xref: /openbmc/u-boot/drivers/net/mvneta.c (revision 12308b128fa28d50c1586f60f3117f5213356756)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4  *
5  * U-Boot version:
6  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
7  *
8  * Based on the Linux version which is:
9  * Copyright (C) 2012 Marvell
10  *
11  * Rami Rosen <rosenr@marvell.com>
12  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
13  */
14 
15 #include <common.h>
16 #include <dm.h>
17 #include <net.h>
18 #include <netdev.h>
19 #include <config.h>
20 #include <malloc.h>
21 #include <asm/io.h>
22 #include <linux/errno.h>
23 #include <phy.h>
24 #include <miiphy.h>
25 #include <watchdog.h>
26 #include <asm/arch/cpu.h>
27 #include <asm/arch/soc.h>
28 #include <linux/compat.h>
29 #include <linux/mbus.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 #if !defined(CONFIG_PHYLIB)
34 # error Marvell mvneta requires PHYLIB
35 #endif
36 
37 /* Some linux -> U-Boot compatibility stuff */
38 #define netdev_err(dev, fmt, args...)		\
39 	printf(fmt, ##args)
40 #define netdev_warn(dev, fmt, args...)		\
41 	printf(fmt, ##args)
42 #define netdev_info(dev, fmt, args...)		\
43 	printf(fmt, ##args)
44 
45 #define CONFIG_NR_CPUS		1
46 #define ETH_HLEN		14	/* Total octets in header */
47 
48 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
49 #define WRAP			(2 + ETH_HLEN + 4 + 32)
50 #define MTU			1500
51 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
52 
53 #define MVNETA_SMI_TIMEOUT			10000
54 
55 /* Registers */
56 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
57 #define	     MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
58 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
59 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
60 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
61 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
62 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
63 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
64 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
65 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
66 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
67 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
68 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
69 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
70 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
71 #define MVNETA_PORT_RX_RESET                    0x1cc0
72 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
73 #define MVNETA_PHY_ADDR                         0x2000
74 #define      MVNETA_PHY_ADDR_MASK               0x1f
75 #define MVNETA_SMI                              0x2004
76 #define      MVNETA_PHY_REG_MASK                0x1f
77 /* SMI register fields */
78 #define     MVNETA_SMI_DATA_OFFS		0	/* Data */
79 #define     MVNETA_SMI_DATA_MASK		(0xffff << MVNETA_SMI_DATA_OFFS)
80 #define     MVNETA_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
81 #define     MVNETA_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
82 #define     MVNETA_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
83 #define     MVNETA_SMI_OPCODE_READ		(1 << MVNETA_SMI_OPCODE_OFFS)
84 #define     MVNETA_SMI_READ_VALID		(1 << 27)	/* Read Valid */
85 #define     MVNETA_SMI_BUSY			(1 << 28)	/* Busy */
86 #define MVNETA_MBUS_RETRY                       0x2010
87 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
88 #define MVNETA_UNIT_CONTROL                     0x20B0
89 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
90 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
91 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
92 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
93 #define MVNETA_WIN_SIZE_MASK			(0xffff0000)
94 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
95 #define      MVNETA_BASE_ADDR_ENABLE_BIT	0x1
96 #define MVNETA_PORT_ACCESS_PROTECT              0x2294
97 #define      MVNETA_PORT_ACCESS_PROTECT_WIN0_RW	0x3
98 #define MVNETA_PORT_CONFIG                      0x2400
99 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
100 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
101 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
102 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
103 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
104 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
105 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
106 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
107 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
108 						 MVNETA_DEF_RXQ_ARP(q)	 | \
109 						 MVNETA_DEF_RXQ_TCP(q)	 | \
110 						 MVNETA_DEF_RXQ_UDP(q)	 | \
111 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
112 						 MVNETA_TX_UNSET_ERR_SUM | \
113 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
114 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
115 #define MVNETA_MAC_ADDR_LOW                      0x2414
116 #define MVNETA_MAC_ADDR_HIGH                     0x2418
117 #define MVNETA_SDMA_CONFIG                       0x241c
118 #define      MVNETA_SDMA_BRST_SIZE_16            4
119 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
120 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
121 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
122 #define      MVNETA_DESC_SWAP                    BIT(6)
123 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
124 #define MVNETA_PORT_STATUS                       0x2444
125 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
126 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
127 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
128 #define MVNETA_SERDES_CFG			 0x24A0
129 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
130 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
131 #define MVNETA_TYPE_PRIO                         0x24bc
132 #define      MVNETA_FORCE_UNI                    BIT(21)
133 #define MVNETA_TXQ_CMD_1                         0x24e4
134 #define MVNETA_TXQ_CMD                           0x2448
135 #define      MVNETA_TXQ_DISABLE_SHIFT            8
136 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
137 #define MVNETA_ACC_MODE                          0x2500
138 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
139 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
140 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
141 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
142 
143 /* Exception Interrupt Port/Queue Cause register */
144 
145 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
146 #define MVNETA_INTR_NEW_MASK                     0x25a4
147 
148 /* bits  0..7  = TXQ SENT, one bit per queue.
149  * bits  8..15 = RXQ OCCUP, one bit per queue.
150  * bits 16..23 = RXQ FREE, one bit per queue.
151  * bit  29 = OLD_REG_SUM, see old reg ?
