xref: /openbmc/u-boot/drivers/usb/host/xhci-mem.c (revision 8cb78722306351c5d61ce4da18c284ef59c0caef)
1 /*
2  * USB HOST XHCI Controller stack
3  *
4  * Based on xHCI host controller driver in linux-kernel
5  * by Sarah Sharp.
6  *
7  * Copyright (C) 2008 Intel Corp.
8  * Author: Sarah Sharp
9  *
10  * Copyright (C) 2013 Samsung Electronics Co.Ltd
11  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
13  *
14  * SPDX-License-Identifier:	GPL-2.0+
15  */
16 
17 #include <common.h>
18 #include <dm.h>
19 #include <asm/byteorder.h>
20 #include <usb.h>
21 #include <malloc.h>
22 #include <asm/cache.h>
23 #include <asm-generic/errno.h>
24 
25 #include "xhci.h"
26 
27 #define CACHELINE_SIZE		CONFIG_SYS_CACHELINE_SIZE
28 /**
29  * flushes the address passed till the length
30  *
31  * @param addr	pointer to memory region to be flushed
32  * @param len	the length of the cache line to be flushed
33  * @return none
34  */
35 void xhci_flush_cache(uintptr_t addr, u32 len)
36 {
37 	BUG_ON((void *)addr == NULL || len == 0);
38 
39 	flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
40 				ALIGN(addr + len, CACHELINE_SIZE));
41 }
42 
43 /**
44  * invalidates the address passed till the length
45  *
46  * @param addr	pointer to memory region to be invalidates
47  * @param len	the length of the cache line to be invalidated
48  * @return none
49  */
50 void xhci_inval_cache(uintptr_t addr, u32 len)
51 {
52 	BUG_ON((void *)addr == NULL || len == 0);
53 
54 	invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
55 				ALIGN(addr + len, CACHELINE_SIZE));
56 }
57 
58 
59 /**
60  * frees the "segment" pointer passed
61  *
62  * @param ptr	pointer to "segement" to be freed
63  * @return none
64  */
65 static void xhci_segment_free(struct xhci_segment *seg)
66 {
67 	free(seg->trbs);
68 	seg->trbs = NULL;
69 
70 	free(seg);
71 }
72 
73 /**
74  * frees the "ring" pointer passed
75  *
76  * @param ptr	pointer to "ring" to be freed
77  * @return none
78  */
79 static void xhci_ring_free(struct xhci_ring *ring)
80 {
81 	struct xhci_segment *seg;
82 	struct xhci_segment *first_seg;
83 
84 	BUG_ON(!ring);
85 
86 	first_seg = ring->first_seg;
87 	seg = first_seg->next;
88 	while (seg != first_seg) {
89 		struct xhci_segment *next = seg->next;
90 		xhci_segment_free(seg);
91 		seg = next;
92 	}
93 	xhci_segment_free(first_seg);
94 
95 	free(ring);
96 }
97 
98 /**
99  * frees the "xhci_container_ctx" pointer passed
100  *
101  * @param ptr	pointer to "xhci_container_ctx" to be freed
102  * @return none
103  */
104 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
105 {
106 	free(ctx->bytes);
107 	free(ctx);
108 }
109 
110 /**
111  * frees the virtual devices for "xhci_ctrl" pointer passed
112  *
113  * @param ptr	pointer to "xhci_ctrl" whose virtual devices are to be freed
114  * @return none
115  */
116 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
117 {
118 	int i;
119 	int slot_id;
120 	struct xhci_virt_device *virt_dev;
121 
122 	/*
123 	 * refactored here to loop through all virt_dev
124 	 * Slot ID 0 is reserved
125 	 */
126 	for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
127 		virt_dev = ctrl->devs[slot_id];
128 		if (!virt_dev)
129 			continue;
130 
131 		ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
132 
133 		for (i = 0; i < 31; ++i)
134 			if (virt_dev->eps[i].ring)
135 				xhci_ring_free(virt_dev->eps[i].ring);
136 
137 		if (virt_dev->in_ctx)
138 			xhci_free_container_ctx(virt_dev->in_ctx);
139 		if (virt_dev->out_ctx)
140 			xhci_free_container_ctx(virt_dev->out_ctx);
141 
142 		free(virt_dev);
143 		/* make sure we are pointing to NULL */
144 		ctrl->devs[slot_id] = NULL;
145 	}
146 }
147 
148 /**
149  * frees all the memory allocated
150  *
151  * @param ptr	pointer to "xhci_ctrl" to be cleaned up
152  * @return none
153  */
154 void xhci_cleanup(struct xhci_ctrl *ctrl)
155 {
156 	xhci_ring_free(ctrl->event_ring);
157 	xhci_ring_free(ctrl->cmd_ring);
158 	xhci_free_virt_devices(ctrl);
159 	free(ctrl->erst.entries);
160 	free(ctrl->dcbaa);
161 	memset(ctrl, '\0', sizeof(struct xhci_ctrl));
162 }
163 
164 /**
165  * Malloc the aligned memory
166  *
167  * @param size	size of memory to be allocated
168  * @return allocates the memory and returns the aligned pointer
169  */
170 static void *xhci_malloc(unsigned int size)
171 {
172 	void *ptr;
173 	size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
174 
175 	ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
176 	BUG_ON(!ptr);
177 	memset(ptr, '\0', size);
178 
179 	xhci_flush_cache((uintptr_t)ptr, size);
180 
181 	return ptr;
182 }
183 
184 /**
185  * Make the prev segment point to the next segment.
