length = SZ_1M;
1384 	map.type = MT_CACHECLEAN;
1385 	create_mapping(&map);
1386 #endif
1387 #ifdef FLUSH_BASE_MINICACHE
1388 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1389 	map.virtual = FLUSH_BASE_MINICACHE;
1390 	map.length = SZ_1M;
1391 	map.type = MT_MINICLEAN;
1392 	create_mapping(&map);
1393 #endif
1394 
1395 	/*
1396 	 * Create a mapping for the machine vectors at the high-vectors
1397 	 * location (0xffff0000).  If we aren't using high-vectors, also
1398 	 * create a mapping at the low-vectors virtual address.
1399 	 */
1400 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1401 	map.virtual = 0xffff0000;
1402 	map.length = PAGE_SIZE;
1403 #ifdef CONFIG_KUSER_HELPERS
1404 	map.type = MT_HIGH_VECTORS;
1405 #else
1406 	map.type = MT_LOW_VECTORS;
1407 #endif
1408 	create_mapping(&map);
1409 
1410 	if (!vectors_high()) {
1411 		map.virtual = 0;
1412 		map.length = PAGE_SIZE * 2;
1413 		map.type = MT_LOW_VECTORS;
1414 		create_mapping(&map);
1415 	}
1416 
1417 	/* Now create a kernel read-only mapping */
1418 	map.pfn += 1;
1419 	map.virtual = 0xffff0000 + PAGE_SIZE;
1420 	map.length = PAGE_SIZE;
1421 	map.type = MT_LOW_VECTORS;
1422 	create_mapping(&map);
1423 
1424 	/*
1425 	 * Ask the machine support to map in the statically mapped devices.
1426 	 */
1427 	if (mdesc->map_io)
1428 		mdesc->map_io();
1429 	else
1430 		debug_ll_io_init();
1431 	fill_pmd_gaps();
1432 
1433 	/* Reserve fixed i/o space in VMALLOC region */
1434 	pci_reserve_io();
1435 
1436 	/*
1437 	 * Finally flush the caches and tlb to ensure that we're in a
1438 	 * consistent state wrt the writebuffer.  This also ensures that
1439 	 * any write-allocated cache lines in the vector page are written
1440 	 * back.  After this point, we can start to touch devices again.
1441 	 */
1442 	local_flush_tlb_all();
1443 	flush_cache_all();
1444 
1445 	/* Enable asynchronous aborts */
1446 	early_abt_enable();
1447 }
1448 
1449 static void __init kmap_init(void)
1450 {
1451 #ifdef CONFIG_HIGHMEM
1452 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1453 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1454 #endif
1455 
1456 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1457 			_PAGE_KERNEL_TABLE);
1458 }
1459 
1460 static void __init map_lowmem(void)
1461 {
1462 	phys_addr_t start, end;
1463 	u64 i;
1464 
1465 	/* Map all the lowmem memory banks. */
1466 	for_each_mem_range(i, &start, &end) {
1467 		struct map_desc map;
1468 
1469 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1470 			 (long long)start, (long long)end);
1471 		if (end > arm_lowmem_limit)
1472 			end = arm_lowmem_limit;
1473 		if (start >= end)
1474 			break;
1475 
1476 		/*
1477 		 * If our kernel image is in the VMALLOC area we need to remove
1478 		 * the kernel physical memory from lowmem since the kernel will
1479 		 * be mapped separately.
1480 		 *
1481 		 * The kernel will typically be at the very start of lowmem,
1482 		 * but any placement relative to memory ranges is possible.
