1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 [BPF_NETFILTER] = "netfilter", 121 [BPF_TCX_INGRESS] = "tcx_ingress", 122 [BPF_TCX_EGRESS] = "tcx_egress", 123 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 124 }; 125 126 static const char * const link_type_name[] = { 127 [BPF_LINK_TYPE_UNSPEC] = "unspec", 128 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 129 [BPF_LINK_TYPE_TRACING] = "tracing", 130 [BPF_LINK_TYPE_CGROUP] = "cgroup", 131 [BPF_LINK_TYPE_ITER] = "iter", 132 [BPF_LINK_TYPE_NETNS] = "netns", 133 [BPF_LINK_TYPE_XDP] = "xdp", 134 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 135 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 136 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 137 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 138 [BPF_LINK_TYPE_TCX] = "tcx", 139 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 140 }; 141 142 static const char * const map_type_name[] = { 143 [BPF_MAP_TYPE_UNSPEC] = "unspec", 144 [BPF_MAP_TYPE_HASH] = "hash", 145 [BPF_MAP_TYPE_ARRAY] = "array", 146 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 147 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 148 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 149 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 150 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 151 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 152 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 153 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 154 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 155 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 156 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 157 [BPF_MAP_TYPE_DEVMAP] = "devmap", 158 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 159 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 160 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 161 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 162 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 163 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 164 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 165 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 166 [BPF_MAP_TYPE_QUEUE] = "queue", 167 [BPF_MAP_TYPE_STACK] = "stack", 168 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 169 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 170 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 171 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 172 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 173 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 174 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 175 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 176 }; 177 178 static const char * const prog_type_name[] = { 179 [BPF_PROG_TYPE_UNSPEC] = "unspec", 180 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 181 [BPF_PROG_TYPE_KPROBE] = "kprobe", 182 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 183 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 184 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 185 [BPF_PROG_TYPE_XDP] = "xdp", 186 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 187 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 188 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 189 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 190 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 191 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 192 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 193 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 194 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 195 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 196 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 197 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 198 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 199 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 200 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 201 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 202 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 203 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 204 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 205 [BPF_PROG_TYPE_TRACING] = "tracing", 206 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 207 [BPF_PROG_TYPE_EXT] = "ext", 208 [BPF_PROG_TYPE_LSM] = "lsm", 209 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 210 [BPF_PROG_TYPE_SYSCALL] = "syscall", 211 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 212 }; 213 214 static int __base_pr(enum libbpf_print_level level, const char *format, 215 va_list args) 216 { 217 if (level == LIBBPF_DEBUG) 218 return 0; 219 220 return vfprintf(stderr, format, args); 221 } 222 223 static libbpf_print_fn_t __libbpf_pr = __base_pr; 224 225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 226 { 227 libbpf_print_fn_t old_print_fn; 228 229 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 230 231 return old_print_fn; 232 } 233 234 __printf(2, 3) 235 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 236 { 237 va_list args; 238 int old_errno; 239 libbpf_print_fn_t print_fn; 240 241 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 242 if (!print_fn) 243 return; 244 245 old_errno = errno; 246 247 va_start(args, format); 248 __libbpf_pr(level, format, args); 249 va_end(args); 250 251 errno = old_errno; 252 } 253 254 static void pr_perm_msg(int err) 255 { 256 struct rlimit limit; 257 char buf[100]; 258 259 if (err != -EPERM || geteuid() != 0) 260 return; 261 262 err = getrlimit(RLIMIT_MEMLOCK, &limit); 263 if (err) 264 return; 265 266 if (limit.rlim_cur == RLIM_INFINITY) 267 return; 268 269 if (limit.rlim_cur < 1024) 270 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 271 else if (limit.rlim_cur < 1024*1024) 272 