xref: /openbmc/qemu/fpu/softfloat-specialize.c.inc (revision ba6558461cb0280ad861b376cbfff4680be82570)
1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static void parts64_default_nan(FloatParts64 *p, float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#elif defined(TARGET_HEXAGON)
149    sign = 1;
150    frac = ~0ULL;
151#else
152    /*
153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets
155     * do not have floating-point.
156     */
157    if (snan_bit_is_one(status)) {
158        /* set all bits other than msb */
159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160    } else {
161        /* set msb */
162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163    }
164#endif
165
166    *p = (FloatParts64) {
167        .cls = float_class_qnan,
168        .sign = sign,
169        .exp = INT_MAX,
170        .frac = frac
171    };
172}
173
174static void parts128_default_nan(FloatParts128 *p, float_status *status)
175{
176    /*
177     * Extrapolate from the choices made by parts64_default_nan to fill
178     * in the quad-floating format.  If the low bit is set, assume we
179     * want to set all non-snan bits.
180     */
181    FloatParts64 p64;
182    parts64_default_nan(&p64, status);
183
184    *p = (FloatParts128) {
185        .cls = float_class_qnan,
186        .sign = p64.sign,
187        .exp = INT_MAX,
188        .frac_hi = p64.frac,
189        .frac_lo = -(p64.frac & 1)
190    };
191}
192
193/*----------------------------------------------------------------------------
194| Returns a quiet NaN from a signalling NaN for the deconstructed
195| floating-point parts.
196*----------------------------------------------------------------------------*/
197
198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199{
200    g_assert(!no_signaling_nans(status));
201
202    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
203    if (snan_bit_is_one(status)) {
204        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
206    } else {
207        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
208    }
209    return frac;
210}
211
212static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213{
214    p->frac = parts_silence_nan_frac(p->frac, status);
215    p->cls = float_class_qnan;
216}
217
218static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219{
220    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221    p->cls = float_class_qnan;
222}
223
224/*----------------------------------------------------------------------------
225| The pattern for a default generated extended double-precision NaN.
226*----------------------------------------------------------------------------*/
227floatx80 floatx80_default_nan(float_status *status)
228{
229    floatx80 r;
230
231    /* None of the targets that have snan_bit_is_one use floatx80.  */
232    assert(!snan_bit_is_one(status));
233#if defined(TARGET_M68K)
234    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
235    r.high = 0x7FFF;
236#else
237    /* X86 */
238    r.low = UINT64_C(0xC000000000000000);
239    r.high = 0xFFFF;
240#endif
241    return r;
242}
243
244/*----------------------------------------------------------------------------
245| The pattern for a default generated extended double-precision inf.
246*----------------------------------------------------------------------------*/
247
248#define floatx80_infinity_high 0x7FFF
249#if defined(TARGET_M68K)
250#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
251#else
252#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
253#endif
254
255const floatx80 floatx80_infinity
256    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
258/*----------------------------------------------------------------------------
259| Returns 1 if the half-precision floating-point value `a' is a quiet
260| NaN; otherwise returns 0.
261*----------------------------------------------------------------------------*/
262
263bool float16_is_quiet_nan(float16 a_, float_status *status)
264{
265    if (no_signaling_nans(status)) {
266        return float16_is_any_nan(a_);
267    } else {
268        uint16_t a = float16_val(a_);
269        if (snan_bit_is_one(status)) {
270            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271        } else {
272
273            return ((a >> 9) & 0x3F) == 0x3F;
274        }
275    }
276}
277
278/*----------------------------------------------------------------------------
279| Returns 1 if the bfloat16 value `a' is a quiet
280| NaN; otherwise returns 0.
281*----------------------------------------------------------------------------*/
282
283bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284{
285    if (no_signaling_nans(status)) {
286        return bfloat16_is_any_nan(a_);
287    } else {
288        uint16_t a = a_;
289        if (snan_bit_is_one(status)) {
290            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291        } else {
292            return ((a >> 6) & 0x1FF) == 0x1FF;
293        }
294    }
295}
296
297/*----------------------------------------------------------------------------
298| Returns 1 if the half-precision floating-point value `a' is a signaling
299| NaN; otherwise returns 0.
