1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/mman.h> 15 #include <linux/nodemask.h> 16 #include <linux/memblock.h> 17 #include <linux/fs.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sizes.h> 20 21 #include <asm/cp15.h> 22 #include <asm/cputype.h> 23 #include <asm/sections.h> 24 #include <asm/cachetype.h> 25 #include <asm/sections.h> 26 #include <asm/setup.h> 27 #include <asm/smp_plat.h> 28 #include <asm/tlb.h> 29 #include <asm/highmem.h> 30 #include <asm/system_info.h> 31 #include <asm/traps.h> 32 #include <asm/procinfo.h> 33 #include <asm/memory.h> 34 35 #include <asm/mach/arch.h> 36 #include <asm/mach/map.h> 37 #include <asm/mach/pci.h> 38 #include <asm/fixmap.h> 39 40 #include "mm.h" 41 #include "tcm.h" 42 43 /* 44 * empty_zero_page is a special page that is used for 45 * zero-initialized data and COW. 46 */ 47 struct page *empty_zero_page; 48 EXPORT_SYMBOL(empty_zero_page); 49 50 /* 51 * The pmd table for the upper-most set of pages. 52 */ 53 pmd_t *top_pmd; 54 55 #define CPOLICY_UNCACHED 0 56 #define CPOLICY_BUFFERED 1 57 #define CPOLICY_WRITETHROUGH 2 58 #define CPOLICY_WRITEBACK 3 59 #define CPOLICY_WRITEALLOC 4 60 61 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 62 static unsigned int ecc_mask __initdata = 0; 63 pgprot_t pgprot_user; 64 pgprot_t pgprot_kernel; 65 pgprot_t pgprot_hyp_device; 66 pgprot_t pgprot_s2; 67 pgprot_t pgprot_s2_device; 68 69 EXPORT_SYMBOL(pgprot_user); 70 EXPORT_SYMBOL(pgprot_kernel); 71 72 struct cachepolicy { 73 const char policy[16]; 74 unsigned int cr_mask; 75 pmdval_t pmd; 76 pteval_t pte; 77 pteval_t pte_s2; 78 }; 79 80 #ifdef CONFIG_ARM_LPAE 81 #define s2_policy(policy) policy 82 #else 83 #define s2_policy(policy) 0 84 #endif 85 86 static struct cachepolicy cache_policies[] __initdata = { 87 { 88 .policy = "uncached", 89 .cr_mask = CR_W|CR_C, 90 .pmd = PMD_SECT_UNCACHED, 91 .pte = L_PTE_MT_UNCACHED, 92 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 93 }, { 94 .policy = "buffered", 95 .cr_mask = CR_C, 96 .pmd = PMD_SECT_BUFFERED, 97 .pte = L_PTE_MT_BUFFERABLE, 98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 99 }, { 100 .policy = "writethrough", 101 .cr_mask = 0, 102 .pmd = PMD_SECT_WT, 103 .pte = L_PTE_MT_WRITETHROUGH, 104 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH), 105 }, { 106 .policy = "writeback", 107 .cr_mask = 0, 108 .pmd = PMD_SECT_WB, 109 .pte = L_PTE_MT_WRITEBACK, 110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 111 }, { 112 .policy = "writealloc", 113 .cr_mask = 0, 114 .pmd = PMD_SECT_WBWA, 115 .pte = L_PTE_MT_WRITEALLOC, 116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 117 } 118 }; 119 120 #ifdef CONFIG_CPU_CP15 121 /* 122 * These are useful for identifying cache coherency 123 * problems by allowing the cache or the cache and 124 * writebuffer to be turned off. (Note: the write 125 * buffer should not be on and the cache off). 126 */ 127 static int __init early_cachepolicy(char *p) 128 { 129 int i; 130 131 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 132 int len = strlen(cache_policies[i].policy); 133 134 if (memcmp(p, cache_policies[i].policy, len) == 0) { 135 cachepolicy = i; 136 cr_alignment &= ~cache_policies[i].cr_mask; 137 cr_no_alignment &= ~cache_policies[i].cr_mask; 138 break; 139 } 140 } 141 if (i == ARRAY_SIZE(cache_policies)) 142 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); 143 /* 144 * This restriction is partly to do with the way we boot; it is 145 * unpredictable to have memory mapped using two different sets of 146 * memory attributes (shared, type, and cache attribs). We can not 147 * change these attributes once the initial assembly has setup the 148 * page tables. 149 */ 150 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 151 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); 152 cachepolicy = CPOLICY_WRITEBACK; 153 } 154 flush_cache_all(); 155 set_cr(cr_alignment); 156 return 0; 157 } 158 early_param("cachepolicy", early_cachepolicy); 159 160 static int __init early_nocache(char *__unused) 161 { 162 char *p = "buffered"; 163 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); 164 early_cachepolicy(p); 165 return 0; 166 } 167 early_param("nocache", early_nocache); 168 169 static int __init early_nowrite(char *__unused) 170 { 171 char *p = "uncached"; 172 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); 173 early_cachepolicy(p); 174 return 0; 175 } 176 early_param("nowb", early_nowrite); 177 178 #ifndef CONFIG_ARM_LPAE 179 static int __init early_ecc(char *p) 180 { 181 if (memcmp(p, "on", 2) == 0) 182 ecc_mask = PMD_PROTECTION; 183 else if (memcmp(p, "off", 3) == 0) 184 ecc_mask = 0; 185 return 0; 186 } 187 early_param("ecc", early_ecc); 188 #endif 189 190 static int __init noalign_setup(char *__unused) 191 { 192 cr_alignment &= ~CR_A; 193 cr_no_alignment &= ~CR_A; 194 set_cr(cr_alignment); 195 return 1; 196 } 197 __setup("noalign", noalign_setup); 198 199 #ifndef CONFIG_SMP 200 void adjust_cr(unsigned long mask, unsigned long set) 201 { 202 unsigned long flags; 203 204 mask &= ~CR_A; 205 206 set &= mask; 207 208 local_irq_save(flags); 209 210 cr_no_alignment = (cr_no_alignment & ~mask) | set; 211 cr_alignment = (cr_alignment & ~mask) | set; 212 213 set_cr((get_cr() & ~mask) | set); 214 215 local_irq_restore(flags); 216 } 217 #endif 218 219 #else /* ifdef CONFIG_CPU_CP15 */ 220 221 static int __init early_cachepolicy(char *p) 222 { 