xref: /openbmc/u-boot/lib/bch.c (revision 05fa129a40e33adf8f6e681326d4d50c1462d163)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic binary BCH encoding/decoding library
4  *
5  * Copyright © 2011 Parrot S.A.
6  *
7  * Author: Ivan Djelic <ivan.djelic@parrot.com>
8  *
9  * Description:
10  *
11  * This library provides runtime configurable encoding/decoding of binary
12  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
13  *
14  * Call init_bch to get a pointer to a newly allocated bch_control structure for
15  * the given m (Galois field order), t (error correction capability) and
16  * (optional) primitive polynomial parameters.
17  *
18  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
19  * Call decode_bch to detect and locate errors in received data.
20  *
21  * On systems supporting hw BCH features, intermediate results may be provided
22  * to decode_bch in order to skip certain steps. See decode_bch() documentation
23  * for details.
24  *
25  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
26  * parameters m and t; thus allowing extra compiler optimizations and providing
27  * better (up to 2x) encoding performance. Using this option makes sense when
28  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
29  * on a particular NAND flash device.
30  *
31  * Algorithmic details:
32  *
33  * Encoding is performed by processing 32 input bits in parallel, using 4
34  * remainder lookup tables.
35  *
36  * The final stage of decoding involves the following internal steps:
37  * a. Syndrome computation
38  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
39  * c. Error locator root finding (by far the most expensive step)
40  *
41  * In this implementation, step c is not performed using the usual Chien search.
42  * Instead, an alternative approach described in [1] is used. It consists in
43  * factoring the error locator polynomial using the Berlekamp Trace algorithm
44  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
45  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
46  * much better performance than Chien search for usual (m,t) values (typically
47  * m >= 13, t < 32, see [1]).
48  *
49  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
50  * of characteristic 2, in: Western European Workshop on Research in Cryptology
51  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
52  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
53  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
54  */
55 
56 #ifndef USE_HOSTCC
57 #include <common.h>
58 #include <ubi_uboot.h>
59 
60 #include <linux/bitops.h>
61 #else
62 #include <errno.h>
63 #if defined(__FreeBSD__)
64 #include <sys/endian.h>
65 #elif defined(__APPLE__)
66 #include <machine/endian.h>
67 #include <libkern/OSByteOrder.h>
68 #else
69 #include <endian.h>
70 #endif
71 #include <stdint.h>
72 #include <stdlib.h>
73 #include <string.h>
74 
75 #undef cpu_to_be32
76 #if defined(__APPLE__)
77 #define cpu_to_be32 OSSwapHostToBigInt32
78 #else
79 #define cpu_to_be32 htobe32
80 #endif
81 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
82 #define kmalloc(size, flags)	malloc(size)
83 #define kzalloc(size, flags)	calloc(1, size)
84 #define kfree free
85 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
86 #endif
87 
88 #include <asm/byteorder.h>
89 #include <linux/bch.h>
90 
91 #if defined(CONFIG_BCH_CONST_PARAMS)
92 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
93 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
94 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
95 #else
96 #define GF_M(_p)               ((_p)->m)
97 #define GF_T(_p)               ((_p)->t)
98 #define GF_N(_p)               ((_p)->n)
99 #endif
100 
101 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
102 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
103 
104 #ifndef dbg
105 #define dbg(_fmt, args...)     do {} while (0)
106 #endif
107 
108 /*
109  * represent a polynomial over GF(2^m)
110  */
111 struct gf_poly {
112 	unsigned int deg;    /* polynomial degree */
113 	unsigned int c[0];   /* polynomial terms */
114 };
115 
116 /* given its degree, compute a polynomial size in bytes */
117 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
118 
119 /* polynomial of degree 1 */
120 struct gf_poly_deg1 {
121 	struct gf_poly poly;
122 	unsigned int   c[2];
123 };
124 
125 #ifdef USE_HOSTCC
126 #if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__)
fls(int x)127 static int fls(int x)
128 {
129 	int r = 32;
130 
131 	if (!x)
132 		return 0;
133 	if (!(x & 0xffff0000u)) {
134 		x <<= 16;
135 		r -= 16;
136 	}
137 	if (!(x & 0xff000000u)) {
138 		x <<= 8;
139 		r -= 8;
140 	}
141 	if (!(x & 0xf0000000u)) {
142 		x <<= 4;
143 		r -= 4;
144 	}
145 	if (!(x & 0xc0000000u)) {
146 		x <<= 2;
147 		r -= 2;
148 	}
149 	if (!(x & 0x80000000u)) {
150 		x <<= 1;
151 		r -= 1;
152 	}
153 	return r;
154 }
155 #endif
156 #endif
157 
158 /*
159  * same as encode_bch(), but process input data one byte at a time
160  */
encode_bch_unaligned(struct bch_control * bch,const unsigned char * data,unsigned int len,uint32_t * ecc)161 static void encode_bch_unaligned(struct bch_control *bch,
162 				 const unsigned char *data, unsigned int len,
163 				 uint32_t *ecc)
164 {
165 	int i;
166 	const uint32_t *p;
167 	const int l = BCH_ECC_WORDS(bch)-1;
168 
169 	while (len--) {
170 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
171 
172 		for (i = 0; i < l; i++)
173 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
174 
175 		ecc[l] = (ecc[l] << 8)^(*p);
176 	}
177 }
178 
179 /*
180  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
181  */
load_ecc8(struct bch_control * bch,uint32_t * dst,const uint8_t * src)182 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
183 		      const uint8_t *src)
184 {
185 	uint8_t pad[4] = {0, 0, 0, 0};
186 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
187 
188 	for (i = 0; i < nwords; i++, src += 4)
189 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
190 
191 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
192 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
193 }
194 
195 /*
196  * convert 32-bit ecc words to ecc bytes
197  */
store_ecc8(struct bch_control * bch,uint8_t * dst,const uint32_t * src)198 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
199 		       const uint32_t *src)
200 {
201 	uint8_t pad[4];
202 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
203 
204 	for (i = 0; i < nwords; i++) {
205 		*dst++ = (src[i] >> 24);
206 		*dst++ = (src[i] >> 16) & 0xff;
207 		*dst++ = (src[i] >>  8) & 0xff;
208 		*dst++ = (src[i] >>  0) & 0xff;
209 	}
210 	pad[0] = (src[nwords] >> 24);
211 	pad[1] = (src[nwords] >> 16) & 0xff;
212 	pad[2] = (src[nwords] >>  8) & 0xff;
213 	pad[3] = (src[nwords] >>  0) & 0xff;
214 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
215 }
216 
217 /**
218  * encode_bch - calculate BCH ecc parity of data
219  * @bch:   BCH control structure
220  * @data:  data to encode
221  * @len:   data length in bytes
222  * @ecc:   ecc parity data, must be initialized by caller
223  *
224  * The @ecc parity array is used both as input and output parameter, in order to
225  * allow incremental computations. It should be of the size indicated by member
226  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
227  *
228  * The exact number of computed ecc parity bits is given by member @ecc_bits of
229  * @bch; it may be less than m*t for large values of t.