300*----------------------------------------------------------------------------*/
301
302bool float16_is_signaling_nan(float16 a_, float_status *status)
303{
304    if (no_signaling_nans(status)) {
305        return 0;
306    } else {
307        uint16_t a = float16_val(a_);
308        if (snan_bit_is_one(status)) {
309            return ((a >> 9) & 0x3F) == 0x3F;
310        } else {
311            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312        }
313    }
314}
315
316/*----------------------------------------------------------------------------
317| Returns 1 if the bfloat16 value `a' is a signaling
318| NaN; otherwise returns 0.
319*----------------------------------------------------------------------------*/
320
321bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322{
323    if (no_signaling_nans(status)) {
324        return 0;
325    } else {
326        uint16_t a = a_;
327        if (snan_bit_is_one(status)) {
328            return ((a >> 6) & 0x1FF) == 0x1FF;
329        } else {
330            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331        }
332    }
333}
334
335/*----------------------------------------------------------------------------
336| Returns 1 if the single-precision floating-point value `a' is a quiet
337| NaN; otherwise returns 0.
338*----------------------------------------------------------------------------*/
339
340bool float32_is_quiet_nan(float32 a_, float_status *status)
341{
342    if (no_signaling_nans(status)) {
343        return float32_is_any_nan(a_);
344    } else {
345        uint32_t a = float32_val(a_);
346        if (snan_bit_is_one(status)) {
347            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348        } else {
349            return ((uint32_t)(a << 1) >= 0xFF800000);
350        }
351    }
352}
353
354/*----------------------------------------------------------------------------
355| Returns 1 if the single-precision floating-point value `a' is a signaling
356| NaN; otherwise returns 0.
357*----------------------------------------------------------------------------*/
358
359bool float32_is_signaling_nan(float32 a_, float_status *status)
360{
361    if (no_signaling_nans(status)) {
362        return 0;
363    } else {
364        uint32_t a = float32_val(a_);
365        if (snan_bit_is_one(status)) {
366            return ((uint32_t)(a << 1) >= 0xFF800000);
367        } else {
368            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369        }
370    }
371}
372
373/*----------------------------------------------------------------------------
374| Select which NaN to propagate for a two-input operation.
375| IEEE754 doesn't specify all the details of this, so the
376| algorithm is target-specific.
377| The routine is passed various bits of information about the
378| two NaNs and should return 0 to select NaN a and 1 for NaN b.
379| Note that signalling NaNs are always squashed to quiet NaNs
380| by the caller, by calling floatXX_silence_nan() before
381| returning them.
382|
383| aIsLargerSignificand is only valid if both a and b are NaNs
384| of some kind, and is true if a has the larger significand,
385| or if both a and b have the same significand but a is
386| positive but b is negative. It is only needed for the x87
387| tie-break rule.
388*----------------------------------------------------------------------------*/
389
390static int pickNaN(FloatClass a_cls, FloatClass b_cls,
391                   bool aIsLargerSignificand, float_status *status)
392{
393    Float2NaNPropRule rule = status->float_2nan_prop_rule;
394
395    /*
396     * We guarantee not to require the target to tell us how to
397     * pick a NaN if we're always returning the default NaN.
