xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 			     L_PTE_XN | L_PTE_RDONLY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 		.prot_sect = PMD_TYPE_SECT,
304 		.domain    = DOMAIN_KERNEL,
305 	},
306 	[MT_ROM] = {
307 		.prot_sect = PMD_TYPE_SECT,
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_MEMORY_RWX_NONCACHED] = {
311 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
312 				L_PTE_MT_BUFFERABLE,
313 		.prot_l1   = PMD_TYPE_TABLE,
314 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
315 		.domain    = DOMAIN_KERNEL,
316 	},
317 	[MT_MEMORY_RW_DTCM] = {
318 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 				L_PTE_XN,
320 		.prot_l1   = PMD_TYPE_TABLE,
321 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
322 		.domain    = DOMAIN_KERNEL,
323 	},
324 	[MT_MEMORY_RWX_ITCM] = {
325 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326 		.prot_l1   = PMD_TYPE_TABLE,
327 		.domain    = DOMAIN_KERNEL,
328 	},
329 	[MT_MEMORY_RW_SO] = {
330 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 				L_PTE_MT_UNCACHED | L_PTE_XN,
332 		.prot_l1   = PMD_TYPE_TABLE,
333 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
334 				PMD_SECT_UNCACHED | PMD_SECT_XN,
335 		.domain    = DOMAIN_KERNEL,
336 	},
337 	[MT_MEMORY_DMA_READY] = {
338 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
339 				L_PTE_XN,
340 		.prot_l1   = PMD_TYPE_TABLE,
341 		.domain    = DOMAIN_KERNEL,
342 	},
343 };
344 
345 const struct mem_type *get_mem_type(unsigned int type)
346 {
347 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
348 }
349 EXPORT_SYMBOL(get_mem_type);
350 
351 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
352 
353 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
354 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
355 
356 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
357 {
358 	return &bm_pte[pte_index(addr)];
359 }
360 
361 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
362 {
363 	return pte_offset_kernel(dir, addr);
364 }
365 
366 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
367 {
368 	return pmd_off_k(addr);
369 }
370 
371 void __init early_fixmap_init(void)
372 {
373 	pmd_t *pmd;
374 
375 	/*
376 	 * The early fixmap range spans multiple pmds, for which
377 	 * we are not prepared:
378 	 */
379 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
380 		     != FIXADDR_TOP >> PMD_SHIFT);
381 
382 	pmd = fixmap_pmd(FIXADDR_TOP);
383 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
384 
385 	pte_offset_fixmap = pte_offset_early_fixmap;
386 }
387 
388 /*
389  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
390  * As a result, this can only be called with preemption disabled, as under
391  * stop_machine().
392  */
393 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
394 {
395 	unsigned long vaddr = __fix_to_virt(idx);
396 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
397 
398 	/* Make sure fixmap region does not exceed available allocation. */
399 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
400 	BUG_ON(idx >= __end_of_fixed_addresses);
401 
402 	/* We support only device mappings before pgprot_kernel is set. */
403 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
404 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
405 		return;
406 
407 	if (pgprot_val(prot))
408 		set_pte_at(NULL, vaddr, pte,
409 			pfn_pte(phys >> PAGE_SHIFT, prot));
410 	else
411 		pte_clear(NULL, vaddr, pte);
412 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
413 }
414 
415 static pgprot_t protection_map[16] __ro_after_init = {
416 	[VM_NONE]					= __PAGE_NONE,
417 	[VM_READ]					= __PAGE_READONLY,
418 	[VM_WRITE]					= __PAGE_COPY,
419 	[VM_WRITE | VM_READ]				= __PAGE_COPY,
420 	[VM_EXEC]					= __PAGE_READONLY_EXEC,
421 	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
422 	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
423 	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
424 	[VM_SHARED]					= __PAGE_NONE,
425 	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
426 	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
427 	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
428 	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
429 	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
430 	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
431 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
432 };
433 DECLARE_VM_GET_PAGE_PROT
434 
435 /*
436  * Adjust the PMD section entries according to the CPU in use.
437  */
438 static void __init build_mem_type_table(void)
439 {
440 	struct cachepolicy *cp;
441 	unsigned int cr = get_cr();
442 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
443 	int cpu_arch = cpu_architecture();
444 	int i;
445 
446 	if (cpu_arch < CPU_ARCH_ARMv6) {
447 #if defined(CONFIG_CPU_DCACHE_DISABLE)
448 		if (cachepolicy > CPOLICY_BUFFERED)
449 			cachepolicy = CPOLICY_BUFFERED;
450 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
451 		if (cachepolicy > CPOLICY_WRITETHROUGH)
452 			cachepolicy = CPOLICY_WRITETHROUGH;
453 #endif
454 	}
455 	if (cpu_arch < CPU_ARCH_ARMv5) {
456 		if (cachepolicy >= CPOLICY_WRITEALLOC)
457 			cachepolicy = CPOLICY_WRITEBACK;
458 		ecc_mask = 0;
459 	}
460 
461 	if (is_smp()) {
462 		if (cachepolicy != CPOLICY_WRITEALLOC) {
463 			pr_warn("Forcing write-allocate cache policy for SMP\n");
464 			cachepolicy = CPOLICY_WRITEALLOC;
465 		}
466 		if (!(initial_pmd_value & PMD_SECT_S)) {
467 			pr_warn("Forcing shared mappings for SMP\n");
468 			initial_pmd_value |= PMD_SECT_S;
469 		}
470 	}
471 
472 	/*
473 	 * Strip out features not present on earlier architectures.
474 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
475 	 * without extended page tables don't have the 'Shared' bit.
476 	 */
477 	if (cpu_arch < CPU_ARCH_ARMv5)
478 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
479 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
480 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
481 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
482 			mem_types[i].prot_sect &= ~PMD_SECT_S;
483 
484 	/*
485 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
486 	 * "update-able on write" bit on ARM610).  However, Xscale and
487 	 * Xscale3 require this bit to be cleared.
