xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 0d456bad)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20 
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35 
36 #include "mm.h"
37 
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44 
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49 
50 #define CPOLICY_UNCACHED	0
51 #define CPOLICY_BUFFERED	1
52 #define CPOLICY_WRITETHROUGH	2
53 #define CPOLICY_WRITEBACK	3
54 #define CPOLICY_WRITEALLOC	4
55 
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60 
61 EXPORT_SYMBOL(pgprot_user);
62 EXPORT_SYMBOL(pgprot_kernel);
63 
64 struct cachepolicy {
65 	const char	policy[16];
66 	unsigned int	cr_mask;
67 	pmdval_t	pmd;
68 	pteval_t	pte;
69 };
70 
71 static struct cachepolicy cache_policies[] __initdata = {
72 	{
73 		.policy		= "uncached",
74 		.cr_mask	= CR_W|CR_C,
75 		.pmd		= PMD_SECT_UNCACHED,
76 		.pte		= L_PTE_MT_UNCACHED,
77 	}, {
78 		.policy		= "buffered",
79 		.cr_mask	= CR_C,
80 		.pmd		= PMD_SECT_BUFFERED,
81 		.pte		= L_PTE_MT_BUFFERABLE,
82 	}, {
83 		.policy		= "writethrough",
84 		.cr_mask	= 0,
85 		.pmd		= PMD_SECT_WT,
86 		.pte		= L_PTE_MT_WRITETHROUGH,
87 	}, {
88 		.policy		= "writeback",
89 		.cr_mask	= 0,
90 		.pmd		= PMD_SECT_WB,
91 		.pte		= L_PTE_MT_WRITEBACK,
92 	}, {
93 		.policy		= "writealloc",
94 		.cr_mask	= 0,
95 		.pmd		= PMD_SECT_WBWA,
96 		.pte		= L_PTE_MT_WRITEALLOC,
97 	}
98 };
99 
100 /*
101  * These are useful for identifying cache coherency
102  * problems by allowing the cache or the cache and
103  * writebuffer to be turned off.  (Note: the write
104  * buffer should not be on and the cache off).
105  */
106 static int __init early_cachepolicy(char *p)
107 {
108 	int i;
109 
110 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
111 		int len = strlen(cache_policies[i].policy);
112 
113 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
114 			cachepolicy = i;
115 			cr_alignment &= ~cache_policies[i].cr_mask;
116 			cr_no_alignment &= ~cache_policies[i].cr_mask;
117 			break;
118 		}
119 	}
120 	if (i == ARRAY_SIZE(cache_policies))
121 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
122 	/*
123 	 * This restriction is partly to do with the way we boot; it is
124 	 * unpredictable to have memory mapped using two different sets of
125 	 * memory attributes (shared, type, and cache attribs).  We can not
126 	 * change these attributes once the initial assembly has setup the
127 	 * page tables.
128 	 */
129 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
130 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
131 		cachepolicy = CPOLICY_WRITEBACK;
132 	}
133 	flush_cache_all();
134 	set_cr(cr_alignment);
135 	return 0;
136 }
137 early_param("cachepolicy", early_cachepolicy);
138 
139 static int __init early_nocache(char *__unused)
140 {
141 	char *p = "buffered";
142 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
143 	early_cachepolicy(p);
144 	return 0;
145 }
146 early_param("nocache", early_nocache);
147 
148 static int __init early_nowrite(char *__unused)
149 {
150 	char *p = "uncached";
151 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
152 	early_cachepolicy(p);
153 	return 0;
154 }
155 early_param("nowb", early_nowrite);
156 
157 #ifndef CONFIG_ARM_LPAE
158 static int __init early_ecc(char *p)
159 {
160 	if (memcmp(p, "on", 2) == 0)
161 		ecc_mask = PMD_PROTECTION;
162 	else if (memcmp(p, "off", 3) == 0)
163 		ecc_mask = 0;
164 	return 0;
165 }
166 early_param("ecc", early_ecc);
167 #endif
168 
169 static int __init noalign_setup(char *__unused)
170 {
171 	cr_alignment &= ~CR_A;
172 	cr_no_alignment &= ~CR_A;
173 	set_cr(cr_alignment);
174 	return 1;
175 }
176 __setup("noalign", noalign_setup);
177 
178 #ifndef CONFIG_SMP
179 void adjust_cr(unsigned long mask, unsigned long set)
180 {
181 	unsigned long flags;
182 
183 	mask &= ~CR_A;
184 
185 	set &= mask;
186 
187 	local_irq_save(flags);
188 
189 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
190 	cr_alignment = (cr_alignment & ~mask) | set;
191 
192 	set_cr((get_cr() & ~mask) | set);
193 
194 	local_irq_restore(flags);
195 }
196 #endif
197 
198 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
199 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
200 
201 static struct mem_type mem_types[] = {