186  * Change the last TRB in the prev segment to be a Link TRB which points to the
187  * address of the next segment.  The caller needs to set any Link TRB
188  * related flags, such as End TRB, Toggle Cycle, and no snoop.
189  *
190  * @param prev	pointer to the previous segment
191  * @param next	pointer to the next segment
192  * @param link_trbs	flag to indicate whether to link the trbs or NOT
193  * @return none
194  */
195 static void xhci_link_segments(struct xhci_segment *prev,
196 				struct xhci_segment *next, bool link_trbs)
197 {
198 	u32 val;
199 	u64 val_64 = 0;
200 
201 	if (!prev || !next)
202 		return;
203 	prev->next = next;
204 	if (link_trbs) {
205 		val_64 = (uintptr_t)next->trbs;
206 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
207 
208 		/*
209 		 * Set the last TRB in the segment to
210 		 * have a TRB type ID of Link TRB
211 		 */
212 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
213 		val &= ~TRB_TYPE_BITMASK;
214 		val |= (TRB_LINK << TRB_TYPE_SHIFT);
215 
216 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
217 	}
218 }
219 
220 /**
221  * Initialises the Ring's enqueue,dequeue,enq_seg pointers
222  *
223  * @param ring	pointer to the RING to be intialised
224  * @return none
225  */
226 static void xhci_initialize_ring_info(struct xhci_ring *ring)
227 {
228 	/*
229 	 * The ring is empty, so the enqueue pointer == dequeue pointer
230 	 */
231 	ring->enqueue = ring->first_seg->trbs;
232 	ring->enq_seg = ring->first_seg;
233 	ring->dequeue = ring->enqueue;
234 	ring->deq_seg = ring->first_seg;
235 
236 	/*
237 	 * The ring is initialized to 0. The producer must write 1 to the
238 	 * cycle bit to handover ownership of the TRB, so PCS = 1.
239 	 * The consumer must compare CCS to the cycle bit to
240 	 * check ownership, so CCS = 1.
241 	 */
242 	ring->cycle_state = 1;
243 }
244 
245 /**
246  * Allocates a generic ring segment from the ring pool, sets the dma address,
247  * initializes the segment to zero, and sets the private next pointer to NULL.
248  * Section 4.11.1.1:
249  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
250  *
251  * @param	none
252  * @return pointer to the newly allocated SEGMENT
253  */
254 static struct xhci_segment *xhci_segment_alloc(void)
255 {
256 	struct xhci_segment *seg;
257 
258 	seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
259 	BUG_ON(!seg);
260 
261 	seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
262 
263 	seg->next = NULL;
264 
265 	return seg;
266 }
267 
268 /**
269  * Create a new ring with zero or more segments.
270  * TODO: current code only uses one-time-allocated single-segment rings
271  * of 1KB anyway, so we might as well get rid of all the segment and
272  * linking code (and maybe increase the size a bit, e.g. 4KB).
273  *
274  *
275  * Link each segment together into a ring.
276  * Set the end flag and the cycle toggle bit on the last segment.