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 273 else 274 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 275 276 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 277 buf); 278 } 279 280 #define STRERR_BUFSIZE 128 281 282 /* Copied from tools/perf/util/util.h */ 283 #ifndef zfree 284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 285 #endif 286 287 #ifndef zclose 288 # define zclose(fd) ({ \ 289 int ___err = 0; \ 290 if ((fd) >= 0) \ 291 ___err = close((fd)); \ 292 fd = -1; \ 293 ___err; }) 294 #endif 295 296 static inline __u64 ptr_to_u64(const void *ptr) 297 { 298 return (__u64) (unsigned long) ptr; 299 } 300 301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 302 { 303 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 304 return 0; 305 } 306 307 __u32 libbpf_major_version(void) 308 { 309 return LIBBPF_MAJOR_VERSION; 310 } 311 312 __u32 libbpf_minor_version(void) 313 { 314 return LIBBPF_MINOR_VERSION; 315 } 316 317 const char *libbpf_version_string(void) 318 { 319 #define __S(X) #X 320 #define _S(X) __S(X) 321 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 322 #undef _S 323 #undef __S 324 } 325 326 enum reloc_type { 327 RELO_LD64, 328 RELO_CALL, 329 RELO_DATA, 330 RELO_EXTERN_LD64, 331 RELO_EXTERN_CALL, 332 RELO_SUBPROG_ADDR, 333 RELO_CORE, 334 }; 335 336 struct reloc_desc { 337 enum reloc_type type; 338 int insn_idx; 339 union { 340 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 341 struct { 342 int map_idx; 343 int sym_off; 344 int ext_idx; 345 }; 346 }; 347 }; 348 349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 350 enum sec_def_flags { 351 SEC_NONE = 0, 352 /* expected_attach_type is optional, if kernel doesn't support that */ 353 SEC_EXP_ATTACH_OPT = 1, 354 /* legacy, only used by libbpf_get_type_names() and 355 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 356 * This used to be associated with cgroup (and few other) BPF programs 357 * that were attachable through BPF_PROG_ATTACH command. Pretty 358 * meaningless nowadays, though. 359 */ 360 SEC_ATTACHABLE = 2, 361 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 362 /* attachment target is specified through BTF ID in either kernel or 363 * other BPF program's BTF object 364 */ 365 SEC_ATTACH_BTF = 4, 366 /* BPF program type allows sleeping/blocking in kernel */ 367 SEC_SLEEPABLE = 8, 368 /* BPF program support non-linear XDP buffer */ 369 SEC_XDP_FRAGS = 16, 370 }; 371 372 struct bpf_sec_def { 373 char *sec; 374 enum bpf_prog_type prog_type; 375 enum bpf_attach_type expected_attach_type; 376 long cookie; 377 int handler_id; 378 379 libbpf_prog_setup_fn_t prog_setup_fn; 380 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 381 libbpf_prog_attach_fn_t prog_attach_fn; 382 }; 383 384 /* 385 * bpf_prog should be a better name but it has been used in 386 * linux/filter.h. 387 */ 388 struct bpf_program { 389 char *name; 390 char *sec_name; 391 size_t sec_idx; 392 const struct bpf_sec_def *sec_def; 393 /* this program's instruction offset (in number of instructions) 394 * within its containing ELF section 395 */ 396 size_t sec_insn_off; 397 /* number of original instructions in ELF section belonging to this 398 * program, not taking into account subprogram instructions possible 399 * appended later during relocation 400 */ 401 size_t sec_insn_cnt; 402 /* Offset (in number of instructions) of the start of instruction 403 * belonging to this BPF program within its containing main BPF 404 * program. For the entry-point (main) BPF program, this is always 405 * zero. For a sub-program, this gets reset before each of main BPF 406 * programs are processed and relocated and is used to determined 407 * whether sub-program was already appended to the main program, and 408 * if yes, at which instruction offset. 409 */ 410 size_t sub_insn_off; 411 412 /* instructions that belong to BPF program; insns[0] is located at 413 * sec_insn_off instruction within its ELF section in ELF file, so 414 * when mapping ELF file instruction index to the local instruction, 415 * one needs to subtract sec_insn_off; and vice versa. 416 */ 417 struct bpf_insn *insns; 418 /* actual number of instruction in this BPF program's image; for 419 * entry-point BPF programs this includes the size of main program 420 * itself plus all the used sub-programs, appended at the end 421 */ 422 size_t insns_cnt; 423 424 struct reloc_desc *reloc_desc; 425 int nr_reloc; 426 427 /* BPF verifier log settings */ 428 char *log_buf; 429 size_t log_size; 430 __u32 log_level; 431 432 struct bpf_object *obj; 433 434 int fd; 435 bool autoload; 436 bool autoattach; 437 bool mark_btf_static; 438 enum bpf_prog_type type; 439 enum bpf_attach_type expected_attach_type; 440 441 int prog_ifindex; 442 __u32 attach_btf_obj_fd; 443 __u32 attach_btf_id; 444 __u32 attach_prog_fd; 445 446 void *func_info; 447 __u32 func_info_rec_size; 448 __u32 func_info_cnt; 449 450 void *line_info; 451 __u32 line_info_rec_size; 452 __u32 line_info_cnt; 453 __u32 prog_flags; 454 }; 455 456 struct bpf_struct_ops { 457 const char *tname; 458 const struct btf_type *type; 459 struct bpf_program **progs; 460 __u32 *kern_func_off; 461 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 462 void *data; 463 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 464 * btf_vmlinux's format. 465 * struct bpf_struct_ops_tcp_congestion_ops { 466 * [... some other kernel fields ...] 467 * struct tcp_congestion_ops data; 468 * } 469 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 470 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 471 * from "data". 