202 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
203 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
204 				  L_PTE_SHARED,
205 		.prot_l1	= PMD_TYPE_TABLE,
206 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
207 		.domain		= DOMAIN_IO,
208 	},
209 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
210 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
211 		.prot_l1	= PMD_TYPE_TABLE,
212 		.prot_sect	= PROT_SECT_DEVICE,
213 		.domain		= DOMAIN_IO,
214 	},
215 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
216 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
217 		.prot_l1	= PMD_TYPE_TABLE,
218 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
219 		.domain		= DOMAIN_IO,
220 	},
221 	[MT_DEVICE_WC] = {	/* ioremap_wc */
222 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
223 		.prot_l1	= PMD_TYPE_TABLE,
224 		.prot_sect	= PROT_SECT_DEVICE,
225 		.domain		= DOMAIN_IO,
226 	},
227 	[MT_UNCACHED] = {
228 		.prot_pte	= PROT_PTE_DEVICE,
229 		.prot_l1	= PMD_TYPE_TABLE,
230 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
231 		.domain		= DOMAIN_IO,
232 	},
233 	[MT_CACHECLEAN] = {
234 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
235 		.domain    = DOMAIN_KERNEL,
236 	},
237 #ifndef CONFIG_ARM_LPAE
238 	[MT_MINICLEAN] = {
239 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
240 		.domain    = DOMAIN_KERNEL,
241 	},
242 #endif
243 	[MT_LOW_VECTORS] = {
244 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 				L_PTE_RDONLY,
246 		.prot_l1   = PMD_TYPE_TABLE,
247 		.domain    = DOMAIN_USER,
248 	},
249 	[MT_HIGH_VECTORS] = {
250 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251 				L_PTE_USER | L_PTE_RDONLY,
252 		.prot_l1   = PMD_TYPE_TABLE,
253 		.domain    = DOMAIN_USER,
254 	},
255 	[MT_MEMORY] = {
256 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
257 		.prot_l1   = PMD_TYPE_TABLE,
258 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 		.domain    = DOMAIN_KERNEL,
260 	},
261 	[MT_ROM] = {
262 		.prot_sect = PMD_TYPE_SECT,
263 		.domain    = DOMAIN_KERNEL,
264 	},
265 	[MT_MEMORY_NONCACHED] = {
266 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267 				L_PTE_MT_BUFFERABLE,
268 		.prot_l1   = PMD_TYPE_TABLE,
269 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
270 		.domain    = DOMAIN_KERNEL,
271 	},
272 	[MT_MEMORY_DTCM] = {
273 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274 				L_PTE_XN,
275 		.prot_l1   = PMD_TYPE_TABLE,
276 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
277 		.domain    = DOMAIN_KERNEL,
278 	},
279 	[MT_MEMORY_ITCM] = {
280 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
281 		.prot_l1   = PMD_TYPE_TABLE,
282 		.domain    = DOMAIN_KERNEL,
283 	},
284 	[MT_MEMORY_SO] = {
285 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286 				L_PTE_MT_UNCACHED,
287 		.prot_l1   = PMD_TYPE_TABLE,
288 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
289 				PMD_SECT_UNCACHED | PMD_SECT_XN,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_DMA_READY] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294 		.prot_l1   = PMD_TYPE_TABLE,
295 		.domain    = DOMAIN_KERNEL,
296 	},
297 };
298 
299 const struct mem_type *get_mem_type(unsigned int type)
300 {
301 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
302 }
303 EXPORT_SYMBOL(get_mem_type);
304 
305 /*
306  * Adjust the PMD section entries according to the CPU in use.
307  */
308 static void __init build_mem_type_table(void)
309 {
310 	struct cachepolicy *cp;
311 	unsigned int cr = get_cr();
312 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
313 	int cpu_arch = cpu_architecture();
314 	int i;
315 
316 	if (cpu_arch < CPU_ARCH_ARMv6) {
317 #if defined(CONFIG_CPU_DCACHE_DISABLE)
318 		if (cachepolicy > CPOLICY_BUFFERED)
319 			cachepolicy = CPOLICY_BUFFERED;
320 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
321 		if (cachepolicy > CPOLICY_WRITETHROUGH)
322 			cachepolicy = CPOLICY_WRITETHROUGH;
323 #endif
324 	}
325 	if (cpu_arch < CPU_ARCH_ARMv5) {
326 		if (cachepolicy >= CPOLICY_WRITEALLOC)
327 			cachepolicy = CPOLICY_WRITEBACK;
328 		ecc_mask = 0;
329 	}
330 	if (is_smp())
331 		cachepolicy = CPOLICY_WRITEALLOC;
332 
333 	/*
334 	 * Strip out features not present on earlier architectures.
