1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/mmu.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 */ 7 #include <linux/module.h> 8 #include <linux/kernel.h> 9 #include <linux/errno.h> 10 #include <linux/init.h> 11 #include <linux/mman.h> 12 #include <linux/nodemask.h> 13 #include <linux/memblock.h> 14 #include <linux/fs.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sizes.h> 17 18 #include <asm/cp15.h> 19 #include <asm/cputype.h> 20 #include <asm/sections.h> 21 #include <asm/cachetype.h> 22 #include <asm/fixmap.h> 23 #include <asm/sections.h> 24 #include <asm/setup.h> 25 #include <asm/smp_plat.h> 26 #include <asm/tlb.h> 27 #include <asm/highmem.h> 28 #include <asm/system_info.h> 29 #include <asm/traps.h> 30 #include <asm/procinfo.h> 31 #include <asm/memory.h> 32 33 #include <asm/mach/arch.h> 34 #include <asm/mach/map.h> 35 #include <asm/mach/pci.h> 36 #include <asm/fixmap.h> 37 38 #include "fault.h" 39 #include "mm.h" 40 #include "tcm.h" 41 42 /* 43 * empty_zero_page is a special page that is used for 44 * zero-initialized data and COW. 45 */ 46 struct page *empty_zero_page; 47 EXPORT_SYMBOL(empty_zero_page); 48 49 /* 50 * The pmd table for the upper-most set of pages. 51 */ 52 pmd_t *top_pmd; 53 54 pmdval_t user_pmd_table = _PAGE_USER_TABLE; 55 56 #define CPOLICY_UNCACHED 0 57 #define CPOLICY_BUFFERED 1 58 #define CPOLICY_WRITETHROUGH 2 59 #define CPOLICY_WRITEBACK 3 60 #define CPOLICY_WRITEALLOC 4 61 62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 63 static unsigned int ecc_mask __initdata = 0; 64 pgprot_t pgprot_user; 65 pgprot_t pgprot_kernel; 66 pgprot_t pgprot_hyp_device; 67 pgprot_t pgprot_s2; 68 pgprot_t pgprot_s2_device; 69 70 EXPORT_SYMBOL(pgprot_user); 71 EXPORT_SYMBOL(pgprot_kernel); 72 73 struct cachepolicy { 74 const char policy[16]; 75 unsigned int cr_mask; 76 pmdval_t pmd; 77 pteval_t pte; 78 pteval_t pte_s2; 79 }; 80 81 #ifdef CONFIG_ARM_LPAE 82 #define s2_policy(policy) policy 83 #else 84 #define s2_policy(policy) 0 85 #endif 86 87 unsigned long kimage_voffset __ro_after_init; 88 89 static struct cachepolicy cache_policies[] __initdata = { 90 { 91 .policy = "uncached", 92 .cr_mask = CR_W|CR_C, 93 .pmd = PMD_SECT_UNCACHED, 94 .pte = L_PTE_MT_UNCACHED, 95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 96 }, { 97 .policy = "buffered", 98 .cr_mask = CR_C, 99 .pmd = PMD_SECT_BUFFERED, 100 .pte = L_PTE_MT_BUFFERABLE, 101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 102 }, { 103 .policy = "writethrough", 104 .cr_mask = 0, 105 .pmd = PMD_SECT_WT, 106 .pte = L_PTE_MT_WRITETHROUGH, 107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH), 108 }, { 109 .policy = "writeback", 110 .cr_mask = 0, 111 .pmd = PMD_SECT_WB, 112 .pte = L_PTE_MT_WRITEBACK, 113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 114 }, { 115 .policy = "writealloc", 116 .cr_mask = 0, 117 .pmd = PMD_SECT_WBWA, 118 .pte = L_PTE_MT_WRITEALLOC, 119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 120 } 121 }; 122 123 #ifdef CONFIG_CPU_CP15 124 static unsigned long initial_pmd_value __initdata = 0; 125 126 /* 127 * Initialise the cache_policy variable with the initial state specified 128 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 129 * the C code sets the page tables up with the same policy as the head 130 * assembly code, which avoids an illegal state where the TLBs can get 131 * confused. See comments in early_cachepolicy() for more information. 132 */ 133 void __init init_default_cache_policy(unsigned long pmd) 134 { 135 int i; 136 137 initial_pmd_value = pmd; 138 139 pmd &= PMD_SECT_CACHE_MASK; 140 141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 142 if (cache_policies[i].pmd == pmd) { 143 cachepolicy = i; 144 break; 145 } 146 147 if (i == ARRAY_SIZE(cache_policies)) 148 pr_err("ERROR: could not find cache policy\n"); 149 } 150 151 /* 152 * These are useful for identifying cache coherency problems by allowing 153 * the cache or the cache and writebuffer to be turned off. (Note: the 154 * write buffer should not be on and the cache off). 155 */ 156 static int __init early_cachepolicy(char *p) 157 { 158 int i, selected = -1; 159 160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 161 int len = strlen(cache_policies[i].policy); 162 163 if (memcmp(p, cache_policies[i].policy, len) == 0) { 164 selected = i; 165 break; 166 } 167 } 168 169 if (selected == -1) 170 pr_err("ERROR: unknown or unsupported cache policy\n"); 171 172 /* 173 * This restriction is partly to do with the way we boot; it is 174 * unpredictable to have memory mapped using two different sets of 175 * memory attributes (shared, type, and cache attribs). We can not 176 * change these attributes once the initial assembly has setup the 177 * page tables. 178 */ 179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 181 cache_policies[cachepolicy].policy); 182 return 0; 183 } 184 185 if (selected != cachepolicy) { 186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 187 cachepolicy = selected; 188 flush_cache_all(); 189 set_cr(cr); 190 } 191 return 0; 192 } 193 early_param("cachepolicy", early_cachepolicy); 194 195 static int __init early_nocache(char *__unused) 196 { 197 char *p = "buffered"; 198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 199 early_cachepolicy(p); 200 return 0; 201 } 202 early_param("nocache", early_nocache); 203 204 static int __init early_nowrite(char *__unused) 205 { 206 char *p = "uncached"; 207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 208 early_cachepolicy(p); 209 return 0; 210 } 211 early_param("nowb", early_nowrite); 212 213 #ifndef CONFIG_ARM_LPAE 214 static int __init early_ecc(char *p) 215 { 216 if (memcmp(p, "on", 2) == 0) 217 ecc_mask = PMD_PROTECTION; 218 else if (memcmp(p, "off", 3) == 0) 219 ecc_mask = 0; 220 return 0; 221 } 222 early_param("ecc", early_ecc); 223 #endif 224 225 #else /* ifdef CONFIG_CPU_CP15 */ 226 227 static int __init early_cachepolicy(char *p) 228 { 229 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 230 } 231 early_param("cachepolicy", early_cachepolicy); 232 233 static int __init noalign_setup(char *__unused) 234 { 235 