472 */ 473 void *kern_vdata; 474 __u32 type_id; 475 }; 476 477 #define DATA_SEC ".data" 478 #define BSS_SEC ".bss" 479 #define RODATA_SEC ".rodata" 480 #define KCONFIG_SEC ".kconfig" 481 #define KSYMS_SEC ".ksyms" 482 #define STRUCT_OPS_SEC ".struct_ops" 483 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 484 485 enum libbpf_map_type { 486 LIBBPF_MAP_UNSPEC, 487 LIBBPF_MAP_DATA, 488 LIBBPF_MAP_BSS, 489 LIBBPF_MAP_RODATA, 490 LIBBPF_MAP_KCONFIG, 491 }; 492 493 struct bpf_map_def { 494 unsigned int type; 495 unsigned int key_size; 496 unsigned int value_size; 497 unsigned int max_entries; 498 unsigned int map_flags; 499 }; 500 501 struct bpf_map { 502 struct bpf_object *obj; 503 char *name; 504 /* real_name is defined for special internal maps (.rodata*, 505 * .data*, .bss, .kconfig) and preserves their original ELF section 506 * name. This is important to be able to find corresponding BTF 507 * DATASEC information. 508 */ 509 char *real_name; 510 int fd; 511 int sec_idx; 512 size_t sec_offset; 513 int map_ifindex; 514 int inner_map_fd; 515 struct bpf_map_def def; 516 __u32 numa_node; 517 __u32 btf_var_idx; 518 __u32 btf_key_type_id; 519 __u32 btf_value_type_id; 520 __u32 btf_vmlinux_value_type_id; 521 enum libbpf_map_type libbpf_type; 522 void *mmaped; 523 struct bpf_struct_ops *st_ops; 524 struct bpf_map *inner_map; 525 void **init_slots; 526 int init_slots_sz; 527 char *pin_path; 528 bool pinned; 529 bool reused; 530 bool autocreate; 531 __u64 map_extra; 532 }; 533 534 enum extern_type { 535 EXT_UNKNOWN, 536 EXT_KCFG, 537 EXT_KSYM, 538 }; 539 540 enum kcfg_type { 541 KCFG_UNKNOWN, 542 KCFG_CHAR, 543 KCFG_BOOL, 544 KCFG_INT, 545 KCFG_TRISTATE, 546 KCFG_CHAR_ARR, 547 }; 548 549 struct extern_desc { 550 enum extern_type type; 551 int sym_idx; 552 int btf_id; 553 int sec_btf_id; 554 const char *name; 555 char *essent_name; 556 bool is_set; 557 bool is_weak; 558 union { 559 struct { 560 enum kcfg_type type; 561 int sz; 562 int align; 563 int data_off; 564 bool is_signed; 565 } kcfg; 566 struct { 567 unsigned long long addr; 568 569 /* target btf_id of the corresponding kernel var. */ 570 int kernel_btf_obj_fd; 571 int kernel_btf_id; 572 573 /* local btf_id of the ksym extern's type. */ 574 __u32 type_id; 575 /* BTF fd index to be patched in for insn->off, this is 576 * 0 for vmlinux BTF, index in obj->fd_array for module 577 * BTF 578 */ 579 __s16 btf_fd_idx; 580 } ksym; 581 }; 582 }; 583 584 struct module_btf { 585 struct btf *btf; 586 char *name; 587 __u32 id; 588 int fd; 589 int fd_array_idx; 590 }; 591 592 enum sec_type { 593 SEC_UNUSED = 0, 594 SEC_RELO, 595 SEC_BSS, 596 SEC_DATA, 597 SEC_RODATA, 598 }; 599 600 struct elf_sec_desc { 601 enum sec_type sec_type; 602 Elf64_Shdr *shdr; 603 Elf_Data *data; 604 }; 605 606 struct elf_state { 607 int fd; 608 const void *obj_buf; 609 size_t obj_buf_sz; 610 Elf *elf; 611 Elf64_Ehdr *ehdr; 612 Elf_Data *symbols; 613 Elf_Data *st_ops_data; 614 Elf_Data *st_ops_link_data; 615 size_t shstrndx; /* section index for section name strings */ 616 size_t strtabidx; 617 struct elf_sec_desc *secs; 618 size_t sec_cnt; 619 int btf_maps_shndx; 620 __u32 btf_maps_sec_btf_id; 621 int text_shndx; 622 int symbols_shndx; 623 int st_ops_shndx; 624 int st_ops_link_shndx; 625 }; 626 627 struct usdt_manager; 628 629 struct bpf_object { 630 char name[BPF_OBJ_NAME_LEN]; 631 char license[64]; 632 __u32 kern_version; 633 634 struct bpf_program *programs; 635 size_t nr_programs; 636 struct bpf_map *maps; 637 size_t nr_maps; 638 size_t maps_cap; 639 640 char *kconfig; 641 struct extern_desc *externs; 642 int nr_extern; 643 int kconfig_map_idx; 644 645 bool loaded; 646 bool has_subcalls; 647 bool has_rodata; 648 649 struct bpf_gen *gen_loader; 650 651 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 652 struct elf_state efile; 653 654 struct btf *btf; 655 struct btf_ext *btf_ext; 656 657 /* Parse and load BTF vmlinux if any of the programs in the object need 658 * it at load time. 659 */ 660 struct btf *btf_vmlinux; 661 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 662 * override for vmlinux BTF. 663 */ 664 char *btf_custom_path; 665 /* vmlinux BTF override for CO-RE relocations */ 666 struct btf *btf_vmlinux_override; 667 /* Lazily initialized kernel module BTFs */ 668 struct module_btf *btf_modules; 669 bool btf_modules_loaded; 670 size_t btf_module_cnt; 671 size_t btf_module_cap; 672 673 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 674 char *log_buf; 675 size_t log_size; 676 __u32 log_level; 677 678 int *fd_array; 679 size_t fd_array_cap; 680 size_t fd_array_cnt; 681 682 struct usdt_manager *usdt_man; 683 684 char path[]; 685 }; 686 687 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 688 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 689 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 690 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 691 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 692 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 693 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 694 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 695 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 696 697 void bpf_program__unload(struct bpf_program *prog) 698 { 699 if (!prog) 700 return; 701 702 zclose(prog->fd); 703 704 zfree(&prog->func_info); 705 zfree(&prog->line_info); 706 } 707 708 static void bpf_program__exit(struct bpf_program *prog) 709 { 710 if (!prog) 711 return; 712 713 bpf_program__unload(prog); 714 zfree(&prog->name); 715 zfree(&prog->sec_name); 716 zfree(&prog->insns); 717 zfree(&prog->reloc_desc); 718 719 prog->nr_reloc = 0; 720 prog->insns_cnt = 0; 721 prog->sec_idx = -1; 722 } 723 724 static bool insn_is_subprog_call(const struct bpf_insn *insn) 725 { 726 return BPF_CLASS(insn->code) == BPF_JMP && 727 BPF_OP(insn->code) == BPF_CALL && 728 BPF_SRC(insn->code) == BPF_K && 729 insn->src_reg == BPF_PSEUDO_CALL && 730 insn->dst_reg == 0 && 731 insn->off == 0; 732 } 733 734 static bool is_call_insn(const struct bpf_insn *insn) 735 { 736 return insn->code == (BPF_JMP | BPF_CALL); 737 } 738 739 static bool