223 pr_warning("cachepolicy kernel parameter not supported without cp15\n"); 224 } 225 early_param("cachepolicy", early_cachepolicy); 226 227 static int __init noalign_setup(char *__unused) 228 { 229 pr_warning("noalign kernel parameter not supported without cp15\n"); 230 } 231 __setup("noalign", noalign_setup); 232 233 #endif /* ifdef CONFIG_CPU_CP15 / else */ 234 235 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 236 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 237 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 238 239 static struct mem_type mem_types[] = { 240 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 241 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 242 L_PTE_SHARED, 243 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) | 244 s2_policy(L_PTE_S2_MT_DEV_SHARED) | 245 L_PTE_SHARED, 246 .prot_l1 = PMD_TYPE_TABLE, 247 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 248 .domain = DOMAIN_IO, 249 }, 250 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 251 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 252 .prot_l1 = PMD_TYPE_TABLE, 253 .prot_sect = PROT_SECT_DEVICE, 254 .domain = DOMAIN_IO, 255 }, 256 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 258 .prot_l1 = PMD_TYPE_TABLE, 259 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 260 .domain = DOMAIN_IO, 261 }, 262 [MT_DEVICE_WC] = { /* ioremap_wc */ 263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 264 .prot_l1 = PMD_TYPE_TABLE, 265 .prot_sect = PROT_SECT_DEVICE, 266 .domain = DOMAIN_IO, 267 }, 268 [MT_UNCACHED] = { 269 .prot_pte = PROT_PTE_DEVICE, 270 .prot_l1 = PMD_TYPE_TABLE, 271 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 272 .domain = DOMAIN_IO, 273 }, 274 [MT_CACHECLEAN] = { 275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 276 .domain = DOMAIN_KERNEL, 277 }, 278 #ifndef CONFIG_ARM_LPAE 279 [MT_MINICLEAN] = { 280 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 281 .domain = DOMAIN_KERNEL, 282 }, 283 #endif 284 [MT_LOW_VECTORS] = { 285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 286 L_PTE_RDONLY, 287 .prot_l1 = PMD_TYPE_TABLE, 288 .domain = DOMAIN_USER, 289 }, 290 [MT_HIGH_VECTORS] = { 291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 292 L_PTE_USER | L_PTE_RDONLY, 293 .prot_l1 = PMD_TYPE_TABLE, 294 .domain = DOMAIN_USER, 295 }, 296 [MT_MEMORY_RWX] = { 297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 298 .prot_l1 = PMD_TYPE_TABLE, 299 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 300 .domain = DOMAIN_KERNEL, 301 }, 302 [MT_MEMORY_RW] = { 303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 304 L_PTE_XN, 305 .prot_l1 = PMD_TYPE_TABLE, 306 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 307 .domain = DOMAIN_KERNEL, 308 }, 309 [MT_ROM] = { 310 .prot_sect = PMD_TYPE_SECT, 311 .domain = DOMAIN_KERNEL, 312 }, 313 [MT_MEMORY_RWX_NONCACHED] = { 314 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 315 L_PTE_MT_BUFFERABLE, 316 .prot_l1 = PMD_TYPE_TABLE, 317 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 318 .domain = DOMAIN_KERNEL, 319 }, 320 [MT_MEMORY_RW_DTCM] = { 321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 322 L_PTE_XN, 323 .prot_l1 = PMD_TYPE_TABLE, 324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 325 .domain = DOMAIN_KERNEL, 326 }, 327 [MT_MEMORY_RWX_ITCM] = { 328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 329 .prot_l1 = PMD_TYPE_TABLE, 330 .domain = DOMAIN_KERNEL, 331 }, 332 [MT_MEMORY_RW_SO] = { 333 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 334 L_PTE_MT_UNCACHED | L_PTE_XN, 335 .prot_l1 = PMD_TYPE_TABLE, 336 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 337 PMD_SECT_UNCACHED | PMD_SECT_XN, 338 .domain = DOMAIN_KERNEL, 339 }, 340 [MT_MEMORY_DMA_READY] = { 341 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 342 L_PTE_XN, 343 .prot_l1 = PMD_TYPE_TABLE, 344 .domain = DOMAIN_KERNEL, 345 }, 346 }; 347 348 const struct mem_type *get_mem_type(unsigned int type) 349 { 350 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 351 } 352 EXPORT_SYMBOL(get_mem_type); 353 354 #define PTE_SET_FN(_name, pteop) \ 355 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \ 356 void *data) \ 357 { \ 358 pte_t pte = pteop(*ptep); \ 359 \ 360 set_pte_ext(ptep, pte, 0); \ 361 return 0; \ 362 } \ 363 364 #define SET_MEMORY_FN(_name, callback) \ 365 int set_memory_##_name(unsigned long addr, int numpages) \ 366 { \ 367 unsigned long start = addr; \ 368 unsigned long size = PAGE_SIZE*numpages; \ 369 unsigned end = start + size; \ 370 \ 371 if (start < MODULES_VADDR || start >= MODULES_END) \ 372 return -EINVAL;\ 373 \ 374 if (end < MODULES_VADDR || end >= MODULES_END) \ 375 return -EINVAL; \ 376 \ 377 apply_to_page_range(&init_mm, start, size, callback, NULL); \ 378 flush_tlb_kernel_range(start, end); \ 379 return 0;\ 380 } 381 382 PTE_SET_FN(ro, pte_wrprotect) 383 PTE_SET_FN(rw, pte_mkwrite) 384 PTE_SET_FN(x, pte_mkexec) 385 PTE_SET_FN(nx, pte_mknexec) 386 387 SET_MEMORY_FN(ro, pte_set_ro) 388 SET_MEMORY_FN(rw, pte_set_rw) 389 SET_MEMORY_FN(x, pte_set_x) 390 SET_MEMORY_FN(nx, pte_set_nx) 391 392 /* 393 * Adjust the PMD section entries according to the CPU in use. 394 */ 395 static void __init build_mem_type_table(void) 396 { 397 struct cachepolicy *cp; 398 unsigned int cr = get_cr(); 399 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 400 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; 401 int cpu_arch = cpu_architecture(); 402 int i; 403 404 if (cpu_arch < CPU_ARCH_ARMv6) { 405 #if defined(CONFIG_CPU_DCACHE_DISABLE) 406 if (cachepolicy > CPOLICY_BUFFERED) 407 cachepolicy = CPOLICY_BUFFERED; 408 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 409 if (cachepolicy > CPOLICY_WRITETHROUGH) 410 cachepolicy = CPOLICY_WRITETHROUGH; 411 #endif 412 } 413 if (cpu_arch < CPU_ARCH_ARMv5) { 414 if (cachepolicy >= CPOLICY_WRITEALLOC) 415 cachepolicy = CPOLICY_WRITEBACK; 416 ecc_mask = 0; 417 } 418 if (is_smp()) 419 cachepolicy = CPOLICY_WRITEALLOC; 420 421 /* 422 * Strip out features not present on earlier architectures. 