pr_warn("noalign kernel parameter not supported without cp15\n"); 236 } 237 __setup("noalign", noalign_setup); 238 239 #endif /* ifdef CONFIG_CPU_CP15 / else */ 240 241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 244 245 static struct mem_type mem_types[] __ro_after_init = { 246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 248 L_PTE_SHARED, 249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) | 250 s2_policy(L_PTE_S2_MT_DEV_SHARED) | 251 L_PTE_SHARED, 252 .prot_l1 = PMD_TYPE_TABLE, 253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 254 .domain = DOMAIN_IO, 255 }, 256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 258 .prot_l1 = PMD_TYPE_TABLE, 259 .prot_sect = PROT_SECT_DEVICE, 260 .domain = DOMAIN_IO, 261 }, 262 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 264 .prot_l1 = PMD_TYPE_TABLE, 265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 266 .domain = DOMAIN_IO, 267 }, 268 [MT_DEVICE_WC] = { /* ioremap_wc */ 269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 270 .prot_l1 = PMD_TYPE_TABLE, 271 .prot_sect = PROT_SECT_DEVICE, 272 .domain = DOMAIN_IO, 273 }, 274 [MT_UNCACHED] = { 275 .prot_pte = PROT_PTE_DEVICE, 276 .prot_l1 = PMD_TYPE_TABLE, 277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 278 .domain = DOMAIN_IO, 279 }, 280 [MT_CACHECLEAN] = { 281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 282 .domain = DOMAIN_KERNEL, 283 }, 284 #ifndef CONFIG_ARM_LPAE 285 [MT_MINICLEAN] = { 286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 287 .domain = DOMAIN_KERNEL, 288 }, 289 #endif 290 [MT_LOW_VECTORS] = { 291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 292 L_PTE_RDONLY, 293 .prot_l1 = PMD_TYPE_TABLE, 294 .domain = DOMAIN_VECTORS, 295 }, 296 [MT_HIGH_VECTORS] = { 297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 298 L_PTE_USER | L_PTE_RDONLY, 299 .prot_l1 = PMD_TYPE_TABLE, 300 .domain = DOMAIN_VECTORS, 301 }, 302 [MT_MEMORY_RWX] = { 303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 304 .prot_l1 = PMD_TYPE_TABLE, 305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 306 .domain = DOMAIN_KERNEL, 307 }, 308 [MT_MEMORY_RW] = { 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 310 L_PTE_XN, 311 .prot_l1 = PMD_TYPE_TABLE, 312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 313 .domain = DOMAIN_KERNEL, 314 }, 315 [MT_ROM] = { 316 .prot_sect = PMD_TYPE_SECT, 317 .domain = DOMAIN_KERNEL, 318 }, 319 [MT_MEMORY_RWX_NONCACHED] = { 320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 321 L_PTE_MT_BUFFERABLE, 322 .prot_l1 = PMD_TYPE_TABLE, 323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 324 .domain = DOMAIN_KERNEL, 325 }, 326 [MT_MEMORY_RW_DTCM] = { 327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 328 L_PTE_XN, 329 .prot_l1 = PMD_TYPE_TABLE, 330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 331 .domain = DOMAIN_KERNEL, 332 }, 333 [MT_MEMORY_RWX_ITCM] = { 334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 335 .prot_l1 = PMD_TYPE_TABLE, 336 .domain = DOMAIN_KERNEL, 337 }, 338 [MT_MEMORY_RW_SO] = { 339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 340 L_PTE_MT_UNCACHED | L_PTE_XN, 341 .prot_l1 = PMD_TYPE_TABLE, 342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 343 PMD_SECT_UNCACHED | PMD_SECT_XN, 344 .domain = DOMAIN_KERNEL, 345 }, 346 [MT_MEMORY_DMA_READY] = { 347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 348 L_PTE_XN, 349 .prot_l1 = PMD_TYPE_TABLE, 350 .domain = DOMAIN_KERNEL, 351 }, 352 }; 353 354 const struct mem_type *get_mem_type(unsigned int type) 355 { 356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 357 } 358 EXPORT_SYMBOL(get_mem_type); 359 360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); 361 362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] 363 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; 364 365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) 366 { 367 return &bm_pte[pte_index(addr)]; 368 } 369 370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) 371 { 372 return pte_offset_kernel(dir, addr); 373 } 374 375 static inline pmd_t * __init fixmap_pmd(unsigned long addr) 376 { 377 pgd_t *pgd = pgd_offset_k(addr); 378 pud_t *pud = pud_offset(pgd, addr); 379 pmd_t *pmd = pmd_offset(pud, addr); 380 381 return pmd; 382 } 383 384 void __init early_fixmap_init(void) 385 { 386 pmd_t *pmd; 387 388 /* 389 * The early fixmap range spans multiple pmds, for which 390 * we are not prepared: 391 */ 392 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) 393 != FIXADDR_TOP >> PMD_SHIFT); 394 395 pmd = fixmap_pmd(FIXADDR_TOP); 396 pmd_populate_kernel(&init_mm, pmd, bm_pte); 397 398 pte_offset_fixmap = pte_offset_early_fixmap; 399 } 400 401 /* 402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). 403 * As a result, this can only be called with preemption disabled, as under 404 * stop_machine(). 405 */ 406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 407 { 408 unsigned long vaddr = __fix_to_virt(idx); 409 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); 410 411 /* Make sure fixmap region does not exceed available allocation. */ 412 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > 413 FIXADDR_END); 414 BUG_ON(idx >= __end_of_fixed_addresses); 415 416 /* we only support device mappings until pgprot_kernel has been set */ 417 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && 418 pgprot_val(pgprot_kernel) == 0)) 419 return; 420 421 if (pgprot_val(prot)) 422 set_pte_at(NULL, vaddr, pte, 423 pfn_pte(phys >> PAGE_SHIFT, prot)); 424 else 425 pte_clear(NULL, vaddr, pte); 426 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); 427 } 428 429 /* 430 * Adjust the PMD section entries according to the CPU in use. 431 */ 432 static void __init build_mem_type_table(void) 433 { 434 struct cachepolicy *cp; 435 unsigned int cr = get_cr(); 436 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 437 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; 438 int cpu_arch = cpu_architecture(); 439 int i; 440 441 if (cpu_arch < CPU_ARCH_ARMv6) { 442 #if defined(CONFIG_CPU_DCACHE_DISABLE) 443 if (cachepolicy > CPOLICY_BUFFERED) 444 cachepolicy = CPOLICY_BUFFERED; 445 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 446 if (cachepolicy > CPOLICY_WRITETHROUGH) 447 cachepolicy = CPOLICY_WRITETHROUGH; 448 #endif 449 } 450 if (cpu_arch < CPU_ARCH_ARMv5) { 451 if (cachepolicy >= CPOLICY_WRITEALLOC) 452 cachepolicy = CPOLICY_WRITEBACK; 453 ecc_mask = 0; 454 } 455 456 if (is_smp()) { 457 if (cachepolicy != CPOLICY_WRITEALLOC) { 458 pr_warn("Forcing write-allocate cache policy for SMP\n"); 459 cachepolicy = CPOLICY_WRITEALLOC; 460 } 461 if (!