277  * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
278  *
279  * @param num_segs	number of segments in the ring
280  * @param link_trbs	flag to indicate whether to link the trbs or NOT
281  * @return pointer to the newly created RING
282  */
283 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
284 {
285 	struct xhci_ring *ring;
286 	struct xhci_segment *prev;
287 
288 	ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
289 	BUG_ON(!ring);
290 
291 	if (num_segs == 0)
292 		return ring;
293 
294 	ring->first_seg = xhci_segment_alloc();
295 	BUG_ON(!ring->first_seg);
296 
297 	num_segs--;
298 
299 	prev = ring->first_seg;
300 	while (num_segs > 0) {
301 		struct xhci_segment *next;
302 
303 		next = xhci_segment_alloc();
304 		BUG_ON(!next);
305 
306 		xhci_link_segments(prev, next, link_trbs);
307 
308 		prev = next;
309 		num_segs--;
310 	}
311 	xhci_link_segments(prev, ring->first_seg, link_trbs);
312 	if (link_trbs) {
313 		/* See section 4.9.2.1 and 6.4.4.1 */
314 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
315 					cpu_to_le32(LINK_TOGGLE);
316 	}
317 	xhci_initialize_ring_info(ring);
318 
319 	return ring;
320 }
321 
322 /**
323  * Allocates the Container context
324  *
325  * @param ctrl	Host controller data structure
326  * @param type type of XHCI Container Context
327  * @return NULL if failed else pointer to the context on success
328  */
329 static struct xhci_container_ctx
330 		*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
331 {
332 	struct xhci_container_ctx *ctx;
333 
334 	ctx = (struct xhci_container_ctx *)
335 		malloc(sizeof(struct xhci_container_ctx));
336 	BUG_ON(!ctx);
337 
338 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
339 	ctx->type = type;
340 	ctx->size = (MAX_EP_CTX_NUM + 1) *
341 			CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
342 	if (type == XHCI_CTX_TYPE_INPUT)
343 		ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
344 
345 	ctx->bytes = (u8 *)xhci_malloc(ctx->size);
346 
347 	return ctx;
348 }
349 
350 /**
351  * Allocating virtual device
352  *
353  * @param udev	pointer to USB deivce structure
354  * @return 0 on success else -1 on failure
355  */
356 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
357 {
358 	u64 byte_64 = 0;
359 	struct xhci_virt_device *virt_dev;
360 
361 	/* Slot ID 0 is reserved */
362 	if (ctrl->devs[slot_id]) {
363 		printf("Virt dev for slot[%d] already allocated\n", slot_id);
364 		return -EEXIST;
365 	}
366 
367 	ctrl->devs[slot_id] = (struct xhci_virt_device *)
368 					malloc(sizeof(struct xhci_virt_device));
369 
370 	if (!ctrl->devs[slot_id]) {
371 		puts("Failed to allocate virtual device\n");
372 		return -ENOMEM;
373 	}
374 
375 	memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
376 	virt_dev = ctrl->devs[slot_id];
377 
378 	/* Allocate the (output) device context that will be used in the HC. */
379 	virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
380 					XHCI_CTX_TYPE_DEVICE);
381 	if (!virt_dev->out_ctx) {
382 		puts("Failed to allocate out context for virt dev\n");
383 		return -ENOMEM;
384 	}
385 
386 	/* Allocate the (input) device context for address device command */
387 	virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
388 					XHCI_CTX_TYPE_INPUT);
389 	if (!virt_dev->in_ctx) {
390 		puts("Failed to allocate in context for virt dev\n");
391 		return -ENOMEM;
392 	}
393 
394 	/* Allocate endpoint 0 ring */
395 	virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
396 
397 	byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
398 
399 	/* Point to output device context in dcbaa. */
400 	ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
401 
402 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
403 			 sizeof(__le64));
404 	return 0;
405 }
406 
407 /**
408  * Allocates the necessary data structures
409  * for XHCI host controller
410  *
411  * @param ctrl	Host controller data structure
412  * @param hccr	pointer to HOST Controller Control Registers
413  * @param hcor	pointer to HOST Controller Operational Registers
414  * @return 0 if successful else -1 on failure
415  */
416 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
417 					struct xhci_hcor *hcor)
418 {
419 	uint64_t val_64;
420 	uint64_t trb_64;
421 	uint32_t val;
422 	unsigned long deq;
423 	int i;
424 	struct xhci_segment *seg;
425 
426 	/* DCBAA initialization */
427 	ctrl->dcbaa = (struct xhci_device_context_array *)
428 			xhci_malloc(sizeof(struct xhci_device_context_array));
429 	if (ctrl->dcbaa == NULL) {
430 		puts("unable to allocate DCBA\n");
431 		return -ENOMEM;
432 	}
433 
434 	val_64 = (uintptr_t)ctrl->dcbaa;
435 	/* Set the pointer in DCBAA register */
