xref: /openbmc/hiomapd/windows.c (revision f1e547c7)
1 // SPDX-License-Identifier: Apache-2.0
2 // Copyright (C) 2018 IBM Corp.
3 
4 #define _GNU_SOURCE
5 #include <assert.h>
6 #include <errno.h>
7 #include <fcntl.h>
8 #include <getopt.h>
9 #include <limits.h>
10 #include <poll.h>
11 #include <stdbool.h>
12 #include <stdint.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <syslog.h>
17 #include <signal.h>
18 #include <sys/ioctl.h>
19 #include <sys/mman.h>
20 #include <sys/stat.h>
21 #include <sys/timerfd.h>
22 #include <sys/types.h>
23 #include <time.h>
24 #include <unistd.h>
25 #include <inttypes.h>
26 #include <mtd/mtd-abi.h>
27 
28 #include "mboxd.h"
29 #include "common.h"
30 #include "transport_mbox.h"
31 #include "windows.h"
32 #include "backend.h"
33 
34 /* Initialisation Functions */
35 
36 /*
37  * init_window_state() - Initialise a new window to a known state
38  * @window:	The window to initialise
39  * @size:	The size of the window
40  */
41 static void init_window_state(struct window_context *window, uint32_t size)
42 {
43 	window->mem = NULL;
44 	window->flash_offset = FLASH_OFFSET_UNINIT;
45 	window->size = size;
46 	window->dirty_bmap = NULL;
47 	window->age = 0;
48 }
49 
50 /*
51  * init_window_mem() - Divide the reserved memory region among the windows
52  * @context:	The mbox context pointer
53  *
54  * Return:	0 on success otherwise negative error code
55  */
56 static int init_window_mem(struct mbox_context *context)
57 {
58 	void *mem_location = context->mem;
59 	int i;
60 
61 	/*
62 	 * Carve up the reserved memory region and allocate it to each of the
63 	 * windows. The windows are placed one after the other in ascending
64 	 * order, so the first window will be first in memory and so on. We
65 	 * shouldn't have allocated more windows than we have memory, but if we
66 	 * did we will error out here
67 	 */
68 	for (i = 0; i < context->windows.num; i++) {
69 		uint32_t size = context->windows.window[i].size;
70 		MSG_DBG("Window %d @ %p for size 0x%.8x\n", i,
71 			mem_location, size);
72 		context->windows.window[i].mem = mem_location;
73 		mem_location += size;
74 		if (mem_location > (context->mem + context->mem_size)) {
75 			/* Tried to allocate window past the end of memory */
76 			MSG_ERR("Total size of windows exceeds reserved mem\n");
77 			MSG_ERR("Try smaller or fewer windows\n");
78 			MSG_ERR("Mem size: 0x%.8x\n", context->mem_size);
79 			return -1;
80 		}
81 	}
82 
83 	return 0;
84 }
85 /*
86  * windows_init() - Initalise the window cache
87  * @context:    The mbox context pointer
88  *
89  * Return:      0 on success otherwise negative
90  */
91 int windows_init(struct mbox_context *context)
92 {
93 	int i;
94 
95 	/* Check if window size and number set - otherwise set to default */
96 	if (!context->windows.default_size) {
97 		/* Default to 1MB windows */
98 		context->windows.default_size = 1 << 20;
99 	}
100 	MSG_INFO("Window size: 0x%.8x\n", context->windows.default_size);
101 	if (!context->windows.num) {
102 		/* Use the entire reserved memory region by default */
103 		context->windows.num = context->mem_size /
104 				       context->windows.default_size;
105 	}
106 	MSG_INFO("Number of windows: %d\n", context->windows.num);
107 
108 	context->windows.window = calloc(context->windows.num,
109 					 sizeof(*context->windows.window));
110 	if (!context->windows.window) {
111 		MSG_ERR("Memory allocation failed\n");
112 		return -1;
113 	}
114 
115 	for (i = 0; i < context->windows.num; i++) {
116 		init_window_state(&context->windows.window[i],
117 				  context->windows.default_size);
118 	}
119 
120 	return init_window_mem(context);
121 }
122 
123 /*
124  * windows_free() - Free the window cache
125  * @context:	The mbox context pointer
126  */
127 void windows_free(struct mbox_context *context)
128 {
129 	int i;
130 
131 	/* Check window cache has actually been allocated */