insn_is_pseudo_func(struct bpf_insn *insn) 740 { 741 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 742 } 743 744 static int 745 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 746 const char *name, size_t sec_idx, const char *sec_name, 747 size_t sec_off, void *insn_data, size_t insn_data_sz) 748 { 749 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 750 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 751 sec_name, name, sec_off, insn_data_sz); 752 return -EINVAL; 753 } 754 755 memset(prog, 0, sizeof(*prog)); 756 prog->obj = obj; 757 758 prog->sec_idx = sec_idx; 759 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 760 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 761 /* insns_cnt can later be increased by appending used subprograms */ 762 prog->insns_cnt = prog->sec_insn_cnt; 763 764 prog->type = BPF_PROG_TYPE_UNSPEC; 765 prog->fd = -1; 766 767 /* libbpf's convention for SEC("?abc...") is that it's just like 768 * SEC("abc...") but the corresponding bpf_program starts out with 769 * autoload set to false. 770 */ 771 if (sec_name[0] == '?') { 772 prog->autoload = false; 773 /* from now on forget there was ? in section name */ 774 sec_name++; 775 } else { 776 prog->autoload = true; 777 } 778 779 prog->autoattach = true; 780 781 /* inherit object's log_level */ 782 prog->log_level = obj->log_level; 783 784 prog->sec_name = strdup(sec_name); 785 if (!prog->sec_name) 786 goto errout; 787 788 prog->name = strdup(name); 789 if (!prog->name) 790 goto errout; 791 792 prog->insns = malloc(insn_data_sz); 793 if (!prog->insns) 794 goto errout; 795 memcpy(prog->insns, insn_data, insn_data_sz); 796 797 return 0; 798 errout: 799 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 800 bpf_program__exit(prog); 801 return -ENOMEM; 802 } 803 804 static int 805 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 806 const char *sec_name, int sec_idx) 807 { 808 Elf_Data *symbols = obj->efile.symbols; 809 struct bpf_program *prog, *progs; 810 void *data = sec_data->d_buf; 811 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 812 int nr_progs, err, i; 813 const char *name; 814 Elf64_Sym *sym; 815 816 progs = obj->programs; 817 nr_progs = obj->nr_programs; 818 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 819 820 for (i = 0; i < nr_syms; i++) { 821 sym = elf_sym_by_idx(obj, i); 822 823 if (sym->st_shndx != sec_idx) 824 continue; 825 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 826 continue; 827 828 prog_sz = sym->st_size; 829 sec_off = sym->st_value; 830 831 name = elf_sym_str(obj, sym->st_name); 832 if (!name) { 833 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 834 sec_name, sec_off); 835 return -LIBBPF_ERRNO__FORMAT; 836 } 837 838 if (sec_off + prog_sz > sec_sz) { 839 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 840 sec_name, sec_off); 841 return -LIBBPF_ERRNO__FORMAT; 842 } 843 844 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 845 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 846 return -ENOTSUP; 847 } 848 849 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 850 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 851 852 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 853 if (!progs) { 854 /* 855 * In this case the original obj->programs 856 * is still valid, so don't need special treat for 857 * bpf_close_object(). 858 */ 859 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 860 sec_name, name); 861 return -ENOMEM; 862 } 863 obj->programs = progs; 864 865 prog = &progs[nr_progs]; 866 867 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 868 sec_off, data + sec_off, prog_sz); 869 if (err) 870 return err; 871 872 /* if function is a global/weak symbol, but has restricted 873 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 874 * as static to enable more permissive BPF verification mode 875 * with more outside context available to BPF verifier 876 */ 877 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 878 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 879 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 880 prog->mark_btf_static = true; 881 882 nr_progs++; 883 obj->nr_programs = nr_progs; 884 } 885 886 return 0; 887 } 888 889 static const struct btf_member * 890 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 891 { 892 struct btf_member *m; 893 int i; 894 895 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 896 if (btf_member_bit_offset(t, i) == bit_offset) 897 return m; 898 } 899 900 return NULL; 901 } 902 903 static const struct btf_member * 904 find_member_by_name(const struct btf *btf, const struct btf_type *t, 905 const char *name) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 919 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 920 const char *name, __u32 kind); 921 922 static int 923 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 924 const struct btf_type **type, __u32 *type_id, 925 const struct btf_type **vtype, __u32 *vtype_id, 926 const struct btf_member **data_member) 927 { 928 const struct btf_type *kern_type, *kern_vtype; 929 const struct btf_member *kern_data_member; 930 __s32 kern_vtype_id, kern_type_id; 931 __u32 i; 932 933 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 934 if (kern_type_id < 0) { 935 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 936 tname); 937 return kern_type_id; 938 } 939 kern_type = btf__type_by_id(btf, kern_type_id); 940 941 /* Find the corresponding "map_value" type that will be used 942 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 943 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 944 * btf_vmlinux. 