230  */
encode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,uint8_t * ecc)231 void encode_bch(struct bch_control *bch, const uint8_t *data,
232 		unsigned int len, uint8_t *ecc)
233 {
234 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
235 	unsigned int i, mlen;
236 	unsigned long m;
237 	uint32_t w, r[l+1];
238 	const uint32_t * const tab0 = bch->mod8_tab;
239 	const uint32_t * const tab1 = tab0 + 256*(l+1);
240 	const uint32_t * const tab2 = tab1 + 256*(l+1);
241 	const uint32_t * const tab3 = tab2 + 256*(l+1);
242 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
243 
244 	if (ecc) {
245 		/* load ecc parity bytes into internal 32-bit buffer */
246 		load_ecc8(bch, bch->ecc_buf, ecc);
247 	} else {
248 		memset(bch->ecc_buf, 0, sizeof(r));
249 	}
250 
251 	/* process first unaligned data bytes */
252 	m = ((unsigned long)data) & 3;
253 	if (m) {
254 		mlen = (len < (4-m)) ? len : 4-m;
255 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
256 		data += mlen;
257 		len  -= mlen;
258 	}
259 
260 	/* process 32-bit aligned data words */
261 	pdata = (uint32_t *)data;
262 	mlen  = len/4;
263 	data += 4*mlen;
264 	len  -= 4*mlen;
265 	memcpy(r, bch->ecc_buf, sizeof(r));
266 
267 	/*
268 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
269 	 *
270 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
271 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
272 	 *                               tttttttt  mod g = r0 (precomputed)
273 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
274 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
275 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
276 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
277 	 */
278 	while (mlen--) {
279 		/* input data is read in big-endian format */
280 		w = r[0]^cpu_to_be32(*pdata++);
281 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
282 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
283 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
284 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
285 
286 		for (i = 0; i < l; i++)
287 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
288 
289 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
290 	}
291 	memcpy(bch->ecc_buf, r, sizeof(r));
292 
293 	/* process last unaligned bytes */
294 	if (len)
295 		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
296 
297 	/* store ecc parity bytes into original parity buffer */
298 	if (ecc)
299 		store_ecc8(bch, ecc, bch->ecc_buf);
300 }
301 
modulo(struct bch_control * bch,unsigned int v)302 static inline int modulo(struct bch_control *bch, unsigned int v)
303 {
304 	const unsigned int n = GF_N(bch);
305 	while (v >= n) {
306 		v -= n;
307 		v = (v & n) + (v >> GF_M(bch));
308 	}
309 	return v;
310 }
311 
312 /*
313  * shorter and faster modulo function, only works when v < 2N.