335 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
336 	 * without extended page tables don't have the 'Shared' bit.
337 	 */
338 	if (cpu_arch < CPU_ARCH_ARMv5)
339 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
340 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
341 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
342 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
343 			mem_types[i].prot_sect &= ~PMD_SECT_S;
344 
345 	/*
346 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347 	 * "update-able on write" bit on ARM610).  However, Xscale and
348 	 * Xscale3 require this bit to be cleared.
349 	 */
350 	if (cpu_is_xscale() || cpu_is_xsc3()) {
351 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
352 			mem_types[i].prot_sect &= ~PMD_BIT4;
353 			mem_types[i].prot_l1 &= ~PMD_BIT4;
354 		}
355 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
356 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
357 			if (mem_types[i].prot_l1)
358 				mem_types[i].prot_l1 |= PMD_BIT4;
359 			if (mem_types[i].prot_sect)
360 				mem_types[i].prot_sect |= PMD_BIT4;
361 		}
362 	}
363 
364 	/*
365 	 * Mark the device areas according to the CPU/architecture.
366 	 */
367 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
368 		if (!cpu_is_xsc3()) {
369 			/*
370 			 * Mark device regions on ARMv6+ as execute-never
371 			 * to prevent speculative instruction fetches.
372 			 */
373 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
374 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
375 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
376 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
377 		}
378 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
379 			/*
380 			 * For ARMv7 with TEX remapping,
381 			 * - shared device is SXCB=1100
382 			 * - nonshared device is SXCB=0100
383 			 * - write combine device mem is SXCB=0001
384 			 * (Uncached Normal memory)
385 			 */
386 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
387 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
388 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
389 		} else if (cpu_is_xsc3()) {
390 			/*
391 			 * For Xscale3,
392 			 * - shared device is TEXCB=00101
393 			 * - nonshared device is TEXCB=01000
394 			 * - write combine device mem is TEXCB=00100
395 			 * (Inner/Outer Uncacheable in xsc3 parlance)
396 			 */
397 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
398 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
399 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
400 		} else {
401 			/*
402 			 * For ARMv6 and ARMv7 without TEX remapping,
403 			 * - shared device is TEXCB=00001
404 			 * - nonshared device is TEXCB=01000
405 			 * - write combine device mem is TEXCB=00100
406 			 * (Uncached Normal in ARMv6 parlance).
407 			 */
408 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
410 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
411 		}
412 	} else {
413 		/*
414 		 * On others, write combining is "Uncached/Buffered"
415 		 */
416 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
417 	}
418 
419 	/*
420 	 * Now deal with the memory-type mappings
421 	 */
422 	cp = &cache_policies[cachepolicy];
423 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
424 
425 	/*
426 	 * ARMv6 and above have extended page tables.
427 	 */
428 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
429 #ifndef CONFIG_ARM_LPAE
430 		/*
431 		 * Mark cache clean areas and XIP ROM read only
432 		 * from SVC mode and no access from userspace.
433 		 */
434 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
435 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
436 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
437 #endif
438 
439 		if (is_smp()) {
440 			/*
441 			 * Mark memory with the "shared" attribute
442 			 * for SMP systems
443 			 */
444 			user_pgprot |= L_PTE_SHARED;
445 			kern_pgprot |= L_PTE_SHARED;
446 			vecs_pgprot |= L_PTE_SHARED;
447 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
448 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
449 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
450 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
451 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
452 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
453 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
454 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
455 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
456 		}
457 	}
458 
459 	/*
460 	 * Non-cacheable Normal - intended for memory areas that must
461 	 * not cause dirty cache line writebacks when used
462 	 */
463 	if (cpu_arch >= CPU_ARCH_ARMv6) {
464 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
465 			/* Non-cacheable Normal is XCB = 001 */
466 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
467 				PMD_SECT_BUFFERED;
468 		} else {
469 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
470 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
471 				PMD_SECT_TEX(1);
472 		}
473 	} else {
474 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
475 	}
476 
477 #ifdef CONFIG_ARM_LPAE
478 	/*
479 	 * Do not generate access flag faults for the kernel mappings.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482 		mem_types[i].prot_pte |= PTE_EXT_AF;