488 	 */
489 	if (cpu_is_xscale_family()) {
490 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 			mem_types[i].prot_sect &= ~PMD_BIT4;
492 			mem_types[i].prot_l1 &= ~PMD_BIT4;
493 		}
494 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
495 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
496 			if (mem_types[i].prot_l1)
497 				mem_types[i].prot_l1 |= PMD_BIT4;
498 			if (mem_types[i].prot_sect)
499 				mem_types[i].prot_sect |= PMD_BIT4;
500 		}
501 	}
502 
503 	/*
504 	 * Mark the device areas according to the CPU/architecture.
505 	 */
506 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
507 		if (!cpu_is_xsc3()) {
508 			/*
509 			 * Mark device regions on ARMv6+ as execute-never
510 			 * to prevent speculative instruction fetches.
511 			 */
512 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
513 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
514 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
515 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
516 
517 			/* Also setup NX memory mapping */
518 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
519 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
520 		}
521 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
522 			/*
523 			 * For ARMv7 with TEX remapping,
524 			 * - shared device is SXCB=1100
525 			 * - nonshared device is SXCB=0100
526 			 * - write combine device mem is SXCB=0001
527 			 * (Uncached Normal memory)
528 			 */
529 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
530 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
531 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
532 		} else if (cpu_is_xsc3()) {
533 			/*
534 			 * For Xscale3,
535 			 * - shared device is TEXCB=00101
536 			 * - nonshared device is TEXCB=01000
537 			 * - write combine device mem is TEXCB=00100
538 			 * (Inner/Outer Uncacheable in xsc3 parlance)
539 			 */
540 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
541 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
542 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
543 		} else {
544 			/*
545 			 * For ARMv6 and ARMv7 without TEX remapping,
546 			 * - shared device is TEXCB=00001
547 			 * - nonshared device is TEXCB=01000
548 			 * - write combine device mem is TEXCB=00100
549 			 * (Uncached Normal in ARMv6 parlance).
550 			 */
551 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
552 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
553 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
554 		}
555 	} else {
556 		/*
557 		 * On others, write combining is "Uncached/Buffered"
558 		 */
559 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
560 	}
561 
562 	/*
563 	 * Now deal with the memory-type mappings
564 	 */
565 	cp = &cache_policies[cachepolicy];
566 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
567 
568 #ifndef CONFIG_ARM_LPAE
569 	/*
570 	 * We don't use domains on ARMv6 (since this causes problems with
571 	 * v6/v7 kernels), so we must use a separate memory type for user
572 	 * r/o, kernel r/w to map the vectors page.
573 	 */
574 	if (cpu_arch == CPU_ARCH_ARMv6)
575 		vecs_pgprot |= L_PTE_MT_VECTORS;
576 
577 	/*
578 	 * Check is it with support for the PXN bit
579 	 * in the Short-descriptor translation table format descriptors.
580 	 */
581 	if (cpu_arch == CPU_ARCH_ARMv7 &&
582 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
583 		user_pmd_table |= PMD_PXNTABLE;
584 	}
585 #endif
586 
587 	/*
588 	 * ARMv6 and above have extended page tables.
589 	 */
590 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
591 #ifndef CONFIG_ARM_LPAE
592 		/*
593 		 * Mark cache clean areas and XIP ROM read only
594 		 * from SVC mode and no access from userspace.
595 		 */
596 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
597 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
598 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
599 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
600 #endif
601 
602 		/*
603 		 * If the initial page tables were created with the S bit
604 		 * set, then we need to do the same here for the same
605 		 * reasons given in early_cachepolicy().
606 		 */
607 		if (initial_pmd_value & PMD_SECT_S) {
608 			user_pgprot |= L_PTE_SHARED;
609 			kern_pgprot |= L_PTE_SHARED;
610 			vecs_pgprot |= L_PTE_SHARED;
611 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
612 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
613 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
614 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
615 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
616 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
617 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
618 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
619 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
620 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
621 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
622 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
623 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
624 		}
625 	}
626 
627 	/*
628 	 * Non-cacheable Normal - intended for memory areas that must
629 	 * not cause dirty cache line writebacks when used
630 	 */
631 	if (cpu_arch >= CPU_ARCH_ARMv6) {
632 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
633 			/* Non-cacheable Normal is XCB = 001 */
634 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
635 				PMD_SECT_BUFFERED;
636 		} else {
637 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
638 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
639 				PMD_SECT_TEX(1);
640 		}
641 	} else {
642 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
643 	}
644 
645 #ifdef CONFIG_ARM_LPAE
646 	/*
647 	 * Do not generate access flag faults for the kernel mappings.