(initial_pmd_value & PMD_SECT_S)) { 462 pr_warn("Forcing shared mappings for SMP\n"); 463 initial_pmd_value |= PMD_SECT_S; 464 } 465 } 466 467 /* 468 * Strip out features not present on earlier architectures. 469 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 470 * without extended page tables don't have the 'Shared' bit. 471 */ 472 if (cpu_arch < CPU_ARCH_ARMv5) 473 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 474 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 475 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 476 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 477 mem_types[i].prot_sect &= ~PMD_SECT_S; 478 479 /* 480 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 481 * "update-able on write" bit on ARM610). However, Xscale and 482 * Xscale3 require this bit to be cleared. 483 */ 484 if (cpu_is_xscale_family()) { 485 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 486 mem_types[i].prot_sect &= ~PMD_BIT4; 487 mem_types[i].prot_l1 &= ~PMD_BIT4; 488 } 489 } else if (cpu_arch < CPU_ARCH_ARMv6) { 490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 491 if (mem_types[i].prot_l1) 492 mem_types[i].prot_l1 |= PMD_BIT4; 493 if (mem_types[i].prot_sect) 494 mem_types[i].prot_sect |= PMD_BIT4; 495 } 496 } 497 498 /* 499 * Mark the device areas according to the CPU/architecture. 500 */ 501 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 502 if (!cpu_is_xsc3()) { 503 /* 504 * Mark device regions on ARMv6+ as execute-never 505 * to prevent speculative instruction fetches. 506 */ 507 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 508 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 509 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 510 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 511 512 /* Also setup NX memory mapping */ 513 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 514 } 515 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 516 /* 517 * For ARMv7 with TEX remapping, 518 * - shared device is SXCB=1100 519 * - nonshared device is SXCB=0100 520 * - write combine device mem is SXCB=0001 521 * (Uncached Normal memory) 522 */ 523 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 524 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 525 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 526 } else if (cpu_is_xsc3()) { 527 /* 528 * For Xscale3, 529 * - shared device is TEXCB=00101 530 * - nonshared device is TEXCB=01000 531 * - write combine device mem is TEXCB=00100 532 * (Inner/Outer Uncacheable in xsc3 parlance) 533 */ 534 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 535 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 536 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 537 } else { 538 /* 539 * For ARMv6 and ARMv7 without TEX remapping, 540 * - shared device is TEXCB=00001 541 * - nonshared device is TEXCB=01000 542 * - write combine device mem is TEXCB=00100 543 * (Uncached Normal in ARMv6 parlance). 544 */ 545 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 546 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 547 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 548 } 549 } else { 550 /* 551 * On others, write combining is "Uncached/Buffered" 552 */ 553 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 554 } 555 556 /* 557 * Now deal with the memory-type mappings 558 */ 559 cp = &cache_policies[cachepolicy]; 560 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 561 s2_pgprot = cp->pte_s2; 562 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; 563 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; 564 565 #ifndef CONFIG_ARM_LPAE 566 /* 567 * We don't use domains on ARMv6 (since this causes problems with 568 * v6/v7 kernels), so we must use a separate memory type for user 569 * r/o, kernel r/w to map the vectors page. 570 */ 571 if (cpu_arch == CPU_ARCH_ARMv6) 572 vecs_pgprot |= L_PTE_MT_VECTORS; 573 574 /* 575 * Check is it with support for the PXN bit 576 * in the Short-descriptor translation table format descriptors. 577 */ 578 if (cpu_arch == CPU_ARCH_ARMv7 && 579 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { 580 user_pmd_table |= PMD_PXNTABLE; 581 } 582 #endif 583 584 /* 585 * ARMv6 and above have extended page tables. 586 */ 587 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 588 #ifndef CONFIG_ARM_LPAE 589 /* 590 * Mark cache clean areas and XIP ROM read only 591 * from SVC mode and no access from userspace. 592 */ 593 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 594 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 595 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 596 #endif 597 598 /* 599 * If the initial page tables were created with the S bit 600 * set, then we need to do the same here for the same 601 * reasons given in early_cachepolicy(). 602 */ 603 if (initial_pmd_value & PMD_SECT_S) { 604 user_pgprot |= L_PTE_SHARED; 605 kern_pgprot |= L_PTE_SHARED; 606 vecs_pgprot |= L_PTE_SHARED; 607 s2_pgprot |= L_PTE_SHARED; 608 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 609 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 610 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 611 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 612 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 613 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 614 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 615 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 616 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 617 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 619 } 620 } 621 622 /* 623 * Non-cacheable Normal - intended for memory areas that must 624 * not cause dirty cache line writebacks when used 625 */ 626 if (cpu_arch >= CPU_ARCH_ARMv6) { 627 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 628 /* Non-cacheable Normal is XCB = 001 */ 629 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 630 PMD_SECT_BUFFERED; 631 } else { 632 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 633 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 634 PMD_SECT_TEX(1); 635 } 636 } else { 637 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 638 } 639 640 #ifdef CONFIG_ARM_LPAE 641 /* 642 * Do not generate access flag faults for the kernel mappings. 