314  */
mod_s(struct bch_control * bch,unsigned int v)315 static inline int mod_s(struct bch_control *bch, unsigned int v)
316 {
317 	const unsigned int n = GF_N(bch);
318 	return (v < n) ? v : v-n;
319 }
320 
deg(unsigned int poly)321 static inline int deg(unsigned int poly)
322 {
323 	/* polynomial degree is the most-significant bit index */
324 	return fls(poly)-1;
325 }
326 
parity(unsigned int x)327 static inline int parity(unsigned int x)
328 {
329 	/*
330 	 * public domain code snippet, lifted from
331 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
332 	 */
333 	x ^= x >> 1;
334 	x ^= x >> 2;
335 	x = (x & 0x11111111U) * 0x11111111U;
336 	return (x >> 28) & 1;
337 }
338 
339 /* Galois field basic operations: multiply, divide, inverse, etc. */
340 
gf_mul(struct bch_control * bch,unsigned int a,unsigned int b)341 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
342 				  unsigned int b)
343 {
344 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
345 					       bch->a_log_tab[b])] : 0;
346 }
347 
gf_sqr(struct bch_control * bch,unsigned int a)348 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
349 {
350 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
351 }
352 
gf_div(struct bch_control * bch,unsigned int a,unsigned int b)353 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
354 				  unsigned int b)
355 {
356 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
357 					GF_N(bch)-bch->a_log_tab[b])] : 0;
358 }
359 
gf_inv(struct bch_control * bch,unsigned int a)360 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
361 {
362 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
363 }
364 
a_pow(struct bch_control * bch,int i)365 static inline unsigned int a_pow(struct bch_control *bch, int i)
366 {
367 	return bch->a_pow_tab[modulo(bch, i)];
368 }
369 
a_log(struct bch_control * bch,unsigned int x)370 static inline int a_log(struct bch_control *bch, unsigned int x)
371 {
372 	return bch->a_log_tab[x];
373 }
374 
a_ilog(struct bch_control * bch,unsigned int x)375 static inline int a_ilog(struct bch_control *bch, unsigned int x)
376 {
377 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
378 }
379 
380 /*
381  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
382  */
compute_syndromes(struct bch_control * bch,uint32_t * ecc,unsigned int * syn)383 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
384 			      unsigned int *syn)
385 {
386 	int i, j, s;
387 	unsigned int m;
388 	uint32_t poly;
389 	const int t = GF_T(bch);
390 
391 	s = bch->ecc_bits;
392 
393 	/* make sure extra bits in last ecc word are cleared */
394 	m = ((unsigned int)s) & 31;
395 	if (m)
396 		ecc[s/32] &= ~((1u << (32-m))-1);
397 	memset(syn, 0, 2*t*sizeof(*syn));
398 
399 	/* compute v(a^j) for j=1 .. 2t-1 */
400 	do {
401 		poly = *ecc++;
402 		s -= 32;
403 		while (poly) {
404 			i = deg(poly);
405 			for (j = 0; j < 2*t; j += 2)
406 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
407 
408 			poly ^= (1 << i);
409 		}
410 	} while (s > 0);
411 
412 	/* v(a^(2j)) = v(a^j)^2 */
413 	for (j = 0; j < t; j++)
414 		syn[2*j+1] = gf_sqr(bch, syn[j]);
415 }
416 
gf_poly_copy(struct gf_poly * dst,struct gf_poly * src)417 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
418 {
419 	memcpy(dst, src, GF_POLY_SZ(src->deg));
420 }
421 
compute_error_locator_polynomial(struct bch_control * bch,const unsigned int * syn)422 static int compute_error_locator_polynomial(struct bch_control *bch,
423 					    const unsigned int *syn)
424 {
425 	const unsigned int t = GF_T(bch);
426 	const unsigned int n = GF_N(bch);
427 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
428 	struct gf_poly *elp = bch->elp;
429 	struct gf_poly *pelp = bch->poly_2t[0];
430 	struct gf_poly *elp_copy = bch->poly_2t[1];
431 	int k, pp = -1;
432 
433 	memset(pelp, 0, GF_POLY_SZ(2*t));
434 	memset(elp, 0, GF_POLY_SZ(2*t));
435 
436 	pelp->deg = 0;
437 	pelp->c[0] = 1;
438 	elp->deg = 0;
439 	elp->c[0] = 1;
440 
441 	/* use simplified binary Berlekamp-Massey algorithm */
442 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
443 		if (d) {
444 			k = 2*i-pp;
445 			gf_poly_copy(elp_copy, elp);
446 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
447 			tmp = a_log(bch, d)+n-a_log(bch, pd);
448 			for (j = 0; j <= pelp->deg; j++) {
449 				if (pelp->c[j]) {
450 					l = a_log(bch, pelp->c[j]);
451 					elp->c[j+k] ^= a_pow(bch, tmp+l);
452 				}
453 			}
454 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
455 			tmp = pelp->deg+k;
456 			if (tmp > elp->deg) {
457 				elp->deg = tmp;
458 				gf_poly_copy(pelp, elp_copy);
459 				pd = d;
460 				pp = 2*i;
461 			}
462 		}
463 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
464 		if (i < t-1) {
465 			d = syn[2*i+2];
466 			for (j = 1; j <= elp->deg; j++)
467 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
468 		}
469 	}
470 	dbg("elp=%s\n", gf_poly_str(elp));
471 	return (elp->deg > t) ? -1 : (int)elp->deg;
472 }
473 
474 /*
475  * solve a m x m linear system in GF(2) with an expected number of solutions,
476  * and return the number of found solutions
477  */
solve_linear_system(struct bch_control * bch,unsigned int * rows,unsigned int * sol,int nsol)478 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
479 			       unsigned int *sol, int nsol)
480 {
481 	const int m = GF_M(bch);
482 	unsigned int tmp, mask;
483 	int rem, c, r, p, k, param[m];
484 
485 	k = 0;
486 	mask = 1 << m;
487 
488 	/* Gaussian elimination */
489 	for (c = 0; c < m; c++) {
490 		rem = 0;
491 		p = c-k;
492 		/* find suitable row for elimination */
493 		for (r = p; r < m; r++) {
494 			if (rows[r] & mask) {
495 				if (r != p) {
496 					tmp = rows[r];
497 					rows[r] = rows[p];
498 					rows[p] = tmp;
499 				}
500 				rem = r+1;
501 				break;
502 			}
503 		}
504 		if (rem) {
505 			/* perform elimination on remaining rows */
506 			tmp = rows[p];
507 			for (r = rem; r < m; r++) {
508 				if (rows[r] & mask)
509 					rows[r] ^= tmp;
510 			}
511 		} else {
512 			/* elimination not needed, store defective row index */
513 			param[k++] = c;
514 		}
515 		mask >>= 1;
516 	}
517 	/* rewrite system, inserting fake parameter rows */
518 	if (k > 0) {
519 		p = k;
520 		for (r = m-1; r >= 0; r--) {
521 			if ((r > m-1-k) && rows[r])
522 				/* system has no solution */
523 				return 0;
524 
525 			rows[r] = (p && (r == param[p-1])) ?