648 	 */
649 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
650 		mem_types[i].prot_pte |= PTE_EXT_AF;
651 		if (mem_types[i].prot_sect)
652 			mem_types[i].prot_sect |= PMD_SECT_AF;
653 	}
654 	kern_pgprot |= PTE_EXT_AF;
655 	vecs_pgprot |= PTE_EXT_AF;
656 
657 	/*
658 	 * Set PXN for user mappings
659 	 */
660 	user_pgprot |= PTE_EXT_PXN;
661 #endif
662 
663 	for (i = 0; i < 16; i++) {
664 		pteval_t v = pgprot_val(protection_map[i]);
665 		protection_map[i] = __pgprot(v | user_pgprot);
666 	}
667 
668 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
669 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
670 
671 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
672 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
673 				 L_PTE_DIRTY | kern_pgprot);
674 
675 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
676 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
677 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
678 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
679 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
680 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
681 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
682 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
683 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
684 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
685 	mem_types[MT_ROM].prot_sect |= cp->pmd;
686 
687 	switch (cp->pmd) {
688 	case PMD_SECT_WT:
689 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
690 		break;
691 	case PMD_SECT_WB:
692 	case PMD_SECT_WBWA:
693 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
694 		break;
695 	}
696 	pr_info("Memory policy: %sData cache %s\n",
697 		ecc_mask ? "ECC enabled, " : "", cp->policy);
698 
699 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
700 		struct mem_type *t = &mem_types[i];
701 		if (t->prot_l1)
702 			t->prot_l1 |= PMD_DOMAIN(t->domain);
703 		if (t->prot_sect)
704 			t->prot_sect |= PMD_DOMAIN(t->domain);
705 	}
706 }
707 
708 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
709 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
710 			      unsigned long size, pgprot_t vma_prot)
711 {
712 	if (!pfn_valid(pfn))
713 		return pgprot_noncached(vma_prot);
714 	else if (file->f_flags & O_SYNC)
715 		return pgprot_writecombine(vma_prot);
716 	return vma_prot;
717 }
718 EXPORT_SYMBOL(phys_mem_access_prot);
719 #endif
720 
721 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
722 
723 static void __init *early_alloc(unsigned long sz)
724 {
725 	void *ptr = memblock_alloc(sz, sz);
726 
727 	if (!ptr)
728 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
729 		      __func__, sz, sz);
730 
731 	return ptr;
732 }
733 
734 static void *__init late_alloc(unsigned long sz)
735 {
736 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
737 
738 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
739 		BUG();
740 	return ptr;
741 }
742 
743 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
744 				unsigned long prot,
745 				void *(*alloc)(unsigned long sz))
746 {
747 	if (pmd_none(*pmd)) {
748 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
749 		__pmd_populate(pmd, __pa(pte), prot);
750 	}
751 	BUG_ON(pmd_bad(*pmd));
752 	return pte_offset_kernel(pmd, addr);
753 }
754 
755 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
756 				      unsigned long prot)
757 {
758 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
759 }
760 
761 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
762 				  unsigned long end, unsigned long pfn,
763 				  const struct mem_type *type,
764 				  void *(*alloc)(unsigned long sz),
765 				  bool ng)
766 {
767 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
768 	do {
769 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
770 			    ng ? PTE_EXT_NG : 0);
771 		pfn++;
772 	} while (pte++, addr += PAGE_SIZE, addr != end);
773 }
774 
775 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
776 			unsigned long end, phys_addr_t phys,
777 			const struct mem_type *type, bool ng)
778 {
779 	pmd_t *p = pmd;
780 
781 #ifndef CONFIG_ARM_LPAE
782 	/*
783 	 * In classic MMU format, puds and pmds are folded in to
784 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
785 	 * group of L1 entries making up one logical pointer to
786 	 * an L2 table (2MB), where as PMDs refer to the individual
787 	 * L1 entries (1MB). Hence increment to get the correct
788 	 * offset for odd 1MB sections.
789 	 * (See arch/arm/include/asm/pgtable-2level.h)
790 	 */
791 	if (addr & SECTION_SIZE)
792 		pmd++;
793 #endif
794 	do {
795 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
796 		phys += SECTION_SIZE;
797 	} while (pmd++, addr += SECTION_SIZE, addr != end);
798 
799 	flush_pmd_entry(p);
800 }
801 
802 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
803 				      unsigned long end, phys_addr_t phys,
804 				      const struct mem_type *type,
805 				      void *(*alloc)(unsigned long sz), bool ng)
806 {
807 	pmd_t *pmd = pmd_offset(pud, addr);
808 	unsigned long next;
809 
810 	do {
811 		/*
812 		 * With LPAE, we must loop over to map
813 		 * all the pmds for the given range.
814 		 */
815 		next = pmd_addr_end(addr, end);
816 
817 		/*
818 		 * Try a section mapping - addr, next and phys must all be
819 		 * aligned to a section boundary.
820 		 */
821 		if (type->prot_sect &&
822 				((addr | next | phys) & ~SECTION_MASK) == 0) {
823 			__map_init_section(pmd, addr, next, phys, type, ng);
824 		} else {
825 			alloc_init_pte(pmd, addr, next,
826 				       __phys_to_pfn(phys), type, alloc, ng);
827 		}
828 
829 		phys += next - addr;
830 
831 	} while (pmd++, addr = next, addr != end);
832 }
833 
834 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
835 				  unsigned long end, phys_addr_t phys,
836 				  const struct mem_type *type,
837 				  void *(*alloc)(unsigned long sz), bool ng)
838 {
839 	pud_t *pud = pud_offset(p4d, addr);
840 	unsigned long next;
841 
842 	do {
843 		next = pud_addr_end(addr, end);
844 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
845 		phys += next - addr;
846 	} while (pud++, addr = next, addr != end);
847 }
848 
849 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
850 				  unsigned long end, phys_addr_t phys,
851 				  const struct mem_type *type,
852 				  void *(*alloc)(unsigned long sz), bool ng)
853 {
854 	p4d_t *p4d = p4d_offset(pgd, addr);
855 	unsigned long next;
856 
857 	do {
858 		next = p4d_addr_end(addr, end);
859 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
860 		phys += next - addr;
861 	} while (p4d++, addr = next, addr != end);
862 }
863 
864 #ifndef CONFIG_ARM_LPAE
865 static void __init create_36bit_mapping(struct mm_struct *mm,
866 					struct map_desc *md,
867 					const struct mem_type *type,
868 					bool ng)
869 {
870 	unsigned long addr, length, end;
871 	phys_addr_t phys;
872 	pgd_t *pgd;
873 
874 	addr = md->virtual;
875 	phys = __pfn_to_phys(md->pfn);
876 	length = PAGE_ALIGN(md->length);
877 
878 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
879 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
880 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
881 		return;
882 	}
883 
884 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
885 	 *	Since domain assignments can in fact be arbitrary, the
886 	 *	'domain == 0' check below is required to insure that ARMv6
887 	 *	supersections are only allocated for domain 0 regardless
888 	 *	of the actual domain assignments in use.
889 	 */
890 	if (type->domain) {
891 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
892 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
893 		return;
894 	}
895 
896 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
897 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
898 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
899 		return;
900 	}
901 
902 	/*
903 	 * Shift bits [35:32] of address into bits [23:20] of PMD
904 	 * (See ARMv6 spec).