643 */ 644 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 645 mem_types[i].prot_pte |= PTE_EXT_AF; 646 if (mem_types[i].prot_sect) 647 mem_types[i].prot_sect |= PMD_SECT_AF; 648 } 649 kern_pgprot |= PTE_EXT_AF; 650 vecs_pgprot |= PTE_EXT_AF; 651 652 /* 653 * Set PXN for user mappings 654 */ 655 user_pgprot |= PTE_EXT_PXN; 656 #endif 657 658 for (i = 0; i < 16; i++) { 659 pteval_t v = pgprot_val(protection_map[i]); 660 protection_map[i] = __pgprot(v | user_pgprot); 661 } 662 663 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 664 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 665 666 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 667 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 668 L_PTE_DIRTY | kern_pgprot); 669 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); 670 pgprot_s2_device = __pgprot(s2_device_pgprot); 671 pgprot_hyp_device = __pgprot(hyp_device_pgprot); 672 673 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 674 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 675 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 676 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 677 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 678 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 679 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 680 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 681 mem_types[MT_ROM].prot_sect |= cp->pmd; 682 683 switch (cp->pmd) { 684 case PMD_SECT_WT: 685 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 686 break; 687 case PMD_SECT_WB: 688 case PMD_SECT_WBWA: 689 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 690 break; 691 } 692 pr_info("Memory policy: %sData cache %s\n", 693 ecc_mask ? "ECC enabled, " : "", cp->policy); 694 695 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 696 struct mem_type *t = &mem_types[i]; 697 if (t->prot_l1) 698 t->prot_l1 |= PMD_DOMAIN(t->domain); 699 if (t->prot_sect) 700 t->prot_sect |= PMD_DOMAIN(t->domain); 701 } 702 } 703 704 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 705 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 706 unsigned long size, pgprot_t vma_prot) 707 { 708 if (!pfn_valid(pfn)) 709 return pgprot_noncached(vma_prot); 710 else if (file->f_flags & O_SYNC) 711 return pgprot_writecombine(vma_prot); 712 return vma_prot; 713 } 714 EXPORT_SYMBOL(phys_mem_access_prot); 715 #endif 716 717 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 718 719 static void __init *early_alloc(unsigned long sz) 720 { 721 void *ptr = memblock_alloc(sz, sz); 722 723 if (!ptr) 724 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 725 __func__, sz, sz); 726 727 return ptr; 728 } 729 730 static void *__init late_alloc(unsigned long sz) 731 { 732 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz)); 733 734 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr))) 735 BUG(); 736 return ptr; 737 } 738 739 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, 740 unsigned long prot, 741 void *(*alloc)(unsigned long sz)) 742 { 743 if (pmd_none(*pmd)) { 744 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 745 __pmd_populate(pmd, __pa(pte), prot); 746 } 747 BUG_ON(pmd_bad(*pmd)); 748 return pte_offset_kernel(pmd, addr); 749 } 750 751 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, 752 unsigned long prot) 753 { 754 return arm_pte_alloc(pmd, addr, prot, early_alloc); 755 } 756 757 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 758 unsigned long end, unsigned long pfn, 759 const struct mem_type *type, 760 void *(*alloc)(unsigned long sz), 761 bool ng) 762 { 763 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); 764 do { 765 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 766 ng ? PTE_EXT_NG : 0); 767 pfn++; 768 } while (pte++, addr += PAGE_SIZE, addr != end); 769 } 770 771 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 772 unsigned long end, phys_addr_t phys, 773 const struct mem_type *type, bool ng) 774 { 775 pmd_t *p = pmd; 776 777 #ifndef CONFIG_ARM_LPAE 778 /* 779 * In classic MMU format, puds and pmds are folded in to 780 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 781 * group of L1 entries making up one logical pointer to 782 * an L2 table (2MB), where as PMDs refer to the individual 783 * L1 entries (1MB). Hence increment to get the correct 784 * offset for odd 1MB sections. 785 * (See arch/arm/include/asm/pgtable-2level.h) 786 */ 787 if (addr & SECTION_SIZE) 788 pmd++; 789 #endif 790 do { 791 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); 792 phys += SECTION_SIZE; 793 } while (pmd++, addr += SECTION_SIZE, addr != end); 794 795 flush_pmd_entry(p); 796 } 797 798 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 799 unsigned long end, phys_addr_t phys, 800 const struct mem_type *type, 801 void *(*alloc)(unsigned long sz), bool ng) 802 { 803 pmd_t *pmd = pmd_offset(pud, addr); 804 unsigned long next; 805 806 do { 807 /* 808 * With LPAE, we must loop over to map 809 * all the pmds for the given range. 810 */ 811 next = pmd_addr_end(addr, end); 812 813 /* 814 * Try a section mapping - addr, next and phys must all be 815 * aligned to a section boundary. 