483 		if (mem_types[i].prot_sect)
484 			mem_types[i].prot_sect |= PMD_SECT_AF;
485 	}
486 	kern_pgprot |= PTE_EXT_AF;
487 	vecs_pgprot |= PTE_EXT_AF;
488 #endif
489 
490 	for (i = 0; i < 16; i++) {
491 		pteval_t v = pgprot_val(protection_map[i]);
492 		protection_map[i] = __pgprot(v | user_pgprot);
493 	}
494 
495 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
496 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
497 
498 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
499 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
500 				 L_PTE_DIRTY | kern_pgprot);
501 
502 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
503 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
504 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
505 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
506 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
507 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
508 	mem_types[MT_ROM].prot_sect |= cp->pmd;
509 
510 	switch (cp->pmd) {
511 	case PMD_SECT_WT:
512 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
513 		break;
514 	case PMD_SECT_WB:
515 	case PMD_SECT_WBWA:
516 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
517 		break;
518 	}
519 	printk("Memory policy: ECC %sabled, Data cache %s\n",
520 		ecc_mask ? "en" : "dis", cp->policy);
521 
522 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
523 		struct mem_type *t = &mem_types[i];
524 		if (t->prot_l1)
525 			t->prot_l1 |= PMD_DOMAIN(t->domain);
526 		if (t->prot_sect)
527 			t->prot_sect |= PMD_DOMAIN(t->domain);
528 	}
529 }
530 
531 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
532 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
533 			      unsigned long size, pgprot_t vma_prot)
534 {
535 	if (!pfn_valid(pfn))
536 		return pgprot_noncached(vma_prot);
537 	else if (file->f_flags & O_SYNC)
538 		return pgprot_writecombine(vma_prot);
539 	return vma_prot;
540 }
541 EXPORT_SYMBOL(phys_mem_access_prot);
542 #endif
543 
544 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
545 
546 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
547 {
548 	void *ptr = __va(memblock_alloc(sz, align));
549 	memset(ptr, 0, sz);
550 	return ptr;
551 }
552 
553 static void __init *early_alloc(unsigned long sz)
554 {
555 	return early_alloc_aligned(sz, sz);
556 }
557 
558 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
559 {
560 	if (pmd_none(*pmd)) {
561 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
562 		__pmd_populate(pmd, __pa(pte), prot);
563 	}
564 	BUG_ON(pmd_bad(*pmd));
565 	return pte_offset_kernel(pmd, addr);
566 }
567 
568 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
569 				  unsigned long end, unsigned long pfn,
570 				  const struct mem_type *type)
571 {
572 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
573 	do {
574 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
575 		pfn++;
576 	} while (pte++, addr += PAGE_SIZE, addr != end);
577 }
578 
579 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
580 				      unsigned long end, phys_addr_t phys,
581 				      const struct mem_type *type)
582 {
583 	pmd_t *pmd = pmd_offset(pud, addr);
584 
585 	/*
586 	 * Try a section mapping - end, addr and phys must all be aligned
587 	 * to a section boundary.  Note that PMDs refer to the individual
588 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
589 	 * up one logical pointer to an L2 table.
590 	 */
591 	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
592 		pmd_t *p = pmd;
593 
594 #ifndef CONFIG_ARM_LPAE
595 		if (addr & SECTION_SIZE)
596 			pmd++;
597 #endif
598 
599 		do {
600 			*pmd = __pmd(phys | type->prot_sect);
601 			phys += SECTION_SIZE;
602 		} while (pmd++, addr += SECTION_SIZE, addr != end);
603 
604 		flush_pmd_entry(p);
605 	} else {
606 		/*
607 		 * No need to loop; pte's aren't interested in the
608 		 * individual L1 entries.
609 		 */
610 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
611 	}
612 }
613 
614 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
615 	unsigned long end, unsigned long phys, const struct mem_type *type)
616 {
617 	pud_t *pud = pud_offset(pgd, addr);
618 	unsigned long next;
619 
620 	do {
621 		next = pud_addr_end(addr, end);
622 		alloc_init_section(pud, addr, next, phys, type);
623 		phys += next - addr;
624 	} while (pud++, addr = next, addr != end);
625 }
626 
627 #ifndef CONFIG_ARM_LPAE
628 static void __init create_36bit_mapping(struct map_desc *md,
629 					const struct mem_type *type)
630 {
631 	unsigned long addr, length, end;
632 	phys_addr_t phys;
633 	pgd_t *pgd;
634 
635 	addr = md->virtual;
636 	phys = __pfn_to_phys(md->pfn);
637 	length = PAGE_ALIGN(md->length);
638 
639 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
640 		printk(KERN_ERR "MM: CPU does not support supersection "
641 		       "mapping for 0x%08llx at 0x%08lx\n",
642 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
643 		return;
644 	}
645 
646 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
647 	 *	Since domain assignments can in fact be arbitrary, the
648 	 *	'domain == 0' check below is required to insure that ARMv6
649 	 *	supersections are only allocated for domain 0 regardless
650 	 *	of the actual domain assignments in use.