152  * bit  30 = TX_ERR_SUM, one bit for 4 ports
153  * bit  31 = MISC_SUM,   one bit for 4 ports
154  */
155 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
156 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
157 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
158 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
159 
160 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
161 #define MVNETA_INTR_OLD_MASK                     0x25ac
162 
163 /* Data Path Port/Queue Cause Register */
164 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
165 #define MVNETA_INTR_MISC_MASK                    0x25b4
166 #define MVNETA_INTR_ENABLE                       0x25b8
167 
168 #define MVNETA_RXQ_CMD                           0x2680
169 #define      MVNETA_RXQ_DISABLE_SHIFT            8
170 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
171 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
172 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
173 #define MVNETA_GMAC_CTRL_0                       0x2c00
174 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
175 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
176 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
177 #define MVNETA_GMAC_CTRL_2                       0x2c08
178 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
179 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
180 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
181 #define MVNETA_GMAC_STATUS                       0x2c10
182 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
183 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
184 #define      MVNETA_GMAC_SPEED_100               BIT(2)
185 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
186 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
187 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
188 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
189 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
190 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
191 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
192 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
193 #define      MVNETA_GMAC_FORCE_LINK_UP           (BIT(0) | BIT(1))
194 #define      MVNETA_GMAC_IB_BYPASS_AN_EN         BIT(3)
195 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
196 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
197 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
198 #define      MVNETA_GMAC_SET_FC_EN               BIT(8)
199 #define      MVNETA_GMAC_ADVERT_FC_EN            BIT(9)
200 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
201 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
202 #define      MVNETA_GMAC_SAMPLE_TX_CFG_EN        BIT(15)
203 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
204 #define      MVNETA_MIB_LATE_COLLISION           0x7c
205 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
206 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
207 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
208 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
209 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
210 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
211 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
212 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
213 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
214 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
215 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
216 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
217 #define MVNETA_PORT_TX_RESET                     0x3cf0
218 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
219 #define MVNETA_TX_MTU                            0x3e0c
220 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
221 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
222 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
223 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
224 
225 /* Descriptor ring Macros */
226 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
227 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
228 
229 /* Various constants */
230 
231 /* Coalescing */
232 #define MVNETA_TXDONE_COAL_PKTS		16
233 #define MVNETA_RX_COAL_PKTS		32
234 #define MVNETA_RX_COAL_USEC		100
235 
236 /* The two bytes Marvell header. Either contains a special value used
237  * by Marvell switches when a specific hardware mode is enabled (not
238  * supported by this driver) or is filled automatically by zeroes on
239  * the RX side. Those two bytes being at the front of the Ethernet
240  * header, they allow to have the IP header aligned on a 4 bytes
241  * boundary automatically: the hardware skips those two bytes on its
242  * own.
243  */
244 #define MVNETA_MH_SIZE			2
245 
246 #define MVNETA_VLAN_TAG_LEN             4
247 
248 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
249 #define MVNETA_TX_CSUM_MAX_SIZE		9800
250 #define MVNETA_ACC_MODE_EXT		1
251 
252 /* Timeout constants */
253 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
254 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
255 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
256 
257 #define MVNETA_TX_MTU_MAX		0x3ffff
258 
259 /* Max number of Rx descriptors */
260 #define MVNETA_MAX_RXD 16
261 
262 /* Max number of Tx descriptors */
263 #define MVNETA_MAX_TXD 16
264 
265 /* descriptor aligned size */
266 #define MVNETA_DESC_ALIGNED_SIZE	32
267 
268 struct mvneta_port {
269 	void __iomem *base;
270 	struct mvneta_rx_queue *rxqs;
271 	struct mvneta_tx_queue *txqs;
272 
273 	u8 mcast_count[256];
274 	u16 tx_ring_size;
275 	u16 rx_ring_size;
276 
277 	phy_interface_t phy_interface;
278 	unsigned int link;
279 	unsigned int duplex;
280 	unsigned int speed;
281 
282 	int init;
283 	int phyaddr;
284 	struct phy_device *phydev;
285 	struct mii_dev *bus;
286 };
287 
288 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
289  * layout of the transmit and reception DMA descriptors, and their
290  * layout is therefore defined by the hardware design
291  */
292 
293 #define MVNETA_TX_L3_OFF_SHIFT	0
294 #define MVNETA_TX_IP_HLEN_SHIFT	8
295 #define MVNETA_TX_L4_UDP	BIT(16)
296 #define MVNETA_TX_L3_IP6	BIT(17)
297 #define MVNETA_TXD_IP_CSUM	BIT(18)
298 #define MVNETA_TXD_Z_PAD	BIT(19)
299 #define MVNETA_TXD_L_DESC	BIT(20)
300 #define MVNETA_TXD_F_DESC	BIT(21)
301 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
302 				 MVNETA_TXD_L_DESC | \
303 				 MVNETA_TXD_F_DESC)
304 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
305 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
306 
307 #define MVNETA_RXD_ERR_CRC		0x0
308 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
309 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
310 #define MVNETA_RXD_ERR_LEN		BIT(18)
311 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
312 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
313 #define MVNETA_RXD_L3_IP4		BIT(25)
314 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
315 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
316 
317 struct mvneta_tx_desc {
318 	u32  command;		/* Options used by HW for packet transmitting.*/
319 	u16  reserverd1;	/* csum_l4 (for future use)		*/
320 	u16  data_size;		/* Data size of transmitted packet in bytes */
321 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
322 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
323 	u32  reserved3[4];	/* Reserved - (for future use)		*/
324 };
325 
326 struct mvneta_rx_desc {
327 	u32  status;		/* Info about received packet		*/
328 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
329 	u16  data_size;		/* Size of received packet in bytes	*/
330 
331 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
332 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
333 
334 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
335 	u16  reserved3;		/* prefetch_cmd, for future use		*/
336 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
337 
338 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
339 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
340 };
341 
342 struct mvneta_tx_queue {
343 	/* Number of this TX queue, in the range 0-7 */
344 	u8 id;
345 
346 	/* Number of TX DMA descriptors in the descriptor ring */
347 	int size;
348 
349 	/* Index of last TX DMA descriptor that was inserted */
350 	int txq_put_index;
351 
352 	/* Index of the TX DMA descriptor to be cleaned up */
353 	int txq_get_index;
354 
355 	/* Virtual address of the TX DMA descriptors array */
356 	struct mvneta_tx_desc *descs;
357 
358 	/* DMA address of the TX DMA descriptors array */
359 	dma_addr_t descs_phys;
360 
361 	/* Index of the last TX DMA descriptor */
362 	int last_desc;
363 
364 	/* Index of the next TX DMA descriptor to process */
365 	int next_desc_to_proc;
366 };
367 
368 struct mvneta_rx_queue {
369 	/* rx queue number, in the range 0-7 */
370 	u8 id;
371 
372 	/* num of rx descriptors in the rx descriptor ring */
373 	int size;
374 
375 	/* Virtual address of the RX DMA descriptors array */
376 	struct mvneta_rx_desc *descs;
377 
378 	/* DMA address of the RX DMA descriptors array */
379 	dma_addr_t descs_phys;
380 
381 	/* Index of the last RX DMA descriptor */
382 	int last_desc;
383 
384 	/* Index of the next RX DMA descriptor to process */
385 	int next_desc_to_proc;
386 };
387 
388 /* U-Boot doesn't use the queues, so set the number to 1 */
389 static int rxq_number = 1;
390 static int txq_number = 1;
391 static int rxq_def;
392 
393 struct buffer_location {
394 	struct mvneta_tx_desc *tx_descs;
395 	struct mvneta_rx_desc *rx_descs;
396 	u32 rx_buffers;
397 };
398 
399 /*
400  * All 4 interfaces use the same global buffer, since only one interface
401  * can be enabled at once
402  */
403 static struct buffer_location buffer_loc;
404 
405 /*
406  * Page table entries are set to 1MB, or multiples of 1MB
407  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
408  */
409 #define BD_SPACE	(1 << 20)
410 
411 /*
412  * Dummy implementation that can be overwritten by a board
413  * specific function
414  */
415 __weak int board_network_enable(struct mii_dev *bus)
416 {
417 	return 0;
418 }
419 
420 /* Utility/helper methods */
421 
422 /* Write helper method */
423 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
424 {
425 	writel(data, pp->base + offset);
426 }
427 
428 /* Read helper method */
429 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
430 {
431 	return readl(pp->base + offset);
432 }
433 
434 /* Clear all MIB counters */
435 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
436 {
437 	int i;
438 
439 	/* Perform dummy reads from MIB counters */
440 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
441 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
442 }
443 
444 /* Rx descriptors helper methods */
445 
446 /* Checks whether the RX descriptor having this status is both the first
447  * and the last descriptor for the RX packet. Each RX packet is currently
448  * received through a single RX descriptor, so not having each RX
449  * descriptor with its first and last bits set is an error
450  */
451 static int mvneta_rxq_desc_is_first_last(u32 status)
452 {
453 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
454 		MVNETA_RXD_FIRST_LAST_DESC;
455 }
456 
457 /* Add number of descriptors ready to receive new packets */
458 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
459 					  struct mvneta_rx_queue *rxq,
460 					  int ndescs)
461 {
462 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
463 	 * be added at once
464 	 */
465 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
466 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
467 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
468 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
469 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
470 	}
471 
472 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
473 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
474 }
475 
476 /* Get number of RX descriptors occupied by received packets */
477 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
478 					struct mvneta_rx_queue *rxq)
479 {
480 	u32 val;
481 
482 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
483 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
484 }
485 
486 /* Update num of rx desc called upon return from rx path or
487  * from mvneta_rxq_drop_pkts().