905 	 */
906 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
907 
908 	pgd = pgd_offset(mm, addr);
909 	end = addr + length;
910 	do {
911 		p4d_t *p4d = p4d_offset(pgd, addr);
912 		pud_t *pud = pud_offset(p4d, addr);
913 		pmd_t *pmd = pmd_offset(pud, addr);
914 		int i;
915 
916 		for (i = 0; i < 16; i++)
917 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
918 				       (ng ? PMD_SECT_nG : 0));
919 
920 		addr += SUPERSECTION_SIZE;
921 		phys += SUPERSECTION_SIZE;
922 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
923 	} while (addr != end);
924 }
925 #endif	/* !CONFIG_ARM_LPAE */
926 
927 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
928 				    void *(*alloc)(unsigned long sz),
929 				    bool ng)
930 {
931 	unsigned long addr, length, end;
932 	phys_addr_t phys;
933 	const struct mem_type *type;
934 	pgd_t *pgd;
935 
936 	type = &mem_types[md->type];
937 
938 #ifndef CONFIG_ARM_LPAE
939 	/*
940 	 * Catch 36-bit addresses
941 	 */
942 	if (md->pfn >= 0x100000) {
943 		create_36bit_mapping(mm, md, type, ng);
944 		return;
945 	}
946 #endif
947 
948 	addr = md->virtual & PAGE_MASK;
949 	phys = __pfn_to_phys(md->pfn);
950 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
951 
952 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
953 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
954 			(long long)__pfn_to_phys(md->pfn), addr);
955 		return;
956 	}
957 
958 	pgd = pgd_offset(mm, addr);
959 	end = addr + length;
960 	do {
961 		unsigned long next = pgd_addr_end(addr, end);
962 
963 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
964 
965 		phys += next - addr;
966 		addr = next;
967 	} while (pgd++, addr != end);
968 }
969 
970 /*
971  * Create the page directory entries and any necessary
972  * page tables for the mapping specified by `md'.  We
973  * are able to cope here with varying sizes and address
974  * offsets, and we take full advantage of sections and
975  * supersections.
976  */
977 static void __init create_mapping(struct map_desc *md)
978 {
979 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
980 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
981 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
982 		return;
983 	}
984 
985 	if (md->type == MT_DEVICE &&
986 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
987 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
988 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
989 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
990 	}
991 
992 	__create_mapping(&init_mm, md, early_alloc, false);
993 }
994 
995 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
996 				bool ng)
997 {
998 #ifdef CONFIG_ARM_LPAE
999 	p4d_t *p4d;
1000 	pud_t *pud;
1001 
1002 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1003 	if (WARN_ON(!p4d))
1004 		return;
1005 	pud = pud_alloc(mm, p4d, md->virtual);
1006 	if (WARN_ON(!pud))
1007 		return;
1008 	pmd_alloc(mm, pud, 0);
1009 #endif
1010 	__create_mapping(mm, md, late_alloc, ng);
1011 }
1012 
1013 /*
1014  * Create the architecture specific mappings
1015  */
1016 void __init iotable_init(struct map_desc *io_desc, int nr)
1017 {
1018 	struct map_desc *md;
1019 	struct vm_struct *vm;
1020 	struct static_vm *svm;
1021 
1022 	if (!nr)
1023 		return;
1024 
1025 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1026 	if (!svm)
1027 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1028 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1029 
1030 	for (md = io_desc; nr; md++, nr--) {
1031 		create_mapping(md);
1032 
1033 		vm = &svm->vm;
1034 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1035 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1036 		vm->phys_addr = __pfn_to_phys(md->pfn);
1037 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1038 		vm->flags |= VM_ARM_MTYPE(md->type);
1039 		vm->caller = iotable_init;
1040 		add_static_vm_early(svm++);
1041 	}
1042 }
1043 
1044 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1045 				  void *caller)
1046 {
1047 	struct vm_struct *vm;
1048 	struct static_vm *svm;
1049 
1050 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1051 	if (!svm)
1052 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1053 		      __func__, sizeof(*svm), __alignof__(*svm));
1054 
1055 	vm = &svm->vm;
1056 	vm->addr = (void *)addr;
1057 	vm->size = size;
1058 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1059 	vm->caller = caller;
1060 	add_static_vm_early(svm);
1061 }
1062 
1063 #ifndef CONFIG_ARM_LPAE
1064 
1065 /*
1066  * The Linux PMD is made of two consecutive section entries covering 2MB
1067  * (see definition in include/asm/pgtable-2level.h).  However a call to
1068  * create_mapping() may optimize static mappings by using individual
1069  * 1MB section mappings.  This leaves the actual PMD potentially half
1070  * initialized if the top or bottom section entry isn't used, leaving it
1071  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1072  * the virtual space left free by that unused section entry.
1073  *
1074  * Let's avoid the issue by inserting dummy vm entries covering the unused
1075  * PMD halves once the static mappings are in place.
1076  */
1077 
1078 static void __init pmd_empty_section_gap(unsigned long addr)
1079 {
1080 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1081 }
1082 
1083 static void __init fill_pmd_gaps(void)
1084 {
1085 	struct static_vm *svm;
1086 	struct vm_struct *vm;
1087 	unsigned long addr, next = 0;
1088 	pmd_t *pmd;
1089 
1090 	list_for_each_entry(svm, &static_vmlist, list) {
1091 		vm = &svm->vm;
1092 		addr = (unsigned long)vm->addr;
1093 		if (addr < next)
1094 			continue;
1095 
1096 		/*
1097 		 * Check if this vm starts on an odd section boundary.
1098 		 * If so and the first section entry for this PMD is free
1099 		 * then we block the corresponding virtual address.
1100 		 */
1101 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1102 			pmd = pmd_off_k(addr);
1103 			if (pmd_none(*pmd))
1104 				pmd_empty_section_gap(addr & PMD_MASK);
1105 		}
1106 
1107 		/*
1108 		 * Then check if this vm ends on an odd section boundary.