436 	xhci_writeq(&hcor->or_dcbaap, val_64);
437 
438 	/* Command ring control pointer register initialization */
439 	ctrl->cmd_ring = xhci_ring_alloc(1, true);
440 
441 	/* Set the address in the Command Ring Control register */
442 	trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
443 	val_64 = xhci_readq(&hcor->or_crcr);
444 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
445 		(trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
446 		ctrl->cmd_ring->cycle_state;
447 	xhci_writeq(&hcor->or_crcr, val_64);
448 
449 	/* write the address of db register */
450 	val = xhci_readl(&hccr->cr_dboff);
451 	val &= DBOFF_MASK;
452 	ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
453 
454 	/* write the address of runtime register */
455 	val = xhci_readl(&hccr->cr_rtsoff);
456 	val &= RTSOFF_MASK;
457 	ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
458 
459 	/* writting the address of ir_set structure */
460 	ctrl->ir_set = &ctrl->run_regs->ir_set[0];
461 
462 	/* Event ring does not maintain link TRB */
463 	ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
464 	ctrl->erst.entries = (struct xhci_erst_entry *)
465 		xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
466 
467 	ctrl->erst.num_entries = ERST_NUM_SEGS;
468 
469 	for (val = 0, seg = ctrl->event_ring->first_seg;
470 			val < ERST_NUM_SEGS;
471 			val++) {
472 		trb_64 = 0;
473 		trb_64 = (uintptr_t)seg->trbs;
474 		struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
475 		xhci_writeq(&entry->seg_addr, trb_64);
476 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
477 		entry->rsvd = 0;
478 		seg = seg->next;
479 	}
480 	xhci_flush_cache((uintptr_t)ctrl->erst.entries,
481 			 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
482 
483 	deq = (unsigned long)ctrl->event_ring->dequeue;
484 
485 	/* Update HC event ring dequeue pointer */
486 	xhci_writeq(&ctrl->ir_set->erst_dequeue,
487 				(u64)deq & (u64)~ERST_PTR_MASK);
488 
489 	/* set ERST count with the number of entries in the segment table */
490 	val = xhci_readl(&ctrl->ir_set->erst_size);
491 	val &= ERST_SIZE_MASK;
492 	val |= ERST_NUM_SEGS;
493 	xhci_writel(&ctrl->ir_set->erst_size, val);
494 
495 	/* this is the event ring segment table pointer */
496 	val_64 = xhci_readq(&ctrl->ir_set->erst_base);
497 	val_64 &= ERST_PTR_MASK;
498 	val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
499 
500 	xhci_writeq(&ctrl->ir_set->erst_base, val_64);
501 
502 	/* initializing the virtual devices to NULL */
503 	for (i = 0; i < MAX_HC_SLOTS; ++i)
504 		ctrl->devs[i] = NULL;
505 
506 	/*
507 	 * Just Zero'ing this register completely,
508 	 * or some spurious Device Notification Events
509 	 * might screw things here.
510 	 */
511 	xhci_writel(&hcor->or_dnctrl, 0x0);
512 
513 	return 0;
514 }
515 
516 /**
517  * Give the input control context for the passed container context
518  *
519  * @param ctx	pointer to the context
520  * @return pointer to the Input control context data
521  */
522 struct xhci_input_control_ctx
523 		*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
524 {
525 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
526 	return (struct xhci_input_control_ctx *)ctx->bytes;
527 }
528 
529 /**
530  * Give the slot context for the passed container context
531  *
532  * @param ctrl	Host controller data structure
533  * @param ctx	pointer to the context
534  * @return pointer to the slot control context data
535  */
536 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
537 				struct xhci_container_ctx *ctx)
538 {
539 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
540 		return (struct xhci_slot_ctx *)ctx->bytes;
541 
542 	return (struct xhci_slot_ctx *)
543 		(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
544 }
545 
546 /**
547  * Gets the EP context from based on the ep_index
548  *
549  * @param ctrl	Host controller data structure
550  * @param ctx	context container
551  * @param ep_index	index of the endpoint
552  * @return pointer to the End point context
553  */
554 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
555 				    struct xhci_container_ctx *ctx,
556 				    unsigned int ep_index)
557 {
558 	/* increment ep index by offset of start of ep ctx array */
559 	ep_index++;
560 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
561 		ep_index++;
562 
563 	return (struct xhci_ep_ctx *)
564 		(ctx->bytes +
565 		(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
566 }
567 
568 /**
569  * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
570  * Useful when you want to change one particular aspect of the endpoint
571  * and then issue a configure endpoint command.