488  */
489 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
490 				       struct mvneta_rx_queue *rxq,
491 				       int rx_done, int rx_filled)
492 {
493 	u32 val;
494 
495 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
496 		val = rx_done |
497 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
498 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
499 		return;
500 	}
501 
502 	/* Only 255 descriptors can be added at once */
503 	while ((rx_done > 0) || (rx_filled > 0)) {
504 		if (rx_done <= 0xff) {
505 			val = rx_done;
506 			rx_done = 0;
507 		} else {
508 			val = 0xff;
509 			rx_done -= 0xff;
510 		}
511 		if (rx_filled <= 0xff) {
512 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
513 			rx_filled = 0;
514 		} else {
515 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
516 			rx_filled -= 0xff;
517 		}
518 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
519 	}
520 }
521 
522 /* Get pointer to next RX descriptor to be processed by SW */
523 static struct mvneta_rx_desc *
524 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
525 {
526 	int rx_desc = rxq->next_desc_to_proc;
527 
528 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
529 	return rxq->descs + rx_desc;
530 }
531 
532 /* Tx descriptors helper methods */
533 
534 /* Update HW with number of TX descriptors to be sent */
535 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
536 				     struct mvneta_tx_queue *txq,
537 				     int pend_desc)
538 {
539 	u32 val;
540 
541 	/* Only 255 descriptors can be added at once ; Assume caller
542 	 * process TX descriptors in quanta less than 256
543 	 */
544 	val = pend_desc;
545 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
546 }
547 
548 /* Get pointer to next TX descriptor to be processed (send) by HW */
549 static struct mvneta_tx_desc *
550 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
551 {
552 	int tx_desc = txq->next_desc_to_proc;
553 
554 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
555 	return txq->descs + tx_desc;
556 }
557 
558 /* Set rxq buf size */
559 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
560 				    struct mvneta_rx_queue *rxq,
561 				    int buf_size)
562 {
563 	u32 val;
564 
565 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
566 
567 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
568 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
569 
570 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
571 }
572 
573 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
574 {
575 	/* phy_addr is set to invalid value for fixed link */
576 	return pp->phyaddr > PHY_MAX_ADDR;
577 }
578 
579 
580 /* Start the Ethernet port RX and TX activity */
581 static void mvneta_port_up(struct mvneta_port *pp)
582 {
583 	int queue;
584 	u32 q_map;
585 
586 	/* Enable all initialized TXs. */
587 	mvneta_mib_counters_clear(pp);
588 	q_map = 0;
589 	for (queue = 0; queue < txq_number; queue++) {
590 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
591 		if (txq->descs != NULL)
592 			q_map |= (1 << queue);
593 	}
594 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
595 
596 	/* Enable all initialized RXQs. */
597 	q_map = 0;
598 	for (queue = 0; queue < rxq_number; queue++) {
599 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
600 		if (rxq->descs != NULL)
601 			q_map |= (1 << queue);
602 	}
603 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
604 }
605 
606 /* Stop the Ethernet port activity */
607 static void mvneta_port_down(struct mvneta_port *pp)
608 {
609 	u32 val;
610 	int count;
611 
612 	/* Stop Rx port activity. Check port Rx activity. */
613 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
614 
615 	/* Issue stop command for active channels only */
616 	if (val != 0)
617 		mvreg_write(pp, MVNETA_RXQ_CMD,
618 			    val << MVNETA_RXQ_DISABLE_SHIFT);
619 
620 	/* Wait for all Rx activity to terminate. */
621 	count = 0;
622 	do {
623 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
624 			netdev_warn(pp->dev,
625 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
626 				    val);
627 			break;
628 		}
629 		mdelay(1);
630 
631 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
632 	} while (val & 0xff);
633 
634 	/* Stop Tx port activity. Check port Tx activity. Issue stop
635 	 * command for active channels only
636 	 */
637 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
638 
639 	if (val != 0)
640 		mvreg_write(pp, MVNETA_TXQ_CMD,
641 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
642 
643 	/* Wait for all Tx activity to terminate. */
644 	count = 0;
645 	do {
646 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
647 			netdev_warn(pp->dev,
648 				    "TIMEOUT for TX stopped status=0x%08x\n",
649 				    val);
650 			break;
651 		}
652 		mdelay(1);
653 
654 		/* Check TX Command reg that all Txqs are stopped */
655 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
656 
657 	} while (val & 0xff);
658 
659 	/* Double check to verify that TX FIFO is empty */
660 	count = 0;
661 	do {
662 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
663 			netdev_warn(pp->dev,
664 				    "TX FIFO empty timeout status=0x08%x\n",
665 				    val);
666 			break;
667 		}
668 		mdelay(1);
669 
670 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
671 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
672 		 (val & MVNETA_TX_IN_PRGRS));
673 
674 	udelay(200);
675 }
676 
677 /* Enable the port by setting the port enable bit of the MAC control register */
678 static void mvneta_port_enable(struct mvneta_port *pp)
679 {
680 	u32 val;
681 
682 	/* Enable port */
683 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
684 	val |= MVNETA_GMAC0_PORT_ENABLE;
685 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
686 }
687 
688 /* Disable the port and wait for about 200 usec before retuning */
689 static void mvneta_port_disable(struct mvneta_port *pp)
690 {
691 	u32 val;
692 
693 	/* Reset the Enable bit in the Serial Control Register */
694 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
695 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
696 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
697 
698 	udelay(200);
699 }
700 
701 /* Multicast tables methods */
702 
703 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
704 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
705 {
706 	int offset;
707 	u32 val;
708 
709 	if (queue == -1) {
710 		val = 0;
711 	} else {
712 		val = 0x1 | (queue << 1);
713 		val |= (val << 24) | (val << 16) | (val << 8);
714 	}
715 
716 	for (offset = 0; offset <= 0xc; offset += 4)
717 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
718 }
719 
720 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
721 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
722 {
723 	int offset;
724 	u32 val;
725 
726 	if (queue == -1) {
727 		val = 0;
728 	} else {
729 		val = 0x1 | (queue << 1);
730 		val |= (val << 24) | (val << 16) | (val << 8);
731 	}
732 
733 	for (offset = 0; offset <= 0xfc; offset += 4)
734 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
735 }
736 
737 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
738 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
739 {
740 	int offset;
741 	u32 val;
742 
743 	if (queue == -1) {
744 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
745 		val = 0;
746 	} else {
747 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
748 		val = 0x1 | (queue << 1);
749 		val |= (val << 24) | (val << 16) | (val << 8);
750 	}
751 
752 	for (offset = 0; offset <= 0xfc; offset += 4)
753 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
754 }
755 
756 /* This method sets defaults to the NETA port:
757  *	Clears interrupt Cause and Mask registers.