423 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 424 * without extended page tables don't have the 'Shared' bit. 425 */ 426 if (cpu_arch < CPU_ARCH_ARMv5) 427 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 428 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 429 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 430 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 431 mem_types[i].prot_sect &= ~PMD_SECT_S; 432 433 /* 434 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 435 * "update-able on write" bit on ARM610). However, Xscale and 436 * Xscale3 require this bit to be cleared. 437 */ 438 if (cpu_is_xscale() || cpu_is_xsc3()) { 439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 440 mem_types[i].prot_sect &= ~PMD_BIT4; 441 mem_types[i].prot_l1 &= ~PMD_BIT4; 442 } 443 } else if (cpu_arch < CPU_ARCH_ARMv6) { 444 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 445 if (mem_types[i].prot_l1) 446 mem_types[i].prot_l1 |= PMD_BIT4; 447 if (mem_types[i].prot_sect) 448 mem_types[i].prot_sect |= PMD_BIT4; 449 } 450 } 451 452 /* 453 * Mark the device areas according to the CPU/architecture. 454 */ 455 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 456 if (!cpu_is_xsc3()) { 457 /* 458 * Mark device regions on ARMv6+ as execute-never 459 * to prevent speculative instruction fetches. 460 */ 461 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 462 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 463 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 464 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 465 466 /* Also setup NX memory mapping */ 467 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 468 } 469 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 470 /* 471 * For ARMv7 with TEX remapping, 472 * - shared device is SXCB=1100 473 * - nonshared device is SXCB=0100 474 * - write combine device mem is SXCB=0001 475 * (Uncached Normal memory) 476 */ 477 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 478 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 479 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 480 } else if (cpu_is_xsc3()) { 481 /* 482 * For Xscale3, 483 * - shared device is TEXCB=00101 484 * - nonshared device is TEXCB=01000 485 * - write combine device mem is TEXCB=00100 486 * (Inner/Outer Uncacheable in xsc3 parlance) 487 */ 488 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 489 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 490 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 491 } else { 492 /* 493 * For ARMv6 and ARMv7 without TEX remapping, 494 * - shared device is TEXCB=00001 495 * - nonshared device is TEXCB=01000 496 * - write combine device mem is TEXCB=00100 497 * (Uncached Normal in ARMv6 parlance). 498 */ 499 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 500 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 501 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 502 } 503 } else { 504 /* 505 * On others, write combining is "Uncached/Buffered" 506 */ 507 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 508 } 509 510 /* 511 * Now deal with the memory-type mappings 512 */ 513 cp = &cache_policies[cachepolicy]; 514 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 515 s2_pgprot = cp->pte_s2; 516 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; 517 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; 518 519 /* 520 * We don't use domains on ARMv6 (since this causes problems with 521 * v6/v7 kernels), so we must use a separate memory type for user 522 * r/o, kernel r/w to map the vectors page. 523 */ 524 #ifndef CONFIG_ARM_LPAE 525 if (cpu_arch == CPU_ARCH_ARMv6) 526 vecs_pgprot |= L_PTE_MT_VECTORS; 527 #endif 528 529 /* 530 * ARMv6 and above have extended page tables. 531 */ 532 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 533 #ifndef CONFIG_ARM_LPAE 534 /* 535 * Mark cache clean areas and XIP ROM read only 536 * from SVC mode and no access from userspace. 