945 */ 946 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 947 tname, BTF_KIND_STRUCT); 948 if (kern_vtype_id < 0) { 949 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 950 STRUCT_OPS_VALUE_PREFIX, tname); 951 return kern_vtype_id; 952 } 953 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 954 955 /* Find "struct tcp_congestion_ops" from 956 * struct bpf_struct_ops_tcp_congestion_ops { 957 * [ ... ] 958 * struct tcp_congestion_ops data; 959 * } 960 */ 961 kern_data_member = btf_members(kern_vtype); 962 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 963 if (kern_data_member->type == kern_type_id) 964 break; 965 } 966 if (i == btf_vlen(kern_vtype)) { 967 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 968 tname, STRUCT_OPS_VALUE_PREFIX, tname); 969 return -EINVAL; 970 } 971 972 *type = kern_type; 973 *type_id = kern_type_id; 974 *vtype = kern_vtype; 975 *vtype_id = kern_vtype_id; 976 *data_member = kern_data_member; 977 978 return 0; 979 } 980 981 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 982 { 983 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 984 } 985 986 /* Init the map's fields that depend on kern_btf */ 987 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 988 const struct btf *btf, 989 const struct btf *kern_btf) 990 { 991 const struct btf_member *member, *kern_member, *kern_data_member; 992 const struct btf_type *type, *kern_type, *kern_vtype; 993 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 994 struct bpf_struct_ops *st_ops; 995 void *data, *kern_data; 996 const char *tname; 997 int err; 998 999 st_ops = map->st_ops; 1000 type = st_ops->type; 1001 tname = st_ops->tname; 1002 err = find_struct_ops_kern_types(kern_btf, tname, 1003 &kern_type, &kern_type_id, 1004 &kern_vtype, &kern_vtype_id, 1005 &kern_data_member); 1006 if (err) 1007 return err; 1008 1009 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1010 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1011 1012 map->def.value_size = kern_vtype->size; 1013 map->btf_vmlinux_value_type_id = kern_vtype_id; 1014 1015 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1016 if (!st_ops->kern_vdata) 1017 return -ENOMEM; 1018 1019 data = st_ops->data; 1020 kern_data_off = kern_data_member->offset / 8; 1021 kern_data = st_ops->kern_vdata + kern_data_off; 1022 1023 member = btf_members(type); 1024 for (i = 0; i < btf_vlen(type); i++, member++) { 1025 const struct btf_type *mtype, *kern_mtype; 1026 __u32 mtype_id, kern_mtype_id; 1027 void *mdata, *kern_mdata; 1028 __s64 msize, kern_msize; 1029 __u32 moff, kern_moff; 1030 __u32 kern_member_idx; 1031 const char *mname; 1032 1033 mname = btf__name_by_offset(btf, member->name_off); 1034 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1035 if (!kern_member) { 1036 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1037 map->name, mname); 1038 return -ENOTSUP; 1039 } 1040 1041 kern_member_idx = kern_member - btf_members(kern_type); 1042 if (btf_member_bitfield_size(type, i) || 1043 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1044 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1045 map->name, mname); 1046 return -ENOTSUP; 1047 } 1048 1049 moff = member->offset / 8; 1050 kern_moff = kern_member->offset / 8; 1051 1052 mdata = data + moff; 1053 kern_mdata = kern_data + kern_moff; 1054 1055 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1056 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1057 &kern_mtype_id); 1058 if (BTF_INFO_KIND(mtype->info) != 1059 BTF_INFO_KIND(kern_mtype->info)) { 1060 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1061 map->name, mname, BTF_INFO_KIND(mtype->info), 1062 BTF_INFO_KIND(kern_mtype->info)); 1063 return -ENOTSUP; 1064 } 1065 1066 if (btf_is_ptr(mtype)) { 1067 struct bpf_program *prog; 1068 1069 prog = st_ops->progs[i]; 1070 if (!prog) 1071 continue; 1072 1073 kern_mtype = skip_mods_and_typedefs(kern_btf, 1074 kern_mtype->type, 1075 &kern_mtype_id); 1076 1077 /* mtype->type must be a func_proto which was 1078 * guaranteed in bpf_object__collect_st_ops_relos(), 1079 * so only check kern_mtype for func_proto here. 1080 */ 1081 if (!btf_is_func_proto(kern_mtype)) { 1082 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1083 map->name, mname); 1084 return -ENOTSUP; 1085 } 1086 1087 prog->attach_btf_id = kern_type_id; 1088 prog->expected_attach_type = kern_member_idx; 1089 1090 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1091 1092 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1093 map->name, mname, prog->name, moff, 1094 kern_moff); 1095 1096 continue; 1097 } 1098 1099 msize = btf__resolve_size(btf, mtype_id); 1100 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1101 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1102 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1103 map->name, mname, (ssize_t)msize, 1104 (ssize_t)kern_msize); 1105 return -ENOTSUP; 1106 } 1107 1108 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1109 map->name, mname, (unsigned int)msize, 1110 moff, kern_moff); 1111 memcpy(kern_mdata, mdata, msize); 1112 } 1113 1114 return 0; 1115 } 1116 1117 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1118 { 1119 struct bpf_map *map; 1120 size_t i; 1121 int err; 1122 1123 for (i = 0; i < obj->nr_maps; i++) { 1124 map = &obj->maps[i]; 1125 1126 if (!bpf_map__is_struct_ops(map)) 1127 continue; 1128 1129 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1130 obj->btf_vmlinux); 1131 if (err) 1132 return err; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1139 int shndx, Elf_Data *data, __u32 map_flags) 1140 { 1141 const struct btf_type *type, *datasec; 1142 const struct btf_var_secinfo *vsi; 1143 struct bpf_struct_ops *st_ops; 1144 const char *tname, *var_name; 1145 __s32 type_id, datasec_id; 1146 const struct btf *btf; 1147 struct bpf_map *map; 1148 __u32 i; 1149 1150 if (shndx == -1) 1151 return 0; 1152 1153 btf = obj->btf; 1154 datasec_id = btf__find_by_name_kind(btf, sec_name, 1155 BTF_KIND_DATASEC); 1156 if (datasec_id < 0) { 1157 pr_warn("struct_ops init: DATASEC %s not found\n", 1158 