1109 		 * If so and the second section entry for this PMD is empty
1110 		 * then we block the corresponding virtual address.
1111 		 */
1112 		addr += vm->size;
1113 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1114 			pmd = pmd_off_k(addr) + 1;
1115 			if (pmd_none(*pmd))
1116 				pmd_empty_section_gap(addr);
1117 		}
1118 
1119 		/* no need to look at any vm entry until we hit the next PMD */
1120 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1121 	}
1122 }
1123 
1124 #else
1125 #define fill_pmd_gaps() do { } while (0)
1126 #endif
1127 
1128 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1129 static void __init pci_reserve_io(void)
1130 {
1131 	struct static_vm *svm;
1132 
1133 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1134 	if (svm)
1135 		return;
1136 
1137 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1138 }
1139 #else
1140 #define pci_reserve_io() do { } while (0)
1141 #endif
1142 
1143 #ifdef CONFIG_DEBUG_LL
1144 void __init debug_ll_io_init(void)
1145 {
1146 	struct map_desc map;
1147 
1148 	debug_ll_addr(&map.pfn, &map.virtual);
1149 	if (!map.pfn || !map.virtual)
1150 		return;
1151 	map.pfn = __phys_to_pfn(map.pfn);
1152 	map.virtual &= PAGE_MASK;
1153 	map.length = PAGE_SIZE;
1154 	map.type = MT_DEVICE;
1155 	iotable_init(&map, 1);
1156 }
1157 #endif
1158 
1159 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1160 
1161 /*
1162  * vmalloc=size forces the vmalloc area to be exactly 'size'
1163  * bytes. This can be used to increase (or decrease) the vmalloc
1164  * area - the default is 240MiB.
1165  */
1166 static int __init early_vmalloc(char *arg)
1167 {
1168 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1169 	unsigned long vmalloc_max;
1170 
1171 	if (vmalloc_reserve < SZ_16M) {
1172 		vmalloc_reserve = SZ_16M;
1173 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1174 			vmalloc_reserve >> 20);
1175 	}
1176 
1177 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1178 	if (vmalloc_reserve > vmalloc_max) {
1179 		vmalloc_reserve = vmalloc_max;
1180 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1181 			vmalloc_reserve >> 20);
1182 	}
1183 
1184 	vmalloc_size = vmalloc_reserve;
1185 	return 0;
1186 }
1187 early_param("vmalloc", early_vmalloc);
1188 
1189 phys_addr_t arm_lowmem_limit __initdata = 0;
1190 
1191 void __init adjust_lowmem_bounds(void)
1192 {
1193 	phys_addr_t block_start, block_end, memblock_limit = 0;
1194 	u64 vmalloc_limit, i;
1195 	phys_addr_t lowmem_limit = 0;
1196 
1197 	/*
1198 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1199 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1200 	 * The result is used as the upper bound on physical memory address
1201 	 * and may itself be outside the valid range for which phys_addr_t
1202 	 * and therefore __pa() is defined.
1203 	 */
1204 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1205 			PAGE_OFFSET + PHYS_OFFSET;
1206 
1207 	/*
1208 	 * The first usable region must be PMD aligned. Mark its start
1209 	 * as MEMBLOCK_NOMAP if it isn't
1210 	 */
1211 	for_each_mem_range(i, &block_start, &block_end) {
1212 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1213 			phys_addr_t len;
1214 
1215 			len = round_up(block_start, PMD_SIZE) - block_start;
1216 			memblock_mark_nomap(block_start, len);
1217 		}
1218 		break;
1219 	}
1220 
1221 	for_each_mem_range(i, &block_start, &block_end) {
1222 		if (block_start < vmalloc_limit) {
1223 			if (block_end > lowmem_limit)
1224 				/*
1225 				 * Compare as u64 to ensure vmalloc_limit does
1226 				 * not get truncated. block_end should always
1227 				 * fit in phys_addr_t so there should be no
1228 				 * issue with assignment.
1229 				 */
1230 				lowmem_limit = min_t(u64,
1231 							 vmalloc_limit,
1232 							 block_end);
1233 
1234 			/*
1235 			 * Find the first non-pmd-aligned page, and point
1236 			 * memblock_limit at it. This relies on rounding the
1237 			 * limit down to be pmd-aligned, which happens at the
1238 			 * end of this function.
1239 			 *
1240 			 * With this algorithm, the start or end of almost any
1241 			 * bank can be non-pmd-aligned. The only exception is
1242 			 * that the start of the bank 0 must be section-
1243 			 * aligned, since otherwise memory would need to be
1244 			 * allocated when mapping the start of bank 0, which
1245 			 * occurs before any free memory is mapped.
1246 			 */
1247 			if (!memblock_limit) {
1248 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1249 					memblock_limit = block_start;
1250 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1251 					memblock_limit = lowmem_limit;
1252 			}
1253 
1254 		}
1255 	}
1256 
1257 	arm_lowmem_limit = lowmem_limit;
1258 
1259 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1260 
1261 	if (!memblock_limit)
1262 		memblock_limit = arm_lowmem_limit;
1263 
1264 	/*
1265 	 * Round the memblock limit down to a pmd size.  This
1266 	 * helps to ensure that we will allocate memory from the
1267 	 * last full pmd, which should be mapped.
1268 	 */
1269 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1270 
1271 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1272 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1273 			phys_addr_t end = memblock_end_of_DRAM();
1274 
1275 			pr_notice("Ignoring RAM at %pa-%pa\n",
1276 				  &memblock_limit, &end);
1277 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1278 
1279 			memblock_remove(memblock_limit, end - memblock_limit);
1280 		}
1281 	}
1282 
1283 	memblock_set_current_limit(memblock_limit);
1284 }
1285 
1286 static __init void prepare_page_table(void)
1287 {
1288 	unsigned long addr;
1289 	phys_addr_t end;
1290 
1291 	/*
1292 	 * Clear out all the mappings below the kernel image.