132 	if (context->windows.window) {
133 		for (i = 0; i < context->windows.num; i++) {
134 			free(context->windows.window[i].dirty_bmap);
135 		}
136 		free(context->windows.window);
137 	}
138 }
139 
140 /* Write from Window Functions */
141 
142 /*
143  * window_flush_v1() - Handle writing when erase and block size differ
144  * @context:		The mbox context pointer
145  * @offset_bytes:	The offset in the current window to write from (bytes)
146  * @count_bytes:	Number of bytes to write
147  *
148  * Handle a window_flush for dirty memory when block_size is less than the
149  * flash erase size
150  * This requires us to be a bit careful because we might have to erase more
151  * than we want to write which could result in data loss if we don't have the
152  * entire portion of flash to be erased already saved in memory (for us to
153  * write back after the erase)
154  *
155  * Return:	0 on success otherwise negative error code
156  */
157 int window_flush_v1(struct mbox_context *context,
158 			 uint32_t offset_bytes, uint32_t count_bytes)
159 {
160 	int rc;
161 	uint32_t flash_offset;
162 	struct window_context low_mem = { 0 }, high_mem = { 0 };
163 
164 	/* Find where in phys flash this is based on the window.flash_offset */
165 	flash_offset = context->current->flash_offset + offset_bytes;
166 
167 	/*
168 	 * low_mem.flash_offset = erase boundary below where we're writing
169 	 * low_mem.size = size from low_mem.flash_offset to where we're writing
170 	 *
171 	 * high_mem.flash_offset = end of where we're writing
172 	 * high_mem.size = size from end of where we're writing to next erase
173 	 * 		   boundary
174 	 */
175 	low_mem.flash_offset = align_down(flash_offset,
176 					  1 << context->backend.erase_size_shift);
177 	low_mem.size = flash_offset - low_mem.flash_offset;
178 	high_mem.flash_offset = flash_offset + count_bytes;
179 	high_mem.size = align_up(high_mem.flash_offset,
180 				 1 << context->backend.erase_size_shift) -
181 			high_mem.flash_offset;
182 
183 	/*
184 	 * Check if we already have a copy of the required flash areas in
185 	 * memory as part of the existing window
186 	 */
187 	if (low_mem.flash_offset < context->current->flash_offset) {
188 		/* Before the start of our current window */
189 		low_mem.mem = malloc(low_mem.size);
190 		if (!low_mem.mem) {
191 			MSG_ERR("Unable to allocate memory\n");
192 			return -ENOMEM;
193 		}
194 		rc = flash_copy(context, low_mem.flash_offset,
195 				low_mem.mem, low_mem.size);
196 		if (rc < 0) {
197 			goto out;
198 		}
199 	}
200 	if ((high_mem.flash_offset + high_mem.size) >
201 	    (context->current->flash_offset + context->current->size)) {
202 		/* After the end of our current window */
203 		high_mem.mem = malloc(high_mem.size);
204 		if (!high_mem.mem) {
205 			MSG_ERR("Unable to allocate memory\n");
206 			rc = -ENOMEM;
207 			goto out;
208 		}
209 		rc = flash_copy(context, high_mem.flash_offset,
210 				high_mem.mem, high_mem.size);
211 		if (rc < 0) {
212 			goto out;
213 		}
214 	}
215 
216 	/*
217 	 * We need to erase the flash from low_mem.flash_offset->
218 	 * high_mem.flash_offset + high_mem.size
219 	 */
220 	rc = flash_erase(context, low_mem.flash_offset,
221 			 (high_mem.flash_offset - low_mem.flash_offset) +
222 			 high_mem.size);
223 	if (rc < 0) {
224 		MSG_ERR("Couldn't erase flash\n");
225 		goto out;
226 	}
227 
228 	/* Write back over the erased area */
229 	if (low_mem.mem) {
230 		/* Exceed window at the start */
231 		rc = flash_write(context, low_mem.flash_offset, low_mem.mem,
232 				 low_mem.size);
233 		if (rc < 0) {
234 			goto out;
235 		}
236 	}
237 	rc = flash_write(context, flash_offset,
238 			 context->current->mem + offset_bytes, count_bytes);
239 	if (rc < 0) {
240 		goto out;
241 	}
242 	/*
243 	 * We still need to write the last little bit that we erased - it's
244 	 * either in the current window or the high_mem window.