sec_name); 1159 return -EINVAL; 1160 } 1161 1162 datasec = btf__type_by_id(btf, datasec_id); 1163 vsi = btf_var_secinfos(datasec); 1164 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1165 type = btf__type_by_id(obj->btf, vsi->type); 1166 var_name = btf__name_by_offset(obj->btf, type->name_off); 1167 1168 type_id = btf__resolve_type(obj->btf, vsi->type); 1169 if (type_id < 0) { 1170 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1171 vsi->type, sec_name); 1172 return -EINVAL; 1173 } 1174 1175 type = btf__type_by_id(obj->btf, type_id); 1176 tname = btf__name_by_offset(obj->btf, type->name_off); 1177 if (!tname[0]) { 1178 pr_warn("struct_ops init: anonymous type is not supported\n"); 1179 return -ENOTSUP; 1180 } 1181 if (!btf_is_struct(type)) { 1182 pr_warn("struct_ops init: %s is not a struct\n", tname); 1183 return -EINVAL; 1184 } 1185 1186 map = bpf_object__add_map(obj); 1187 if (IS_ERR(map)) 1188 return PTR_ERR(map); 1189 1190 map->sec_idx = shndx; 1191 map->sec_offset = vsi->offset; 1192 map->name = strdup(var_name); 1193 if (!map->name) 1194 return -ENOMEM; 1195 1196 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1197 map->def.key_size = sizeof(int); 1198 map->def.value_size = type->size; 1199 map->def.max_entries = 1; 1200 map->def.map_flags = map_flags; 1201 1202 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1203 if (!map->st_ops) 1204 return -ENOMEM; 1205 st_ops = map->st_ops; 1206 st_ops->data = malloc(type->size); 1207 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1208 st_ops->kern_func_off = malloc(btf_vlen(type) * 1209 sizeof(*st_ops->kern_func_off)); 1210 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1211 return -ENOMEM; 1212 1213 if (vsi->offset + type->size > data->d_size) { 1214 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1215 var_name, sec_name); 1216 return -EINVAL; 1217 } 1218 1219 memcpy(st_ops->data, 1220 data->d_buf + vsi->offset, 1221 type->size); 1222 st_ops->tname = tname; 1223 st_ops->type = type; 1224 st_ops->type_id = type_id; 1225 1226 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1227 tname, type_id, var_name, vsi->offset); 1228 } 1229 1230 return 0; 1231 } 1232 1233 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1234 { 1235 int err; 1236 1237 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1238 obj->efile.st_ops_data, 0); 1239 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1240 obj->efile.st_ops_link_shndx, 1241 obj->efile.st_ops_link_data, 1242 BPF_F_LINK); 1243 return err; 1244 } 1245 1246 static struct bpf_object *bpf_object__new(const char *path, 1247 const void *obj_buf, 1248 size_t obj_buf_sz, 1249 const char *obj_name) 1250 { 1251 struct bpf_object *obj; 1252 char *end; 1253 1254 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1255 if (!obj) { 1256 pr_warn("alloc memory failed for %s\n", path); 1257 return ERR_PTR(-ENOMEM); 1258 } 1259 1260 strcpy(obj->path, path); 1261 if (obj_name) { 1262 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1263 } else { 1264 /* Using basename() GNU version which doesn't modify arg. */ 1265 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1266 end = strchr(obj->name, '.'); 1267 if (end) 1268 *end = 0; 1269 } 1270 1271 obj->efile.fd = -1; 1272 /* 1273 * Caller of this function should also call 1274 * bpf_object__elf_finish() after data collection to return 1275 * obj_buf to user. If not, we should duplicate the buffer to 1276 * avoid user freeing them before elf finish. 1277 */ 1278 obj->efile.obj_buf = obj_buf; 1279 obj->efile.obj_buf_sz = obj_buf_sz; 1280 obj->efile.btf_maps_shndx = -1; 1281 obj->efile.st_ops_shndx = -1; 1282 obj->efile.st_ops_link_shndx = -1; 1283 obj->kconfig_map_idx = -1; 1284 1285 obj->kern_version = get_kernel_version(); 1286 obj->loaded = false; 1287 1288 return obj; 1289 } 1290 1291 static void bpf_object__elf_finish(struct bpf_object *obj) 1292 { 1293 if (!obj->efile.elf) 1294 return; 1295 1296 elf_end(obj->efile.elf); 1297 obj->efile.elf = NULL; 1298 obj->efile.symbols = NULL; 1299 obj->efile.st_ops_data = NULL; 1300 obj->efile.st_ops_link_data = NULL; 1301 1302 zfree(&obj->efile.secs); 1303 obj->efile.sec_cnt = 0; 1304 zclose(obj->efile.fd); 1305 obj->efile.obj_buf = NULL; 1306 obj->efile.obj_buf_sz = 0; 1307 } 1308 1309 static int bpf_object__elf_init(struct bpf_object *obj) 1310 { 1311 Elf64_Ehdr *ehdr; 1312 int err = 0; 1313 Elf *elf; 1314 1315 if (obj->efile.elf) { 1316 pr_warn("elf: init internal error\n"); 1317 return -LIBBPF_ERRNO__LIBELF; 1318 } 1319 1320 if (obj->efile.obj_buf_sz > 0) { 1321 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1322 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1323 } else { 1324 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1325 if (obj->efile.fd < 0) { 1326 char errmsg[STRERR_BUFSIZE], *cp; 1327 1328 err = -errno; 1329 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1330 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1331 return err; 1332 } 1333 1334 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1335 } 1336 1337 if (!elf) { 1338 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1339 err = -LIBBPF_ERRNO__LIBELF; 1340 goto errout; 1341 } 1342 1343 obj->efile.elf = elf; 1344 1345 if (elf_kind(elf) != ELF_K_ELF) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 if (gelf_getclass(elf) != ELFCLASS64) { 1352 err = -LIBBPF_ERRNO__FORMAT; 1353 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1354 goto errout; 1355 } 1356 1357 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1358 if (!obj->efile.ehdr) { 1359 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1360 err = -LIBBPF_ERRNO__FORMAT; 1361 goto errout; 1362 } 1363 1364 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1365 pr_warn("elf: failed to get section names section index for %s: %s\n", 1366 obj->path, elf_errmsg(-1)); 