1483 		 *
1484 		 * If the memblock contains the kernel, we have to chisel out
1485 		 * the kernel memory from it and map each part separately. We
1486 		 * get 6 different theoretical cases:
1487 		 *
1488 		 *                            +--------+ +--------+
1489 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1490 		 *  |           |  | Kernel | | case 2 | | case 5 |
1491 		 *  |           |  | case 1 | +--------+ |        | +--------+
1492 		 *  |  Memory   |  +--------+            |        | | Kernel |
1493 		 *  |  range    |  +--------+            |        | | case 6 |
1494 		 *  |           |  | Kernel | +--------+ |        | +--------+
1495 		 *  |           |  | case 3 | | Kernel | |        |
1496 		 *  +-- end ----+  +--------+ | case 4 | |        |
1497 		 *                            +--------+ +--------+
1498 		 */
1499 
1500 		/* Case 5: kernel covers range, don't map anything, should be rare */
1501 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1502 			break;
1503 
1504 		/* Cases where the kernel is starting inside the range */
1505 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1506 			/* Case 6: kernel is embedded in the range, we need two mappings */
1507 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1508 				/* Map memory below the kernel */
1509 				map.pfn = __phys_to_pfn(start);
1510 				map.virtual = __phys_to_virt(start);
1511 				map.length = kernel_sec_start - start;
1512 				map.type = MT_MEMORY_RW;
1513 				create_mapping(&map);
1514 				/* Map memory above the kernel */
1515 				map.pfn = __phys_to_pfn(kernel_sec_end);
1516 				map.virtual = __phys_to_virt(kernel_sec_end);
1517 				map.length = end - kernel_sec_end;
1518 				map.type = MT_MEMORY_RW;
1519 				create_mapping(&map);
1520 				break;
1521 			}
1522 			/* Case 1: kernel and range start at the same address, should be common */
1523 			if (kernel_sec_start == start)
1524 				start = kernel_sec_end;
1525 			/* Case 3: kernel and range end at the same address, should be rare */
1526 			if (kernel_sec_end == end)
1527 				end = kernel_sec_start;
1528 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1529 			/* Case 2: kernel ends inside range, starts below it */
1530 			start = kernel_sec_end;
1531 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1532 			/* Case 4: kernel starts inside range, ends above it */
1533 			end = kernel_sec_start;
1534 		}
1535 		map.pfn = __phys_to_pfn(start);
1536 		map.virtual = __phys_to_virt(start);
1537 		map.length = end - start;
1538 		map.type = MT_MEMORY_RW;
1539 		create_mapping(&map);
1540 	}
1541 }
1542 
1543 static void __init map_kernel(void)
1544 {
1545 	/*
1546 	 * We use the well known kernel section start and end and split the area in the
1547 	 * middle like this:
1548 	 *  .                .
1549 	 *  | RW memory      |
1550 	 *  +----------------+ kernel_x_start
1551 	 *  | Executable     |
1552 	 *  | kernel memory  |
1553 	 *  +----------------+ kernel_x_end / kernel_nx_start
1554 	 *  | Non-executable |
1555 	 *  | kernel memory  |
1556 	 *  +----------------+ kernel_nx_end
1557 	 *  | RW memory      |
1558 	 *  .                .
1559 	 *
1560 	 * Notice that we are dealing with section sized mappings here so all of this
1561 	 * will be bumped to the closest section boundary. This means that some of the
1562 	 * non-executable part of the kernel memory is actually mapped as executable.
1563 	 * This will only persist until we turn on proper memory management later on
1564 	 * and we remap the whole kernel with page granularity.
1565 	 */
1566 	phys_addr_t kernel_x_start = kernel_sec_start;
1567 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1568 	phys_addr_t kernel_nx_start = kernel_x_end;
1569 	phys_addr_t kernel_nx_end = kernel_sec_end;
1570 	struct map_desc map;
1571 
1572 	map.pfn = __phys_to_pfn(kernel_x_start);
1573 	map.virtual = __phys_to_virt(kernel_x_start);
1574 	map.length = kernel_x_end - kernel_x_start;
1575 	map.type = MT_MEMORY_RWX;
1576 	create_mapping(&map);
1577 
1578 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1579 	if (kernel_x_end == kernel_nx_end)
1580 		return;
1581 
1582 	map.pfn = __phys_to_pfn(kernel_nx_start);
1583 	map.virtual = __phys_to_virt(kernel_nx_start);
1584 	map.length = kernel_nx_end - kernel_nx_start;
1585 	map.type = MT_MEMORY_RW;
1586 	create_mapping(&map);
1587 }
1588 
1589 #ifdef CONFIG_ARM_PV_FIXUP
1590 typedef void pgtables_remap(long long offset, unsigned long pgd);
1591 pgtables_remap lpae_pgtables_remap_asm;
1592 
1593 /*
1594  * early_paging_init() recreates boot time page table setup, allowing machines
1595  * to switch over to a high (>4G) address space on LPAE systems
1596  */
1597 static void __init early_paging_init(const struct machine_desc *mdesc)
1598 {
1599 	pgtables_remap *lpae_pgtables_remap;
1600 	unsigned long pa_pgd;
1601 	unsigned int cr, ttbcr;
1602 	long long offset;
1603 
1604 	if (!mdesc->pv_fixup)
1605 		return;
1606 
1607 	offset = mdesc->pv_fixup();
1608 	if (offset == 0)
1609 		return;
1610 
1611 	/*
1612 	 * Offset the kernel section physical offsets so that the kernel
1613 	 * mapping will work out later on.
1614 	 */
1615 	kernel_sec_start += offset;
1616 	kernel_sec_end += offset;
1617 
1618 	/*
1619 	 * Get the address of the remap function in the 1:1 identity
1620 	 * mapping setup by the early page table assembly code.  We
1621 	 * must get this prior to the pv update.  The following barrier
1622 	 * ensures that this is complete before we fixup any P:V offsets.
