1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/mmu.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 */ 7 #include <linux/module.h> 8 #include <linux/kernel.h> 9 #include <linux/errno.h> 10 #include <linux/init.h> 11 #include <linux/mman.h> 12 #include <linux/nodemask.h> 13 #include <linux/memblock.h> 14 #include <linux/fs.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sizes.h> 17 18 #include <asm/cp15.h> 19 #include <asm/cputype.h> 20 #include <asm/cachetype.h> 21 #include <asm/sections.h> 22 #include <asm/setup.h> 23 #include <asm/smp_plat.h> 24 #include <asm/tlb.h> 25 #include <asm/highmem.h> 26 #include <asm/system_info.h> 27 #include <asm/traps.h> 28 #include <asm/procinfo.h> 29 #include <asm/memory.h> 30 #include <asm/pgalloc.h> 31 #include <asm/kasan_def.h> 32 33 #include <asm/mach/arch.h> 34 #include <asm/mach/map.h> 35 #include <asm/mach/pci.h> 36 #include <asm/fixmap.h> 37 38 #include "fault.h" 39 #include "mm.h" 40 #include "tcm.h" 41 42 extern unsigned long __atags_pointer; 43 44 /* 45 * empty_zero_page is a special page that is used for 46 * zero-initialized data and COW. 47 */ 48 struct page *empty_zero_page; 49 EXPORT_SYMBOL(empty_zero_page); 50 51 /* 52 * The pmd table for the upper-most set of pages. 53 */ 54 pmd_t *top_pmd; 55 56 pmdval_t user_pmd_table = _PAGE_USER_TABLE; 57 58 #define CPOLICY_UNCACHED 0 59 #define CPOLICY_BUFFERED 1 60 #define CPOLICY_WRITETHROUGH 2 61 #define CPOLICY_WRITEBACK 3 62 #define CPOLICY_WRITEALLOC 4 63 64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 65 static unsigned int ecc_mask __initdata = 0; 66 pgprot_t pgprot_user; 67 pgprot_t pgprot_kernel; 68 69 EXPORT_SYMBOL(pgprot_user); 70 EXPORT_SYMBOL(pgprot_kernel); 71 72 struct cachepolicy { 73 const char policy[16]; 74 unsigned int cr_mask; 75 pmdval_t pmd; 76 pteval_t pte; 77 }; 78 79 static struct cachepolicy cache_policies[] __initdata = { 80 { 81 .policy = "uncached", 82 .cr_mask = CR_W|CR_C, 83 .pmd = PMD_SECT_UNCACHED, 84 .pte = L_PTE_MT_UNCACHED, 85 }, { 86 .policy = "buffered", 87 .cr_mask = CR_C, 88 .pmd = PMD_SECT_BUFFERED, 89 .pte = L_PTE_MT_BUFFERABLE, 90 }, { 91 .policy = "writethrough", 92 .cr_mask = 0, 93 .pmd = PMD_SECT_WT, 94 .pte = L_PTE_MT_WRITETHROUGH, 95 }, { 96 .policy = "writeback", 97 .cr_mask = 0, 98 .pmd = PMD_SECT_WB, 99 .pte = L_PTE_MT_WRITEBACK, 100 }, { 101 .policy = "writealloc", 102 .cr_mask = 0, 103 .pmd = PMD_SECT_WBWA, 104 .pte = L_PTE_MT_WRITEALLOC, 105 } 106 }; 107 108 #ifdef CONFIG_CPU_CP15 109 static unsigned long initial_pmd_value __initdata = 0; 110 111 /* 112 * Initialise the cache_policy variable with the initial state specified 113 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 114 * the C code sets the page tables up with the same policy as the head 115 * assembly code, which avoids an illegal state where the TLBs can get 116 * confused. See comments in early_cachepolicy() for more information. 117 */ 118 void __init init_default_cache_policy(unsigned long pmd) 119 { 120 int i; 121 122 initial_pmd_value = pmd; 123 124 pmd &= PMD_SECT_CACHE_MASK; 125 126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 127 if (cache_policies[i].pmd == pmd) { 128 cachepolicy = i; 129 break; 130 } 131 132 if (i == ARRAY_SIZE(cache_policies)) 133 pr_err("ERROR: could not find cache policy\n"); 134 } 135 136 /* 137 * These are useful for identifying cache coherency problems by allowing 138 * the cache or the cache and writebuffer to be turned off. (Note: the 139 * write buffer should not be on and the cache off). 140 */ 141 static int __init early_cachepolicy(char *p) 142 { 143 int i, selected = -1; 144 145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 146 int len = strlen(cache_policies[i].policy); 147 148 if (memcmp(p, cache_policies[i].policy, len) == 0) { 149 selected = i; 150 break; 151 } 152 } 153 154 if (selected == -1) 155 pr_err("ERROR: unknown or unsupported cache policy\n"); 156 157 /* 158 * This restriction is partly to do with the way we boot; it is 159 * unpredictable to have memory mapped using two different sets of 160 * memory attributes (shared, type, and cache attribs). We can not 161 * change these attributes once the initial assembly has setup the 162 * page tables. 163 */ 164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 166 cache_policies[cachepolicy].policy); 167 return 0; 168 } 169 170 if (selected != cachepolicy) { 171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 172 cachepolicy = selected; 173 flush_cache_all(); 174 set_cr(cr); 175 } 176 return 0; 177 } 178 early_param("cachepolicy", early_cachepolicy); 179 180 static int __init early_nocache(char *__unused) 181 { 182 char *p = "buffered"; 183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 184 early_cachepolicy(p); 185 return 0; 186 } 187 early_param("nocache", early_nocache); 188 189 static int __init early_nowrite(char *__unused) 190 { 191 char *p = "uncached"; 192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 193 early_cachepolicy(p); 194 return 0; 195 } 196 early_param("nowb", early_nowrite); 197 198 #ifndef CONFIG_ARM_LPAE 199 static int __init early_ecc(char *p) 200 { 201 if (memcmp(p, "on", 2) == 0) 202 ecc_mask = PMD_PROTECTION; 203 else if (memcmp(p, "off", 3) == 0) 204 ecc_mask = 0; 205 return 0; 206 } 207 early_param("ecc", early_ecc); 208 #endif 209 210 #else /* ifdef CONFIG_CPU_CP15 */ 211 212 static int __init early_cachepolicy(char *p) 213 { 214 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 215 } 216 early_param("cachepolicy", early_cachepolicy); 217 218 static int __init noalign_setup(char *__unused) 219 { 220 pr_warn("noalign kernel parameter not supported without cp15\n"); 221 } 222 __setup("noalign", noalign_setup); 223 224 #endif /* ifdef CONFIG_CPU_CP15 / else */ 225 226 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 227 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 228 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 229 230 static struct mem_type mem_types[] __ro_after_init = { 231 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 232 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 233 L_PTE_SHARED, 234 .prot_l1 = PMD_TYPE_TABLE, 235 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 236 .domain = DOMAIN_IO, 237 }, 238 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 240 .prot_l1 = PMD_TYPE_TABLE, 241 .prot_sect = PROT_SECT_DEVICE, 242 .domain = DOMAIN_IO, 243 }, 244 [MT_DEVICE_CACHED] = { /* ioremap_cache */ 245 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 246 .prot_l1 = PMD_TYPE_TABLE, 247 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 248 .domain = DOMAIN_IO, 249 }, 250 [MT_DEVICE_WC] = { /* ioremap_wc */ 251 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 252 .prot_l1 = PMD_TYPE_TABLE, 253 .prot_sect = PROT_SECT_DEVICE, 254 .domain = DOMAIN_IO, 255 }, 256 [MT_UNCACHED] = { 257 .prot_pte = PROT_PTE_DEVICE, 258 .prot_l1 = PMD_TYPE_TABLE, 259 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 260 .domain = DOMAIN_IO, 261 }, 262 [MT_CACHECLEAN] = { 263 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 264 .domain = DOMAIN_KERNEL, 265 }, 266 #ifndef CONFIG_ARM_LPAE 267 [MT_MINICLEAN] = { 268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 269 .domain = DOMAIN_KERNEL, 270 }, 271 #endif 272 [MT_LOW_VECTORS] = { 273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 274 L_PTE_RDONLY, 275 .prot_l1 = PMD_TYPE_TABLE, 276 .domain = DOMAIN_VECTORS, 277 }, 278 [MT_HIGH_VECTORS] = { 279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 280 L_PTE_USER | L_PTE_RDONLY, 281 .prot_l1 = PMD_TYPE_TABLE, 282 .domain = DOMAIN_VECTORS, 283 }, 284 [MT_MEMORY_RWX] = { 285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 286 .prot_l1 = PMD_TYPE_TABLE, 287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 288 .domain = DOMAIN_KERNEL, 289 }, 290 [MT_MEMORY_RW] = { 291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 292 L_PTE_XN, 293 .prot_l1 = PMD_TYPE_TABLE, 294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 295 .domain = DOMAIN_KERNEL, 296 }, 297 [MT_ROM] = { 298 .prot_sect = PMD_TYPE_SECT, 299 .domain = DOMAIN_KERNEL, 300 }, 301 [MT_MEMORY_RWX_NONCACHED] = { 302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 303 L_PTE_MT_BUFFERABLE, 304 .prot_l1 = PMD_TYPE_TABLE, 305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 306 .domain = DOMAIN_KERNEL, 307 }, 308 [MT_MEMORY_RW_DTCM] = { 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 310 L_PTE_XN, 311 .prot_l1 = PMD_TYPE_TABLE, 312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 313 .domain = DOMAIN_KERNEL, 314 }, 315 [MT_MEMORY_RWX_ITCM] = { 316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 317 .prot_l1 = PMD_TYPE_TABLE, 318 .domain = DOMAIN_KERNEL, 319 }, 320 [MT_MEMORY_RW_SO] = { 321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 322 L_PTE_MT_UNCACHED | L_PTE_XN, 323 .prot_l1 = PMD_TYPE_TABLE, 324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 325 PMD_SECT_UNCACHED | PMD_SECT_XN, 326 .domain = DOMAIN_KERNEL, 327 }, 328 [MT_MEMORY_DMA_READY] = { 329 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 330 L_PTE_XN, 331 .prot_l1 = PMD_TYPE_TABLE, 332 .domain = DOMAIN_KERNEL, 333 }, 334 }; 335 336 const struct mem_type *get_mem_type(unsigned int type) 337 { 338 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 339 } 340 EXPORT_SYMBOL(get_mem_type); 341 342 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); 343 344 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] 345 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; 346 347 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) 348 { 349 return &bm_pte[pte_index(addr)]; 350 } 351 352 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) 353 { 354 return pte_offset_kernel(dir, addr); 355 } 356 357 static inline pmd_t * __init fixmap_pmd(unsigned long addr) 358 { 359 return pmd_off_k(addr); 360 } 361 362 void __init early_fixmap_init(void) 363 { 364 pmd_t *pmd; 365 366 /* 367 * The early fixmap range spans multiple pmds, for which 368 * we are not prepared: 369 */ 370 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) 371 != FIXADDR_TOP >> PMD_SHIFT); 372 373 pmd = fixmap_pmd(FIXADDR_TOP); 374 pmd_populate_kernel(&init_mm, pmd, bm_pte); 375 376 pte_offset_fixmap = pte_offset_early_fixmap; 377 } 378 379 /* 380 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). 381 * As a result, this can only be called with preemption disabled, as under 382 * stop_machine(). 383 */ 384 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 385 { 386 unsigned long vaddr = __fix_to_virt(idx); 387 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); 388 389 /* Make sure fixmap region does not exceed available allocation. */ 390 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > 391 FIXADDR_END); 392 BUG_ON(idx >= __end_of_fixed_addresses); 393 394 /* we only support device mappings until pgprot_kernel has been set */ 395 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && 396 pgprot_val(pgprot_kernel) == 0)) 397 return; 398 399 if (pgprot_val(prot)) 400 set_pte_at(NULL, vaddr, pte, 401 pfn_pte(phys >> PAGE_SHIFT, prot)); 402 else 403 pte_clear(NULL, vaddr, pte); 404 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); 405 } 406 407 /* 408 * Adjust the PMD section entries according to the CPU in use. 409 */ 410 static void __init build_mem_type_table(void) 411 { 412 struct cachepolicy *cp; 413 unsigned int cr = get_cr(); 414 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 415 int cpu_arch = cpu_architecture(); 416 int i; 417 418 if (cpu_arch < CPU_ARCH_ARMv6) { 419 #if defined(CONFIG_CPU_DCACHE_DISABLE) 420 if (cachepolicy > CPOLICY_BUFFERED) 421 cachepolicy = CPOLICY_BUFFERED; 422 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 423 if (cachepolicy > CPOLICY_WRITETHROUGH) 424 cachepolicy = CPOLICY_WRITETHROUGH; 425 #endif 426 } 427 if (cpu_arch < CPU_ARCH_ARMv5) { 428 if (cachepolicy >= CPOLICY_WRITEALLOC) 429 cachepolicy = CPOLICY_WRITEBACK; 430 ecc_mask = 0; 431 } 432 433 if (is_smp()) { 434 if (cachepolicy != CPOLICY_WRITEALLOC) { 435 pr_warn("Forcing write-allocate cache policy for SMP\n"); 436 cachepolicy = CPOLICY_WRITEALLOC; 437 } 438 if (!(initial_pmd_value & PMD_SECT_S)) { 439 pr_warn("Forcing shared mappings for SMP\n"); 440 initial_pmd_value |= PMD_SECT_S; 441 } 442 } 443 444 /* 445 * Strip out features not present on earlier architectures. 