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 goto errout; 1369 } 1370 1371 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1372 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1373 pr_warn("elf: failed to get section names strings from %s: %s\n", 1374 obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 /* Old LLVM set e_machine to EM_NONE */ 1380 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1381 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 return 0; 1387 errout: 1388 bpf_object__elf_finish(obj); 1389 return err; 1390 } 1391 1392 static int bpf_object__check_endianness(struct bpf_object *obj) 1393 { 1394 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1395 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1396 return 0; 1397 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1399 return 0; 1400 #else 1401 # error "Unrecognized __BYTE_ORDER__" 1402 #endif 1403 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1404 return -LIBBPF_ERRNO__ENDIAN; 1405 } 1406 1407 static int 1408 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1409 { 1410 if (!data) { 1411 pr_warn("invalid license section in %s\n", obj->path); 1412 return -LIBBPF_ERRNO__FORMAT; 1413 } 1414 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1415 * go over allowed ELF data section buffer 1416 */ 1417 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1418 pr_debug("license of %s is %s\n", obj->path, obj->license); 1419 return 0; 1420 } 1421 1422 static int 1423 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 __u32 kver; 1426 1427 if (!data || size != sizeof(kver)) { 1428 pr_warn("invalid kver section in %s\n", obj->path); 1429 return -LIBBPF_ERRNO__FORMAT; 1430 } 1431 memcpy(&kver, data, sizeof(kver)); 1432 obj->kern_version = kver; 1433 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1434 return 0; 1435 } 1436 1437 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1438 { 1439 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1440 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1441 return true; 1442 return false; 1443 } 1444 1445 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1446 { 1447 Elf_Data *data; 1448 Elf_Scn *scn; 1449 1450 if (!name) 1451 return -EINVAL; 1452 1453 scn = elf_sec_by_name(obj, name); 1454 data = elf_sec_data(obj, scn); 1455 if (data) { 1456 *size = data->d_size; 1457 return 0; /* found it */ 1458 } 1459 1460 return -ENOENT; 1461 } 1462 1463 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1464 { 1465 Elf_Data *symbols = obj->efile.symbols; 1466 const char *sname; 1467 size_t si; 1468 1469 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1470 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1471 1472 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1473 continue; 1474 1475 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1476 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1477 continue; 1478 1479 sname = elf_sym_str(obj, sym->st_name); 1480 if (!sname) { 1481 pr_warn("failed to get sym name string for var %s\n", name); 1482 return ERR_PTR(-EIO); 1483 } 1484 if (strcmp(name, sname) == 0) 1485 return sym; 1486 } 1487 1488 return ERR_PTR(-ENOENT); 1489 } 1490 1491 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1492 { 1493 struct bpf_map *map; 1494 int err; 1495 1496 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1497 sizeof(*obj->maps), obj->nr_maps + 1); 1498 if (err) 1499 return ERR_PTR(err); 1500 1501 map = &obj->maps[obj->nr_maps++]; 1502 map->obj = obj; 1503 map->fd = -1; 1504 map->inner_map_fd = -1; 1505 map->autocreate = true; 1506 1507 return map; 1508 } 1509 1510 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1511 { 1512 const long page_sz = sysconf(_SC_PAGE_SIZE); 1513 size_t map_sz; 1514 1515 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1516 map_sz = roundup(map_sz, page_sz); 1517 return map_sz; 1518 } 1519 1520 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1521 { 1522 void *mmaped; 1523 1524 if (!map->mmaped) 1525 return -EINVAL; 1526 1527 if (old_sz == new_sz) 1528 return 0; 1529 1530 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1531 if (mmaped == MAP_FAILED) 1532 return -errno; 1533 1534 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1535 munmap(map->mmaped, old_sz); 1536 map->mmaped = mmaped; 1537 return 0; 1538 } 1539 1540 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1541 { 1542 char map_name[BPF_OBJ_NAME_LEN], *p; 1543 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1544 1545 /* This is one of the more confusing parts of libbpf for various 1546 * reasons, some of which are historical. The original idea for naming 1547 * internal names was to include as much of BPF object name prefix as 1548 * possible, so that it can be distinguished from similar internal 1549 * maps of a different BPF object. 1550 * As an example, let's say we have bpf_object named 'my_object_name' 1551 * and internal map corresponding to '.rodata' ELF section. The final 1552 * map name advertised to user and to the kernel will be 1553 * 'my_objec.rodata', taking first 8 characters of object name and 1554 * entire 7 characters of '.rodata'. 1555 * Somewhat confusingly, if internal map ELF section name is shorter 1556 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1557 * for the suffix, even though we only have 4 actual characters, and 1558 * resulting map will be called 'my_objec.bss', not even using all 15 1559 * characters allowed by the kernel. Oh well, at least the truncated 1560 * object name is somewhat consistent in this case. But if the map 1561 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1562 * (8 chars) and thus will be left with only first 7 characters of the 1563 * object name ('my_obje'). Happy guessing, user, that the final map 1564 * name will be "my_obje.kconfig". 