572  *
573  * @param ctrl	Host controller data structure
574  * @param in_ctx contains the input context
575  * @param out_ctx contains the input context
576  * @param ep_index index of the end point
577  * @return none
578  */
579 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
580 			struct xhci_container_ctx *in_ctx,
581 			struct xhci_container_ctx *out_ctx,
582 			unsigned int ep_index)
583 {
584 	struct xhci_ep_ctx *out_ep_ctx;
585 	struct xhci_ep_ctx *in_ep_ctx;
586 
587 	out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
588 	in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
589 
590 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
591 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
592 	in_ep_ctx->deq = out_ep_ctx->deq;
593 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
594 }
595 
596 /**
597  * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
598  * Useful when you want to change one particular aspect of the endpoint
599  * and then issue a configure endpoint command.
600  * Only the context entries field matters, but
601  * we'll copy the whole thing anyway.
602  *
603  * @param ctrl	Host controller data structure
604  * @param in_ctx contains the inpout context
605  * @param out_ctx contains the inpout context
606  * @return none
607  */
608 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
609 					struct xhci_container_ctx *out_ctx)
610 {
611 	struct xhci_slot_ctx *in_slot_ctx;
612 	struct xhci_slot_ctx *out_slot_ctx;
613 
614 	in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
615 	out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
616 
617 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
618 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
619 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
620 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
621 }
622 
623 /**
624  * Setup an xHCI virtual device for a Set Address command
625  *
626  * @param udev pointer to the Device Data Structure
627  * @return returns negative value on failure else 0 on success
628  */
629 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl, int slot_id,
630 				     int speed, int hop_portnr)
631 {
632 	struct xhci_virt_device *virt_dev;
633 	struct xhci_ep_ctx *ep0_ctx;
634 	struct xhci_slot_ctx *slot_ctx;
635 	u32 port_num = 0;
636 	u64 trb_64 = 0;
637 
638 	virt_dev = ctrl->devs[slot_id];
639 
640 	BUG_ON(!virt_dev);
641 
642 	/* Extract the EP0 and Slot Ctrl */
643 	ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
644 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
645 
646 	/* Only the control endpoint is valid - one endpoint context */
647 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0);
648 
649 	switch (speed) {
650 	case USB_SPEED_SUPER:
651 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
652 		break;
653 	case USB_SPEED_HIGH:
654 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
655 		break;
656 	case USB_SPEED_FULL:
657 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
658 		break;
659 	case USB_SPEED_LOW:
660 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
661 		break;
662 	default:
663 		/* Speed was set earlier, this shouldn't happen. */
664 		BUG();
665 	}
666 
667 	port_num = hop_portnr;
668 	debug("port_num = %d\n", port_num);
669 
670 	slot_ctx->dev_info2 |=
671 			cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
672 				ROOT_HUB_PORT_SHIFT));
673 
674 	/* Step 4 - ring already allocated */
675 	/* Step 5 */
676 	ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
677 	debug("SPEED = %d\n", speed);
678 
679 	switch (speed) {
680 	case USB_SPEED_SUPER:
681 		ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
682 					MAX_PACKET_SHIFT));
683 		debug("Setting Packet size = 512bytes\n");
684 		break;
685 	case USB_SPEED_HIGH:
686 	/* USB core guesses at a 64-byte max packet first for FS devices */
687 	case USB_SPEED_FULL:
688 		ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
689 					MAX_PACKET_SHIFT));
690 		debug("Setting Packet size = 64bytes\n");
691 		break;
692 	case USB_SPEED_LOW:
693 		ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
694 					MAX_PACKET_SHIFT));
695 		debug("Setting Packet size = 8bytes\n");
696 		break;
697 	default:
698 		/* New speed? */
699 		BUG();
700 	}
701 
702 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
703 	ep0_ctx->ep_info2 |=
704 			cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
705 			((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
706 
707 	trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
708 	ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
709 
710 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
711 
712 	xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
713 	xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
714 }
715