245 	 */
246 	if (high_mem.mem) {
247 		/* Exceed window at the end */
248 		rc = flash_write(context, high_mem.flash_offset, high_mem.mem,
249 				 high_mem.size);
250 		if (rc < 0) {
251 			goto out;
252 		}
253 	} else {
254 		/* Write from the current window - it's atleast that big */
255 		rc = flash_write(context, high_mem.flash_offset,
256 				 context->current->mem + offset_bytes +
257 				 count_bytes, high_mem.size);
258 		if (rc < 0) {
259 			goto out;
260 		}
261 	}
262 
263 out:
264 	free(low_mem.mem);
265 	free(high_mem.mem);
266 	return rc;
267 }
268 
269 /*
270  * window_flush() - Write back to the flash from the current window
271  * @context:		The mbox context pointer
272  * @offset_bytes:	The offset in the current window to write from (blocks)
273  * @count_bytes:	Number of blocks to write
274  * @type:		Whether this is an erase & write or just an erase
275  *
276  * Return:	0 on success otherwise negative error code
277  */
278 int window_flush(struct mbox_context *context, uint32_t offset,
279 		      uint32_t count, uint8_t type)
280 {
281 	int rc;
282 	uint32_t flash_offset, count_bytes = count << context->backend.block_size_shift;
283 	uint32_t offset_bytes = offset << context->backend.block_size_shift;
284 
285 	switch (type) {
286 	case WINDOW_ERASED: /* >= V2 ONLY -> block_size == erasesize */
287 		flash_offset = context->current->flash_offset + offset_bytes;
288 		rc = flash_erase(context, flash_offset, count_bytes);
289 		if (rc < 0) {
290 			MSG_ERR("Couldn't erase flash\n");
291 			return rc;
292 		}
293 		break;
294 	case WINDOW_DIRTY:
295 		/*
296 		 * For protocol V1, block_size may be smaller than erase size
297 		 * so we have a special function to make sure that we do this
298 		 * correctly without losing data.
299 		 */
300 		if (context->backend.erase_size_shift !=
301 				context->backend.block_size_shift) {
302 			return window_flush_v1(context, offset_bytes,
303 						    count_bytes);
304 		}
305 		flash_offset = context->current->flash_offset + offset_bytes;
306 
307 		/* Erase the flash */
308 		rc = flash_erase(context, flash_offset, count_bytes);
309 		if (rc < 0) {
310 			return rc;
311 		}
312 
313 		/* Write to the erased flash */
314 		rc = flash_write(context, flash_offset,
315 				 context->current->mem + offset_bytes,
316 				 count_bytes);
317 		if (rc < 0) {
318 			return rc;
319 		}
320 
321 		break;
322 	default:
323 		/* We shouldn't be able to get here */
324 		MSG_ERR("Write from window with invalid type: %d\n", type);
325 		return -EPERM;
326 	}
327 
328 	return 0;
329 }
330 
331 /* Window Management Functions */
332 
333 /*
334  * windows_alloc_dirty_bytemap() - (re)allocate all the window dirty bytemaps
335  * @context:		The mbox context pointer
336  */
337 void windows_alloc_dirty_bytemap(struct mbox_context *context)
338 {
339 	struct window_context *cur;
340 	int i;
341 
342 	for (i = 0; i < context->windows.num; i++) {
343 		cur = &context->windows.window[i];
344 		/* There may already be one allocated */
345 		free(cur->dirty_bmap);
346 		/* Allocate the new one */
347 		cur->dirty_bmap = calloc((context->windows.default_size >>
348 					  context->backend.block_size_shift),
349 					 sizeof(*cur->dirty_bmap));
350 	}
351 }
352 
353 /*
354  * window_set_bytemap() - Set the window bytemap
355  * @context:	The mbox context pointer
356  * @cur:	The window to set the bytemap of
357  * @offset:	Where in the window to set the bytemap (blocks)
358  * @size:	The number of blocks to set
359  * @val:	The value to set the bytemap to
360  *
361  * Return:	0 on success otherwise negative error code
362  */
363 int window_set_bytemap(struct mbox_context *context, struct window_context *cur,