537 */ 538 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 539 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 540 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 541 #endif 542 543 if (is_smp()) { 544 /* 545 * Mark memory with the "shared" attribute 546 * for SMP systems 547 */ 548 user_pgprot |= L_PTE_SHARED; 549 kern_pgprot |= L_PTE_SHARED; 550 vecs_pgprot |= L_PTE_SHARED; 551 s2_pgprot |= L_PTE_SHARED; 552 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 553 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 554 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 555 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 556 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 557 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 558 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 559 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 560 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 561 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 562 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 563 } 564 } 565 566 /* 567 * Non-cacheable Normal - intended for memory areas that must 568 * not cause dirty cache line writebacks when used 569 */ 570 if (cpu_arch >= CPU_ARCH_ARMv6) { 571 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 572 /* Non-cacheable Normal is XCB = 001 */ 573 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 574 PMD_SECT_BUFFERED; 575 } else { 576 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 577 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 578 PMD_SECT_TEX(1); 579 } 580 } else { 581 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 582 } 583 584 #ifdef CONFIG_ARM_LPAE 585 /* 586 * Do not generate access flag faults for the kernel mappings. 587 */ 588 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 589 mem_types[i].prot_pte |= PTE_EXT_AF; 590 if (mem_types[i].prot_sect) 591 mem_types[i].prot_sect |= PMD_SECT_AF; 592 } 593 kern_pgprot |= PTE_EXT_AF; 594 vecs_pgprot |= PTE_EXT_AF; 595 #endif 596 597 for (i = 0; i < 16; i++) { 598 pteval_t v = pgprot_val(protection_map[i]); 599 protection_map[i] = __pgprot(v | user_pgprot); 600 } 601 602 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 603 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 604 605 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 606 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 607 L_PTE_DIRTY | kern_pgprot); 608 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); 609 pgprot_s2_device = __pgprot(s2_device_pgprot); 610 pgprot_hyp_device = __pgprot(hyp_device_pgprot); 611 612 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 613 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 614 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 615 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 616 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 617 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 618 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 619 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 620 mem_types[MT_ROM].prot_sect |= cp->pmd; 621 622 switch (cp->pmd) { 623 case PMD_SECT_WT: 624 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 625 break; 626 case PMD_SECT_WB: 627 case PMD_SECT_WBWA: 628 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 629 break; 630 } 631 pr_info("Memory policy: %sData cache %s\n", 632 ecc_mask ? "ECC enabled, " : "", cp->policy); 633 634 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 635 struct mem_type *t = &mem_types[i]; 636 if (t->prot_l1) 637 t->prot_l1 |= PMD_DOMAIN(t->domain); 638 if (t->prot_sect) 639 t->prot_sect |= PMD_DOMAIN(t->domain); 640 } 641 } 642 643 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 644 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 645 unsigned long size, pgprot_t vma_prot) 646 { 647 if (!pfn_valid(pfn)) 648 return pgprot_noncached(vma_prot); 649 else if (file->f_flags & O_SYNC) 650 return pgprot_writecombine(vma_prot); 651 return vma_prot; 652 } 653 EXPORT_SYMBOL(phys_mem_access_prot); 654 #endif 655 656 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 657 658 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) 659 { 660 void *ptr = __va(memblock_alloc(sz, align)); 661 memset(ptr, 0, sz); 662 return ptr; 663 } 664 665 static void __init *early_alloc(unsigned long sz) 666 { 667 return early_alloc_aligned(sz, sz); 668 } 669 670 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) 671 { 672 if (pmd_none(*pmd)) { 673 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 674 __pmd_populate(pmd, __pa(pte), prot); 675 } 676 BUG_ON(pmd_bad(*pmd)); 677 return pte_offset_kernel(pmd, addr); 678 } 679 680 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 681 unsigned long end, unsigned long pfn, 682 const struct mem_type *type) 683 { 684 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); 685 do { 686 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); 687 pfn++; 688 } while (pte++, addr += PAGE_SIZE, addr != end); 689 } 690 691 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 692 unsigned long end, phys_addr_t phys, 693 const struct mem_type *type) 694 { 695 pmd_t *p = pmd; 696 697 #ifndef CONFIG_ARM_LPAE 698 /* 699 * In classic MMU format, puds and pmds are folded in to 700 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 701 * group of L1 entries making up one logical pointer to 702 * an L2 table (2MB), where as PMDs refer to the individual 703 * L1 entries (1MB). Hence increment to get the correct 704 * offset for odd 1MB sections. 705 * (See arch/arm/include/asm/pgtable-2level.h) 706 */ 707 if (addr & SECTION_SIZE) 708 pmd++; 709 #endif 710 do { 711 *pmd = __pmd(phys | type->prot_sect); 712 phys += SECTION_SIZE; 713 } while (pmd++, addr += SECTION_SIZE, addr != end); 714 715 flush_pmd_entry(p); 716 } 717 718 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 719 unsigned long end, phys_addr_t phys, 720 const struct mem_type *type) 721 { 722 pmd_t *pmd = pmd_offset(pud, addr); 723 unsigned long next; 724 725 do { 726 /* 727 * With LPAE, we must loop over to map 728 * all the pmds for the given range. 