398     */
399    assert(!status->default_nan_mode);
400
401    if (rule == float_2nan_prop_none) {
402        /* target didn't set the rule: fall back to old ifdef choices */
403#if defined(TARGET_AVR) || defined(TARGET_HEXAGON) \
404    || defined(TARGET_RISCV) || defined(TARGET_SH4) \
405    || defined(TARGET_TRICORE) || defined(TARGET_ARM) || defined(TARGET_MIPS) \
406    || defined(TARGET_LOONGARCH64) || defined(TARGET_HPPA) \
407    || defined(TARGET_S390X) || defined(TARGET_PPC) || defined(TARGET_M68K) \
408    || defined(TARGET_SPARC) || defined(TARGET_XTENSA) \
409    || defined(TARGET_I386) || defined(TARGET_ALPHA) \
410    || defined(TARGET_MICROBLAZE) || defined(TARGET_OPENRISC) \
411    || defined(TARGET_RX)
412        g_assert_not_reached();
413#else
414        rule = float_2nan_prop_x87;
415#endif
416    }
417
418    switch (rule) {
419    case float_2nan_prop_s_ab:
420        if (is_snan(a_cls)) {
421            return 0;
422        } else if (is_snan(b_cls)) {
423            return 1;
424        } else if (is_qnan(a_cls)) {
425            return 0;
426        } else {
427            return 1;
428        }
429        break;
430    case float_2nan_prop_s_ba:
431        if (is_snan(b_cls)) {
432            return 1;
433        } else if (is_snan(a_cls)) {
434            return 0;
435        } else if (is_qnan(b_cls)) {
436            return 1;
437        } else {
438            return 0;
439        }
440        break;
441    case float_2nan_prop_ab:
442        if (is_nan(a_cls)) {
443            return 0;
444        } else {
445            return 1;
446        }
447        break;
448    case float_2nan_prop_ba:
449        if (is_nan(b_cls)) {
450            return 1;
451        } else {
452            return 0;
453        }
454        break;
455    case float_2nan_prop_x87:
456        /*
457         * This implements x87 NaN propagation rules:
458         * SNaN + QNaN => return the QNaN
459         * two SNaNs => return the one with the larger significand, silenced
460         * two QNaNs => return the one with the larger significand
461         * SNaN and a non-NaN => return the SNaN, silenced
462         * QNaN and a non-NaN => return the QNaN
463         *
464         * If we get down to comparing significands and they are the same,
465         * return the NaN with the positive sign bit (if any).
466         */
467        if (is_snan(a_cls)) {
468            if (is_snan(b_cls)) {
469                return aIsLargerSignificand ? 0 : 1;
470            }
471            return is_qnan(b_cls) ? 1 : 0;
472        } else if (is_qnan(a_cls)) {
473            if (is_snan(b_cls) || !is_qnan(b_cls)) {
474                return 0;
475            } else {
476                return aIsLargerSignificand ? 0 : 1;
477            }
478        } else {
479            return 1;
480        }
481    default:
482        g_assert_not_reached();
483    }
484}
485
486/*----------------------------------------------------------------------------
487| Select which NaN to propagate for a three-input operation.
488| For the moment we assume that no CPU needs the 'larger significand'
489| information.
490| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
491*----------------------------------------------------------------------------*/
492static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
493                         bool infzero, float_status *status)
494{
495#if defined(TARGET_ARM)
496    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
497     * the default NaN
498     */
499    if (infzero && is_qnan(c_cls)) {
500        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
501        return 3;
502    }
503
504    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
505     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
506     */
507    if (is_snan(c_cls)) {
508        return 2;
509    } else if (is_snan(a_cls)) {
510        return 0;
511    } else if (is_snan(b_cls)) {
512        return 1;
513    } else if (is_qnan(c_cls)) {
514        return 2;
515    } else if (is_qnan(a_cls)) {
516        return 0;
517    } else {
518        return 1;
519    }
520#elif defined(TARGET_MIPS)
521    if (snan_bit_is_one(status)) {
522        /*
523         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
524         * case sets InvalidOp and returns the default NaN
525         */
526        if (infzero) {
527            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
528            return 3;
529        }
530        /* Prefer sNaN over qNaN, in the a, b, c order. */
531        if (is_snan(a_cls)) {
532            return 0;
533        } else if (is_snan(b_cls)) {
534            return 1;
535        } else if (is_snan(c_cls)) {
536            return 2;
537        } else if (is_qnan(a_cls)) {
538            return 0;
539        } else if (is_qnan(b_cls)) {
540            return 1;
541        } else {
542            return 2;
543        }
544    } else {
545        /*
546         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
547         * case sets InvalidOp and returns the input value 'c'
548         */
549        if (infzero) {
550            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
551            return 2;
552        }
553        /* Prefer sNaN over qNaN, in the c, a, b order. */