758  *	Clears all MAC tables.
759  *	Sets defaults to all registers.
760  *	Resets RX and TX descriptor rings.
761  *	Resets PHY.
762  * This method can be called after mvneta_port_down() to return the port
763  *	settings to defaults.
764  */
765 static void mvneta_defaults_set(struct mvneta_port *pp)
766 {
767 	int cpu;
768 	int queue;
769 	u32 val;
770 
771 	/* Clear all Cause registers */
772 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
773 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
774 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
775 
776 	/* Mask all interrupts */
777 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
778 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
779 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
780 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
781 
782 	/* Enable MBUS Retry bit16 */
783 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
784 
785 	/* Set CPU queue access map - all CPUs have access to all RX
786 	 * queues and to all TX queues
787 	 */
788 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
789 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
790 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
791 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
792 
793 	/* Reset RX and TX DMAs */
794 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
795 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
796 
797 	/* Disable Legacy WRR, Disable EJP, Release from reset */
798 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
799 	for (queue = 0; queue < txq_number; queue++) {
800 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
801 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
802 	}
803 
804 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
805 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
806 
807 	/* Set Port Acceleration Mode */
808 	val = MVNETA_ACC_MODE_EXT;
809 	mvreg_write(pp, MVNETA_ACC_MODE, val);
810 
811 	/* Update val of portCfg register accordingly with all RxQueue types */
812 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
813 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
814 
815 	val = 0;
816 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
817 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
818 
819 	/* Build PORT_SDMA_CONFIG_REG */
820 	val = 0;
821 
822 	/* Default burst size */
823 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
824 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
825 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
826 
827 	/* Assign port SDMA configuration */
828 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
829 
830 	/* Enable PHY polling in hardware if not in fixed-link mode */
831 	if (!mvneta_port_is_fixed_link(pp)) {
832 		val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
833 		val |= MVNETA_PHY_POLLING_ENABLE;
834 		mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
835 	}
836 
837 	mvneta_set_ucast_table(pp, -1);
838 	mvneta_set_special_mcast_table(pp, -1);
839 	mvneta_set_other_mcast_table(pp, -1);
840 }
841 
842 /* Set unicast address */
843 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
844 				  int queue)
845 {
846 	unsigned int unicast_reg;
847 	unsigned int tbl_offset;
848 	unsigned int reg_offset;
849 
850 	/* Locate the Unicast table entry */
851 	last_nibble = (0xf & last_nibble);
852 
853 	/* offset from unicast tbl base */
854 	tbl_offset = (last_nibble / 4) * 4;
855 
856 	/* offset within the above reg  */
857 	reg_offset = last_nibble % 4;
858 
859 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
860 
861 	if (queue == -1) {
862 		/* Clear accepts frame bit at specified unicast DA tbl entry */
863 		unicast_reg &= ~(0xff << (8 * reg_offset));
864 	} else {
865 		unicast_reg &= ~(0xff << (8 * reg_offset));
866 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
867 	}
868 
869 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
870 }
871 
872 /* Set mac address */
873 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
874 				int queue)
875 {
876 	unsigned int mac_h;
877 	unsigned int mac_l;
878 
879 	if (queue != -1) {
880 		mac_l = (addr[4] << 8) | (addr[5]);
881 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
882 			(addr[2] << 8) | (addr[3] << 0);
883 
884 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
885 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
886 	}
887 
888 	/* Accept frames of this address */
889 	mvneta_set_ucast_addr(pp, addr[5], queue);
890 }
891 
892 static int mvneta_write_hwaddr(struct udevice *dev)
893 {
894 	mvneta_mac_addr_set(dev_get_priv(dev),
895 		((struct eth_pdata *)dev_get_platdata(dev))->enetaddr,
896 		rxq_def);
897 
898 	return 0;
899 }
900 
901 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
902 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
903 				u32 phys_addr, u32 cookie)
904 {
905 	rx_desc->buf_cookie = cookie;
906 	rx_desc->buf_phys_addr = phys_addr;
907 }
908 
909 /* Decrement sent descriptors counter */
910 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
911 				     struct mvneta_tx_queue *txq,
912 				     int sent_desc)
913 {
914 	u32 val;
915 
916 	/* Only 255 TX descriptors can be updated at once */
917 	while (sent_desc > 0xff) {
918 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
919 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
920 		sent_desc = sent_desc - 0xff;
921 	}
922 
923 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
924 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
925 }
926 
927 /* Get number of TX descriptors already sent by HW */
928 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
929 					struct mvneta_tx_queue *txq)
930 {
931 	u32 val;
932 	int sent_desc;
933 
934 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
935 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
936 		MVNETA_TXQ_SENT_DESC_SHIFT;
937 
938 	return sent_desc;
939 }
940 
941 /* Display more error info */
942 static void mvneta_rx_error(struct mvneta_port *pp,
943 			    struct mvneta_rx_desc *rx_desc)
944 {
945 	u32 status = rx_desc->status;
946 
947 	if (!mvneta_rxq_desc_is_first_last(status)) {
948 		netdev_err(pp->dev,
949 			   "bad rx status %08x (buffer oversize), size=%d\n",
950 			   status, rx_desc->data_size);
951 		return;
952 	}
953 
954 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
955 	case MVNETA_RXD_ERR_CRC:
956 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
957 			   status, rx_desc->data_size);
958 		break;
959 	case MVNETA_RXD_ERR_OVERRUN:
960 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
961 			   status, rx_desc->data_size);
962 		break;
963 	case MVNETA_RXD_ERR_LEN:
964 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
965 			   status, rx_desc->data_size);
966 		break;