651 	 */
652 	if (type->domain) {
653 		printk(KERN_ERR "MM: invalid domain in supersection "
654 		       "mapping for 0x%08llx at 0x%08lx\n",
655 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
656 		return;
657 	}
658 
659 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
660 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
661 		       " at 0x%08lx invalid alignment\n",
662 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
663 		return;
664 	}
665 
666 	/*
667 	 * Shift bits [35:32] of address into bits [23:20] of PMD
668 	 * (See ARMv6 spec).
669 	 */
670 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
671 
672 	pgd = pgd_offset_k(addr);
673 	end = addr + length;
674 	do {
675 		pud_t *pud = pud_offset(pgd, addr);
676 		pmd_t *pmd = pmd_offset(pud, addr);
677 		int i;
678 
679 		for (i = 0; i < 16; i++)
680 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
681 
682 		addr += SUPERSECTION_SIZE;
683 		phys += SUPERSECTION_SIZE;
684 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
685 	} while (addr != end);
686 }
687 #endif	/* !CONFIG_ARM_LPAE */
688 
689 /*
690  * Create the page directory entries and any necessary
691  * page tables for the mapping specified by `md'.  We
692  * are able to cope here with varying sizes and address
693  * offsets, and we take full advantage of sections and
694  * supersections.
695  */
696 static void __init create_mapping(struct map_desc *md)
697 {
698 	unsigned long addr, length, end;
699 	phys_addr_t phys;
700 	const struct mem_type *type;
701 	pgd_t *pgd;
702 
703 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
704 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
705 		       " at 0x%08lx in user region\n",
706 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
707 		return;
708 	}
709 
710 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
711 	    md->virtual >= PAGE_OFFSET &&
712 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
713 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
714 		       " at 0x%08lx out of vmalloc space\n",
715 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
716 	}
717 
718 	type = &mem_types[md->type];
719 
720 #ifndef CONFIG_ARM_LPAE
721 	/*
722 	 * Catch 36-bit addresses
723 	 */
724 	if (md->pfn >= 0x100000) {
725 		create_36bit_mapping(md, type);
726 		return;
727 	}
728 #endif
729 
730 	addr = md->virtual & PAGE_MASK;
731 	phys = __pfn_to_phys(md->pfn);
732 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
733 
734 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
735 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
736 		       "be mapped using pages, ignoring.\n",
737 		       (long long)__pfn_to_phys(md->pfn), addr);
738 		return;
739 	}
740 
741 	pgd = pgd_offset_k(addr);
742 	end = addr + length;
743 	do {
744 		unsigned long next = pgd_addr_end(addr, end);
745 
746 		alloc_init_pud(pgd, addr, next, phys, type);
747 
748 		phys += next - addr;
749 		addr = next;
750 	} while (pgd++, addr != end);
751 }
752 
753 /*
754  * Create the architecture specific mappings
755  */
756 void __init iotable_init(struct map_desc *io_desc, int nr)
757 {
758 	struct map_desc *md;
759 	struct vm_struct *vm;
760 
761 	if (!nr)
762 		return;
763 
764 	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
765 
766 	for (md = io_desc; nr; md++, nr--) {
767 		create_mapping(md);
768 		vm->addr = (void *)(md->virtual & PAGE_MASK);
769 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
770 		vm->phys_addr = __pfn_to_phys(md->pfn);
771 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
772 		vm->flags |= VM_ARM_MTYPE(md->type);
773 		vm->caller = iotable_init;
774 		vm_area_add_early(vm++);
775 	}
776 }
777 
778 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
779 				  void *caller)
780 {
781 	struct vm_struct *vm;
782 
783 	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
784 	vm->addr = (void *)addr;
785 	vm->size = size;
786 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
787 	vm->caller = caller;
788 	vm_area_add_early(vm);
789 }
790 
791 #ifndef CONFIG_ARM_LPAE
792 
793 /*
794  * The Linux PMD is made of two consecutive section entries covering 2MB
795  * (see definition in include/asm/pgtable-2level.h).  However a call to
796  * create_mapping() may optimize static mappings by using individual
797  * 1MB section mappings.  This leaves the actual PMD potentially half
798  * initialized if the top or bottom section entry isn't used, leaving it
799  * open to problems if a subsequent ioremap() or vmalloc() tries to use
800  * the virtual space left free by that unused section entry.
801  *
802  * Let's avoid the issue by inserting dummy vm entries covering the unused
803  * PMD halves once the static mappings are in place.
804  */
805 
806 static void __init pmd_empty_section_gap(unsigned long addr)
807 {
808 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
809 }
810 
811 static void __init fill_pmd_gaps(void)
812 {
813 	struct vm_struct *vm;
814 	unsigned long addr, next = 0;
815 	pmd_t *pmd;
816 
817 	/* we're still single threaded hence no lock needed here */
818 	for (vm = vmlist; vm; vm = vm->next) {
819 		if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
820 			continue;
821 		addr = (unsigned long)vm->addr;
822 		if (addr < next)
823 			continue;
824 
825 		/*
826 		 * Check if this vm starts on an odd section boundary.