1293 	 */
1294 #ifdef CONFIG_KASAN
1295 	/*
1296 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1297 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1298 	 */
1299 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1300 		pmd_clear(pmd_off_k(addr));
1301 	/*
1302 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1303 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1304 	 * are using a thumb-compiled kernel, there there will be 8MB more
1305 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1306 	 */
1307 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1308 		pmd_clear(pmd_off_k(addr));
1309 #else
1310 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1311 		pmd_clear(pmd_off_k(addr));
1312 #endif
1313 
1314 #ifdef CONFIG_XIP_KERNEL
1315 	/* The XIP kernel is mapped in the module area -- skip over it */
1316 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1317 #endif
1318 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1319 		pmd_clear(pmd_off_k(addr));
1320 
1321 	/*
1322 	 * Find the end of the first block of lowmem.
1323 	 */
1324 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1325 	if (end >= arm_lowmem_limit)
1326 		end = arm_lowmem_limit;
1327 
1328 	/*
1329 	 * Clear out all the kernel space mappings, except for the first
1330 	 * memory bank, up to the vmalloc region.
1331 	 */
1332 	for (addr = __phys_to_virt(end);
1333 	     addr < VMALLOC_START; addr += PMD_SIZE)
1334 		pmd_clear(pmd_off_k(addr));
1335 }
1336 
1337 #ifdef CONFIG_ARM_LPAE
1338 /* the first page is reserved for pgd */
1339 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1340 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1341 #else
1342 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1343 #endif
1344 
1345 /*
1346  * Reserve the special regions of memory
1347  */
1348 void __init arm_mm_memblock_reserve(void)
1349 {
1350 	/*
1351 	 * Reserve the page tables.  These are already in use,
1352 	 * and can only be in node 0.
1353 	 */
1354 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1355 
1356 #ifdef CONFIG_SA1111
1357 	/*
1358 	 * Because of the SA1111 DMA bug, we want to preserve our
1359 	 * precious DMA-able memory...
1360 	 */
1361 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1362 #endif
1363 }
1364 
1365 /*
1366  * Set up the device mappings.  Since we clear out the page tables for all
1367  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1368  * device mappings.  This means earlycon can be used to debug this function
1369  * Any other function or debugging method which may touch any device _will_
1370  * crash the kernel.
1371  */
1372 static void __init devicemaps_init(const struct machine_desc *mdesc)
1373 {
1374 	struct map_desc map;
1375 	unsigned long addr;
1376 	void *vectors;
1377 
1378 	/*
1379 	 * Allocate the vector page early.
1380 	 */
1381 	vectors = early_alloc(PAGE_SIZE * 2);
1382 
1383 	early_trap_init(vectors);
1384 
1385 	/*
1386 	 * Clear page table except top pmd used by early fixmaps
1387 	 */
1388 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1389 		pmd_clear(pmd_off_k(addr));
1390 
1391 	if (__atags_pointer) {
1392 		/* create a read-only mapping of the device tree */
1393 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1394 		map.virtual = FDT_FIXED_BASE;
1395 		map.length = FDT_FIXED_SIZE;
1396 		map.type = MT_MEMORY_RO;
1397 		create_mapping(&map);
1398 	}
1399 
1400 	/*
1401 	 * Map the kernel if it is XIP.
1402 	 * It is always first in the modulearea.
1403 	 */
1404 #ifdef CONFIG_XIP_KERNEL
1405 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1406 	map.virtual = MODULES_VADDR;
1407 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1408 	map.type = MT_ROM;
1409 	create_mapping(&map);
1410 #endif
1411 
1412 	/*
1413 	 * Map the cache flushing regions.
1414 	 */
1415 #ifdef FLUSH_BASE
1416 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1417 	map.virtual = FLUSH_BASE;
1418 	map.length = SZ_1M;
1419 	map.type = MT_CACHECLEAN;
1420 	create_mapping(&map);
1421 #endif
1422 #ifdef FLUSH_BASE_MINICACHE
1423 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1424 	map.virtual = FLUSH_BASE_MINICACHE;
1425 	map.length = SZ_1M;
1426 	map.type = MT_MINICLEAN;
1427 	create_mapping(&map);
1428 #endif
1429 
1430 	/*
1431 	 * Create a mapping for the machine vectors at the high-vectors
1432 	 * location (0xffff0000).  If we aren't using high-vectors, also
1433 	 * create a mapping at the low-vectors virtual address.
1434 	 */
1435 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1436 	map.virtual = 0xffff0000;
1437 	map.length = PAGE_SIZE;
1438 #ifdef CONFIG_KUSER_HELPERS
1439 	map.type = MT_HIGH_VECTORS;
1440 #else
1441 	map.type = MT_LOW_VECTORS;
1442 #endif
1443 	create_mapping(&map);
1444 
1445 	if (!vectors_high()) {
1446 		map.virtual = 0;
1447 		map.length = PAGE_SIZE * 2;
1448 		map.type = MT_LOW_VECTORS;
1449 		create_mapping(&map);
1450 	}
1451 
1452 	/* Now create a kernel read-only mapping */
1453 	map.pfn += 1;
1454 	map.virtual = 0xffff0000 + PAGE_SIZE;
1455 	map.length = PAGE_SIZE;
1456 	map.type = MT_LOW_VECTORS;
1457 	create_mapping(&map);
1458 
1459 	/*
1460 	 * Ask the machine support to map in the statically mapped devices.
1461 	 */
1462 	if (mdesc->map_io)
1463 		mdesc->map_io();
1464 	else
1465 		debug_ll_io_init();
1466 	fill_pmd_gaps();
1467 
1468 	/* Reserve fixed i/o space in VMALLOC region */
1469 	pci_reserve_io();
1470 
1471 	/*
1472 	 * Finally flush the caches and tlb to ensure that we're in a
1473 	 * consistent state wrt the writebuffer.  This also ensures that
1474 	 * any write-allocated cache lines in the vector page are written
1475 	 * back.  After this point, we can start to touch devices again.