446 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 447 * without extended page tables don't have the 'Shared' bit. 448 */ 449 if (cpu_arch < CPU_ARCH_ARMv5) 450 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 451 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 452 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 453 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 454 mem_types[i].prot_sect &= ~PMD_SECT_S; 455 456 /* 457 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 458 * "update-able on write" bit on ARM610). However, Xscale and 459 * Xscale3 require this bit to be cleared. 460 */ 461 if (cpu_is_xscale_family()) { 462 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 463 mem_types[i].prot_sect &= ~PMD_BIT4; 464 mem_types[i].prot_l1 &= ~PMD_BIT4; 465 } 466 } else if (cpu_arch < CPU_ARCH_ARMv6) { 467 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 468 if (mem_types[i].prot_l1) 469 mem_types[i].prot_l1 |= PMD_BIT4; 470 if (mem_types[i].prot_sect) 471 mem_types[i].prot_sect |= PMD_BIT4; 472 } 473 } 474 475 /* 476 * Mark the device areas according to the CPU/architecture. 477 */ 478 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 479 if (!cpu_is_xsc3()) { 480 /* 481 * Mark device regions on ARMv6+ as execute-never 482 * to prevent speculative instruction fetches. 483 */ 484 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 485 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 486 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 487 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 488 489 /* Also setup NX memory mapping */ 490 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 491 } 492 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 493 /* 494 * For ARMv7 with TEX remapping, 495 * - shared device is SXCB=1100 496 * - nonshared device is SXCB=0100 497 * - write combine device mem is SXCB=0001 498 * (Uncached Normal memory) 499 */ 500 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 501 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 503 } else if (cpu_is_xsc3()) { 504 /* 505 * For Xscale3, 506 * - shared device is TEXCB=00101 507 * - nonshared device is TEXCB=01000 508 * - write combine device mem is TEXCB=00100 509 * (Inner/Outer Uncacheable in xsc3 parlance) 510 */ 511 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 512 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 514 } else { 515 /* 516 * For ARMv6 and ARMv7 without TEX remapping, 517 * - shared device is TEXCB=00001 518 * - nonshared device is TEXCB=01000 519 * - write combine device mem is TEXCB=00100 520 * (Uncached Normal in ARMv6 parlance). 521 */ 522 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 523 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 524 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 525 } 526 } else { 527 /* 528 * On others, write combining is "Uncached/Buffered" 529 */ 530 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 531 } 532 533 /* 534 * Now deal with the memory-type mappings 535 */ 536 cp = &cache_policies[cachepolicy]; 537 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 538 539 #ifndef CONFIG_ARM_LPAE 540 /* 541 * We don't use domains on ARMv6 (since this causes problems with 542 * v6/v7 kernels), so we must use a separate memory type for user 543 * r/o, kernel r/w to map the vectors page. 544 */ 545 if (cpu_arch == CPU_ARCH_ARMv6) 546 vecs_pgprot |= L_PTE_MT_VECTORS; 547 548 /* 549 * Check is it with support for the PXN bit 550 * in the Short-descriptor translation table format descriptors. 551 */ 552 if (cpu_arch == CPU_ARCH_ARMv7 && 553 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { 554 user_pmd_table |= PMD_PXNTABLE; 555 } 556 #endif 557 558 /* 559 * ARMv6 and above have extended page tables. 560 */ 561 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 562 #ifndef CONFIG_ARM_LPAE 563 /* 564 * Mark cache clean areas and XIP ROM read only 565 * from SVC mode and no access from userspace. 566 */ 567 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 568 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 569 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 570 #endif 571 572 /* 573 * If the initial page tables were created with the S bit 574 * set, then we need to do the same here for the same 575 * reasons given in early_cachepolicy(). 576 */ 577 if (initial_pmd_value & PMD_SECT_S) { 578 user_pgprot |= L_PTE_SHARED; 579 kern_pgprot |= L_PTE_SHARED; 580 vecs_pgprot |= L_PTE_SHARED; 581 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 582 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 583 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 584 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 585 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 586 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 587 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 588 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 589 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 590 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 591 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 592 } 593 } 594 595 /* 596 * Non-cacheable Normal - intended for memory areas that must 597 * not cause dirty cache line writebacks when used 598 */ 599 if (cpu_arch >= CPU_ARCH_ARMv6) { 600 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 601 /* Non-cacheable Normal is XCB = 001 */ 602 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 603 PMD_SECT_BUFFERED; 604 } else { 605 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 606 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 607 PMD_SECT_TEX(1); 608 } 609 } else { 610 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 611 } 612 613 #ifdef CONFIG_ARM_LPAE 614 /* 615 * Do not generate access flag faults for the kernel mappings. 