526 				p--, 1u << (m-r) : rows[r-p];
527 		}
528 	}
529 
530 	if (nsol != (1 << k))
531 		/* unexpected number of solutions */
532 		return 0;
533 
534 	for (p = 0; p < nsol; p++) {
535 		/* set parameters for p-th solution */
536 		for (c = 0; c < k; c++)
537 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
538 
539 		/* compute unique solution */
540 		tmp = 0;
541 		for (r = m-1; r >= 0; r--) {
542 			mask = rows[r] & (tmp|1);
543 			tmp |= parity(mask) << (m-r);
544 		}
545 		sol[p] = tmp >> 1;
546 	}
547 	return nsol;
548 }
549 
550 /*
551  * this function builds and solves a linear system for finding roots of a degree
552  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
553  */
find_affine4_roots(struct bch_control * bch,unsigned int a,unsigned int b,unsigned int c,unsigned int * roots)554 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
555 			      unsigned int b, unsigned int c,
556 			      unsigned int *roots)
557 {
558 	int i, j, k;
559 	const int m = GF_M(bch);
560 	unsigned int mask = 0xff, t, rows[16] = {0,};
561 
562 	j = a_log(bch, b);
563 	k = a_log(bch, a);
564 	rows[0] = c;
565 
566 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
567 	for (i = 0; i < m; i++) {
568 		rows[i+1] = bch->a_pow_tab[4*i]^
569 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
570 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
571 		j++;
572 		k += 2;
573 	}
574 	/*
575 	 * transpose 16x16 matrix before passing it to linear solver
576 	 * warning: this code assumes m < 16
577 	 */
578 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
579 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
580 			t = ((rows[k] >> j)^rows[k+j]) & mask;
581 			rows[k] ^= (t << j);
582 			rows[k+j] ^= t;
583 		}
584 	}
585 	return solve_linear_system(bch, rows, roots, 4);
586 }
587 
588 /*
589  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
590  */
find_poly_deg1_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)591 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
592 				unsigned int *roots)
593 {
594 	int n = 0;
595 
596 	if (poly->c[0])
597 		/* poly[X] = bX+c with c!=0, root=c/b */
598 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
599 				   bch->a_log_tab[poly->c[1]]);
600 	return n;
601 }
602 
603 /*
604  * compute roots of a degree 2 polynomial over GF(2^m)
605  */
find_poly_deg2_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)606 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
607 				unsigned int *roots)
608 {
609 	int n = 0, i, l0, l1, l2;
610 	unsigned int u, v, r;
611 
612 	if (poly->c[0] && poly->c[1]) {
613 
614 		l0 = bch->a_log_tab[poly->c[0]];
615 		l1 = bch->a_log_tab[poly->c[1]];
616 		l2 = bch->a_log_tab[poly->c[2]];
617 
618 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
619 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
620 		/*
621 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
622 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
623 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
624 		 * i.e. r and r+1 are roots iff Tr(u)=0
625 		 */
626 		r = 0;
627 		v = u;
628 		while (v) {
629 			i = deg(v);
630 			r ^= bch->xi_tab[i];
631 			v ^= (1 << i);
632 		}
633 		/* verify root */
634 		if ((gf_sqr(bch, r)^r) == u) {
635 			/* reverse z=a/bX transformation and compute log(1/r) */
636 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
637 					    bch->a_log_tab[r]+l2);
638 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
639 					    bch->a_log_tab[r^1]+l2);
640 		}
641 	}
642 	return n;
643 }
644 
645 /*
646  * compute roots of a degree 3 polynomial over GF(2^m)
647  */
find_poly_deg3_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)648 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
649 				unsigned int *roots)
650 {
651 	int i, n = 0;
652 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
653 
654 	if (poly->c[0]) {
655 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
656 		e3 = poly->c[3];
657 		c2 = gf_div(bch, poly->c[0], e3);
658 		b2 = gf_div(bch, poly->c[1], e3);
659 		a2 = gf_div(bch, poly->c[2], e3);
660 
661 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
662 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
663 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
664 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
665 
666 		/* find the 4 roots of this affine polynomial */
667 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
668 			/* remove a2 from final list of roots */
669 			for (i = 0; i < 4; i++) {
670 				if (tmp[i] != a2)
671 					roots[n++] = a_ilog(bch, tmp[i]);
672 			}
673 		}
674 	}
675 	return n;
676 }
677 
678 /*
679  * compute roots of a degree 4 polynomial over GF(2^m)
680  */
find_poly_deg4_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)681 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
682 				unsigned int *roots)
683 {
684 	int i, l, n = 0;
685 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
686 
687 	if (poly->c[0] == 0)
688 		return 0;
689 
690 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
691 	e4 = poly->c[4];
692 	d = gf_div(bch, poly->c[0], e4);
693 	c = gf_div(bch, poly->c[1], e4);
694 	b = gf_div(bch, poly->c[2], e4);
695 	a = gf_div(bch, poly->c[3], e4);
696 