967 	case MVNETA_RXD_ERR_RESOURCE:
968 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
969 			   status, rx_desc->data_size);
970 		break;
971 	}
972 }
973 
974 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
975 						     int rxq)
976 {
977 	return &pp->rxqs[rxq];
978 }
979 
980 
981 /* Drop packets received by the RXQ and free buffers */
982 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
983 				 struct mvneta_rx_queue *rxq)
984 {
985 	int rx_done;
986 
987 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
988 	if (rx_done)
989 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
990 }
991 
992 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
993 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
994 			   int num)
995 {
996 	int i;
997 
998 	for (i = 0; i < num; i++) {
999 		u32 addr;
1000 
1001 		/* U-Boot special: Fill in the rx buffer addresses */
1002 		addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
1003 		mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
1004 	}
1005 
1006 	/* Add this number of RX descriptors as non occupied (ready to
1007 	 * get packets)
1008 	 */
1009 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1010 
1011 	return 0;
1012 }
1013 
1014 /* Rx/Tx queue initialization/cleanup methods */
1015 
1016 /* Create a specified RX queue */
1017 static int mvneta_rxq_init(struct mvneta_port *pp,
1018 			   struct mvneta_rx_queue *rxq)
1019 
1020 {
1021 	rxq->size = pp->rx_ring_size;
1022 
1023 	/* Allocate memory for RX descriptors */
1024 	rxq->descs_phys = (dma_addr_t)rxq->descs;
1025 	if (rxq->descs == NULL)
1026 		return -ENOMEM;
1027 
1028 	WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN));
1029 
1030 	rxq->last_desc = rxq->size - 1;
1031 
1032 	/* Set Rx descriptors queue starting address */
1033 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1034 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1035 
1036 	/* Fill RXQ with buffers from RX pool */
1037 	mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1038 	mvneta_rxq_fill(pp, rxq, rxq->size);
1039 
1040 	return 0;
1041 }
1042 
1043 /* Cleanup Rx queue */
1044 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1045 			      struct mvneta_rx_queue *rxq)
1046 {
1047 	mvneta_rxq_drop_pkts(pp, rxq);
1048 
1049 	rxq->descs             = NULL;
1050 	rxq->last_desc         = 0;
1051 	rxq->next_desc_to_proc = 0;
1052 	rxq->descs_phys        = 0;
1053 }
1054 
1055 /* Create and initialize a tx queue */
1056 static int mvneta_txq_init(struct mvneta_port *pp,
1057 			   struct mvneta_tx_queue *txq)
1058 {
1059 	txq->size = pp->tx_ring_size;
1060 
1061 	/* Allocate memory for TX descriptors */
1062 	txq->descs_phys = (dma_addr_t)txq->descs;
1063 	if (txq->descs == NULL)
1064 		return -ENOMEM;
1065 
1066 	WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN));
1067 
1068 	txq->last_desc = txq->size - 1;
1069 
1070 	/* Set maximum bandwidth for enabled TXQs */
1071 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1072 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1073 
1074 	/* Set Tx descriptors queue starting address */
1075 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1076 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1077 
1078 	return 0;
1079 }
1080 
1081 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1082 static void mvneta_txq_deinit(struct mvneta_port *pp,
1083 			      struct mvneta_tx_queue *txq)
1084 {
1085 	txq->descs             = NULL;
1086 	txq->last_desc         = 0;
1087 	txq->next_desc_to_proc = 0;
1088 	txq->descs_phys        = 0;
1089 
1090 	/* Set minimum bandwidth for disabled TXQs */
1091 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1092 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1093 
1094 	/* Set Tx descriptors queue starting address and size */
1095 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1096 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1097 }
1098 
1099 /* Cleanup all Tx queues */
1100 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1101 {
1102 	int queue;
1103 
1104 	for (queue = 0; queue < txq_number; queue++)
1105 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
1106 }
1107 
1108 /* Cleanup all Rx queues */
1109 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1110 {
1111 	int queue;
1112 
1113 	for (queue = 0; queue < rxq_number; queue++)
1114 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1115 }
1116 
1117 
1118 /* Init all Rx queues */
1119 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1120 {
1121 	int queue;
1122 
1123 	for (queue = 0; queue < rxq_number; queue++) {
1124 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1125 		if (err) {
1126 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1127 				   __func__, queue);
1128 			mvneta_cleanup_rxqs(pp);
1129 			return err;
1130 		}
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 /* Init all tx queues */
1137 static int mvneta_setup_txqs(struct mvneta_port *pp)
1138 {
1139 	int queue;
1140 
1141 	for (queue = 0; queue < txq_number; queue++) {
1142 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1143 		if (err) {
1144 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
1145 				   __func__, queue);
1146 			mvneta_cleanup_txqs(pp);
1147 			return err;
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void mvneta_start_dev(struct mvneta_port *pp)
1155 {
1156 	/* start the Rx/Tx activity */
1157 	mvneta_port_enable(pp);
1158 }
1159 
1160 static void mvneta_adjust_link(struct udevice *dev)
1161 {
1162 	struct mvneta_port *pp = dev_get_priv(dev);
1163 	struct phy_device *phydev = pp->phydev;
1164 	int status_change = 0;
1165 
1166 	if (mvneta_port_is_fixed_link(pp)) {
1167 		debug("Using fixed link, skip link adjust\n");
1168 		return;
1169 	}
1170 
1171 	if (phydev->link) {
1172 		if ((pp->speed != phydev->speed) ||
1173 		    (pp->duplex != phydev->duplex)) {
1174 			u32 val;
1175 
1176 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1177 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1178 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
1179 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1180 				 MVNETA_GMAC_AN_SPEED_EN |
1181 				 MVNETA_GMAC_AN_DUPLEX_EN);
1182 
1183 			if (phydev->duplex)
1184 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1185 
1186 			if (phydev->speed == SPEED_1000)
1187 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1188 			else
1189 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1190 
1191 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1192 
1193 			pp->duplex = phydev->duplex;
1194 			pp->speed  = phydev->speed;
1195 		}
1196 	}
1197 
1198 	if (phydev->link != pp->link) {
1199 		if (!phydev->link) {
1200 			pp->duplex = -1;
1201 			pp->speed = 0;
1202 		}
1203 
1204 		pp->link = phydev->link;
1205 		status_change = 1;