816 */ 817 if (type->prot_sect && 818 ((addr | next | phys) & ~SECTION_MASK) == 0) { 819 __map_init_section(pmd, addr, next, phys, type, ng); 820 } else { 821 alloc_init_pte(pmd, addr, next, 822 __phys_to_pfn(phys), type, alloc, ng); 823 } 824 825 phys += next - addr; 826 827 } while (pmd++, addr = next, addr != end); 828 } 829 830 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, 831 unsigned long end, phys_addr_t phys, 832 const struct mem_type *type, 833 void *(*alloc)(unsigned long sz), bool ng) 834 { 835 pud_t *pud = pud_offset(pgd, addr); 836 unsigned long next; 837 838 do { 839 next = pud_addr_end(addr, end); 840 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); 841 phys += next - addr; 842 } while (pud++, addr = next, addr != end); 843 } 844 845 #ifndef CONFIG_ARM_LPAE 846 static void __init create_36bit_mapping(struct mm_struct *mm, 847 struct map_desc *md, 848 const struct mem_type *type, 849 bool ng) 850 { 851 unsigned long addr, length, end; 852 phys_addr_t phys; 853 pgd_t *pgd; 854 855 addr = md->virtual; 856 phys = __pfn_to_phys(md->pfn); 857 length = PAGE_ALIGN(md->length); 858 859 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 860 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 861 (long long)__pfn_to_phys((u64)md->pfn), addr); 862 return; 863 } 864 865 /* N.B. ARMv6 supersections are only defined to work with domain 0. 866 * Since domain assignments can in fact be arbitrary, the 867 * 'domain == 0' check below is required to insure that ARMv6 868 * supersections are only allocated for domain 0 regardless 869 * of the actual domain assignments in use. 870 */ 871 if (type->domain) { 872 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 873 (long long)__pfn_to_phys((u64)md->pfn), addr); 874 return; 875 } 876 877 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 878 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 879 (long long)__pfn_to_phys((u64)md->pfn), addr); 880 return; 881 } 882 883 /* 884 * Shift bits [35:32] of address into bits [23:20] of PMD 885 * (See ARMv6 spec). 886 */ 887 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 888 889 pgd = pgd_offset(mm, addr); 890 end = addr + length; 891 do { 892 pud_t *pud = pud_offset(pgd, addr); 893 pmd_t *pmd = pmd_offset(pud, addr); 894 int i; 895 896 for (i = 0; i < 16; i++) 897 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | 898 (ng ? PMD_SECT_nG : 0)); 899 900 addr += SUPERSECTION_SIZE; 901 phys += SUPERSECTION_SIZE; 902 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 903 } while (addr != end); 904 } 905 #endif /* !CONFIG_ARM_LPAE */ 906 907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, 908 void *(*alloc)(unsigned long sz), 909 bool ng) 910 { 911 unsigned long addr, length, end; 912 phys_addr_t phys; 913 const struct mem_type *type; 914 pgd_t *pgd; 915 916 type = &mem_types[md->type]; 917 918 #ifndef CONFIG_ARM_LPAE 919 /* 920 * Catch 36-bit addresses 921 */ 922 if (md->pfn >= 0x100000) { 923 create_36bit_mapping(mm, md, type, ng); 924 return; 925 } 926 #endif 927 928 addr = md->virtual & PAGE_MASK; 929 phys = __pfn_to_phys(md->pfn); 930 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 931 932 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 933 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 934 (long long)__pfn_to_phys(md->pfn), addr); 935 return; 936 } 937 938 pgd = pgd_offset(mm, addr); 939 end = addr + length; 940 do { 941 unsigned long next = pgd_addr_end(addr, end); 942 943 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng); 944 945 phys += next - addr; 946 addr = next; 947 } while (pgd++, addr != end); 948 } 949 950 /* 951 * Create the page directory entries and any necessary 952 * page tables for the mapping specified by `md'. We 953 * are able to cope here with varying sizes and address 954 * offsets, and we take full advantage of sections and 955 * supersections. 956 */ 957 static void __init create_mapping(struct map_desc *md) 958 { 959 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 960 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 961 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 962 return; 963 } 964 965 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 966 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && 967 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 968 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 969 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 970 } 971 972 __create_mapping(&init_mm, md, early_alloc, false); 973 } 974 975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, 976 bool ng) 977 { 978 #ifdef CONFIG_ARM_LPAE 979 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); 980 if (WARN_ON(!pud)) 981 return; 982 pmd_alloc(mm, pud, 0); 983 #endif 984 __create_mapping(mm, md, late_alloc, ng); 985 } 986 987 /* 988 * Create the architecture specific mappings 989 */ 990 void __init iotable_init(struct map_desc *io_desc, int nr) 991 { 992 struct map_desc *md; 993 struct vm_struct *vm; 994 struct static_vm *svm; 995 996 if (!nr) 997 return; 998 999 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); 1000 if (!svm) 1001 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1002 __func__, sizeof(*svm) * nr, __alignof__(*svm)); 1003 1004 for (md = io_desc; nr; md++, nr--) { 1005 create_mapping(md); 1006 1007 vm = &svm->vm; 1008 vm->addr = (void *)(md->virtual & PAGE_MASK); 1009 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 1010 vm->phys_addr = __pfn_to_phys(md->pfn); 1011 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 1012 vm->flags |= VM_ARM_MTYPE(md->type); 1013 vm->caller = iotable_init; 1014 add_static_vm_early(svm++); 1015 } 1016 } 1017 1018 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 1019 void *caller) 1020 { 1021 struct vm_struct *vm; 1022 struct static_vm *svm; 1023 1024 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); 1025 if (!svm) 1026 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1027 __func__, sizeof(*svm), __alignof__(*svm)); 1028 1029 vm = &svm->vm; 1030 vm->addr = (void *)addr; 1031 vm->size = size; 1032 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 1033 vm->caller = caller; 1034 add_static_vm_early(svm); 1035 } 1036 1037 #ifndef CONFIG_ARM_LPAE 1038 1039 /* 1040 * The Linux PMD is made of two consecutive section entries covering 2MB 1041 * (see definition in include/asm/pgtable-2level.h). However a call to 1042 * create_mapping() may optimize static mappings by using individual 1043 * 1MB section mappings. This leaves the actual PMD potentially half 1044 * initialized if the top or bottom section entry isn't used, leaving it 1045 * open to problems if a subsequent ioremap() or vmalloc() tries to use 1046 * the virtual space left free by that unused section entry. 