697 	/* use Y=1/X transformation to get an affine polynomial */
698 	if (a) {
699 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
700 		if (c) {
701 			/* compute e such that e^2 = c/a */
702 			f = gf_div(bch, c, a);
703 			l = a_log(bch, f);
704 			l += (l & 1) ? GF_N(bch) : 0;
705 			e = a_pow(bch, l/2);
706 			/*
707 			 * use transformation z=X+e:
708 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
709 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
710 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
711 			 * z^4 + az^3 +     b'z^2 + d'
712 			 */
713 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
714 			b = gf_mul(bch, a, e)^b;
715 		}
716 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
717 		if (d == 0)
718 			/* assume all roots have multiplicity 1 */
719 			return 0;
720 
721 		c2 = gf_inv(bch, d);
722 		b2 = gf_div(bch, a, d);
723 		a2 = gf_div(bch, b, d);
724 	} else {
725 		/* polynomial is already affine */
726 		c2 = d;
727 		b2 = c;
728 		a2 = b;
729 	}
730 	/* find the 4 roots of this affine polynomial */
731 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
732 		for (i = 0; i < 4; i++) {
733 			/* post-process roots (reverse transformations) */
734 			f = a ? gf_inv(bch, roots[i]) : roots[i];
735 			roots[i] = a_ilog(bch, f^e);
736 		}
737 		n = 4;
738 	}
739 	return n;
740 }
741 
742 /*
743  * build monic, log-based representation of a polynomial
744  */
gf_poly_logrep(struct bch_control * bch,const struct gf_poly * a,int * rep)745 static void gf_poly_logrep(struct bch_control *bch,
746 			   const struct gf_poly *a, int *rep)
747 {
748 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
749 
750 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
751 	for (i = 0; i < d; i++)
752 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
753 }
754 
755 /*
756  * compute polynomial Euclidean division remainder in GF(2^m)[X]
757  */
gf_poly_mod(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,int * rep)758 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
759 			const struct gf_poly *b, int *rep)
760 {
761 	int la, p, m;
762 	unsigned int i, j, *c = a->c;
763 	const unsigned int d = b->deg;
764 
765 	if (a->deg < d)
766 		return;
767 
768 	/* reuse or compute log representation of denominator */
769 	if (!rep) {
770 		rep = bch->cache;
771 		gf_poly_logrep(bch, b, rep);
772 	}
773 
774 	for (j = a->deg; j >= d; j--) {
775 		if (c[j]) {
776 			la = a_log(bch, c[j]);
777 			p = j-d;
778 			for (i = 0; i < d; i++, p++) {
779 				m = rep[i];
780 				if (m >= 0)
781 					c[p] ^= bch->a_pow_tab[mod_s(bch,
782 								     m+la)];
783 			}
784 		}
785 	}
786 	a->deg = d-1;
787 	while (!c[a->deg] && a->deg)
788 		a->deg--;
789 }
790 
791 /*
792  * compute polynomial Euclidean division quotient in GF(2^m)[X]
793  */
gf_poly_div(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,struct gf_poly * q)794 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
795 			const struct gf_poly *b, struct gf_poly *q)
796 {
797 	if (a->deg >= b->deg) {
798 		q->deg = a->deg-b->deg;
799 		/* compute a mod b (modifies a) */
800 		gf_poly_mod(bch, a, b, NULL);
801 		/* quotient is stored in upper part of polynomial a */
802 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
803 	} else {
804 		q->deg = 0;
805 		q->c[0] = 0;
806 	}
807 }
808 
809 /*
810  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
811  */
gf_poly_gcd(struct bch_control * bch,struct gf_poly * a,struct gf_poly * b)812 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
813 				   struct gf_poly *b)
814 {
815 	struct gf_poly *tmp;
816 
817 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
818 
819 	if (a->deg < b->deg) {
820 		tmp = b;
821 		b = a;
822 		a = tmp;
823 	}
824 
825 	while (b->deg > 0) {
826 		gf_poly_mod(bch, a, b, NULL);
827 		tmp = b;
828 		b = a;
829 		a = tmp;
830 	}
831 
832 	dbg("%s\n", gf_poly_str(a));
833 
834 	return a;
835 }
836 
837 /*
838  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
839  * This is used in Berlekamp Trace algorithm for splitting polynomials
840  */
compute_trace_bk_mod(struct bch_control * bch,int k,const struct gf_poly * f,struct gf_poly * z,struct gf_poly * out)841 static void compute_trace_bk_mod(struct bch_control *bch, int k,
842 				 const struct gf_poly *f, struct gf_poly *z,
843 				 struct gf_poly *out)
844 {
845 	const int m = GF_M(bch);
846 	int i, j;
847 
848 	/* z contains z^2j mod f */
849 	z->deg = 1;
850 	z->c[0] = 0;
851 	z->c[1] = bch->a_pow_tab[k];
852 
853 	out->deg = 0;
854 	memset(out, 0, GF_POLY_SZ(f->deg));
855 
856 	/* compute f log representation only once */
857 	gf_poly_logrep(bch, f, bch->cache);
858 
859 	for (i = 0; i < m; i++) {
860 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
861 		for (j = z->deg; j >= 0; j--) {
862 			out->c[j] ^= z->c[j];
863 			z->c[2*j] = gf_sqr(bch, z->c[j]);
864 			z->c[2*j+1] = 0;
865 		}
866 		if (z->deg > out->deg)
867 			out->deg = z->deg;
868 
869 		if (i < m-1) {
870 			z->deg *= 2;
871 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
872 			gf_poly_mod(bch, z, f, bch->cache);
873 		}
874 	}
875 	while (!out->c[out->deg] && out->deg)
876 		out->deg--;
877 
878 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
879 }
880 
881 /*