554        if (is_snan(c_cls)) {
555            return 2;
556        } else if (is_snan(a_cls)) {
557            return 0;
558        } else if (is_snan(b_cls)) {
559            return 1;
560        } else if (is_qnan(c_cls)) {
561            return 2;
562        } else if (is_qnan(a_cls)) {
563            return 0;
564        } else {
565            return 1;
566        }
567    }
568#elif defined(TARGET_LOONGARCH64)
569    /*
570     * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
571     * case sets InvalidOp and returns the input value 'c'
572     */
573    if (infzero) {
574        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
575        return 2;
576    }
577    /* Prefer sNaN over qNaN, in the c, a, b order. */
578    if (is_snan(c_cls)) {
579        return 2;
580    } else if (is_snan(a_cls)) {
581        return 0;
582    } else if (is_snan(b_cls)) {
583        return 1;
584    } else if (is_qnan(c_cls)) {
585        return 2;
586    } else if (is_qnan(a_cls)) {
587        return 0;
588    } else {
589        return 1;
590    }
591#elif defined(TARGET_PPC)
592    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
593     * to return an input NaN if we have one (ie c) rather than generating
594     * a default NaN
595     */
596    if (infzero) {
597        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
598        return 2;
599    }
600
601    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
602     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
603     */
604    if (is_nan(a_cls)) {
605        return 0;
606    } else if (is_nan(c_cls)) {
607        return 2;
608    } else {
609        return 1;
610    }
611#elif defined(TARGET_RISCV)
612    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
613    if (infzero) {
614        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
615    }
616    return 3; /* default NaN */
617#elif defined(TARGET_SPARC)
618    /* For (inf,0,nan) return c. */
619    if (infzero) {
620        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
621        return 2;
622    }
623    /* Prefer SNaN over QNaN, order C, B, A. */
624    if (is_snan(c_cls)) {
625        return 2;
626    } else if (is_snan(b_cls)) {
627        return 1;
628    } else if (is_snan(a_cls)) {
629        return 0;
630    } else if (is_qnan(c_cls)) {
631        return 2;
632    } else if (is_qnan(b_cls)) {
633        return 1;
634    } else {
635        return 0;
636    }
637#elif defined(TARGET_XTENSA)
638    /*
639     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
640     * an input NaN if we have one (ie c).
641     */
642    if (infzero) {
643        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
644        return 2;
645    }
646    if (status->use_first_nan) {
647        if (is_nan(a_cls)) {
648            return 0;
649        } else if (is_nan(b_cls)) {
650            return 1;
651        } else {
652            return 2;
653        }
654    } else {
655        if (is_nan(c_cls)) {
656            return 2;
657        } else if (is_nan(b_cls)) {
658            return 1;
659        } else {
660            return 0;
661        }
662    }
663#else
664    /* A default implementation: prefer a to b to c.
665     * This is unlikely to actually match any real implementation.
666     */
667    if (is_nan(a_cls)) {
668        return 0;
669    } else if (is_nan(b_cls)) {
670        return 1;
671    } else {
672        return 2;
673    }
674#endif
675}
676
677/*----------------------------------------------------------------------------
678| Returns 1 if the double-precision floating-point value `a' is a quiet
679| NaN; otherwise returns 0.
680*----------------------------------------------------------------------------*/
681
682bool float64_is_quiet_nan(float64 a_, float_status *status)
683{
684    if (no_signaling_nans(status)) {
685        return float64_is_any_nan(a_);
686    } else {
687        uint64_t a = float64_val(a_);
688        if (snan_bit_is_one(status)) {
689            return (((a >> 51) & 0xFFF) == 0xFFE)
690                && (a & 0x0007FFFFFFFFFFFFULL);
691        } else {
692            return ((a << 1) >= 0xFFF0000000000000ULL);
693        }
694    }
695}
696
697/*----------------------------------------------------------------------------
698| Returns 1 if the double-precision floating-point value `a' is a signaling
699| NaN; otherwise returns 0.
700*----------------------------------------------------------------------------*/
701
702bool float64_is_signaling_nan(float64 a_, float_status *status)
703{
704    if (no_signaling_nans(status)) {
705        return 0;
706    } else {
707        uint64_t a = float64_val(a_);
708        if (snan_bit_is_one(status)) {
709            return ((a << 1) >= 0xFFF0000000000000ULL);
710        } else {
711            return (((a >> 51) & 0xFFF) == 0xFFE)
712                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
713        }
714    }
715}
716
717/*----------------------------------------------------------------------------
718| Returns 1 if the extended double-precision floating-point value `a' is a
719| quiet NaN; otherwise returns 0. This slightly differs from the same
720| function for other types as floatx80 has an explicit bit.