364 		       uint32_t offset, uint32_t size, uint8_t val)
365 {
366 	if (offset + size > (cur->size >> context->backend.block_size_shift)) {
367 		MSG_ERR("Tried to set window bytemap past end of window\n");
368 		MSG_ERR("Requested offset: 0x%x size: 0x%x window size: 0x%x\n",
369 			offset << context->backend.block_size_shift,
370 			size << context->backend.block_size_shift,
371 			cur->size << context->backend.block_size_shift);
372 		return -EACCES;
373 	}
374 
375 	memset(cur->dirty_bmap + offset, val, size);
376 	return 0;
377 }
378 
379 /*
380  * windows_close_current() - Close the current (active) window
381  * @context:   		The mbox context pointer
382  * @flags:		Flags as defined for a close command in the protocol
383  *
384  * This closes the current window. If the host has requested the current window
385  * be closed then we don't need to set the bmc event bit
386  * (set_bmc_event == false), otherwise if the current window has been closed
387  * without the host requesting it the bmc event bit must be set to indicate this
388  * to the host (set_bmc_event == true).
389  */
390 void windows_close_current(struct mbox_context *context, uint8_t flags)
391 {
392 	MSG_DBG("Close current window, flags: 0x%.2x\n", flags);
393 
394 	if (flags & FLAGS_SHORT_LIFETIME) {
395 		context->current->age = 0;
396 	}
397 
398 	context->current = NULL;
399 	context->current_is_write = false;
400 }
401 
402 /*
403  * window_reset() - Reset a window context to a well defined default state
404  * @context:   	The mbox context pointer
405  * @window:	The window to reset
406  */
407 void window_reset(struct mbox_context *context, struct window_context *window)
408 {
409 	window->flash_offset = FLASH_OFFSET_UNINIT;
410 	window->size = context->windows.default_size;
411 	if (window->dirty_bmap) { /* Might not have been allocated */
412 		window_set_bytemap(context, window, 0,
413 				   window->size >> context->backend.block_size_shift,
414 				   WINDOW_CLEAN);
415 	}
416 	window->age = 0;
417 }
418 
419 /*
420  * windows_reset_all() - Reset all windows to a well defined default state
421  * @context:		The mbox context pointer
422  *
423  * @return True if there was a window open that was closed, false otherwise
424  */
425 bool windows_reset_all(struct mbox_context *context)
426 {
427 	bool closed = context->current;
428 	int i;
429 
430 	MSG_DBG("Resetting all windows\n");
431 
432 	context->windows.max_age = 0;
433 
434 	/* We might have an open window which needs closing */
435 
436 	if (context->current) {
437 		windows_close_current(context, FLAGS_NONE);
438 	}
439 
440 	for (i = 0; i < context->windows.num; i++) {
441 		window_reset(context, &context->windows.window[i]);
442 	}
443 
444 	return closed;
445 }
446 
447 /*
448  * windows_find_oldest() - Find the oldest (Least Recently Used) window
449  * @context:		The mbox context pointer
450  *
451  * Return:	Pointer to the least recently used window
452  */
453 struct window_context *windows_find_oldest(struct mbox_context *context)
454 {
455 	struct window_context *oldest = NULL, *cur;
456 	uint32_t min_age = context->windows.max_age + 1;
457 	int i;
458 
459 	for (i = 0; i < context->windows.num; i++) {
460 		cur = &context->windows.window[i];
461 
462 		if (cur->age < min_age) {
463 			min_age = cur->age;
464 			oldest = cur;
465 		}
466 	}
467 
468 	return oldest;
469 }
470 
471 /*
472  * windows_find_largest() - Find the largest window in the window cache
473  * @context:	The mbox context pointer
474  *
475  * Return:	The largest window
476  */
477 struct window_context *windows_find_largest(struct mbox_context *context)
478 {
479 	struct window_context *largest = NULL, *cur;