827 		 * If so and the first section entry for this PMD is free
828 		 * then we block the corresponding virtual address.
829 		 */
830 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
831 			pmd = pmd_off_k(addr);
832 			if (pmd_none(*pmd))
833 				pmd_empty_section_gap(addr & PMD_MASK);
834 		}
835 
836 		/*
837 		 * Then check if this vm ends on an odd section boundary.
838 		 * If so and the second section entry for this PMD is empty
839 		 * then we block the corresponding virtual address.
840 		 */
841 		addr += vm->size;
842 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
843 			pmd = pmd_off_k(addr) + 1;
844 			if (pmd_none(*pmd))
845 				pmd_empty_section_gap(addr);
846 		}
847 
848 		/* no need to look at any vm entry until we hit the next PMD */
849 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
850 	}
851 }
852 
853 #else
854 #define fill_pmd_gaps() do { } while (0)
855 #endif
856 
857 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
858 static void __init pci_reserve_io(void)
859 {
860 	struct vm_struct *vm;
861 	unsigned long addr;
862 
863 	/* we're still single threaded hence no lock needed here */
864 	for (vm = vmlist; vm; vm = vm->next) {
865 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
866 			continue;
867 		addr = (unsigned long)vm->addr;
868 		addr &= ~(SZ_2M - 1);
869 		if (addr == PCI_IO_VIRT_BASE)
870 			return;
871 
872 	}
873 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
874 }
875 #else
876 #define pci_reserve_io() do { } while (0)
877 #endif
878 
879 #ifdef CONFIG_DEBUG_LL
880 void __init debug_ll_io_init(void)
881 {
882 	struct map_desc map;
883 
884 	debug_ll_addr(&map.pfn, &map.virtual);
885 	if (!map.pfn || !map.virtual)
886 		return;
887 	map.pfn = __phys_to_pfn(map.pfn);
888 	map.virtual &= PAGE_MASK;
889 	map.length = PAGE_SIZE;
890 	map.type = MT_DEVICE;
891 	create_mapping(&map);
892 }
893 #endif
894 
895 static void * __initdata vmalloc_min =
896 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
897 
898 /*
899  * vmalloc=size forces the vmalloc area to be exactly 'size'
900  * bytes. This can be used to increase (or decrease) the vmalloc
901  * area - the default is 240m.
902  */
903 static int __init early_vmalloc(char *arg)
904 {
905 	unsigned long vmalloc_reserve = memparse(arg, NULL);
906 
907 	if (vmalloc_reserve < SZ_16M) {
908 		vmalloc_reserve = SZ_16M;
909 		printk(KERN_WARNING
910 			"vmalloc area too small, limiting to %luMB\n",
911 			vmalloc_reserve >> 20);
912 	}
913 
914 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
915 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
916 		printk(KERN_WARNING
917 			"vmalloc area is too big, limiting to %luMB\n",
918 			vmalloc_reserve >> 20);
919 	}
920 
921 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
922 	return 0;
923 }
924 early_param("vmalloc", early_vmalloc);
925 
926 phys_addr_t arm_lowmem_limit __initdata = 0;
927 
928 void __init sanity_check_meminfo(void)
929 {
930 	int i, j, highmem = 0;
931 
932 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
933 		struct membank *bank = &meminfo.bank[j];
934 		*bank = meminfo.bank[i];
935 
936 		if (bank->start > ULONG_MAX)
937 			highmem = 1;
938 
939 #ifdef CONFIG_HIGHMEM
940 		if (__va(bank->start) >= vmalloc_min ||
941 		    __va(bank->start) < (void *)PAGE_OFFSET)
942 			highmem = 1;
943 
944 		bank->highmem = highmem;
945 
946 		/*
947 		 * Split those memory banks which are partially overlapping
948 		 * the vmalloc area greatly simplifying things later.