729 */ 730 next = pmd_addr_end(addr, end); 731 732 /* 733 * Try a section mapping - addr, next and phys must all be 734 * aligned to a section boundary. 735 */ 736 if (type->prot_sect && 737 ((addr | next | phys) & ~SECTION_MASK) == 0) { 738 __map_init_section(pmd, addr, next, phys, type); 739 } else { 740 alloc_init_pte(pmd, addr, next, 741 __phys_to_pfn(phys), type); 742 } 743 744 phys += next - addr; 745 746 } while (pmd++, addr = next, addr != end); 747 } 748 749 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, 750 unsigned long end, phys_addr_t phys, 751 const struct mem_type *type) 752 { 753 pud_t *pud = pud_offset(pgd, addr); 754 unsigned long next; 755 756 do { 757 next = pud_addr_end(addr, end); 758 alloc_init_pmd(pud, addr, next, phys, type); 759 phys += next - addr; 760 } while (pud++, addr = next, addr != end); 761 } 762 763 #ifndef CONFIG_ARM_LPAE 764 static void __init create_36bit_mapping(struct map_desc *md, 765 const struct mem_type *type) 766 { 767 unsigned long addr, length, end; 768 phys_addr_t phys; 769 pgd_t *pgd; 770 771 addr = md->virtual; 772 phys = __pfn_to_phys(md->pfn); 773 length = PAGE_ALIGN(md->length); 774 775 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 776 printk(KERN_ERR "MM: CPU does not support supersection " 777 "mapping for 0x%08llx at 0x%08lx\n", 778 (long long)__pfn_to_phys((u64)md->pfn), addr); 779 return; 780 } 781 782 /* N.B. ARMv6 supersections are only defined to work with domain 0. 783 * Since domain assignments can in fact be arbitrary, the 784 * 'domain == 0' check below is required to insure that ARMv6 785 * supersections are only allocated for domain 0 regardless 786 * of the actual domain assignments in use. 787 */ 788 if (type->domain) { 789 printk(KERN_ERR "MM: invalid domain in supersection " 790 "mapping for 0x%08llx at 0x%08lx\n", 791 (long long)__pfn_to_phys((u64)md->pfn), addr); 792 return; 793 } 794 795 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 796 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx" 797 " at 0x%08lx invalid alignment\n", 798 (long long)__pfn_to_phys((u64)md->pfn), addr); 799 return; 800 } 801 802 /* 803 * Shift bits [35:32] of address into bits [23:20] of PMD 804 * (See ARMv6 spec). 805 */ 806 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 807 808 pgd = pgd_offset_k(addr); 809 end = addr + length; 810 do { 811 pud_t *pud = pud_offset(pgd, addr); 812 pmd_t *pmd = pmd_offset(pud, addr); 813 int i; 814 815 for (i = 0; i < 16; i++) 816 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 817 818 addr += SUPERSECTION_SIZE; 819 phys += SUPERSECTION_SIZE; 820 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 821 } while (addr != end); 822 } 823 #endif /* !CONFIG_ARM_LPAE */ 824 825 /* 826 * Create the page directory entries and any necessary 827 * page tables for the mapping specified by `md'. We 828 * are able to cope here with varying sizes and address 829 * offsets, and we take full advantage of sections and 830 * supersections. 831 */ 832 static void __init create_mapping(struct map_desc *md) 833 { 834 unsigned long addr, length, end; 835 phys_addr_t phys; 836 const struct mem_type *type; 837 pgd_t *pgd; 838 839 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 840 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx" 841 " at 0x%08lx in user region\n", 842 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 843 return; 844 } 845 846 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 847 md->virtual >= PAGE_OFFSET && 848 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 849 printk(KERN_WARNING "BUG: mapping for 0x%08llx" 850 " at 0x%08lx out of vmalloc space\n", 851 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 852 } 853 854 type = &mem_types[md->type]; 855 856 #ifndef CONFIG_ARM_LPAE 857 /* 858 * Catch 36-bit addresses 859 */ 860 if (md->pfn >= 0x100000) { 861 create_36bit_mapping(md, type); 862 return; 863 } 864 #endif 865 866 addr = md->virtual & PAGE_MASK; 867 phys = __pfn_to_phys(md->pfn); 868 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 869 870 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 871 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not " 872 "be mapped using pages, ignoring.\n", 873 (long long)__pfn_to_phys(md->pfn), addr); 874 return; 875 } 876 877 pgd = pgd_offset_k(addr); 878 end = addr + length; 879 do { 880 unsigned long next = pgd_addr_end(addr, end); 881 882 alloc_init_pud(pgd, addr, next, phys, type); 883 884 phys += next - addr; 885 addr = next; 886 } while (pgd++, addr != end); 887 } 888 889 /* 890 * Create the architecture specific mappings 891 */ 892 void __init iotable_init(struct map_desc *io_desc, int nr) 893 { 894 struct map_desc *md; 895 struct vm_struct *vm; 896 struct static_vm *svm; 897 898 if (!nr) 899 return; 900 901 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); 902 903 for (md = io_desc; nr; md++, nr--) { 904 create_mapping(md); 905 906 vm = &svm->vm; 907 vm->addr = (void *)(md->virtual & PAGE_MASK); 908 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 909 vm->phys_addr = __pfn_to_phys(md->pfn); 910 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 911 vm->flags |= VM_ARM_MTYPE(md->type); 912 vm->caller = iotable_init; 913 add_static_vm_early(svm++); 914 } 915 } 916 917 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 918 void *caller) 919 { 920 struct vm_struct *vm; 921 struct static_vm *svm; 922 923 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); 924 925 vm = &svm->vm; 926 vm->addr = (void *)addr; 927 vm->size = size; 928 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 929 vm->caller = caller; 930 add_static_vm_early(svm); 931 } 932 933 #ifndef CONFIG_ARM_LPAE 934 935 /* 936 * The Linux PMD is made of two consecutive section entries covering 2MB 937 * (see definition in include/asm/pgtable-2level.h). However a call to 938 * create_mapping() may optimize static mappings by using individual 939 * 1MB section mappings. This leaves the actual PMD potentially half 940 * initialized if the top or bottom section entry isn't used, leaving it 941 * open to problems if a subsequent ioremap() or vmalloc() tries to use 942 * the virtual space left free by that unused section entry. 943 * 944 * Let's avoid the issue by inserting dummy vm entries covering the unused 945 * PMD halves once the static mappings are in place. 946 */ 947 948 static void __init pmd_empty_section_gap(unsigned long addr) 949 { 950 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 951 } 952 953 static void __init fill_pmd_gaps(void) 954 { 955 struct static_vm *svm; 956 struct vm_struct *vm; 957 unsigned long addr, next = 0; 958 pmd_t *pmd; 959 960 list_for_each_entry(svm, &static_vmlist, list) { 961 vm = &svm->vm; 962 addr = (unsigned long)vm->addr; 963 if (addr < next) 964 continue; 965 966 /* 967 * Check if this vm starts on an odd section boundary. 968 * If so and the first section entry for this PMD is free 969 * then we block the corresponding virtual address. 970 */ 971 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 972 pmd = pmd_off_k(addr); 973 if (pmd_none(*pmd)) 974 pmd_empty_section_gap(addr & PMD_MASK); 975 } 976 977 /* 978 * Then check if this vm ends on an odd section boundary. 979 * If so and the second section entry for this PMD is empty 980 * then we block the corresponding virtual address. 981 */ 982 addr += vm->size; 983 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 984 pmd = pmd_off_k(addr) + 1; 985 if (pmd_none(*pmd)) 986 pmd_empty_section_gap(addr); 987 } 988 989 /* no need to look at any vm entry until we hit the next PMD */ 990 next = (addr + PMD_SIZE - 1) & PMD_MASK; 991 } 992 } 993 994 #else 995 #define fill_pmd_gaps() do { } while (0) 996 #endif 997 998 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 999 static void __init pci_reserve_io(void) 1000 { 1001 struct static_vm *svm; 1002 1003 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1004 if (svm) 1005 return; 1006 1007 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1008 } 1009 #else 1010 #define pci_reserve_io() do { } while (0) 1011 #endif 1012 1013 #ifdef CONFIG_DEBUG_LL 1014 void __init debug_ll_io_init(void) 1015 { 1016 struct map_desc map; 1017 1018 debug_ll_addr(&map.pfn, &map.virtual); 1019 if (!map.pfn || !map.virtual) 1020 return; 1021 map.pfn = __phys_to_pfn(map.pfn); 1022 map.virtual &= PAGE_MASK; 1023 map.length = PAGE_SIZE; 1024 map.type = MT_DEVICE; 1025 iotable_init(&map, 1); 1026 } 1027 #endif 1028 1029 static void * __initdata vmalloc_min = 1030 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1031 1032 /* 1033 * vmalloc=size forces the vmalloc area to be exactly 'size' 1034 * bytes. This can be used to increase (or decrease) the vmalloc 1035 * area - the default is 240m. 1036 */ 1037 static int __init early_vmalloc(char *arg) 1038 { 1039 unsigned long vmalloc_reserve = memparse(arg, NULL); 1040 1041 if (vmalloc_reserve < SZ_16M) { 1042 vmalloc_reserve = SZ_16M; 1043 printk(KERN_WARNING 1044 "vmalloc area too small, limiting to %luMB\n", 1045 vmalloc_reserve >> 20); 1046 } 1047 1048 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1049 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1050 printk(KERN_WARNING 1051 "vmalloc area is too big, limiting to %luMB\n", 1052 vmalloc_reserve >> 20); 1053 } 1054 1055 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1056 return 0; 1057 } 1058 early_param("vmalloc", early_vmalloc); 1059 1060 phys_addr_t arm_lowmem_limit __initdata = 0; 1061 1062 void __init sanity_check_meminfo(void) 1063 { 1064 phys_addr_t memblock_limit = 0; 1065 int highmem = 0; 1066 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1; 1067 struct memblock_region *reg; 1068 1069 for_each_memblock(memory, reg) { 1070 phys_addr_t block_start = reg->base; 1071 phys_addr_t block_end = reg->base + reg->size; 1072 phys_addr_t size_limit = reg->size; 1073 1074 if (reg->base >= vmalloc_limit) 1075 highmem = 1; 1076 else 1077 size_limit = vmalloc_limit - reg->base; 1078 1079 1080 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1081 1082 if (highmem) { 1083 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n", 1084 &block_start, &block_end); 1085 memblock_remove(reg->base, reg->size); 1086 continue; 1087 } 1088 1089 if (reg->size > size_limit) { 1090 phys_addr_t overlap_size = reg->size - size_limit; 1091 1092 pr_notice("Truncating RAM at %pa-%pa to -%pa", 1093 &block_start, &block_end, &vmalloc_limit); 1094 memblock_remove(vmalloc_limit, overlap_size); 1095 block_end = vmalloc_limit; 1096 } 1097 } 1098 1099 if (!highmem) { 1100 if (block_end > arm_lowmem_limit) { 1101 if (reg->size > size_limit) 1102 arm_lowmem_limit = vmalloc_limit; 1103 else 1104 arm_lowmem_limit = block_end; 1105 } 1106 1107 /* 1108 * Find the first non-section-aligned page, and point 1109 * memblock_limit at it. This relies on rounding the 1110 * limit down to be section-aligned, which happens at 1111 * the end of this function. 