1476 	 */
1477 	local_flush_tlb_all();
1478 	flush_cache_all();
1479 
1480 	/* Enable asynchronous aborts */
1481 	early_abt_enable();
1482 }
1483 
1484 static void __init kmap_init(void)
1485 {
1486 #ifdef CONFIG_HIGHMEM
1487 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1488 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1489 #endif
1490 
1491 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1492 			_PAGE_KERNEL_TABLE);
1493 }
1494 
1495 static void __init map_lowmem(void)
1496 {
1497 	phys_addr_t start, end;
1498 	u64 i;
1499 
1500 	/* Map all the lowmem memory banks. */
1501 	for_each_mem_range(i, &start, &end) {
1502 		struct map_desc map;
1503 
1504 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1505 			 (long long)start, (long long)end);
1506 		if (end > arm_lowmem_limit)
1507 			end = arm_lowmem_limit;
1508 		if (start >= end)
1509 			break;
1510 
1511 		/*
1512 		 * If our kernel image is in the VMALLOC area we need to remove
1513 		 * the kernel physical memory from lowmem since the kernel will
1514 		 * be mapped separately.
1515 		 *
1516 		 * The kernel will typically be at the very start of lowmem,
1517 		 * but any placement relative to memory ranges is possible.
1518 		 *
1519 		 * If the memblock contains the kernel, we have to chisel out
1520 		 * the kernel memory from it and map each part separately. We
1521 		 * get 6 different theoretical cases:
1522 		 *
1523 		 *                            +--------+ +--------+
1524 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1525 		 *  |           |  | Kernel | | case 2 | | case 5 |
1526 		 *  |           |  | case 1 | +--------+ |        | +--------+
1527 		 *  |  Memory   |  +--------+            |        | | Kernel |
1528 		 *  |  range    |  +--------+            |        | | case 6 |
1529 		 *  |           |  | Kernel | +--------+ |        | +--------+
1530 		 *  |           |  | case 3 | | Kernel | |        |
1531 		 *  +-- end ----+  +--------+ | case 4 | |        |
1532 		 *                            +--------+ +--------+
1533 		 */
1534 
1535 		/* Case 5: kernel covers range, don't map anything, should be rare */
1536 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1537 			break;
1538 
1539 		/* Cases where the kernel is starting inside the range */
1540 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1541 			/* Case 6: kernel is embedded in the range, we need two mappings */
1542 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1543 				/* Map memory below the kernel */
1544 				map.pfn = __phys_to_pfn(start);
1545 				map.virtual = __phys_to_virt(start);
1546 				map.length = kernel_sec_start - start;
1547 				map.type = MT_MEMORY_RW;
1548 				create_mapping(&map);
1549 				/* Map memory above the kernel */
1550 				map.pfn = __phys_to_pfn(kernel_sec_end);
1551 				map.virtual = __phys_to_virt(kernel_sec_end);
1552 				map.length = end - kernel_sec_end;
1553 				map.type = MT_MEMORY_RW;
1554 				create_mapping(&map);
1555 				break;
1556 			}
1557 			/* Case 1: kernel and range start at the same address, should be common */
1558 			if (kernel_sec_start == start)
1559 				start = kernel_sec_end;
1560 			/* Case 3: kernel and range end at the same address, should be rare */
1561 			if (kernel_sec_end == end)
1562 				end = kernel_sec_start;
1563 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1564 			/* Case 2: kernel ends inside range, starts below it */
1565 			start = kernel_sec_end;
1566 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1567 			/* Case 4: kernel starts inside range, ends above it */
1568 			end = kernel_sec_start;
1569 		}
1570 		map.pfn = __phys_to_pfn(start);
1571 		map.virtual = __phys_to_virt(start);
1572 		map.length = end - start;
1573 		map.type = MT_MEMORY_RW;
1574 		create_mapping(&map);
1575 	}
1576 }
1577 
1578 static void __init map_kernel(void)
1579 {
1580 	/*
1581 	 * We use the well known kernel section start and end and split the area in the
1582 	 * middle like this:
1583 	 *  .                .
1584 	 *  | RW memory      |
1585 	 *  +----------------+ kernel_x_start
1586 	 *  | Executable     |
1587 	 *  | kernel memory  |
1588 	 *  +----------------+ kernel_x_end / kernel_nx_start
1589 	 *  | Non-executable |
1590 	 *  | kernel memory  |
1591 	 *  +----------------+ kernel_nx_end
1592 	 *  | RW memory      |
1593 	 *  .                .
1594 	 *
1595 	 * Notice that we are dealing with section sized mappings here so all of this
1596 	 * will be bumped to the closest section boundary. This means that some of the
1597 	 * non-executable part of the kernel memory is actually mapped as executable.
1598 	 * This will only persist until we turn on proper memory management later on
1599 	 * and we remap the whole kernel with page granularity.
1600 	 */
1601 	phys_addr_t kernel_x_start = kernel_sec_start;
1602 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1603 	phys_addr_t kernel_nx_start = kernel_x_end;
1604 	phys_addr_t kernel_nx_end = kernel_sec_end;
1605 	struct map_desc map;
1606 
1607 	map.pfn = __phys_to_pfn(kernel_x_start);
1608 	map.virtual = __phys_to_virt(kernel_x_start);
1609 	map.length = kernel_x_end - kernel_x_start;
1610 	map.type = MT_MEMORY_RWX;
1611 	create_mapping(&map);
1612 
1613 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1614 	if (kernel_x_end == kernel_nx_end)
1615 		return;
1616 
1617 	map.pfn = __phys_to_pfn(kernel_nx_start);
1618 	map.virtual = __phys_to_virt(kernel_nx_start);
1619 	map.length = kernel_nx_end - kernel_nx_start;
1620 	map.type = MT_MEMORY_RW;
1621 	create_mapping(&map);
1622 }
1623 
1624 #ifdef CONFIG_ARM_PV_FIXUP
1625 typedef void pgtables_remap(long long offset, unsigned long pgd);
1626 pgtables_remap lpae_pgtables_remap_asm;
1627 
1628 /*
1629  * early_paging_init() recreates boot time page table setup, allowing machines
1630  * to switch over to a high (>4G) address space on LPAE systems
1631  */
1632 static void __init early_paging_init(const struct machine_desc *mdesc)
1633 {
1634 	pgtables_remap *lpae_pgtables_remap;
1635 	unsigned long pa_pgd;
1636 	unsigned int cr, ttbcr;
1637 	long long offset;
1638 
1639 	if (!mdesc->pv_fixup)
1640 		return;
1641 
1642 	offset = mdesc->pv_fixup();
1643 	if (offset == 0)
1644 		return;
1645 
1646 	/*
1647 	 * Offset the kernel section physical offsets so that the kernel
1648 	 * mapping will work out later on.