616 */ 617 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 618 mem_types[i].prot_pte |= PTE_EXT_AF; 619 if (mem_types[i].prot_sect) 620 mem_types[i].prot_sect |= PMD_SECT_AF; 621 } 622 kern_pgprot |= PTE_EXT_AF; 623 vecs_pgprot |= PTE_EXT_AF; 624 625 /* 626 * Set PXN for user mappings 627 */ 628 user_pgprot |= PTE_EXT_PXN; 629 #endif 630 631 for (i = 0; i < 16; i++) { 632 pteval_t v = pgprot_val(protection_map[i]); 633 protection_map[i] = __pgprot(v | user_pgprot); 634 } 635 636 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 637 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 638 639 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 640 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 641 L_PTE_DIRTY | kern_pgprot); 642 643 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 644 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 645 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 646 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 647 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 648 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 649 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 650 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 651 mem_types[MT_ROM].prot_sect |= cp->pmd; 652 653 switch (cp->pmd) { 654 case PMD_SECT_WT: 655 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 656 break; 657 case PMD_SECT_WB: 658 case PMD_SECT_WBWA: 659 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 660 break; 661 } 662 pr_info("Memory policy: %sData cache %s\n", 663 ecc_mask ? "ECC enabled, " : "", cp->policy); 664 665 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 666 struct mem_type *t = &mem_types[i]; 667 if (t->prot_l1) 668 t->prot_l1 |= PMD_DOMAIN(t->domain); 669 if (t->prot_sect) 670 t->prot_sect |= PMD_DOMAIN(t->domain); 671 } 672 } 673 674 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 675 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 676 unsigned long size, pgprot_t vma_prot) 677 { 678 if (!pfn_valid(pfn)) 679 return pgprot_noncached(vma_prot); 680 else if (file->f_flags & O_SYNC) 681 return pgprot_writecombine(vma_prot); 682 return vma_prot; 683 } 684 EXPORT_SYMBOL(phys_mem_access_prot); 685 #endif 686 687 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 688 689 static void __init *early_alloc(unsigned long sz) 690 { 691 void *ptr = memblock_alloc(sz, sz); 692 693 if (!ptr) 694 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 695 __func__, sz, sz); 696 697 return ptr; 698 } 699 700 static void *__init late_alloc(unsigned long sz) 701 { 702 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz)); 703 704 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr))) 705 BUG(); 706 return ptr; 707 } 708 709 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, 710 unsigned long prot, 711 void *(*alloc)(unsigned long sz)) 712 { 713 if (pmd_none(*pmd)) { 714 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 715 __pmd_populate(pmd, __pa(pte), prot); 716 } 717 BUG_ON(pmd_bad(*pmd)); 718 return pte_offset_kernel(pmd, addr); 719 } 720 721 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, 722 unsigned long prot) 723 { 724 return arm_pte_alloc(pmd, addr, prot, early_alloc); 725 } 726 727 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 728 unsigned long end, unsigned long pfn, 729 const struct mem_type *type, 730 void *(*alloc)(unsigned long sz), 731 bool ng) 732 { 733 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); 734 do { 735 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 736 ng ? PTE_EXT_NG : 0); 737 pfn++; 738 } while (pte++, addr += PAGE_SIZE, addr != end); 739 } 740 741 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 742 unsigned long end, phys_addr_t phys, 743 const struct mem_type *type, bool ng) 744 { 745 pmd_t *p = pmd; 746 747 #ifndef CONFIG_ARM_LPAE 748 /* 749 * In classic MMU format, puds and pmds are folded in to 750 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 751 * group of L1 entries making up one logical pointer to 752 * an L2 table (2MB), where as PMDs refer to the individual 753 * L1 entries (1MB). Hence increment to get the correct 754 * offset for odd 1MB sections. 755 * (See arch/arm/include/asm/pgtable-2level.h) 756 */ 757 if (addr & SECTION_SIZE) 758 pmd++; 759 #endif 760 do { 761 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); 762 phys += SECTION_SIZE; 763 } while (pmd++, addr += SECTION_SIZE, addr != end); 764 765 flush_pmd_entry(p); 766 } 767 768 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 769 unsigned long end, phys_addr_t phys, 770 const struct mem_type *type, 771 void *(*alloc)(unsigned long sz), bool ng) 772 { 773 pmd_t *pmd = pmd_offset(pud, addr); 774 unsigned long next; 775 776 do { 777 /* 778 * With LPAE, we must loop over to map 779 * all the pmds for the given range. 780 */ 781 next = pmd_addr_end(addr, end); 782 783 /* 784 * Try a section mapping - addr, next and phys must all be 785 * aligned to a section boundary. 786 */ 787 if (type->prot_sect && 788 ((addr | next | phys) & ~SECTION_MASK) == 0) { 789 __map_init_section(pmd, addr, next, phys, type, ng); 790 } else { 791 alloc_init_pte(pmd, addr, next, 792 __phys_to_pfn(phys), type, alloc, ng); 793 } 794 795 phys += next - addr; 796 797 } while (pmd++, addr = next, addr != end); 798 } 799 800 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, 801 unsigned long end, phys_addr_t phys, 802 const struct mem_type *type, 803 void *(*alloc)(unsigned long sz), bool ng) 804 { 805 pud_t *pud = pud_offset(p4d, addr); 806 unsigned long next; 807 808 do { 809 next = pud_addr_end(addr, end); 810 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); 811 phys += next - addr; 812 } while (pud++, addr = next, addr != end); 813 } 814 815 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, 816 unsigned long end, phys_addr_t phys, 817 const struct mem_type *type, 818 void *(*alloc)(unsigned long sz), bool ng) 819 { 820 p4d_t *p4d = p4d_offset(pgd, addr); 821 unsigned long next; 822 823 do { 824 next = p4d_addr_end(addr, end); 825 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); 826 phys += next - addr; 827 } while (p4d++, addr = next, addr != end); 828 } 829 830 #ifndef CONFIG_ARM_LPAE 831 static void __init create_36bit_mapping(struct mm_struct *mm, 832 struct map_desc *md, 833 const struct mem_type *type, 834 bool ng) 835 { 836 unsigned long addr, length, end; 837 phys_addr_t phys; 838 pgd_t *pgd; 839 840 addr = md->virtual; 841 phys = __pfn_to_phys(md->pfn); 842 length = PAGE_ALIGN(md->length); 843 844 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 845 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 846 (long long)__pfn_to_phys((u64)md->pfn), addr); 847 return; 848 } 849 850 /* N.B. ARMv6 supersections are only defined to work with domain 0. 