480 	uint32_t max_size = 0;
481 	int i;
482 
483 	for (i = 0; i < context->windows.num; i++) {
484 		cur = &context->windows.window[i];
485 
486 		if (cur->size > max_size) {
487 			max_size = cur->size;
488 			largest = cur;
489 		}
490 	}
491 
492 	return largest;
493 }
494 
495 /*
496  * windows_search() - Search the window cache for a window containing offset
497  * @context:	The mbox context pointer
498  * @offset:	Absolute flash offset to search for (bytes)
499  * @exact:	If the window must exactly map the requested offset
500  *
501  * This will search the cache of windows for one containing the requested
502  * offset. For V1 of the protocol windows must exactly map the offset since we
503  * can't tell the host how much of its request we actually mapped and it will
504  * thus assume it can access window->size from the offset we give it.
505  *
506  * Return:	Pointer to a window containing the requested offset otherwise
507  *		NULL
508  */
509 struct window_context *windows_search(struct mbox_context *context,
510 				      uint32_t offset, bool exact)
511 {
512 	struct window_context *cur;
513 	int i;
514 
515 	MSG_DBG("Searching for window which contains 0x%.8x %s\n",
516 		offset, exact ? "exactly" : "");
517 	for (i = 0; i < context->windows.num; i++) {
518 		cur = &context->windows.window[i];
519 		if (cur->flash_offset == FLASH_OFFSET_UNINIT) {
520 			/* Uninitialised Window */
521 			if (offset == FLASH_OFFSET_UNINIT) {
522 				return cur;
523 			}
524 			continue;
525 		}
526 		if ((offset >= cur->flash_offset) &&
527 		    (offset < (cur->flash_offset + cur->size))) {
528 			if (exact && (cur->flash_offset != offset)) {
529 				continue;
530 			}
531 			/* This window contains the requested offset */
532 			cur->age = ++(context->windows.max_age);
533 			return cur;
534 		}
535 	}
536 
537 	return NULL;
538 }
539 
540 /*
541  * windows_create_map() - Create a window mapping which maps the requested offset
542  * @context:		The mbox context pointer
543  * @this_window:	A pointer to update to the "new" window
544  * @offset:		Absolute flash offset to create a mapping for (bytes)
545  * @exact:		If the window must exactly map the requested offset
546  *
547  * This is used to create a window mapping for the requested offset when there
548  * is no existing window in the cache which satisfies the offset. This involves
549  * choosing an existing window from the window cache to evict so we can use it
550  * to store the flash contents from the requested offset, we then point the
551  * caller to that window since it now maps their request.
552  *
553  * Return:	0 on success otherwise negative error code
554  */
555 int windows_create_map(struct mbox_context *context,
556 		      struct window_context **this_window, uint32_t offset,
557 		      bool exact)
558 {
559 	struct window_context *cur = NULL;
560 	int rc;
561 
562 	MSG_DBG("Creating window which maps 0x%.8x %s\n", offset,
563 		exact ? "exactly" : "");
564 
565 	/* Search for an uninitialised window, use this before evicting */
566 	cur = windows_search(context, FLASH_OFFSET_UNINIT, true);
567 
568 	/* No uninitialised window found, we need to choose one to "evict" */
569 	if (!cur) {
570 		MSG_DBG("No uninitialised window, evicting one\n");
571 		cur = windows_find_oldest(context);
572 		window_reset(context, cur);
573 	}
574 
575 /*
576  * In case of the virtual pnor, as of now it's possible that a window may
577  * have content less than it's max size. We basically copy one flash partition
578  * per window, and some partitions are smaller than the max size. An offset
579  * right after such a small partition ends should lead to new mapping. The code
580  * below prevents that.