1206 	}
1207 
1208 	if (status_change) {
1209 		if (phydev->link) {
1210 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1211 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1212 				MVNETA_GMAC_FORCE_LINK_DOWN);
1213 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1214 			mvneta_port_up(pp);
1215 		} else {
1216 			mvneta_port_down(pp);
1217 		}
1218 	}
1219 }
1220 
1221 static int mvneta_open(struct udevice *dev)
1222 {
1223 	struct mvneta_port *pp = dev_get_priv(dev);
1224 	int ret;
1225 
1226 	ret = mvneta_setup_rxqs(pp);
1227 	if (ret)
1228 		return ret;
1229 
1230 	ret = mvneta_setup_txqs(pp);
1231 	if (ret)
1232 		return ret;
1233 
1234 	mvneta_adjust_link(dev);
1235 
1236 	mvneta_start_dev(pp);
1237 
1238 	return 0;
1239 }
1240 
1241 /* Initialize hw */
1242 static int mvneta_init2(struct mvneta_port *pp)
1243 {
1244 	int queue;
1245 
1246 	/* Disable port */
1247 	mvneta_port_disable(pp);
1248 
1249 	/* Set port default values */
1250 	mvneta_defaults_set(pp);
1251 
1252 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1253 			   GFP_KERNEL);
1254 	if (!pp->txqs)
1255 		return -ENOMEM;
1256 
1257 	/* U-Boot special: use preallocated area */
1258 	pp->txqs[0].descs = buffer_loc.tx_descs;
1259 
1260 	/* Initialize TX descriptor rings */
1261 	for (queue = 0; queue < txq_number; queue++) {
1262 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1263 		txq->id = queue;
1264 		txq->size = pp->tx_ring_size;
1265 	}
1266 
1267 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1268 			   GFP_KERNEL);
1269 	if (!pp->rxqs) {
1270 		kfree(pp->txqs);
1271 		return -ENOMEM;
1272 	}
1273 
1274 	/* U-Boot special: use preallocated area */
1275 	pp->rxqs[0].descs = buffer_loc.rx_descs;
1276 
1277 	/* Create Rx descriptor rings */
1278 	for (queue = 0; queue < rxq_number; queue++) {
1279 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1280 		rxq->id = queue;
1281 		rxq->size = pp->rx_ring_size;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /* platform glue : initialize decoding windows */
1288 
1289 /*
1290  * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1291  * First layer is:  GbE Address window that resides inside the GBE unit,
1292  * Second layer is: Fabric address window which is located in the NIC400
1293  *                  (South Fabric).
1294  * To simplify the address decode configuration for Armada3700, we bypass the
1295  * first layer of GBE decode window by setting the first window to 4GB.
1296  */
1297 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1298 {
1299 	/*
1300 	 * Set window size to 4GB, to bypass GBE address decode, leave the
1301 	 * work to MBUS decode window
1302 	 */
1303 	mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1304 
1305 	/* Enable GBE address decode window 0 by set bit 0 to 0 */
1306 	clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1307 		     MVNETA_BASE_ADDR_ENABLE_BIT);
1308 
1309 	/* Set GBE address decode window 0 to full Access (read or write) */
1310 	setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1311 		     MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1312 }
1313 
1314 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1315 {
1316 	const struct mbus_dram_target_info *dram;
1317 	u32 win_enable;
1318 	u32 win_protect;
1319 	int i;
1320 
1321 	dram = mvebu_mbus_dram_info();
1322 	for (i = 0; i < 6; i++) {
1323 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1324 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1325 
1326 		if (i < 4)
1327 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1328 	}
1329 
1330 	win_enable = 0x3f;
1331 	win_protect = 0;
1332 
1333 	for (i = 0; i < dram->num_cs; i++) {
1334 		const struct mbus_dram_window *cs = dram->cs + i;
1335 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1336 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1337 
1338 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
1339 			    (cs->size - 1) & 0xffff0000);
1340 
1341 		win_enable &= ~(1 << i);
1342 		win_protect |= 3 << (2 * i);
1343 	}
1344 
1345 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1346 }
1347 
1348 /* Power up the port */
1349 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1350 {
1351 	u32 ctrl;
1352 
1353 	/* MAC Cause register should be cleared */
1354 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1355 
1356 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1357 
1358 	/* Even though it might look weird, when we're configured in
1359 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1360 	 */
1361 	switch (phy_mode) {
1362 	case PHY_INTERFACE_MODE_QSGMII:
1363 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1364 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1365 		break;
1366 	case PHY_INTERFACE_MODE_SGMII:
1367 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1368 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1369 		break;
1370 	case PHY_INTERFACE_MODE_RGMII:
1371 	case PHY_INTERFACE_MODE_RGMII_ID:
1372 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
1373 		break;
1374 	default:
1375 		return -EINVAL;
1376 	}
1377 
1378 	/* Cancel Port Reset */
1379 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1380 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1381 
1382 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1383 		MVNETA_GMAC2_PORT_RESET) != 0)
1384 		continue;
1385 
1386 	return 0;
1387 }
1388 
1389 /* Device initialization routine */
1390 static int mvneta_init(struct udevice *dev)
1391 {
1392 	struct eth_pdata *pdata = dev_get_platdata(dev);
1393 	struct mvneta_port *pp = dev_get_priv(dev);
1394 	int err;
1395 
1396 	pp->tx_ring_size = MVNETA_MAX_TXD;
1397 	pp->rx_ring_size = MVNETA_MAX_RXD;
1398 
1399 	err = mvneta_init2(pp);
1400 	if (err < 0) {
1401 		dev_err(&pdev->dev, "can't init eth hal\n");
1402 		return err;
1403 	}
1404 
1405 	mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1406 
1407 	err = mvneta_port_power_up(pp, pp->phy_interface);
1408 	if (err < 0) {
1409 		dev_err(&pdev->dev, "can't power up port\n");
1410 		return err;
1411 	}
1412 
1413 	/* Call open() now as it needs to be done before runing send() */
1414 	mvneta_open(dev);
1415 
1416 	return 0;
1417 }
1418 
1419 /* U-Boot only functions follow here */
1420 
1421 /* SMI / MDIO functions */
1422 
1423 static int smi_wait_ready(struct mvneta_port *pp)
1424 {
1425 	u32 timeout = MVNETA_SMI_TIMEOUT;
1426 	u32 smi_reg;
1427 
1428 	/* wait till the SMI is not busy */
1429 	do {
1430 		/* read smi register */
1431 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1432 		if (timeout-- == 0) {
1433 			printf("Error: SMI busy timeout\n");
1434 			return -EFAULT;
1435 		}
1436 	} while (smi_reg & MVNETA_SMI_BUSY);
1437 
1438 	return 0;
1439 }
1440 
1441 /*
1442  * mvneta_mdio_read - miiphy_read callback function.