851 * Since domain assignments can in fact be arbitrary, the 852 * 'domain == 0' check below is required to insure that ARMv6 853 * supersections are only allocated for domain 0 regardless 854 * of the actual domain assignments in use. 855 */ 856 if (type->domain) { 857 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 858 (long long)__pfn_to_phys((u64)md->pfn), addr); 859 return; 860 } 861 862 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 863 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 864 (long long)__pfn_to_phys((u64)md->pfn), addr); 865 return; 866 } 867 868 /* 869 * Shift bits [35:32] of address into bits [23:20] of PMD 870 * (See ARMv6 spec). 871 */ 872 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 873 874 pgd = pgd_offset(mm, addr); 875 end = addr + length; 876 do { 877 p4d_t *p4d = p4d_offset(pgd, addr); 878 pud_t *pud = pud_offset(p4d, addr); 879 pmd_t *pmd = pmd_offset(pud, addr); 880 int i; 881 882 for (i = 0; i < 16; i++) 883 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | 884 (ng ? PMD_SECT_nG : 0)); 885 886 addr += SUPERSECTION_SIZE; 887 phys += SUPERSECTION_SIZE; 888 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 889 } while (addr != end); 890 } 891 #endif /* !CONFIG_ARM_LPAE */ 892 893 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, 894 void *(*alloc)(unsigned long sz), 895 bool ng) 896 { 897 unsigned long addr, length, end; 898 phys_addr_t phys; 899 const struct mem_type *type; 900 pgd_t *pgd; 901 902 type = &mem_types[md->type]; 903 904 #ifndef CONFIG_ARM_LPAE 905 /* 906 * Catch 36-bit addresses 907 */ 908 if (md->pfn >= 0x100000) { 909 create_36bit_mapping(mm, md, type, ng); 910 return; 911 } 912 #endif 913 914 addr = md->virtual & PAGE_MASK; 915 phys = __pfn_to_phys(md->pfn); 916 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 917 918 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 919 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 920 (long long)__pfn_to_phys(md->pfn), addr); 921 return; 922 } 923 924 pgd = pgd_offset(mm, addr); 925 end = addr + length; 926 do { 927 unsigned long next = pgd_addr_end(addr, end); 928 929 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); 930 931 phys += next - addr; 932 addr = next; 933 } while (pgd++, addr != end); 934 } 935 936 /* 937 * Create the page directory entries and any necessary 938 * page tables for the mapping specified by `md'. We 939 * are able to cope here with varying sizes and address 940 * offsets, and we take full advantage of sections and 941 * supersections. 942 */ 943 static void __init create_mapping(struct map_desc *md) 944 { 945 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 946 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 947 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 948 return; 949 } 950 951 if (md->type == MT_DEVICE && 952 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && 953 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 954 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 955 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 956 } 957 958 __create_mapping(&init_mm, md, early_alloc, false); 959 } 960 961 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, 962 bool ng) 963 { 964 #ifdef CONFIG_ARM_LPAE 965 p4d_t *p4d; 966 pud_t *pud; 967 968 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); 969 if (WARN_ON(!p4d)) 970 return; 971 pud = pud_alloc(mm, p4d, md->virtual); 972 if (WARN_ON(!pud)) 973 return; 974 pmd_alloc(mm, pud, 0); 975 #endif 976 __create_mapping(mm, md, late_alloc, ng); 977 } 978 979 /* 980 * Create the architecture specific mappings 981 */ 982 void __init iotable_init(struct map_desc *io_desc, int nr) 983 { 984 struct map_desc *md; 985 struct vm_struct *vm; 986 struct static_vm *svm; 987 988 if (!nr) 989 return; 990 991 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); 992 if (!svm) 993 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 994 __func__, sizeof(*svm) * nr, __alignof__(*svm)); 995 996 for (md = io_desc; nr; md++, nr--) { 997 create_mapping(md); 998 999 vm = &svm->vm; 1000 vm->addr = (void *)(md->virtual & PAGE_MASK); 1001 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 1002 vm->phys_addr = __pfn_to_phys(md->pfn); 1003 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 1004 vm->flags |= VM_ARM_MTYPE(md->type); 1005 vm->caller = iotable_init; 1006 add_static_vm_early(svm++); 1007 } 1008 } 1009 1010 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 1011 void *caller) 1012 { 1013 struct vm_struct *vm; 1014 struct static_vm *svm; 1015 1016 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); 1017 if (!svm) 1018 panic("%s: Failed to allocate %zu bytes align=0x%zx\n", 1019 __func__, sizeof(*svm), __alignof__(*svm)); 1020 1021 vm = &svm->vm; 1022 vm->addr = (void *)addr; 1023 vm->size = size; 1024 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 1025 vm->caller = caller; 1026 add_static_vm_early(svm); 1027 } 1028 1029 #ifndef CONFIG_ARM_LPAE 1030 1031 /* 1032 * The Linux PMD is made of two consecutive section entries covering 2MB 1033 * (see definition in include/asm/pgtable-2level.h). However a call to 1034 * create_mapping() may optimize static mappings by using individual 1035 * 1MB section mappings. This leaves the actual PMD potentially half 1036 * initialized if the top or bottom section entry isn't used, leaving it 1037 * open to problems if a subsequent ioremap() or vmalloc() tries to use 1038 * the virtual space left free by that unused section entry. 1039 * 1040 * Let's avoid the issue by inserting dummy vm entries covering the unused 1041 * PMD halves once the static mappings are in place. 1042 */ 1043 1044 static void __init pmd_empty_section_gap(unsigned long addr) 1045 { 1046 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 1047 } 1048 1049 static void __init fill_pmd_gaps(void) 1050 { 1051 struct static_vm *svm; 1052 struct vm_struct *vm; 1053 unsigned long addr, next = 0; 1054 pmd_t *pmd; 1055 1056 list_for_each_entry(svm, &static_vmlist, list) { 1057 vm = &svm->vm; 1058 addr = (unsigned long)vm->addr; 1059 if (addr < next) 1060 continue; 1061 1062 /* 1063 * Check if this vm starts on an odd section boundary. 