882  * factor a polynomial using Berlekamp Trace algorithm (BTA)
883  */
factor_polynomial(struct bch_control * bch,int k,struct gf_poly * f,struct gf_poly ** g,struct gf_poly ** h)884 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
885 			      struct gf_poly **g, struct gf_poly **h)
886 {
887 	struct gf_poly *f2 = bch->poly_2t[0];
888 	struct gf_poly *q  = bch->poly_2t[1];
889 	struct gf_poly *tk = bch->poly_2t[2];
890 	struct gf_poly *z  = bch->poly_2t[3];
891 	struct gf_poly *gcd;
892 
893 	dbg("factoring %s...\n", gf_poly_str(f));
894 
895 	*g = f;
896 	*h = NULL;
897 
898 	/* tk = Tr(a^k.X) mod f */
899 	compute_trace_bk_mod(bch, k, f, z, tk);
900 
901 	if (tk->deg > 0) {
902 		/* compute g = gcd(f, tk) (destructive operation) */
903 		gf_poly_copy(f2, f);
904 		gcd = gf_poly_gcd(bch, f2, tk);
905 		if (gcd->deg < f->deg) {
906 			/* compute h=f/gcd(f,tk); this will modify f and q */
907 			gf_poly_div(bch, f, gcd, q);
908 			/* store g and h in-place (clobbering f) */
909 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
910 			gf_poly_copy(*g, gcd);
911 			gf_poly_copy(*h, q);
912 		}
913 	}
914 }
915 
916 /*
917  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
918  * file for details
919  */
find_poly_roots(struct bch_control * bch,unsigned int k,struct gf_poly * poly,unsigned int * roots)920 static int find_poly_roots(struct bch_control *bch, unsigned int k,
921 			   struct gf_poly *poly, unsigned int *roots)
922 {
923 	int cnt;
924 	struct gf_poly *f1, *f2;
925 
926 	switch (poly->deg) {
927 		/* handle low degree polynomials with ad hoc techniques */
928 	case 1:
929 		cnt = find_poly_deg1_roots(bch, poly, roots);
930 		break;
931 	case 2:
932 		cnt = find_poly_deg2_roots(bch, poly, roots);
933 		break;
934 	case 3:
935 		cnt = find_poly_deg3_roots(bch, poly, roots);
936 		break;
937 	case 4:
938 		cnt = find_poly_deg4_roots(bch, poly, roots);
939 		break;
940 	default:
941 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
942 		cnt = 0;
943 		if (poly->deg && (k <= GF_M(bch))) {
944 			factor_polynomial(bch, k, poly, &f1, &f2);
945 			if (f1)
946 				cnt += find_poly_roots(bch, k+1, f1, roots);
947 			if (f2)
948 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
949 		}
950 		break;
951 	}
952 	return cnt;
953 }
954 
955 #if defined(USE_CHIEN_SEARCH)
956 /*
957  * exhaustive root search (Chien) implementation - not used, included only for
958  * reference/comparison tests
959  */
chien_search(struct bch_control * bch,unsigned int len,struct gf_poly * p,unsigned int * roots)960 static int chien_search(struct bch_control *bch, unsigned int len,
961 			struct gf_poly *p, unsigned int *roots)
962 {
963 	int m;
964 	unsigned int i, j, syn, syn0, count = 0;
965 	const unsigned int k = 8*len+bch->ecc_bits;
966 
967 	/* use a log-based representation of polynomial */
968 	gf_poly_logrep(bch, p, bch->cache);
969 	bch->cache[p->deg] = 0;
970 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
971 
972 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
973 		/* compute elp(a^i) */
974 		for (j = 1, syn = syn0; j <= p->deg; j++) {
975 			m = bch->cache[j];
976 			if (m >= 0)
977 				syn ^= a_pow(bch, m+j*i);
978 		}
979 		if (syn == 0) {
980 			roots[count++] = GF_N(bch)-i;
981 			if (count == p->deg)
982 				break;
983 		}
984 	}
985 	return (count == p->deg) ? count : 0;
986 }
987 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
988 #endif /* USE_CHIEN_SEARCH */
989 
990 /**
991  * decode_bch - decode received codeword and find bit error locations
992  * @bch:      BCH control structure
993  * @data:     received data, ignored if @calc_ecc is provided
994  * @len:      data length in bytes, must always be provided
995  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
996  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
997  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
998  * @errloc:   output array of error locations
999  *
1000  * Returns:
1001  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1002  *  invalid parameters were provided
1003  *
1004  * Depending on the available hw BCH support and the need to compute @calc_ecc
1005  * separately (using encode_bch()), this function should be called with one of
1006  * the following parameter configurations -
1007  *
1008  * by providing @data and @recv_ecc only:
1009  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1010  *
1011  * by providing @recv_ecc and @calc_ecc:
1012  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1013  *
1014  * by providing ecc = recv_ecc XOR calc_ecc:
1015  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1016  *
1017  * by providing syndrome results @syn:
1018  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1019  *
1020  * Once decode_bch() has successfully returned with a positive value, error
1021  * locations returned in array @errloc should be interpreted as follows -
1022  *
1023  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1024  * data correction)
1025  *
1026  * if (errloc[n] < 8*len), then n-th error is located in data and can be
1027  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1028  *
1029  * Note that this function does not perform any data correction by itself, it
1030  * merely indicates error locations.