1443  *
1444  * Returns 16bit phy register value, or 0xffff on error
1445  */
1446 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1447 {
1448 	struct mvneta_port *pp = bus->priv;
1449 	u32 smi_reg;
1450 	u32 timeout;
1451 
1452 	/* check parameters */
1453 	if (addr > MVNETA_PHY_ADDR_MASK) {
1454 		printf("Error: Invalid PHY address %d\n", addr);
1455 		return -EFAULT;
1456 	}
1457 
1458 	if (reg > MVNETA_PHY_REG_MASK) {
1459 		printf("Err: Invalid register offset %d\n", reg);
1460 		return -EFAULT;
1461 	}
1462 
1463 	/* wait till the SMI is not busy */
1464 	if (smi_wait_ready(pp) < 0)
1465 		return -EFAULT;
1466 
1467 	/* fill the phy address and regiser offset and read opcode */
1468 	smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1469 		| (reg << MVNETA_SMI_REG_ADDR_OFFS)
1470 		| MVNETA_SMI_OPCODE_READ;
1471 
1472 	/* write the smi register */
1473 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1474 
1475 	/* wait till read value is ready */
1476 	timeout = MVNETA_SMI_TIMEOUT;
1477 
1478 	do {
1479 		/* read smi register */
1480 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1481 		if (timeout-- == 0) {
1482 			printf("Err: SMI read ready timeout\n");
1483 			return -EFAULT;
1484 		}
1485 	} while (!(smi_reg & MVNETA_SMI_READ_VALID));
1486 
1487 	/* Wait for the data to update in the SMI register */
1488 	for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1489 		;
1490 
1491 	return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1492 }
1493 
1494 /*
1495  * mvneta_mdio_write - miiphy_write callback function.
1496  *
1497  * Returns 0 if write succeed, -EINVAL on bad parameters
1498  * -ETIME on timeout
1499  */
1500 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1501 			     u16 value)
1502 {
1503 	struct mvneta_port *pp = bus->priv;
1504 	u32 smi_reg;
1505 
1506 	/* check parameters */
1507 	if (addr > MVNETA_PHY_ADDR_MASK) {
1508 		printf("Error: Invalid PHY address %d\n", addr);
1509 		return -EFAULT;
1510 	}
1511 
1512 	if (reg > MVNETA_PHY_REG_MASK) {
1513 		printf("Err: Invalid register offset %d\n", reg);
1514 		return -EFAULT;
1515 	}
1516 
1517 	/* wait till the SMI is not busy */
1518 	if (smi_wait_ready(pp) < 0)
1519 		return -EFAULT;
1520 
1521 	/* fill the phy addr and reg offset and write opcode and data */
1522 	smi_reg = value << MVNETA_SMI_DATA_OFFS;
1523 	smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1524 		| (reg << MVNETA_SMI_REG_ADDR_OFFS);
1525 	smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1526 
1527 	/* write the smi register */
1528 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1529 
1530 	return 0;
1531 }
1532 
1533 static int mvneta_start(struct udevice *dev)
1534 {
1535 	struct mvneta_port *pp = dev_get_priv(dev);
1536 	struct phy_device *phydev;
1537 
1538 	mvneta_port_power_up(pp, pp->phy_interface);
1539 
1540 	if (!pp->init || pp->link == 0) {
1541 		if (mvneta_port_is_fixed_link(pp)) {
1542 			u32 val;
1543 
1544 			pp->init = 1;
1545 			pp->link = 1;
1546 			mvneta_init(dev);
1547 
1548 			val = MVNETA_GMAC_FORCE_LINK_UP |
1549 			      MVNETA_GMAC_IB_BYPASS_AN_EN |
1550 			      MVNETA_GMAC_SET_FC_EN |
1551 			      MVNETA_GMAC_ADVERT_FC_EN |
1552 			      MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1553 
1554 			if (pp->duplex)
1555 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1556 
1557 			if (pp->speed == SPEED_1000)
1558 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1559 			else if (pp->speed == SPEED_100)
1560 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1561 
1562 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1563 		} else {
1564 			/* Set phy address of the port */
1565 			mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1566 
1567 			phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1568 					     pp->phy_interface);
1569 			if (!phydev) {
1570 				printf("phy_connect failed\n");
1571 				return -ENODEV;
1572 			}
1573 
1574 			pp->phydev = phydev;
1575 			phy_config(phydev);
1576 			phy_startup(phydev);
1577 			if (!phydev->link) {
1578 				printf("%s: No link.\n", phydev->dev->name);
1579 				return -1;
1580 			}
1581 
1582 			/* Full init on first call */
1583 			mvneta_init(dev);
1584 			pp->init = 1;
1585 			return 0;
1586 		}
1587 	}
1588 
1589 	/* Upon all following calls, this is enough */
1590 	mvneta_port_up(pp);
1591 	mvneta_port_enable(pp);
1592 
1593 	return 0;
1594 }
1595 
1596 static int mvneta_send(struct udevice *dev, void *packet, int length)
1597 {
1598 	struct mvneta_port *pp = dev_get_priv(dev);
1599 	struct mvneta_tx_queue *txq = &pp->txqs[0];
1600 	struct mvneta_tx_desc *tx_desc;
1601 	int sent_desc;
1602 	u32 timeout = 0;
1603 
1604 	/* Get a descriptor for the first part of the packet */
1605 	tx_desc = mvneta_txq_next_desc_get(txq);
1606 
1607 	tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1608 	tx_desc->data_size = length;
1609 	flush_dcache_range((ulong)packet,
1610 			   (ulong)packet + ALIGN(length, PKTALIGN));
1611 
1612 	/* First and Last descriptor */
1613 	tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1614 	mvneta_txq_pend_desc_add(pp, txq, 1);
1615 
1616 	/* Wait for packet to be sent (queue might help with speed here) */
1617 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1618 	while (!sent_desc) {
1619 		if (timeout++ > 10000) {
1620 			printf("timeout: packet not sent\n");
1621 			return -1;
1622 		}
1623 		sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1624 	}
1625 
1626 	/* txDone has increased - hw sent packet */
1627 	mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1628 
1629 	return 0;
1630 }
1631 
1632 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1633 {
1634 	struct mvneta_port *pp = dev_get_priv(dev);
1635 	int rx_done;