1623 	 */
1624 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1625 	pa_pgd = __pa(swapper_pg_dir);
1626 	barrier();
1627 
1628 	pr_info("Switching physical address space to 0x%08llx\n",
1629 		(u64)PHYS_OFFSET + offset);
1630 
1631 	/* Re-set the phys pfn offset, and the pv offset */
1632 	__pv_offset += offset;
1633 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1634 
1635 	/* Run the patch stub to update the constants */
1636 	fixup_pv_table(&__pv_table_begin,
1637 		(&__pv_table_end - &__pv_table_begin) << 2);
1638 
1639 	/*
1640 	 * We changing not only the virtual to physical mapping, but also
1641 	 * the physical addresses used to access memory.  We need to flush
1642 	 * all levels of cache in the system with caching disabled to
1643 	 * ensure that all data is written back, and nothing is prefetched
1644 	 * into the caches.  We also need to prevent the TLB walkers
1645 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1646 	 * specific.
1647 	 */
1648 	cr = get_cr();
1649 	set_cr(cr & ~(CR_I | CR_C));
1650 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1651 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1652 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1653 	flush_cache_all();
1654 
1655 	/*
1656 	 * Fixup the page tables - this must be in the idmap region as
1657 	 * we need to disable the MMU to do this safely, and hence it
1658 	 * needs to be assembly.  It's fairly simple, as we're using the
1659 	 * temporary tables setup by the initial assembly code.
1660 	 */
1661 	lpae_pgtables_remap(offset, pa_pgd);
1662 
1663 	/* Re-enable the caches and cacheable TLB walks */
1664 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1665 	set_cr(cr);
1666 }
1667 
1668 #else
1669 
1670 static void __init early_paging_init(const struct machine_desc *mdesc)
1671 {
1672 	long long offset;
1673 
1674 	if (!mdesc->pv_fixup)
1675 		return;
1676 
1677 	offset = mdesc->pv_fixup();
1678 	if (offset == 0)
1679 		return;
1680 
1681 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1682 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1683 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1684 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1685 }
1686 
1687 #endif
1688 
1689 static void __init early_fixmap_shutdown(void)
1690 {
1691 	int i;
1692 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1693 
1694 	pte_offset_fixmap = pte_offset_late_fixmap;
1695 	pmd_clear(fixmap_pmd(va));
1696 	local_flush_tlb_kernel_page(va);
1697 
1698 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1699 		pte_t *pte;
1700 		struct map_desc map;
1701 
1702 		map.virtual = fix_to_virt(i);
1703 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1704 
1705 		/* Only i/o device mappings are supported ATM */
1706 		if (pte_none(*pte) ||
1707 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1708 			continue;
1709 
1710 		map.pfn = pte_pfn(*pte);
1711 		map.type = MT_DEVICE;
1712 		map.length = PAGE_SIZE;
1713 
1714 		create_mapping(&map);
1715 	}
1716 }
1717 
1718 /*
1719  * paging_init() sets up the page tables, initialises the zone memory
1720  * maps, and sets up the zero page, bad page and bad page tables.
1721  */
1722 void __init paging_init(const struct machine_desc *mdesc)
1723 {
1724 	void *zero_page;
1725 
1726 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1727 		 kernel_sec_start, kernel_sec_end);
1728 
1729 	prepare_page_table();
1730 	map_lowmem();
1731 	memblock_set_current_limit(arm_lowmem_limit);
1732 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1733 	/*
1734 	 * After this point early_alloc(), i.e. the memblock allocator, can
1735 	 * be used
1736 	 */
1737 	map_kernel();
1738 	dma_contiguous_remap();
1739 	early_fixmap_shutdown();
1740 	devicemaps_init(mdesc);
1741 	kmap_init();
1742 	tcm_init();
1743 
1744 	top_pmd = pmd_off_k(0xffff0000);
1745 
1746 	/* allocate the zero page. */
1747 	zero_page = early_alloc(PAGE_SIZE);
1748 
1749 	bootmem_init();
1750 
1751 	empty_zero_page = virt_to_page(zero_page);
1752 	__flush_dcache_page(NULL, empty_zero_page);
1753 }
1754 
1755 void __init early_mm_init(const struct machine_desc *mdesc)
1756 {
1757 	build_mem_type_table();
1758 	early_paging_init(mdesc);
1759 }
1760 
1761 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1762 			      pte_t *ptep, pte_t pteval)
1763 {
1764 	unsigned long ext = 0;
1765 
1766 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1767 		if (!pte_special(pteval))
1768 			__sync_icache_dcache(pteval);
1769 		ext |= PTE_EXT_NG;
1770 	}
1771 
1772 	set_pte_ext(ptep, pteval, ext);
1773 }
1774