949 		 */
950 		if (!highmem && __va(bank->start) < vmalloc_min &&
951 		    bank->size > vmalloc_min - __va(bank->start)) {
952 			if (meminfo.nr_banks >= NR_BANKS) {
953 				printk(KERN_CRIT "NR_BANKS too low, "
954 						 "ignoring high memory\n");
955 			} else {
956 				memmove(bank + 1, bank,
957 					(meminfo.nr_banks - i) * sizeof(*bank));
958 				meminfo.nr_banks++;
959 				i++;
960 				bank[1].size -= vmalloc_min - __va(bank->start);
961 				bank[1].start = __pa(vmalloc_min - 1) + 1;
962 				bank[1].highmem = highmem = 1;
963 				j++;
964 			}
965 			bank->size = vmalloc_min - __va(bank->start);
966 		}
967 #else
968 		bank->highmem = highmem;
969 
970 		/*
971 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
972 		 */
973 		if (highmem) {
974 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
975 			       "(!CONFIG_HIGHMEM).\n",
976 			       (unsigned long long)bank->start,
977 			       (unsigned long long)bank->start + bank->size - 1);
978 			continue;
979 		}
980 
981 		/*
982 		 * Check whether this memory bank would entirely overlap
983 		 * the vmalloc area.
984 		 */
985 		if (__va(bank->start) >= vmalloc_min ||
986 		    __va(bank->start) < (void *)PAGE_OFFSET) {
987 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
988 			       "(vmalloc region overlap).\n",
989 			       (unsigned long long)bank->start,
990 			       (unsigned long long)bank->start + bank->size - 1);
991 			continue;
992 		}
993 
994 		/*
995 		 * Check whether this memory bank would partially overlap
996 		 * the vmalloc area.
997 		 */
998 		if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
999 		    __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1000 			unsigned long newsize = vmalloc_min - __va(bank->start);
1001 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1002 			       "to -%.8llx (vmalloc region overlap).\n",
1003 			       (unsigned long long)bank->start,
1004 			       (unsigned long long)bank->start + bank->size - 1,
1005 			       (unsigned long long)bank->start + newsize - 1);
1006 			bank->size = newsize;
1007 		}
1008 #endif
1009 		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1010 			arm_lowmem_limit = bank->start + bank->size;
1011 
1012 		j++;
1013 	}
1014 #ifdef CONFIG_HIGHMEM
1015 	if (highmem) {
1016 		const char *reason = NULL;
1017 
1018 		if (cache_is_vipt_aliasing()) {
1019 			/*
1020 			 * Interactions between kmap and other mappings
1021 			 * make highmem support with aliasing VIPT caches
1022 			 * rather difficult.
1023 			 */
1024 			reason = "with VIPT aliasing cache";
1025 		}
1026 		if (reason) {
1027 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1028 				reason);
1029 			while (j > 0 && meminfo.bank[j - 1].highmem)
1030 				j--;
1031 		}
1032 	}
1033 #endif
1034 	meminfo.nr_banks = j;
1035 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1036 	memblock_set_current_limit(arm_lowmem_limit);
1037 }
1038 
1039 static inline void prepare_page_table(void)
1040 {
1041 	unsigned long addr;
1042 	phys_addr_t end;
1043 
1044 	/*
1045 	 * Clear out all the mappings below the kernel image.
1046 	 */
1047 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1048 		pmd_clear(pmd_off_k(addr));
1049 
1050 #ifdef CONFIG_XIP_KERNEL
1051 	/* The XIP kernel is mapped in the module area -- skip over it */
1052 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1053 #endif
1054 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1055 		pmd_clear(pmd_off_k(addr));
1056 
1057 	/*
1058 	 * Find the end of the first block of lowmem.
1059 	 */
1060 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1061 	if (end >= arm_lowmem_limit)
1062 		end = arm_lowmem_limit;
1063 
1064 	/*
1065 	 * Clear out all the kernel space mappings, except for the first
1066 	 * memory bank, up to the vmalloc region.
1067 	 */
1068 	for (addr = __phys_to_virt(end);
1069 	     addr < VMALLOC_START; addr += PMD_SIZE)
1070 		pmd_clear(pmd_off_k(addr));
1071 }
1072 
1073 #ifdef CONFIG_ARM_LPAE
1074 /* the first page is reserved for pgd */
1075 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1076 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1077 #else
1078 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1079 #endif
1080 
1081 /*
1082  * Reserve the special regions of memory
1083  */
1084 void __init arm_mm_memblock_reserve(void)
1085 {
1086 	/*
1087 	 * Reserve the page tables.  These are already in use,
1088 	 * and can only be in node 0.
1089 	 */
1090 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1091 
1092 #ifdef CONFIG_SA1111
1093 	/*
1094 	 * Because of the SA1111 DMA bug, we want to preserve our
1095 	 * precious DMA-able memory...
1096 	 */
1097 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1098 #endif
1099 }
1100 
1101 /*
1102  * Set up the device mappings.  Since we clear out the page tables for all
1103  * mappings above VMALLOC_START, we will remove any debug device mappings.
1104  * This means you have to be careful how you debug this function, or any
1105  * called function.  This means you can't use any function or debugging
1106  * method which may touch any device, otherwise the kernel _will_ crash.