1112 * 1113 * With this algorithm, the start or end of almost any 1114 * bank can be non-section-aligned. The only exception 1115 * is that the start of the bank 0 must be section- 1116 * aligned, since otherwise memory would need to be 1117 * allocated when mapping the start of bank 0, which 1118 * occurs before any free memory is mapped. 1119 */ 1120 if (!memblock_limit) { 1121 if (!IS_ALIGNED(block_start, SECTION_SIZE)) 1122 memblock_limit = block_start; 1123 else if (!IS_ALIGNED(block_end, SECTION_SIZE)) 1124 memblock_limit = arm_lowmem_limit; 1125 } 1126 1127 } 1128 } 1129 1130 high_memory = __va(arm_lowmem_limit - 1) + 1; 1131 1132 /* 1133 * Round the memblock limit down to a section size. This 1134 * helps to ensure that we will allocate memory from the 1135 * last full section, which should be mapped. 1136 */ 1137 if (memblock_limit) 1138 memblock_limit = round_down(memblock_limit, SECTION_SIZE); 1139 if (!memblock_limit) 1140 memblock_limit = arm_lowmem_limit; 1141 1142 memblock_set_current_limit(memblock_limit); 1143 } 1144 1145 static inline void prepare_page_table(void) 1146 { 1147 unsigned long addr; 1148 phys_addr_t end; 1149 1150 /* 1151 * Clear out all the mappings below the kernel image. 1152 */ 1153 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1154 pmd_clear(pmd_off_k(addr)); 1155 1156 #ifdef CONFIG_XIP_KERNEL 1157 /* The XIP kernel is mapped in the module area -- skip over it */ 1158 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK; 1159 #endif 1160 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1161 pmd_clear(pmd_off_k(addr)); 1162 1163 /* 1164 * Find the end of the first block of lowmem. 1165 */ 1166 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1167 if (end >= arm_lowmem_limit) 1168 end = arm_lowmem_limit; 1169 1170 /* 1171 * Clear out all the kernel space mappings, except for the first 1172 * memory bank, up to the vmalloc region. 1173 */ 1174 for (addr = __phys_to_virt(end); 1175 addr < VMALLOC_START; addr += PMD_SIZE) 1176 pmd_clear(pmd_off_k(addr)); 1177 } 1178 1179 #ifdef CONFIG_ARM_LPAE 1180 /* the first page is reserved for pgd */ 1181 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1182 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1183 #else 1184 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1185 #endif 1186 1187 /* 1188 * Reserve the special regions of memory 1189 */ 1190 void __init arm_mm_memblock_reserve(void) 1191 { 1192 /* 1193 * Reserve the page tables. These are already in use, 1194 * and can only be in node 0. 1195 */ 1196 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1197 1198 #ifdef CONFIG_SA1111 1199 /* 1200 * Because of the SA1111 DMA bug, we want to preserve our 1201 * precious DMA-able memory... 1202 */ 1203 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1204 #endif 1205 } 1206 1207 /* 1208 * Set up the device mappings. Since we clear out the page tables for all 1209 * mappings above VMALLOC_START, we will remove any debug device mappings. 1210 * This means you have to be careful how you debug this function, or any 1211 * called function. This means you can't use any function or debugging 1212 * method which may touch any device, otherwise the kernel _will_ crash. 1213 */ 1214 static void __init devicemaps_init(const struct machine_desc *mdesc) 1215 { 1216 struct map_desc map; 1217 unsigned long addr; 1218 void *vectors; 1219 1220 /* 1221 * Allocate the vector page early. 1222 */ 1223 vectors = early_alloc(PAGE_SIZE * 2); 1224 1225 early_trap_init(vectors); 1226 1227 for (addr = VMALLOC_START; addr; addr += PMD_SIZE) 1228 pmd_clear(pmd_off_k(addr)); 1229 1230 /* 1231 * Map the kernel if it is XIP. 1232 * It is always first in the modulearea. 1233 */ 1234 #ifdef CONFIG_XIP_KERNEL 1235 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1236 map.virtual = MODULES_VADDR; 1237 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1238 map.type = MT_ROM; 1239 create_mapping(&map); 1240 #endif 1241 1242 /* 1243 * Map the cache flushing regions. 1244 */ 1245 #ifdef FLUSH_BASE 1246 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1247 map.virtual = FLUSH_BASE; 1248 map.length = SZ_1M; 1249 map.type = MT_CACHECLEAN; 1250 create_mapping(&map); 1251 #endif 1252 #ifdef FLUSH_BASE_MINICACHE 1253 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1254 map.virtual = FLUSH_BASE_MINICACHE; 1255 map.length = SZ_1M; 1256 map.type = MT_MINICLEAN; 1257 create_mapping(&map); 1258 #endif 1259 1260 /* 1261 * Create a mapping for the machine vectors at the high-vectors 1262 * location (0xffff0000). If we aren't using high-vectors, also 1263 * create a mapping at the low-vectors virtual address. 1264 */ 1265 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1266 map.virtual = 0xffff0000; 1267 map.length = PAGE_SIZE; 1268 #ifdef CONFIG_KUSER_HELPERS 1269 map.type = MT_HIGH_VECTORS; 1270 #else 1271 map.type = MT_LOW_VECTORS; 1272 #endif 1273 create_mapping(&map); 1274 1275 if (!vectors_high()) { 1276 map.virtual = 0; 1277 map.length = PAGE_SIZE * 2; 1278 map.type = MT_LOW_VECTORS; 1279 create_mapping(&map); 1280 } 1281 1282 /* Now create a kernel read-only mapping */ 1283 map.pfn += 1; 1284 map.virtual = 0xffff0000 + PAGE_SIZE; 1285 map.length = PAGE_SIZE; 1286 map.type = MT_LOW_VECTORS; 1287 create_mapping(&map); 1288 1289 /* 1290 * Ask the machine support to map in the statically mapped devices. 