1047 * 1048 * Let's avoid the issue by inserting dummy vm entries covering the unused 1049 * PMD halves once the static mappings are in place. 1050 */ 1051 1052 static void __init pmd_empty_section_gap(unsigned long addr) 1053 { 1054 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 1055 } 1056 1057 static void __init fill_pmd_gaps(void) 1058 { 1059 struct static_vm *svm; 1060 struct vm_struct *vm; 1061 unsigned long addr, next = 0; 1062 pmd_t *pmd; 1063 1064 list_for_each_entry(svm, &static_vmlist, list) { 1065 vm = &svm->vm; 1066 addr = (unsigned long)vm->addr; 1067 if (addr < next) 1068 continue; 1069 1070 /* 1071 * Check if this vm starts on an odd section boundary. 1072 * If so and the first section entry for this PMD is free 1073 * then we block the corresponding virtual address. 1074 */ 1075 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1076 pmd = pmd_off_k(addr); 1077 if (pmd_none(*pmd)) 1078 pmd_empty_section_gap(addr & PMD_MASK); 1079 } 1080 1081 /* 1082 * Then check if this vm ends on an odd section boundary. 1083 * If so and the second section entry for this PMD is empty 1084 * then we block the corresponding virtual address. 1085 */ 1086 addr += vm->size; 1087 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1088 pmd = pmd_off_k(addr) + 1; 1089 if (pmd_none(*pmd)) 1090 pmd_empty_section_gap(addr); 1091 } 1092 1093 /* no need to look at any vm entry until we hit the next PMD */ 1094 next = (addr + PMD_SIZE - 1) & PMD_MASK; 1095 } 1096 } 1097 1098 #else 1099 #define fill_pmd_gaps() do { } while (0) 1100 #endif 1101 1102 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1103 static void __init pci_reserve_io(void) 1104 { 1105 struct static_vm *svm; 1106 1107 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1108 if (svm) 1109 return; 1110 1111 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1112 } 1113 #else 1114 #define pci_reserve_io() do { } while (0) 1115 #endif 1116 1117 #ifdef CONFIG_DEBUG_LL 1118 void __init debug_ll_io_init(void) 1119 { 1120 struct map_desc map; 1121 1122 debug_ll_addr(&map.pfn, &map.virtual); 1123 if (!map.pfn || !map.virtual) 1124 return; 1125 map.pfn = __phys_to_pfn(map.pfn); 1126 map.virtual &= PAGE_MASK; 1127 map.length = PAGE_SIZE; 1128 map.type = MT_DEVICE; 1129 iotable_init(&map, 1); 1130 } 1131 #endif 1132 1133 static void * __initdata vmalloc_min = 1134 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1135 1136 /* 1137 * vmalloc=size forces the vmalloc area to be exactly 'size' 1138 * bytes. This can be used to increase (or decrease) the vmalloc 1139 * area - the default is 240m. 1140 */ 1141 static int __init early_vmalloc(char *arg) 1142 { 1143 unsigned long vmalloc_reserve = memparse(arg, NULL); 1144 1145 if (vmalloc_reserve < SZ_16M) { 1146 vmalloc_reserve = SZ_16M; 1147 pr_warn("vmalloc area too small, limiting to %luMB\n", 1148 vmalloc_reserve >> 20); 1149 } 1150 1151 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1152 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1153 pr_warn("vmalloc area is too big, limiting to %luMB\n", 1154 vmalloc_reserve >> 20); 1155 } 1156 1157 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1158 return 0; 1159 } 1160 early_param("vmalloc", early_vmalloc); 1161 1162 phys_addr_t arm_lowmem_limit __initdata = 0; 1163 1164 void __init adjust_lowmem_bounds(void) 1165 { 1166 phys_addr_t memblock_limit = 0; 1167 u64 vmalloc_limit; 1168 struct memblock_region *reg; 1169 phys_addr_t lowmem_limit = 0; 1170 1171 /* 1172 * Let's use our own (unoptimized) equivalent of __pa() that is 1173 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. 1174 * The result is used as the upper bound on physical memory address 1175 * and may itself be outside the valid range for which phys_addr_t 1176 * and therefore __pa() is defined. 1177 */ 1178 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; 1179 1180 for_each_memblock(memory, reg) { 1181 phys_addr_t block_start = reg->base; 1182 phys_addr_t block_end = reg->base + reg->size; 1183 1184 if (reg->base < vmalloc_limit) { 1185 if (block_end > lowmem_limit) 1186 /* 1187 * Compare as u64 to ensure vmalloc_limit does 1188 * not get truncated. block_end should always 1189 * fit in phys_addr_t so there should be no 1190 * issue with assignment. 1191 */ 1192 lowmem_limit = min_t(u64, 1193 vmalloc_limit, 1194 block_end); 1195 1196 /* 1197 * Find the first non-pmd-aligned page, and point 1198 * memblock_limit at it. This relies on rounding the 1199 * limit down to be pmd-aligned, which happens at the 1200 * end of this function. 1201 * 1202 * With this algorithm, the start or end of almost any 1203 * bank can be non-pmd-aligned. The only exception is 1204 * that the start of the bank 0 must be section- 1205 * aligned, since otherwise memory would need to be 1206 * allocated when mapping the start of bank 0, which 1207 * occurs before any free memory is mapped. 1208 */ 1209 if (!memblock_limit) { 1210 if (!IS_ALIGNED(block_start, PMD_SIZE)) 1211 memblock_limit = block_start; 1212 else if (!IS_ALIGNED(block_end, PMD_SIZE)) 1213 memblock_limit = lowmem_limit; 1214 } 1215 1216 } 1217 } 1218 1219 arm_lowmem_limit = lowmem_limit; 1220 1221 high_memory = __va(arm_lowmem_limit - 1) + 1; 1222 1223 if (!memblock_limit) 1224 memblock_limit = arm_lowmem_limit; 1225 1226 /* 1227 * Round the memblock limit down to a pmd size. This 1228 * helps to ensure that we will allocate memory from the 1229 * last full pmd, which should be mapped. 1230 */ 1231 memblock_limit = round_down(memblock_limit, PMD_SIZE); 1232 1233 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1234 if (memblock_end_of_DRAM() > arm_lowmem_limit) { 1235 phys_addr_t end = memblock_end_of_DRAM(); 1236 1237 pr_notice("Ignoring RAM at %pa-%pa\n", 1238 &memblock_limit, &end); 1239 pr_notice("Consider using a HIGHMEM enabled kernel.