1649 	 */
1650 	kernel_sec_start += offset;
1651 	kernel_sec_end += offset;
1652 
1653 	/*
1654 	 * Get the address of the remap function in the 1:1 identity
1655 	 * mapping setup by the early page table assembly code.  We
1656 	 * must get this prior to the pv update.  The following barrier
1657 	 * ensures that this is complete before we fixup any P:V offsets.
1658 	 */
1659 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1660 	pa_pgd = __pa(swapper_pg_dir);
1661 	barrier();
1662 
1663 	pr_info("Switching physical address space to 0x%08llx\n",
1664 		(u64)PHYS_OFFSET + offset);
1665 
1666 	/* Re-set the phys pfn offset, and the pv offset */
1667 	__pv_offset += offset;
1668 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1669 
1670 	/* Run the patch stub to update the constants */
1671 	fixup_pv_table(&__pv_table_begin,
1672 		(&__pv_table_end - &__pv_table_begin) << 2);
1673 
1674 	/*
1675 	 * We changing not only the virtual to physical mapping, but also
1676 	 * the physical addresses used to access memory.  We need to flush
1677 	 * all levels of cache in the system with caching disabled to
1678 	 * ensure that all data is written back, and nothing is prefetched
1679 	 * into the caches.  We also need to prevent the TLB walkers
1680 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1681 	 * specific.
1682 	 */
1683 	cr = get_cr();
1684 	set_cr(cr & ~(CR_I | CR_C));
1685 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1686 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1687 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1688 	flush_cache_all();
1689 
1690 	/*
1691 	 * Fixup the page tables - this must be in the idmap region as
1692 	 * we need to disable the MMU to do this safely, and hence it
1693 	 * needs to be assembly.  It's fairly simple, as we're using the
1694 	 * temporary tables setup by the initial assembly code.
1695 	 */
1696 	lpae_pgtables_remap(offset, pa_pgd);
1697 
1698 	/* Re-enable the caches and cacheable TLB walks */
1699 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1700 	set_cr(cr);
1701 }
1702 
1703 #else
1704 
1705 static void __init early_paging_init(const struct machine_desc *mdesc)
1706 {
1707 	long long offset;
1708 
1709 	if (!mdesc->pv_fixup)
1710 		return;
1711 
1712 	offset = mdesc->pv_fixup();
1713 	if (offset == 0)
1714 		return;
1715 
1716 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1717 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1718 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1719 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1720 }
1721 
1722 #endif
1723 
1724 static void __init early_fixmap_shutdown(void)
1725 {
1726 	int i;
1727 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1728 
1729 	pte_offset_fixmap = pte_offset_late_fixmap;
1730 	pmd_clear(fixmap_pmd(va));
1731 	local_flush_tlb_kernel_page(va);
1732 
1733 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1734 		pte_t *pte;
1735 		struct map_desc map;
1736 
1737 		map.virtual = fix_to_virt(i);
1738 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1739 
1740 		/* Only i/o device mappings are supported ATM */
1741 		if (pte_none(*pte) ||
1742 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1743 			continue;
1744 
1745 		map.pfn = pte_pfn(*pte);
1746 		map.type = MT_DEVICE;
1747 		map.length = PAGE_SIZE;
1748 
1749 		create_mapping(&map);
1750 	}
1751 }
1752 
1753 /*
1754  * paging_init() sets up the page tables, initialises the zone memory
1755  * maps, and sets up the zero page, bad page and bad page tables.
1756  */
1757 void __init paging_init(const struct machine_desc *mdesc)
1758 {
1759 	void *zero_page;
1760 
1761 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1762 		 kernel_sec_start, kernel_sec_end);
1763 
1764 	prepare_page_table();
1765 	map_lowmem();
1766 	memblock_set_current_limit(arm_lowmem_limit);
1767 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1768 	/*
1769 	 * After this point early_alloc(), i.e. the memblock allocator, can
1770 	 * be used
1771 	 */
1772 	map_kernel();
1773 	dma_contiguous_remap();
1774 	early_fixmap_shutdown();
1775 	devicemaps_init(mdesc);
1776 	kmap_init();
1777 	tcm_init();
1778 
1779 	top_pmd = pmd_off_k(0xffff0000);
1780 
1781 	/* allocate the zero page. */
1782 	zero_page = early_alloc(PAGE_SIZE);
1783 
1784 	bootmem_init();
1785 
1786 	empty_zero_page = virt_to_page(zero_page);
1787 	__flush_dcache_page(NULL, empty_zero_page);
1788 }
1789 
1790 void __init early_mm_init(const struct machine_desc *mdesc)
1791 {
1792 	build_mem_type_table();
1793 	early_paging_init(mdesc);
1794 }
1795 
1796 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1797 			      pte_t *ptep, pte_t pteval)
1798 {
1799 	unsigned long ext = 0;
1800 
1801 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1802 		if (!pte_special(pteval))
1803 			__sync_icache_dcache(pteval);
1804 		ext |= PTE_EXT_NG;
1805 	}
1806 
1807 	set_pte_ext(ptep, pteval, ext);
1808 }
1809