581  */
582 #ifndef VIRTUAL_PNOR_ENABLED
583 	if (!exact) {
584 		/*
585 		 * It would be nice to align the offsets which we map to window
586 		 * size, this will help prevent overlap which would be an
587 		 * inefficient use of our reserved memory area (we would like
588 		 * to "cache" as much of the acutal flash as possible in
589 		 * memory). If we're protocol V1 however we must ensure the
590 		 * offset requested is exactly mapped.
591 		 */
592 		offset &= ~(cur->size - 1);
593 	}
594 #endif
595 
596 	if (offset > context->backend.flash_size) {
597 		MSG_ERR("Tried to open read window past flash limit\n");
598 		return -EINVAL;
599 	} else if ((offset + cur->size) > context->backend.flash_size) {
600 		/*
601 		 * There is V1 skiboot implementations out there which don't
602 		 * mask offset with window size, meaning when we have
603 		 * window size == flash size we will never allow the host to
604 		 * open a window except at 0x0, which isn't always where the
605 		 * host requests it. Thus we have to ignore this check and just
606 		 * hope the host doesn't access past the end of the window
607 		 * (which it shouldn't) for V1 implementations to get around
608 		 * this.
609 		 */
610 		if (context->version == API_VERSION_1) {
611 			cur->size = align_down(context->backend.flash_size - offset,
612 					       1 << context->backend.block_size_shift);
613 		} else {
614 			/*
615 			 * Allow requests to exceed the flash size, but limit
616 			 * the response to the size of the flash.
617 			 */
618 			cur->size = context->backend.flash_size - offset;
619 		}
620 	}
621 
622 	/* Copy from flash into the window buffer */
623 	rc = flash_copy(context, offset, cur->mem, cur->size);
624 	if (rc < 0) {
625 		/* We don't know how much we've copied -> better reset window */
626 		window_reset(context, cur);
627 		return rc;
628 	}
629 	/*
630 	 * rc isn't guaranteed to be aligned, so align up
631 	 *
632 	 * FIXME: This should only be the case for the vpnor ToC now, so handle
633 	 * it there
634 	 */
635 	cur->size = align_up(rc, (1ULL << context->backend.block_size_shift));
636 	/* Would like a known value, pick 0xFF to it looks like erased flash */
637 	memset(cur->mem + rc, 0xFF, cur->size - rc);
638 
639 	/*
640 	 * Since for V1 windows aren't constrained to start at multiples of
641 	 * window size it's possible that something already maps this offset.
642 	 * Reset any windows which map this offset to avoid coherency problems.
643 	 * We just have to check for anything which maps the start or the end
644 	 * of the window since all windows are the same size so another window
645 	 * cannot map just the middle of this window.
646 	 */
647 	if (context->version == API_VERSION_1) {
648 		uint32_t i;
649 
650 		MSG_DBG("Checking for window overlap\n");
651 
652 		for (i = offset; i < (offset + cur->size); i += (cur->size - 1)) {
653 			struct window_context *tmp = NULL;
654 			do {
655 				tmp = windows_search(context, i, false);
656 				if (tmp) {
657 					window_reset(context, tmp);
658 				}
659 			} while (tmp);
660 		}
661 	}
662 
663 	/* Clear the bytemap of the window just loaded -> we know it's clean */
664 	window_set_bytemap(context, cur, 0,
665 			   cur->size >> context->backend.block_size_shift,
666 			   WINDOW_CLEAN);
667 
668 	/* Update so we know what's in the window */
669 	cur->flash_offset = offset;
670 	cur->age = ++(context->windows.max_age);
671 	*this_window = cur;
672 
673 	return 0;
674 }
675