1064 * If so and the first section entry for this PMD is free 1065 * then we block the corresponding virtual address. 1066 */ 1067 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1068 pmd = pmd_off_k(addr); 1069 if (pmd_none(*pmd)) 1070 pmd_empty_section_gap(addr & PMD_MASK); 1071 } 1072 1073 /* 1074 * Then check if this vm ends on an odd section boundary. 1075 * If so and the second section entry for this PMD is empty 1076 * then we block the corresponding virtual address. 1077 */ 1078 addr += vm->size; 1079 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 1080 pmd = pmd_off_k(addr) + 1; 1081 if (pmd_none(*pmd)) 1082 pmd_empty_section_gap(addr); 1083 } 1084 1085 /* no need to look at any vm entry until we hit the next PMD */ 1086 next = (addr + PMD_SIZE - 1) & PMD_MASK; 1087 } 1088 } 1089 1090 #else 1091 #define fill_pmd_gaps() do { } while (0) 1092 #endif 1093 1094 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1095 static void __init pci_reserve_io(void) 1096 { 1097 struct static_vm *svm; 1098 1099 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1100 if (svm) 1101 return; 1102 1103 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1104 } 1105 #else 1106 #define pci_reserve_io() do { } while (0) 1107 #endif 1108 1109 #ifdef CONFIG_DEBUG_LL 1110 void __init debug_ll_io_init(void) 1111 { 1112 struct map_desc map; 1113 1114 debug_ll_addr(&map.pfn, &map.virtual); 1115 if (!map.pfn || !map.virtual) 1116 return; 1117 map.pfn = __phys_to_pfn(map.pfn); 1118 map.virtual &= PAGE_MASK; 1119 map.length = PAGE_SIZE; 1120 map.type = MT_DEVICE; 1121 iotable_init(&map, 1); 1122 } 1123 #endif 1124 1125 static void * __initdata vmalloc_min = 1126 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1127 1128 /* 1129 * vmalloc=size forces the vmalloc area to be exactly 'size' 1130 * bytes. This can be used to increase (or decrease) the vmalloc 1131 * area - the default is 240m. 1132 */ 1133 static int __init early_vmalloc(char *arg) 1134 { 1135 unsigned long vmalloc_reserve = memparse(arg, NULL); 1136 1137 if (vmalloc_reserve < SZ_16M) { 1138 vmalloc_reserve = SZ_16M; 1139 pr_warn("vmalloc area too small, limiting to %luMB\n", 1140 vmalloc_reserve >> 20); 1141 } 1142 1143 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1144 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1145 pr_warn("vmalloc area is too big, limiting to %luMB\n", 1146 vmalloc_reserve >> 20); 1147 } 1148 1149 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1150 return 0; 1151 } 1152 early_param("vmalloc", early_vmalloc); 1153 1154 phys_addr_t arm_lowmem_limit __initdata = 0; 1155 1156 void __init adjust_lowmem_bounds(void) 1157 { 1158 phys_addr_t block_start, block_end, memblock_limit = 0; 1159 u64 vmalloc_limit, i; 1160 phys_addr_t lowmem_limit = 0; 1161 1162 /* 1163 * Let's use our own (unoptimized) equivalent of __pa() that is 1164 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. 1165 * The result is used as the upper bound on physical memory address 1166 * and may itself be outside the valid range for which phys_addr_t 1167 * and therefore __pa() is defined. 1168 */ 1169 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; 1170 1171 /* 1172 * The first usable region must be PMD aligned. Mark its start 1173 * as MEMBLOCK_NOMAP if it isn't 1174 */ 1175 for_each_mem_range(i, &block_start, &block_end) { 1176 if (!IS_ALIGNED(block_start, PMD_SIZE)) { 1177 phys_addr_t len; 1178 1179 len = round_up(block_start, PMD_SIZE) - block_start; 1180 memblock_mark_nomap(block_start, len); 1181 } 1182 break; 1183 } 1184 1185 for_each_mem_range(i, &block_start, &block_end) { 1186 if (block_start < vmalloc_limit) { 1187 if (block_end > lowmem_limit) 1188 /* 1189 * Compare as u64 to ensure vmalloc_limit does 1190 * not get truncated. block_end should always 1191 * fit in phys_addr_t so there should be no 1192 * issue with assignment. 1193 */ 1194 lowmem_limit = min_t(u64, 1195 vmalloc_limit, 1196 block_end); 1197 1198 /* 1199 * Find the first non-pmd-aligned page, and point 1200 * memblock_limit at it. This relies on rounding the 1201 * limit down to be pmd-aligned, which happens at the 1202 * end of this function. 1203 * 1204 * With this algorithm, the start or end of almost any 1205 * bank can be non-pmd-aligned. The only exception is 1206 * that the start of the bank 0 must be section- 1207 * aligned, since otherwise memory would need to be 1208 * allocated when mapping the start of bank 0, which 1209 * occurs before any free memory is mapped. 1210 */ 1211 if (!memblock_limit) { 1212 if (!IS_ALIGNED(block_start, PMD_SIZE)) 1213 memblock_limit = block_start; 1214 else if (!IS_ALIGNED(block_end, PMD_SIZE)) 1215 memblock_limit = lowmem_limit; 1216 } 1217 1218 } 1219 } 1220 1221 arm_lowmem_limit = lowmem_limit; 1222 1223 high_memory = __va(arm_lowmem_limit - 1) + 1; 1224 1225 if (!memblock_limit) 1226 memblock_limit = arm_lowmem_limit; 1227 1228 /* 1229 * Round the memblock limit down to a pmd size. This 1230 * helps to ensure that we will allocate memory from the 1231 * last full pmd, which should be mapped. 1232 */ 1233 memblock_limit = round_down(memblock_limit, PMD_SIZE); 1234 1235 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1236 if (memblock_end_of_DRAM() > arm_lowmem_limit) { 1237 phys_addr_t end = memblock_end_of_DRAM(); 1238 1239 pr_notice("Ignoring RAM at %pa-%pa\n", 1240 &memblock_limit, &end); 1241 pr_notice("Consider using a HIGHMEM enabled kernel.\n"); 1242 1243 memblock_remove(memblock_limit, end - memblock_limit); 1244 } 1245 } 1246 1247 memblock_set_current_limit(memblock_limit); 1248 } 1249 1250 static inline void prepare_page_table(void) 1251 { 1252 unsigned long addr; 1253 phys_addr_t end; 1254 1255 /* 1256 * Clear out all the mappings below the kernel image. 1257 */ 1258 #ifdef CONFIG_KASAN 1259 /* 1260 * KASan's shadow memory inserts itself between the TASK_SIZE 1261 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. 