1031  */
decode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,const uint8_t * recv_ecc,const uint8_t * calc_ecc,const unsigned int * syn,unsigned int * errloc)1032 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1033 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1034 	       const unsigned int *syn, unsigned int *errloc)
1035 {
1036 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1037 	unsigned int nbits;
1038 	int i, err, nroots;
1039 	uint32_t sum;
1040 
1041 	/* sanity check: make sure data length can be handled */
1042 	if (8*len > (bch->n-bch->ecc_bits))
1043 		return -EINVAL;
1044 
1045 	/* if caller does not provide syndromes, compute them */
1046 	if (!syn) {
1047 		if (!calc_ecc) {
1048 			/* compute received data ecc into an internal buffer */
1049 			if (!data || !recv_ecc)
1050 				return -EINVAL;
1051 			encode_bch(bch, data, len, NULL);
1052 		} else {
1053 			/* load provided calculated ecc */
1054 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1055 		}
1056 		/* load received ecc or assume it was XORed in calc_ecc */
1057 		if (recv_ecc) {
1058 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1059 			/* XOR received and calculated ecc */
1060 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1061 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1062 				sum |= bch->ecc_buf[i];
1063 			}
1064 			if (!sum)
1065 				/* no error found */
1066 				return 0;
1067 		}
1068 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1069 		syn = bch->syn;
1070 	}
1071 
1072 	err = compute_error_locator_polynomial(bch, syn);
1073 	if (err > 0) {
1074 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1075 		if (err != nroots)
1076 			err = -1;
1077 	}
1078 	if (err > 0) {
1079 		/* post-process raw error locations for easier correction */
1080 		nbits = (len*8)+bch->ecc_bits;
1081 		for (i = 0; i < err; i++) {
1082 			if (errloc[i] >= nbits) {
1083 				err = -1;
1084 				break;
1085 			}
1086 			errloc[i] = nbits-1-errloc[i];
1087 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1088 		}
1089 	}
1090 	return (err >= 0) ? err : -EBADMSG;
1091 }
1092 
1093 /*
1094  * generate Galois field lookup tables
1095  */
build_gf_tables(struct bch_control * bch,unsigned int poly)1096 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1097 {
1098 	unsigned int i, x = 1;
1099 	const unsigned int k = 1 << deg(poly);
1100 
1101 	/* primitive polynomial must be of degree m */
1102 	if (k != (1u << GF_M(bch)))
1103 		return -1;
1104 
1105 	for (i = 0; i < GF_N(bch); i++) {
1106 		bch->a_pow_tab[i] = x;
1107 		bch->a_log_tab[x] = i;
1108 		if (i && (x == 1))
1109 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1110 			return -1;
1111 		x <<= 1;
1112 		if (x & k)
1113 			x ^= poly;
1114 	}
1115 	bch->a_pow_tab[GF_N(bch)] = 1;
1116 	bch->a_log_tab[0] = 0;
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * compute generator polynomial remainder tables for fast encoding
1123  */
build_mod8_tables(struct bch_control * bch,const uint32_t * g)1124 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1125 {
1126 	int i, j, b, d;
1127 	uint32_t data, hi, lo, *tab;
1128 	const int l = BCH_ECC_WORDS(bch);
1129 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1130 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1131 
1132 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1133 
1134 	for (i = 0; i < 256; i++) {
1135 		/* p(X)=i is a small polynomial of weight <= 8 */
1136 		for (b = 0; b < 4; b++) {
1137 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1138 			tab = bch->mod8_tab + (b*256+i)*l;
1139 			data = i << (8*b);
1140 			while (data) {
1141 				d = deg(data);
1142 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1143 				data ^= g[0] >> (31-d);
1144 				for (j = 0; j < ecclen; j++) {
1145 					hi = (d < 31) ? g[j] << (d+1) : 0;
1146 					lo = (j+1 < plen) ?
1147 						g[j+1] >> (31-d) : 0;
1148 					tab[j] ^= hi|lo;
1149 				}
1150 			}
1151 		}
1152 	}
1153 }
1154 
1155 /*
1156  * build a base for factoring degree 2 polynomials
1157  */
build_deg2_base(struct bch_control * bch)1158 static int build_deg2_base(struct bch_control *bch)
1159 {
1160 	const int m = GF_M(bch);
1161 	int i, j, r;
1162 	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1163 
1164 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1165 	for (i = 0; i < m; i++) {
1166 		for (j = 0, sum = 0; j < m; j++)
1167 			sum ^= a_pow(bch, i*(1 << j));
1168 
1169 		if (sum) {
1170 			ak = bch->a_pow_tab[i];
1171 			break;
1172 		}
1173 	}
1174 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1175 	remaining = m;
1176 	memset(xi, 0, sizeof(xi));
1177 
1178 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1179 		y = gf_sqr(bch, x)^x;
1180 		for (i = 0; i < 2; i++) {
1181 			r = a_log(bch, y);
1182 			if (y && (r < m) && !xi[r]) {
1183 				bch->xi_tab[r] = x;
1184 				xi[r] = 1;
1185 				remaining--;
1186 				dbg("x%d = %x\n", r, x);
1187 				break;
1188 			}
1189 			y ^= ak;
1190 		}
1191 	}
1192 	/* should not happen but check anyway */
1193 	return remaining ? -1 : 0;
1194 }
1195 
bch_alloc(size_t size,int * err)1196 static void *bch_alloc(size_t size, int *err)
1197 {
1198 	void *ptr;
1199 
1200 	ptr = kmalloc(size, GFP_KERNEL);
1201 	if (ptr == NULL)
1202 		*err = 1;
1203 	return ptr;
1204 }
1205 
1206 /*
1207  * compute generator polynomial for given (m,t) parameters.