\n"); 1240 1241 memblock_remove(memblock_limit, end - memblock_limit); 1242 } 1243 } 1244 1245 memblock_set_current_limit(memblock_limit); 1246 } 1247 1248 static inline void prepare_page_table(void) 1249 { 1250 unsigned long addr; 1251 phys_addr_t end; 1252 1253 /* 1254 * Clear out all the mappings below the kernel image. 1255 */ 1256 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1257 pmd_clear(pmd_off_k(addr)); 1258 1259 #ifdef CONFIG_XIP_KERNEL 1260 /* The XIP kernel is mapped in the module area -- skip over it */ 1261 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; 1262 #endif 1263 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1264 pmd_clear(pmd_off_k(addr)); 1265 1266 /* 1267 * Find the end of the first block of lowmem. 1268 */ 1269 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1270 if (end >= arm_lowmem_limit) 1271 end = arm_lowmem_limit; 1272 1273 /* 1274 * Clear out all the kernel space mappings, except for the first 1275 * memory bank, up to the vmalloc region. 1276 */ 1277 for (addr = __phys_to_virt(end); 1278 addr < VMALLOC_START; addr += PMD_SIZE) 1279 pmd_clear(pmd_off_k(addr)); 1280 } 1281 1282 #ifdef CONFIG_ARM_LPAE 1283 /* the first page is reserved for pgd */ 1284 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1285 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1286 #else 1287 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1288 #endif 1289 1290 /* 1291 * Reserve the special regions of memory 1292 */ 1293 void __init arm_mm_memblock_reserve(void) 1294 { 1295 /* 1296 * Reserve the page tables. These are already in use, 1297 * and can only be in node 0. 1298 */ 1299 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1300 1301 #ifdef CONFIG_SA1111 1302 /* 1303 * Because of the SA1111 DMA bug, we want to preserve our 1304 * precious DMA-able memory... 1305 */ 1306 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1307 #endif 1308 } 1309 1310 /* 1311 * Set up the device mappings. Since we clear out the page tables for all 1312 * mappings above VMALLOC_START, except early fixmap, we might remove debug 1313 * device mappings. This means earlycon can be used to debug this function 1314 * Any other function or debugging method which may touch any device _will_ 1315 * crash the kernel. 1316 */ 1317 static void __init devicemaps_init(const struct machine_desc *mdesc) 1318 { 1319 struct map_desc map; 1320 unsigned long addr; 1321 void *vectors; 1322 1323 /* 1324 * Allocate the vector page early. 1325 */ 1326 vectors = early_alloc(PAGE_SIZE * 2); 1327 1328 early_trap_init(vectors); 1329 1330 /* 1331 * Clear page table except top pmd used by early fixmaps 1332 */ 1333 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) 1334 pmd_clear(pmd_off_k(addr)); 1335 1336 /* 1337 * Map the kernel if it is XIP. 1338 * It is always first in the modulearea. 1339 */ 1340 #ifdef CONFIG_XIP_KERNEL 1341 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1342 map.virtual = MODULES_VADDR; 1343 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1344 map.type = MT_ROM; 1345 create_mapping(&map); 1346 #endif 1347 1348 /* 1349 * Map the cache flushing regions. 1350 */ 1351 #ifdef FLUSH_BASE 1352 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1353 map.virtual = FLUSH_BASE; 1354 map.length = SZ_1M; 1355 map.type = MT_CACHECLEAN; 1356 create_mapping(&map); 1357 #endif 1358 #ifdef FLUSH_BASE_MINICACHE 1359 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1360 map.virtual = FLUSH_BASE_MINICACHE; 1361 map.length = SZ_1M; 1362 map.type = MT_MINICLEAN; 1363 create_mapping(&map); 1364 #endif 1365 1366 /* 1367 * Create a mapping for the machine vectors at the high-vectors 1368 * location (0xffff0000). If we aren't using high-vectors, also 1369 * create a mapping at the low-vectors virtual address. 1370 */ 1371 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1372 map.virtual = 0xffff0000; 1373 map.length = PAGE_SIZE; 1374 #ifdef CONFIG_KUSER_HELPERS 1375 map.type = MT_HIGH_VECTORS; 1376 #else 1377 map.type = MT_LOW_VECTORS; 1378 #endif 1379 create_mapping(&map); 1380 1381 if (!vectors_high()) { 1382 map.virtual = 0; 1383 map.length = PAGE_SIZE * 2; 1384 map.type = MT_LOW_VECTORS; 1385 create_mapping(&map); 1386 } 1387 1388 /* Now create a kernel read-only mapping */ 1389 map.pfn += 1; 1390 map.virtual = 0xffff0000 + PAGE_SIZE; 1391 map.length = PAGE_SIZE; 1392 map.type = MT_LOW_VECTORS; 1393 create_mapping(&map); 1394 1395 /* 1396 * Ask the machine support to map in the statically mapped devices. 1397 */ 1398 if (mdesc->map_io) 1399 mdesc->map_io(); 1400 else 1401 debug_ll_io_init(); 1402 fill_pmd_gaps(); 1403 1404 /* Reserve fixed i/o space in VMALLOC region */ 1405 pci_reserve_io(); 1406 1407 /* 1408 * Finally flush the caches and tlb to ensure that we're in a 1409 * consistent state wrt the writebuffer. This also ensures that 1410 * any write-allocated cache lines in the vector page are written 1411 * back. After this point, we can start to touch devices again. 1412 */ 1413 local_flush_tlb_all(); 1414 flush_cache_all(); 1415 1416 /* Enable asynchronous aborts */ 1417 early_abt_enable(); 1418 } 1419 1420 static void __init kmap_init(void) 1421 { 1422 #ifdef CONFIG_HIGHMEM 1423 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1424 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1425 #endif 1426 1427 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, 1428 _PAGE_KERNEL_TABLE); 1429 } 1430 1431 static void __init map_lowmem(void) 1432 { 1433 struct memblock_region *reg; 1434 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); 1435 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1436 1437 /* Map all the lowmem memory banks. */ 1438 for_each_memblock(memory, reg) { 1439 phys_addr_t start = reg->base; 1440 phys_addr_t end = start + reg->size; 1441 struct map_desc map; 1442 1443 if (memblock_is_nomap(reg)) 1444 continue; 1445 1446 if (end > arm_lowmem_limit) 1447 end = arm_lowmem_limit; 1448 if (start >= end) 1449 break; 1450 1451 if (end < kernel_x_start) { 1452 map.pfn = __phys_to_pfn(start); 1453 map.virtual = __phys_to_virt(start); 1454 map.length = end - start; 1455 map.type = MT_MEMORY_RWX; 1456 1457 create_mapping(&map); 1458 } else if (start >= kernel_x_end) { 1459 map.pfn = __phys_to_pfn(start); 1460 map.virtual = __phys_to_virt(start); 1461 map.length = end - start; 1462 map.type = MT_MEMORY_RW; 1463 1464 create_mapping(&map); 1465 } else { 1466 /* This better cover the entire kernel */ 1467 if (start < kernel_x_start) { 1468 map.pfn = __phys_to_pfn(start); 1469 map.virtual = __phys_to_virt(start); 1470 map.length = kernel_x_start - start; 1471 map.type = MT_MEMORY_RW; 1472 1473 create_mapping(&map); 1474 } 1475 1476 map.pfn = __phys_to_pfn(kernel_x_start); 1477 map.virtual = __phys_to_virt(kernel_x_start); 1478 map.length = kernel_x_end - kernel_x_start; 1479 map.type = MT_MEMORY_RWX; 1480 1481 create_mapping(&map); 1482 1483 if (kernel_x_end < end) { 1484 map.pfn = __phys_to_pfn(kernel_x_end); 1485 map.virtual = __phys_to_virt(kernel_x_end); 1486 map.length = end - kernel_x_end; 1487 map.type = MT_MEMORY_RW; 1488 1489 create_mapping(&map); 1490 } 1491 } 1492 } 1493 } 1494 1495 #ifdef CONFIG_ARM_PV_FIXUP 1496 extern unsigned long __atags_pointer; 1497 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); 1498 pgtables_remap lpae_pgtables_remap_asm; 1499 1500 /* 1501 * early_paging_init() recreates boot time page table setup, allowing machines 1502 * to switch over to a high (>4G) address space on LPAE systems 1503 */ 1504 static void __init early_paging_init(const struct machine_desc *mdesc) 1505 { 1506 pgtables_remap *lpae_pgtables_remap; 1507 unsigned long pa_pgd; 1508 unsigned int cr, ttbcr; 1509 long long offset; 1510 void *boot_data; 1511 1512 if (!mdesc->pv_fixup) 1513 return; 1514 1515 offset = mdesc->pv_fixup(); 1516 if (offset == 0) 1517 return; 1518 1519 /* 1520 * Get the address of the remap function in the 1:1 identity 1521 * mapping setup by the early page table assembly code. We 1522 * must get this prior to the pv update. The following barrier 1523 * ensures that this is complete before we fixup any P:V offsets. 1524 */ 1525 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); 1526 pa_pgd = __pa(swapper_pg_dir); 1527 boot_data = __va(__atags_pointer); 1528 barrier(); 1529 1530 pr_info("Switching physical address space to 0x%08llx\n", 1531 (u64)PHYS_OFFSET + offset); 1532 1533 /* Re-set the phys pfn offset, and the pv offset */ 1534 __pv_offset += offset; 1535 __pv_phys_pfn_offset += PFN_DOWN(offset); 1536 1537 /* Run the patch stub to update the constants */ 1538 fixup_pv_table(&__pv_table_begin, 1539 (&__pv_table_end - &__pv_table_begin) << 2); 1540 1541 /* 1542 * We changing not only the virtual to physical mapping, but also 1543 * the physical addresses used to access memory. We need to flush 1544 * all levels of cache in the system with caching disabled to 1545 * ensure that all data is written back, and nothing is prefetched 1546 * into the caches. We also need to prevent the TLB walkers 1547 * allocating into the caches too. Note that this is ARMv7 LPAE 1548 * specific. 1549 */ 1550 cr = get_cr(); 1551 set_cr(cr & ~(CR_I | CR_C)); 1552 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); 1553 asm volatile("mcr p15, 0, %0, c2, c0, 2" 1554 : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); 1555 flush_cache_all(); 1556 1557 /* 1558 * Fixup the page tables - this must be in the idmap region as 1559 * we need to disable the MMU to do this safely, and hence it 1560 * needs to be assembly. It's fairly simple, as we're using the 1561 * temporary tables setup by the initial assembly code. 1562 */ 1563 lpae_pgtables_remap(offset, pa_pgd, boot_data); 1564 1565 /* Re-enable the caches and cacheable TLB walks */ 1566 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); 1567 set_cr(cr); 1568 } 1569 1570 #else 1571 1572 static void __init early_paging_init(const struct machine_desc *mdesc) 1573 { 1574 long long offset; 1575 1576 if (!mdesc->pv_fixup) 1577 return; 1578 1579 offset = mdesc->pv_fixup(); 1580 if (offset == 0) 1581 return; 1582 1583 pr_crit("Physical address space modification is only to support Keystone2.\n"); 1584 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); 1585 pr_crit("feature. Your kernel may crash now, have a good day.\n"); 1586 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1587 } 1588 1589 #endif 1590 1591 static void __init early_fixmap_shutdown(void) 1592 { 1593 int i; 1594 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); 1595 1596 pte_offset_fixmap = pte_offset_late_fixmap; 1597 pmd_clear(fixmap_pmd(va)); 1598 local_flush_tlb_kernel_page(va); 1599 1600 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { 1601 pte_t *pte; 1602 struct map_desc map; 1603 1604 map.virtual = fix_to_virt(i); 1605 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); 1606 1607 /* Only i/o device mappings are supported ATM */ 1608 if (pte_none(*pte) || 1609 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) 1610 continue; 1611 1612 map.pfn = pte_pfn(*pte); 1613 map.type = MT_DEVICE; 1614 map.length = PAGE_SIZE; 1615 1616 create_mapping(&map); 1617 } 1618 } 1619 1620 /* 1621 * paging_init() sets up the page tables, initialises the zone memory 1622 * maps, and sets up the zero page, bad page and bad page tables. 1623 */ 1624 void __init paging_init(const struct machine_desc *mdesc) 1625 { 1626 void *zero_page; 1627 1628 prepare_page_table(); 1629 map_lowmem(); 1630 memblock_set_current_limit(arm_lowmem_limit); 1631 dma_contiguous_remap(); 1632 early_fixmap_shutdown(); 1633 devicemaps_init(mdesc); 1634 kmap_init(); 1635 tcm_init(); 1636 1637 top_pmd = pmd_off_k(0xffff0000); 1638 1639 /* allocate the zero page. */ 1640 zero_page = early_alloc(PAGE_SIZE); 1641 1642 bootmem_init(); 1643 1644 empty_zero_page = virt_to_page(zero_page); 1645 __flush_dcache_page(NULL, empty_zero_page); 1646 1647 /* Compute the virt/idmap offset, mostly for the sake of KVM */ 1648 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset); 1649 } 1650 1651 void __init early_mm_init(const struct machine_desc *mdesc) 1652 { 1653 build_mem_type_table(); 1654 early_paging_init(mdesc); 1655 } 1656