721*----------------------------------------------------------------------------*/
722
723int floatx80_is_quiet_nan(floatx80 a, float_status *status)
724{
725    if (no_signaling_nans(status)) {
726        return floatx80_is_any_nan(a);
727    } else {
728        if (snan_bit_is_one(status)) {
729            uint64_t aLow;
730
731            aLow = a.low & ~0x4000000000000000ULL;
732            return ((a.high & 0x7FFF) == 0x7FFF)
733                && (aLow << 1)
734                && (a.low == aLow);
735        } else {
736            return ((a.high & 0x7FFF) == 0x7FFF)
737                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
738        }
739    }
740}
741
742/*----------------------------------------------------------------------------
743| Returns 1 if the extended double-precision floating-point value `a' is a
744| signaling NaN; otherwise returns 0. This slightly differs from the same
745| function for other types as floatx80 has an explicit bit.
746*----------------------------------------------------------------------------*/
747
748int floatx80_is_signaling_nan(floatx80 a, float_status *status)
749{
750    if (no_signaling_nans(status)) {
751        return 0;
752    } else {
753        if (snan_bit_is_one(status)) {
754            return ((a.high & 0x7FFF) == 0x7FFF)
755                && ((a.low << 1) >= 0x8000000000000000ULL);
756        } else {
757            uint64_t aLow;
758
759            aLow = a.low & ~UINT64_C(0x4000000000000000);
760            return ((a.high & 0x7FFF) == 0x7FFF)
761                && (uint64_t)(aLow << 1)
762                && (a.low == aLow);
763        }
764    }
765}
766
767/*----------------------------------------------------------------------------
768| Returns a quiet NaN from a signalling NaN for the extended double-precision
769| floating point value `a'.
770*----------------------------------------------------------------------------*/
771
772floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
773{
774    /* None of the targets that have snan_bit_is_one use floatx80.  */
775    assert(!snan_bit_is_one(status));
776    a.low |= UINT64_C(0xC000000000000000);
777    return a;
778}
779
780/*----------------------------------------------------------------------------
781| Takes two extended double-precision floating-point values `a' and `b', one
782| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
783| `b' is a signaling NaN, the invalid exception is raised.
784*----------------------------------------------------------------------------*/
785
786floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
787{
788    bool aIsLargerSignificand;
789    FloatClass a_cls, b_cls;
790
791    /* This is not complete, but is good enough for pickNaN.  */
792    a_cls = (!floatx80_is_any_nan(a)
793             ? float_class_normal
794             : floatx80_is_signaling_nan(a, status)
795             ? float_class_snan
796             : float_class_qnan);
797    b_cls = (!floatx80_is_any_nan(b)
798             ? float_class_normal
799             : floatx80_is_signaling_nan(b, status)
800             ? float_class_snan
801             : float_class_qnan);
802
803    if (is_snan(a_cls) || is_snan(b_cls)) {
804        float_raise(float_flag_invalid, status);
805    }
806
807    if (status->default_nan_mode) {
808        return floatx80_default_nan(status);
809    }
810
811    if (a.low < b.low) {
812        aIsLargerSignificand = 0;
813    } else if (b.low < a.low) {
814        aIsLargerSignificand = 1;
815    } else {
816        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
817    }
818
819    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
820        if (is_snan(b_cls)) {
821            return floatx80_silence_nan(b, status);
822        }
823        return b;
824    } else {
825        if (is_snan(a_cls)) {
826            return floatx80_silence_nan(a, status);
827        }
828        return a;
829    }
830}
831
832/*----------------------------------------------------------------------------
833| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
834| NaN; otherwise returns 0.
835*----------------------------------------------------------------------------*/
836
837bool float128_is_quiet_nan(float128 a, float_status *status)
838{
839    if (no_signaling_nans(status)) {
840        return float128_is_any_nan(a);
841    } else {
842        if (snan_bit_is_one(status)) {
843            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
844                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
845        } else {
846            return ((a.high << 1) >= 0xFFFF000000000000ULL)
847                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
848        }
849    }
850}
851
852/*----------------------------------------------------------------------------
853| Returns 1 if the quadruple-precision floating-point value `a' is a
854| signaling NaN; otherwise returns 0.
855*----------------------------------------------------------------------------*/
856
857bool float128_is_signaling_nan(float128 a, float_status *status)
858{
859    if (no_signaling_nans(status)) {
860        return 0;
861    } else {
862        if (snan_bit_is_one(status)) {
863            return ((a.high << 1) >= 0xFFFF000000000000ULL)
864                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
865        } else {
866            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
867                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
868        }
869    }
870}
871