1291 */ 1292 if (mdesc->map_io) 1293 mdesc->map_io(); 1294 else 1295 debug_ll_io_init(); 1296 fill_pmd_gaps(); 1297 1298 /* Reserve fixed i/o space in VMALLOC region */ 1299 pci_reserve_io(); 1300 1301 /* 1302 * Finally flush the caches and tlb to ensure that we're in a 1303 * consistent state wrt the writebuffer. This also ensures that 1304 * any write-allocated cache lines in the vector page are written 1305 * back. After this point, we can start to touch devices again. 1306 */ 1307 local_flush_tlb_all(); 1308 flush_cache_all(); 1309 } 1310 1311 static void __init kmap_init(void) 1312 { 1313 #ifdef CONFIG_HIGHMEM 1314 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1315 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1316 1317 fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START), 1318 FIXADDR_START, _PAGE_KERNEL_TABLE); 1319 #endif 1320 } 1321 1322 static void __init map_lowmem(void) 1323 { 1324 struct memblock_region *reg; 1325 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE); 1326 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1327 1328 /* Map all the lowmem memory banks. */ 1329 for_each_memblock(memory, reg) { 1330 phys_addr_t start = reg->base; 1331 phys_addr_t end = start + reg->size; 1332 struct map_desc map; 1333 1334 if (end > arm_lowmem_limit) 1335 end = arm_lowmem_limit; 1336 if (start >= end) 1337 break; 1338 1339 if (end < kernel_x_start || start >= kernel_x_end) { 1340 map.pfn = __phys_to_pfn(start); 1341 map.virtual = __phys_to_virt(start); 1342 map.length = end - start; 1343 map.type = MT_MEMORY_RWX; 1344 1345 create_mapping(&map); 1346 } else { 1347 /* This better cover the entire kernel */ 1348 if (start < kernel_x_start) { 1349 map.pfn = __phys_to_pfn(start); 1350 map.virtual = __phys_to_virt(start); 1351 map.length = kernel_x_start - start; 1352 map.type = MT_MEMORY_RW; 1353 1354 create_mapping(&map); 1355 } 1356 1357 map.pfn = __phys_to_pfn(kernel_x_start); 1358 map.virtual = __phys_to_virt(kernel_x_start); 1359 map.length = kernel_x_end - kernel_x_start; 1360 map.type = MT_MEMORY_RWX; 1361 1362 create_mapping(&map); 1363 1364 if (kernel_x_end < end) { 1365 map.pfn = __phys_to_pfn(kernel_x_end); 1366 map.virtual = __phys_to_virt(kernel_x_end); 1367 map.length = end - kernel_x_end; 1368 map.type = MT_MEMORY_RW; 1369 1370 create_mapping(&map); 1371 } 1372 } 1373 } 1374 } 1375 1376 #ifdef CONFIG_ARM_LPAE 1377 /* 1378 * early_paging_init() recreates boot time page table setup, allowing machines 1379 * to switch over to a high (>4G) address space on LPAE systems 1380 */ 1381 void __init early_paging_init(const struct machine_desc *mdesc, 1382 struct proc_info_list *procinfo) 1383 { 1384 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags; 1385 unsigned long map_start, map_end; 1386 pgd_t *pgd0, *pgdk; 1387 pud_t *pud0, *pudk, *pud_start; 1388 pmd_t *pmd0, *pmdk; 1389 phys_addr_t phys; 1390 int i; 1391 1392 if (!(mdesc->init_meminfo)) 1393 return; 1394 1395 /* remap kernel code and data */ 1396 map_start = init_mm.start_code; 1397 map_end = init_mm.brk; 1398 1399 /* get a handle on things... */ 1400 pgd0 = pgd_offset_k(0); 1401 pud_start = pud0 = pud_offset(pgd0, 0); 1402 pmd0 = pmd_offset(pud0, 0); 1403 1404 pgdk = pgd_offset_k(map_start); 1405 pudk = pud_offset(pgdk, map_start); 1406 pmdk = pmd_offset(pudk, map_start); 1407 1408 mdesc->init_meminfo(); 1409 1410 /* Run the patch stub to update the constants */ 1411 fixup_pv_table(&__pv_table_begin, 1412 (&__pv_table_end - &__pv_table_begin) << 2); 1413 1414 /* 1415 * Cache cleaning operations for self-modifying code 1416 * We should clean the entries by MVA but running a 1417 * for loop over every pv_table entry pointer would 1418 * just complicate the code. 1419 */ 1420 flush_cache_louis(); 1421 dsb(ishst); 1422 isb(); 1423 1424 /* remap level 1 table */ 1425 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) { 1426 set_pud(pud0, 1427 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER)); 1428 pmd0 += PTRS_PER_PMD; 1429 } 1430 1431 /* remap pmds for kernel mapping */ 1432 phys = __pa(map_start) & PMD_MASK; 1433 do { 1434 *pmdk++ = __pmd(phys | pmdprot); 1435 phys += PMD_SIZE; 1436 } while (phys < map_end); 1437 1438 flush_cache_all(); 1439 cpu_switch_mm(pgd0, &init_mm); 1440 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET); 1441 local_flush_bp_all(); 1442 local_flush_tlb_all(); 1443 } 1444 1445 #else 1446 1447 void __init early_paging_init(const struct machine_desc *mdesc, 1448 struct proc_info_list *procinfo) 1449 { 1450 if (mdesc->init_meminfo) 1451 mdesc->init_meminfo(); 1452 } 1453 1454 #endif 1455 1456 /* 1457 * paging_init() sets up the page tables, initialises the zone memory 1458 * maps, and sets up the zero page, bad page and bad page tables. 1459 */ 1460 void __init paging_init(const struct machine_desc *mdesc) 1461 { 1462 void *zero_page; 1463 1464 build_mem_type_table(); 1465 prepare_page_table(); 1466 map_lowmem(); 1467 dma_contiguous_remap(); 1468 devicemaps_init(mdesc); 1469 kmap_init(); 1470 tcm_init(); 1471 1472 top_pmd = pmd_off_k(0xffff0000); 1473 1474 /* allocate the zero page. */ 1475 zero_page = early_alloc(PAGE_SIZE); 1476 1477 bootmem_init(); 1478 1479 empty_zero_page = virt_to_page(zero_page); 1480 __flush_dcache_page(NULL, empty_zero_page); 1481 } 1482