1107  */
1108 static void __init devicemaps_init(struct machine_desc *mdesc)
1109 {
1110 	struct map_desc map;
1111 	unsigned long addr;
1112 	void *vectors;
1113 
1114 	/*
1115 	 * Allocate the vector page early.
1116 	 */
1117 	vectors = early_alloc(PAGE_SIZE);
1118 
1119 	early_trap_init(vectors);
1120 
1121 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1122 		pmd_clear(pmd_off_k(addr));
1123 
1124 	/*
1125 	 * Map the kernel if it is XIP.
1126 	 * It is always first in the modulearea.
1127 	 */
1128 #ifdef CONFIG_XIP_KERNEL
1129 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1130 	map.virtual = MODULES_VADDR;
1131 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1132 	map.type = MT_ROM;
1133 	create_mapping(&map);
1134 #endif
1135 
1136 	/*
1137 	 * Map the cache flushing regions.
1138 	 */
1139 #ifdef FLUSH_BASE
1140 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1141 	map.virtual = FLUSH_BASE;
1142 	map.length = SZ_1M;
1143 	map.type = MT_CACHECLEAN;
1144 	create_mapping(&map);
1145 #endif
1146 #ifdef FLUSH_BASE_MINICACHE
1147 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1148 	map.virtual = FLUSH_BASE_MINICACHE;
1149 	map.length = SZ_1M;
1150 	map.type = MT_MINICLEAN;
1151 	create_mapping(&map);
1152 #endif
1153 
1154 	/*
1155 	 * Create a mapping for the machine vectors at the high-vectors
1156 	 * location (0xffff0000).  If we aren't using high-vectors, also
1157 	 * create a mapping at the low-vectors virtual address.
1158 	 */
1159 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1160 	map.virtual = 0xffff0000;
1161 	map.length = PAGE_SIZE;
1162 	map.type = MT_HIGH_VECTORS;
1163 	create_mapping(&map);
1164 
1165 	if (!vectors_high()) {
1166 		map.virtual = 0;
1167 		map.type = MT_LOW_VECTORS;
1168 		create_mapping(&map);
1169 	}
1170 
1171 	/*
1172 	 * Ask the machine support to map in the statically mapped devices.
1173 	 */
1174 	if (mdesc->map_io)
1175 		mdesc->map_io();
1176 	fill_pmd_gaps();
1177 
1178 	/* Reserve fixed i/o space in VMALLOC region */
1179 	pci_reserve_io();
1180 
1181 	/*
1182 	 * Finally flush the caches and tlb to ensure that we're in a
1183 	 * consistent state wrt the writebuffer.  This also ensures that
1184 	 * any write-allocated cache lines in the vector page are written
1185 	 * back.  After this point, we can start to touch devices again.
1186 	 */
1187 	local_flush_tlb_all();
1188 	flush_cache_all();
1189 }
1190 
1191 static void __init kmap_init(void)
1192 {
1193 #ifdef CONFIG_HIGHMEM
1194 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1195 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1196 #endif
1197 }
1198 
1199 static void __init map_lowmem(void)
1200 {
1201 	struct memblock_region *reg;
1202 
1203 	/* Map all the lowmem memory banks. */
1204 	for_each_memblock(memory, reg) {
1205 		phys_addr_t start = reg->base;
1206 		phys_addr_t end = start + reg->size;
1207 		struct map_desc map;
1208 
1209 		if (end > arm_lowmem_limit)
1210 			end = arm_lowmem_limit;
1211 		if (start >= end)
1212 			break;
1213 
1214 		map.pfn = __phys_to_pfn(start);
1215 		map.virtual = __phys_to_virt(start);
1216 		map.length = end - start;
1217 		map.type = MT_MEMORY;
1218 
1219 		create_mapping(&map);
1220 	}
1221 }
1222 
1223 /*
1224  * paging_init() sets up the page tables, initialises the zone memory
1225  * maps, and sets up the zero page, bad page and bad page tables.
1226  */
1227 void __init paging_init(struct machine_desc *mdesc)
1228 {
1229 	void *zero_page;
1230 
1231 	memblock_set_current_limit(arm_lowmem_limit);
1232 
1233 	build_mem_type_table();
1234 	prepare_page_table();
1235 	map_lowmem();
1236 	dma_contiguous_remap();
1237 	devicemaps_init(mdesc);
1238 	kmap_init();
1239 
1240 	top_pmd = pmd_off_k(0xffff0000);
1241 
1242 	/* allocate the zero page. */
1243 	zero_page = early_alloc(PAGE_SIZE);
1244 
1245 	bootmem_init();
1246 
1247 	empty_zero_page = virt_to_page(zero_page);
1248 	__flush_dcache_page(NULL, empty_zero_page);
1249 }
1250