1636 	struct mvneta_rx_queue *rxq;
1637 	int rx_bytes = 0;
1638 
1639 	/* get rx queue */
1640 	rxq = mvneta_rxq_handle_get(pp, rxq_def);
1641 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1642 
1643 	if (rx_done) {
1644 		struct mvneta_rx_desc *rx_desc;
1645 		unsigned char *data;
1646 		u32 rx_status;
1647 
1648 		/*
1649 		 * No cache invalidation needed here, since the desc's are
1650 		 * located in a uncached memory region
1651 		 */
1652 		rx_desc = mvneta_rxq_next_desc_get(rxq);
1653 
1654 		rx_status = rx_desc->status;
1655 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1656 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1657 			mvneta_rx_error(pp, rx_desc);
1658 			/* leave the descriptor untouched */
1659 			return -EIO;
1660 		}
1661 
1662 		/* 2 bytes for marvell header. 4 bytes for crc */
1663 		rx_bytes = rx_desc->data_size - 6;
1664 
1665 		/* give packet to stack - skip on first 2 bytes */
1666 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1667 		/*
1668 		 * No cache invalidation needed here, since the rx_buffer's are
1669 		 * located in a uncached memory region
1670 		 */
1671 		*packetp = data;
1672 
1673 		/*
1674 		 * Only mark one descriptor as free
1675 		 * since only one was processed
1676 		 */
1677 		mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1678 	}
1679 
1680 	return rx_bytes;
1681 }
1682 
1683 static int mvneta_probe(struct udevice *dev)
1684 {
1685 	struct eth_pdata *pdata = dev_get_platdata(dev);
1686 	struct mvneta_port *pp = dev_get_priv(dev);
1687 	void *blob = (void *)gd->fdt_blob;
1688 	int node = dev_of_offset(dev);
1689 	struct mii_dev *bus;
1690 	unsigned long addr;
1691 	void *bd_space;
1692 	int ret;
1693 	int fl_node;
1694 
1695 	/*
1696 	 * Allocate buffer area for descs and rx_buffers. This is only
1697 	 * done once for all interfaces. As only one interface can
1698 	 * be active. Make this area DMA safe by disabling the D-cache
1699 	 */
1700 	if (!buffer_loc.tx_descs) {
1701 		u32 size;
1702 
1703 		/* Align buffer area for descs and rx_buffers to 1MiB */
1704 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1705 		flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE);
1706 		mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1707 						DCACHE_OFF);
1708 		buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1709 		size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc),
1710 				ARCH_DMA_MINALIGN);
1711 		memset(buffer_loc.tx_descs, 0, size);
1712 		buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1713 			((phys_addr_t)bd_space + size);
1714 		size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc),
1715 				ARCH_DMA_MINALIGN);
1716 		buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size);
1717 	}
1718 
1719 	pp->base = (void __iomem *)pdata->iobase;
1720 
1721 	/* Configure MBUS address windows */
1722 	if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1723 		mvneta_bypass_mbus_windows(pp);
1724 	else
1725 		mvneta_conf_mbus_windows(pp);
1726 
1727 	/* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1728 	pp->phy_interface = pdata->phy_interface;
1729 
1730 	/* fetch 'fixed-link' property from 'neta' node */
1731 	fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1732 	if (fl_node != -FDT_ERR_NOTFOUND) {
1733 		/* set phy_addr to invalid value for fixed link */
1734 		pp->phyaddr = PHY_MAX_ADDR + 1;
1735 		pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1736 		pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1737 	} else {
1738 		/* Now read phyaddr from DT */
1739 		addr = fdtdec_get_int(blob, node, "phy", 0);
1740 		addr = fdt_node_offset_by_phandle(blob, addr);
1741 		pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1742 	}
1743 
1744 	bus = mdio_alloc();
1745 	if (!bus) {
1746 		printf("Failed to allocate MDIO bus\n");
1747 		return -ENOMEM;
1748 	}
1749 
1750 	bus->read = mvneta_mdio_read;
1751 	bus->write = mvneta_mdio_write;
1752 	snprintf(bus->name, sizeof(bus->name), dev->name);
1753 	bus->priv = (void *)pp;
1754 	pp->bus = bus;
1755 
1756 	ret = mdio_register(bus);
1757 	if (ret)
1758 		return ret;
1759 
1760 	return board_network_enable(bus);
1761 }
1762 
1763 static void mvneta_stop(struct udevice *dev)
1764 {
1765 	struct mvneta_port *pp = dev_get_priv(dev);
1766 
1767 	mvneta_port_down(pp);
1768 	mvneta_port_disable(pp);
1769 }
1770 
1771 static const struct eth_ops mvneta_ops = {
1772 	.start		= mvneta_start,
1773 	.send		= mvneta_send,
1774 	.recv		= mvneta_recv,
1775 	.stop		= mvneta_stop,
1776 	.write_hwaddr	= mvneta_write_hwaddr,
1777 };
1778 
1779 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1780 {
1781 	struct eth_pdata *pdata = dev_get_platdata(dev);
1782 	const char *phy_mode;
1783 
1784 	pdata->iobase = devfdt_get_addr(dev);
1785 
1786 	/* Get phy-mode / phy_interface from DT */
1787 	pdata->phy_interface = -1;
1788 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1789 			       NULL);
1790 	if (phy_mode)
1791 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1792 	if (pdata->phy_interface == -1) {
1793 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1794 		return -EINVAL;
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 static const struct udevice_id mvneta_ids[] = {
1801 	{ .compatible = "marvell,armada-370-neta" },
1802 	{ .compatible = "marvell,armada-xp-neta" },
1803 	{ .compatible = "marvell,armada-3700-neta" },
1804 	{ }
1805 };
1806 
1807 U_BOOT_DRIVER(mvneta) = {
1808 	.name	= "mvneta",
1809 	.id	= UCLASS_ETH,
1810 	.of_match = mvneta_ids,
1811 	.ofdata_to_platdata = mvneta_ofdata_to_platdata,
1812 	.probe	= mvneta_probe,
1813 	.ops	= &mvneta_ops,
1814 	.priv_auto_alloc_size = sizeof(struct mvneta_port),
1815 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1816 };
1817