1208  */
compute_generator_polynomial(struct bch_control * bch)1209 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1210 {
1211 	const unsigned int m = GF_M(bch);
1212 	const unsigned int t = GF_T(bch);
1213 	int n, err = 0;
1214 	unsigned int i, j, nbits, r, word, *roots;
1215 	struct gf_poly *g;
1216 	uint32_t *genpoly;
1217 
1218 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1219 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1220 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1221 
1222 	if (err) {
1223 		kfree(genpoly);
1224 		genpoly = NULL;
1225 		goto finish;
1226 	}
1227 
1228 	/* enumerate all roots of g(X) */
1229 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1230 	for (i = 0; i < t; i++) {
1231 		for (j = 0, r = 2*i+1; j < m; j++) {
1232 			roots[r] = 1;
1233 			r = mod_s(bch, 2*r);
1234 		}
1235 	}
1236 	/* build generator polynomial g(X) */
1237 	g->deg = 0;
1238 	g->c[0] = 1;
1239 	for (i = 0; i < GF_N(bch); i++) {
1240 		if (roots[i]) {
1241 			/* multiply g(X) by (X+root) */
1242 			r = bch->a_pow_tab[i];
1243 			g->c[g->deg+1] = 1;
1244 			for (j = g->deg; j > 0; j--)
1245 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1246 
1247 			g->c[0] = gf_mul(bch, g->c[0], r);
1248 			g->deg++;
1249 		}
1250 	}
1251 	/* store left-justified binary representation of g(X) */
1252 	n = g->deg+1;
1253 	i = 0;
1254 
1255 	while (n > 0) {
1256 		nbits = (n > 32) ? 32 : n;
1257 		for (j = 0, word = 0; j < nbits; j++) {
1258 			if (g->c[n-1-j])
1259 				word |= 1u << (31-j);
1260 		}
1261 		genpoly[i++] = word;
1262 		n -= nbits;
1263 	}
1264 	bch->ecc_bits = g->deg;
1265 
1266 finish:
1267 	kfree(g);
1268 	kfree(roots);
1269 
1270 	return genpoly;
1271 }
1272 
1273 /**
1274  * init_bch - initialize a BCH encoder/decoder
1275  * @m:          Galois field order, should be in the range 5-15
1276  * @t:          maximum error correction capability, in bits
1277  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1278  *
1279  * Returns:
1280  *  a newly allocated BCH control structure if successful, NULL otherwise
1281  *
1282  * This initialization can take some time, as lookup tables are built for fast
1283  * encoding/decoding; make sure not to call this function from a time critical
1284  * path. Usually, init_bch() should be called on module/driver init and
1285  * free_bch() should be called to release memory on exit.
1286  *
1287  * You may provide your own primitive polynomial of degree @m in argument
1288  * @prim_poly, or let init_bch() use its default polynomial.
1289  *
1290  * Once init_bch() has successfully returned a pointer to a newly allocated
1291  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1292  * the structure.
1293  */
init_bch(int m,int t,unsigned int prim_poly)1294 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1295 {
1296 	int err = 0;
1297 	unsigned int i, words;
1298 	uint32_t *genpoly;
1299 	struct bch_control *bch = NULL;
1300 
1301 	const int min_m = 5;
1302 	const int max_m = 15;
1303 
1304 	/* default primitive polynomials */
1305 	static const unsigned int prim_poly_tab[] = {
1306 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1307 		0x402b, 0x8003,
1308 	};
1309 
1310 #if defined(CONFIG_BCH_CONST_PARAMS)
1311 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1312 		printk(KERN_ERR "bch encoder/decoder was configured to support "
1313 		       "parameters m=%d, t=%d only!\n",
1314 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1315 		goto fail;
1316 	}
1317 #endif
1318 	if ((m < min_m) || (m > max_m))
1319 		/*
1320 		 * values of m greater than 15 are not currently supported;
1321 		 * supporting m > 15 would require changing table base type
1322 		 * (uint16_t) and a small patch in matrix transposition
1323 		 */
1324 		goto fail;
1325 
1326 	/* sanity checks */
1327 	if ((t < 1) || (m*t >= ((1 << m)-1)))
1328 		/* invalid t value */
1329 		goto fail;
1330 
1331 	/* select a primitive polynomial for generating GF(2^m) */
1332 	if (prim_poly == 0)
1333 		prim_poly = prim_poly_tab[m-min_m];
1334 
1335 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1336 	if (bch == NULL)
1337 		goto fail;
1338 
1339 	bch->m = m;
1340 	bch->t = t;
1341 	bch->n = (1 << m)-1;
1342 	words  = DIV_ROUND_UP(m*t, 32);
1343 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1344 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1345 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1346 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1347 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1348 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1349 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1350 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1351 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1352 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1353 
1354 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1355 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1356 
1357 	if (err)
1358 		goto fail;
1359 
1360 	err = build_gf_tables(bch, prim_poly);
1361 	if (err)
1362 		goto fail;
1363 
1364 	/* use generator polynomial for computing encoding tables */
1365 	genpoly = compute_generator_polynomial(bch);
1366 	if (genpoly == NULL)
1367 		goto fail;
1368 
1369 	build_mod8_tables(bch, genpoly);
1370 	kfree(genpoly);
1371 
1372 	err = build_deg2_base(bch);
1373 	if (err)
1374 		goto fail;
1375 
1376 	return bch;
1377 
1378 fail:
1379 	free_bch(bch);
1380 	return NULL;
1381 }
1382 
1383 /**
1384  *  free_bch - free the BCH control structure
1385  *  @bch:    BCH control structure to release
1386  */
free_bch(struct bch_control * bch)1387 void free_bch(struct bch_control *bch)
1388 {
1389 	unsigned int i;
1390 
1391 	if (bch) {
1392 		kfree(bch->a_pow_tab);
1393 		kfree(bch->a_log_tab);
1394 		kfree(bch->mod8_tab);
1395 		kfree(bch->ecc_buf);
1396 		kfree(bch->ecc_buf2);
1397 		kfree(bch->xi_tab);
1398 		kfree(bch->syn);
1399 		kfree(bch->cache);
1400 		kfree(bch->elp);
1401 
1402 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1403 			kfree(bch->poly_2t[i]);
1404 
1405 		kfree(bch);
1406 	}
1407 }
1408