1262 */ 1263 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) 1264 pmd_clear(pmd_off_k(addr)); 1265 /* 1266 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes 1267 * equal to MODULES_VADDR and then we exit the pmd clearing. If we 1268 * are using a thumb-compiled kernel, there there will be 8MB more 1269 * to clear as KASan always offset to 16 MB below MODULES_VADDR. 1270 */ 1271 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) 1272 pmd_clear(pmd_off_k(addr)); 1273 #else 1274 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1275 pmd_clear(pmd_off_k(addr)); 1276 #endif 1277 1278 #ifdef CONFIG_XIP_KERNEL 1279 /* The XIP kernel is mapped in the module area -- skip over it */ 1280 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; 1281 #endif 1282 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1283 pmd_clear(pmd_off_k(addr)); 1284 1285 /* 1286 * Find the end of the first block of lowmem. 1287 */ 1288 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1289 if (end >= arm_lowmem_limit) 1290 end = arm_lowmem_limit; 1291 1292 /* 1293 * Clear out all the kernel space mappings, except for the first 1294 * memory bank, up to the vmalloc region. 1295 */ 1296 for (addr = __phys_to_virt(end); 1297 addr < VMALLOC_START; addr += PMD_SIZE) 1298 pmd_clear(pmd_off_k(addr)); 1299 } 1300 1301 #ifdef CONFIG_ARM_LPAE 1302 /* the first page is reserved for pgd */ 1303 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1304 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1305 #else 1306 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1307 #endif 1308 1309 /* 1310 * Reserve the special regions of memory 1311 */ 1312 void __init arm_mm_memblock_reserve(void) 1313 { 1314 /* 1315 * Reserve the page tables. These are already in use, 1316 * and can only be in node 0. 1317 */ 1318 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1319 1320 #ifdef CONFIG_SA1111 1321 /* 1322 * Because of the SA1111 DMA bug, we want to preserve our 1323 * precious DMA-able memory... 1324 */ 1325 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1326 #endif 1327 } 1328 1329 /* 1330 * Set up the device mappings. Since we clear out the page tables for all 1331 * mappings above VMALLOC_START, except early fixmap, we might remove debug 1332 * device mappings. This means earlycon can be used to debug this function 1333 * Any other function or debugging method which may touch any device _will_ 1334 * crash the kernel. 1335 */ 1336 static void __init devicemaps_init(const struct machine_desc *mdesc) 1337 { 1338 struct map_desc map; 1339 unsigned long addr; 1340 void *vectors; 1341 1342 /* 1343 * Allocate the vector page early. 1344 */ 1345 vectors = early_alloc(PAGE_SIZE * 2); 1346 1347 early_trap_init(vectors); 1348 1349 /* 1350 * Clear page table except top pmd used by early fixmaps 1351 */ 1352 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) 1353 pmd_clear(pmd_off_k(addr)); 1354 1355 if (__atags_pointer) { 1356 /* create a read-only mapping of the device tree */ 1357 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); 1358 map.virtual = FDT_FIXED_BASE; 1359 map.length = FDT_FIXED_SIZE; 1360 map.type = MT_ROM; 1361 create_mapping(&map); 1362 } 1363 1364 /* 1365 * Map the kernel if it is XIP. 1366 * It is always first in the modulearea. 1367 */ 1368 #ifdef CONFIG_XIP_KERNEL 1369 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1370 map.virtual = MODULES_VADDR; 1371 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1372 map.type = MT_ROM; 1373 create_mapping(&map); 1374 #endif 1375 1376 /* 1377 * Map the cache flushing regions. 1378 */ 1379 #ifdef FLUSH_BASE 1380 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1381 map.virtual = FLUSH_BASE; 1382 map.length = SZ_1M; 1383 map.type = MT_CACHECLEAN; 1384 create_mapping(&map); 1385 #endif 1386 #ifdef FLUSH_BASE_MINICACHE 1387 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1388 map.virtual = FLUSH_BASE_MINICACHE; 1389 map.length = SZ_1M; 1390 map.type = MT_MINICLEAN; 1391 create_mapping(&map); 1392 #endif 1393 1394 /* 1395 * Create a mapping for the machine vectors at the high-vectors 1396 * location (0xffff0000). If we aren't using high-vectors, also 1397 * create a mapping at the low-vectors virtual address. 1398 */ 1399 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1400 map.virtual = 0xffff0000; 1401 map.length = PAGE_SIZE; 1402 #ifdef CONFIG_KUSER_HELPERS 1403 map.type = MT_HIGH_VECTORS; 1404 #else 1405 map.type = MT_LOW_VECTORS; 1406 #endif 1407 create_mapping(&map); 1408 1409 if (!vectors_high()) { 1410 map.virtual = 0; 1411 map.length = PAGE_SIZE * 2; 1412 map.type = MT_LOW_VECTORS; 1413 create_mapping(&map); 1414 } 1415 1416 /* Now create a kernel read-only mapping */ 1417 map.pfn += 1; 1418 map.virtual = 0xffff0000 + PAGE_SIZE; 1419 map.length = PAGE_SIZE; 1420 map.type = MT_LOW_VECTORS; 1421 create_mapping(&map); 1422 1423 /* 1424 * Ask the machine support to map in the statically mapped devices. 1425 */ 1426 if (mdesc->map_io) 1427 mdesc->map_io(); 1428 else 1429 debug_ll_io_init(); 1430 fill_pmd_gaps(); 1431 1432 /* Reserve fixed i/o space in VMALLOC region */ 1433 pci_reserve_io(); 1434 1435 /* 1436 * Finally flush the caches and tlb to ensure that we're in a 1437 * consistent state wrt the writebuffer. This also ensures that 1438 * any write-allocated cache lines in the vector page are written 1439 * back. After this point, we can start to touch devices again. 1440 */ 1441 local_flush_tlb_all(); 1442 flush_cache_all(); 1443 1444 /* Enable asynchronous aborts */ 1445 early_abt_enable(); 1446 } 1447 1448 static void __init kmap_init(void) 1449 { 1450 #ifdef CONFIG_HIGHMEM 1451 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1452 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1453 #endif 1454 1455 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, 1456 _PAGE_KERNEL_TABLE); 1457 } 1458 1459 static void __init map_lowmem(void) 1460 { 1461 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); 1462 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1463 phys_addr_t start, end; 1464 u64 i; 1465 1466 /* Map all the lowmem memory banks. */ 1467 for_each_mem_range(i, &start, &end) { 1468 struct map_desc map; 1469 1470 if (end > arm_lowmem_limit) 1471 end = arm_lowmem_limit; 1472 if (start >= end) 1473 break; 1474 1475 if (end < kernel_x_start) { 1476 map.pfn = __phys_to_pfn(start); 1477 map.virtual = __phys_to_virt(start); 1478 map.length = end - start; 1479 map.type = MT_MEMORY_RWX; 1480 1481 create_mapping(&map); 1482 } else if (start >= kernel_x_end) { 1483 map.pfn = __phys_to_pfn(start); 1484 map.virtual = __phys_to_virt(start); 1485 map.length = end - start; 1486 map.type = MT_MEMORY_RW; 1487 1488 create_mapping(&map); 1489 } else { 1490 /* This better cover the entire kernel */ 1491 if (start < kernel_x_start) { 1492 map.pfn = __phys_to_pfn(start); 1493 map.virtual = __phys_to_virt(start); 1494 map.length = kernel_x_start - start; 1495 map.type = MT_MEMORY_RW; 1496 1497 create_mapping(&map); 1498 } 1499 1500 map.pfn = __phys_to_pfn(kernel_x_start); 1501 map.virtual = __phys_to_virt(kernel_x_start); 1502 map.length = kernel_x_end - kernel_x_start; 1503 map.type = MT_MEMORY_RWX; 1504 1505 create_mapping(&map); 1506 1507 if (kernel_x_end < end) { 1508 map.pfn = __phys_to_pfn(kernel_x_end); 1509 map.virtual = __phys_to_virt(kernel_x_end); 1510 map.length = end - kernel_x_end; 1511 map.type = MT_MEMORY_RW; 1512 1513 create_mapping(&map); 1514 } 1515 } 1516 } 1517 } 1518 1519 #ifdef CONFIG_ARM_PV_FIXUP 1520 typedef void pgtables_remap(long long offset, unsigned long pgd); 1521 pgtables_remap lpae_pgtables_remap_asm; 1522 1523 /* 1524 * early_paging_init() recreates boot time page table setup, allowing machines 1525 * to switch over to a high (>4G) address space on LPAE systems 1526 */ 1527 static void __init early_paging_init(const struct machine_desc *mdesc) 1528 { 1529 pgtables_remap *lpae_pgtables_remap; 1530 unsigned long pa_pgd; 1531 unsigned int cr, ttbcr; 1532 long long offset; 1533 1534 if (!mdesc->pv_fixup) 1535 return; 1536 1537 offset = mdesc->pv_fixup(); 1538 if (offset == 0) 1539 return; 1540 1541 /* 1542 * Get the address of the remap function in the 1:1 identity 1543 * mapping setup by the early page table assembly code. We 1544 * must get this prior to the pv update. The following barrier 1545 * ensures that this is complete before we fixup any P:V offsets. 1546 */ 1547 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); 1548 pa_pgd = __pa(swapper_pg_dir); 1549 barrier(); 1550 1551 pr_info("Switching physical address space to 0x%08llx\n", 1552 (u64)PHYS_OFFSET + offset); 1553 1554 /* Re-set the phys pfn offset, and the pv offset */ 1555 __pv_offset += offset; 1556 __pv_phys_pfn_offset += PFN_DOWN(offset); 1557 1558 /* Run the patch stub to update the constants */ 1559 fixup_pv_table(&__pv_table_begin, 1560 (&__pv_table_end - &__pv_table_begin) << 2); 1561 1562 /* 1563 * We changing not only the virtual to physical mapping, but also 1564 * the physical addresses used to access memory. We need to flush 1565 * all levels of cache in the system with caching disabled to 1566 * ensure that all data is written back, and nothing is prefetched 1567 * into the caches. We also need to prevent the TLB walkers 1568 * allocating into the caches too. Note that this is ARMv7 LPAE 1569 * specific. 1570 */ 1571 cr = get_cr(); 1572 set_cr(cr & ~(CR_I | CR_C)); 1573 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); 1574 asm volatile("mcr p15, 0, %0, c2, c0, 2" 1575 : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); 1576 flush_cache_all(); 1577 1578 /* 1579 * Fixup the page tables - this must be in the idmap region as 1580 * we need to disable the MMU to do this safely, and hence it 1581 * needs to be assembly. It's fairly simple, as we're using the 1582 * temporary tables setup by the initial assembly code. 1583 */ 1584 lpae_pgtables_remap(offset, pa_pgd); 1585 1586 /* Re-enable the caches and cacheable TLB walks */ 1587 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); 1588 set_cr(cr); 1589 } 1590 1591 #else 1592 1593 static void __init early_paging_init(const struct machine_desc *mdesc) 1594 { 1595 long long offset; 1596 1597 if (!mdesc->pv_fixup) 1598 return; 1599 1600 offset = mdesc->pv_fixup(); 1601 if (offset == 0) 1602 return; 1603 1604 pr_crit("Physical address space modification is only to support Keystone2.\n"); 1605 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); 1606 pr_crit("feature. Your kernel may crash now, have a good day.\n"); 1607 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1608 } 1609 1610 #endif 1611 1612 static void __init early_fixmap_shutdown(void) 1613 { 1614 int i; 1615 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); 1616 1617 pte_offset_fixmap = pte_offset_late_fixmap; 1618 pmd_clear(fixmap_pmd(va)); 1619 local_flush_tlb_kernel_page(va); 1620 1621 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { 1622 pte_t *pte; 1623 struct map_desc map; 1624 1625 map.virtual = fix_to_virt(i); 1626 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); 1627 1628 /* Only i/o device mappings are supported ATM */ 1629 if (pte_none(*pte) || 1630 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) 1631 continue; 1632 1633 map.pfn = pte_pfn(*pte); 1634 map.type = MT_DEVICE; 1635 map.length = PAGE_SIZE; 1636 1637 create_mapping(&map); 1638 } 1639 } 1640 1641 /* 1642 * paging_init() sets up the page tables, initialises the zone memory 1643 * maps, and sets up the zero page, bad page and bad page tables. 1644 */ 1645 void __init paging_init(const struct machine_desc *mdesc) 1646 { 1647 void *zero_page; 1648 1649 prepare_page_table(); 1650 map_lowmem(); 1651 memblock_set_current_limit(arm_lowmem_limit); 1652 dma_contiguous_remap(); 1653 early_fixmap_shutdown(); 1654 devicemaps_init(mdesc); 1655 kmap_init(); 1656 tcm_init(); 1657 1658 top_pmd = pmd_off_k(0xffff0000); 1659 1660 /* allocate the zero page. */ 1661 zero_page = early_alloc(PAGE_SIZE); 1662 1663 bootmem_init(); 1664 1665 empty_zero_page = virt_to_page(zero_page); 1666 __flush_dcache_page(NULL, empty_zero_page); 1667 } 1668 1669 void __init early_mm_init(const struct machine_desc *mdesc) 1670 { 1671 build_mem_type_table(); 1672 early_paging_init(mdesc); 1673 } 1674 1675 void set_pte_at(struct mm_struct *mm, unsigned long addr, 1676 pte_t *ptep, pte_t pteval) 1677 { 1678 unsigned long ext = 0; 1679 1680 if (addr < TASK_SIZE && pte_valid_user(pteval)) { 1681 if (!pte_special(pteval)) 1682 __sync_icache_dcache(pteval); 1683 ext |= PTE_EXT_NG; 1684 } 1685 1686 set_pte_ext(ptep, pteval, ext); 1687 } 1688