1565 * Now, with libbpf starting to support arbitrarily named .rodata.* 1566 * and .data.* data sections, it's possible that ELF section name is 1567 * longer than allowed 15 chars, so we now need to be careful to take 1568 * only up to 15 first characters of ELF name, taking no BPF object 1569 * name characters at all. So '.rodata.abracadabra' will result in 1570 * '.rodata.abracad' kernel and user-visible name. 1571 * We need to keep this convoluted logic intact for .data, .bss and 1572 * .rodata maps, but for new custom .data.custom and .rodata.custom 1573 * maps we use their ELF names as is, not prepending bpf_object name 1574 * in front. We still need to truncate them to 15 characters for the 1575 * kernel. Full name can be recovered for such maps by using DATASEC 1576 * BTF type associated with such map's value type, though. 1577 */ 1578 if (sfx_len >= BPF_OBJ_NAME_LEN) 1579 sfx_len = BPF_OBJ_NAME_LEN - 1; 1580 1581 /* if there are two or more dots in map name, it's a custom dot map */ 1582 if (strchr(real_name + 1, '.') != NULL) 1583 pfx_len = 0; 1584 else 1585 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1586 1587 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1588 sfx_len, real_name); 1589 1590 /* sanitise map name to characters allowed by kernel */ 1591 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1592 if (!isalnum(*p) && *p != '_' && *p != '.') 1593 *p = '_'; 1594 1595 return strdup(map_name); 1596 } 1597 1598 static int 1599 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1600 1601 /* Internal BPF map is mmap()'able only if at least one of corresponding 1602 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1603 * variable and it's not marked as __hidden (which turns it into, effectively, 1604 * a STATIC variable). 1605 */ 1606 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1607 { 1608 const struct btf_type *t, *vt; 1609 struct btf_var_secinfo *vsi; 1610 int i, n; 1611 1612 if (!map->btf_value_type_id) 1613 return false; 1614 1615 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1616 if (!btf_is_datasec(t)) 1617 return false; 1618 1619 vsi = btf_var_secinfos(t); 1620 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1621 vt = btf__type_by_id(obj->btf, vsi->type); 1622 if (!btf_is_var(vt)) 1623 continue; 1624 1625 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1626 return true; 1627 } 1628 1629 return false; 1630 } 1631 1632 static int 1633 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1634 const char *real_name, int sec_idx, void *data, size_t data_sz) 1635 { 1636 struct bpf_map_def *def; 1637 struct bpf_map *map; 1638 size_t mmap_sz; 1639 int err; 1640 1641 map = bpf_object__add_map(obj); 1642 if (IS_ERR(map)) 1643 return PTR_ERR(map); 1644 1645 map->libbpf_type = type; 1646 map->sec_idx = sec_idx; 1647 map->sec_offset = 0; 1648 map->real_name = strdup(real_name); 1649 map->name = internal_map_name(obj, real_name); 1650 if (!map->real_name || !map->name) { 1651 zfree(&map->real_name); 1652 zfree(&map->name); 1653 return -ENOMEM; 1654 } 1655 1656 def = &map->def; 1657 def->type = BPF_MAP_TYPE_ARRAY; 1658 def->key_size = sizeof(int); 1659 def->value_size = data_sz; 1660 def->max_entries = 1; 1661 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1662 ? BPF_F_RDONLY_PROG : 0; 1663 1664 /* failures are fine because of maps like .rodata.str1.1 */ 1665 (void) map_fill_btf_type_info(obj, map); 1666 1667 if (map_is_mmapable(obj, map)) 1668 def->map_flags |= BPF_F_MMAPABLE; 1669 1670 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1671 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1672 1673 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1674 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1675 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1676 if (map->mmaped == MAP_FAILED) { 1677 err = -errno; 1678 map->mmaped = NULL; 1679 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1680 map->name, err); 1681 zfree(&map->real_name); 1682 zfree(&map->name); 1683 return err; 1684 } 1685 1686 if (data) 1687 memcpy(map->mmaped, data, data_sz); 1688 1689 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1690 return 0; 1691 } 1692 1693 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1694 { 1695 struct elf_sec_desc *sec_desc; 1696 const char *sec_name; 1697 int err = 0, sec_idx; 1698 1699 /* 1700 * Populate obj->maps with libbpf internal maps. 1701 */ 1702 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1703 sec_desc = &obj->efile.secs[sec_idx]; 1704 1705 /* Skip recognized sections with size 0. */ 1706 if (!sec_desc->data || sec_desc->data->d_size == 0) 1707 continue; 1708 1709 switch (sec_desc->sec_type) { 1710 case SEC_DATA: 1711 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1712 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1713 sec_name, sec_idx, 1714 sec_desc->data->d_buf, 1715 sec_desc->data->d_size); 1716 break; 1717 case SEC_RODATA: 1718 obj->has_rodata = true; 1719 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1720 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1721 sec_name, sec_idx, 1722 sec_desc->data->d_buf, 1723 sec_desc->data->d_size); 1724 break; 1725 case SEC_BSS: 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1728 sec_name, sec_idx, 1729 NULL, 1730 sec_desc->data->d_size); 1731 break; 1732 default: 1733 /* skip */ 1734 break; 1735 } 1736 if (err) 1737 return err; 1738 } 1739 return 0; 1740 } 1741 1742 1743 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1744 const void *name) 1745 { 1746 int i; 1747 1748 for (i = 0; i < obj->nr_extern; i++) { 1749 if (strcmp(obj->externs[i].name, name) == 0) 1750 return &obj->externs[i]; 1751 } 1752 return NULL; 1753 } 1754 1755 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1756 char value) 1757 { 1758 switch (ext->kcfg.type) { 1759 case KCFG_BOOL: 1760 if (value == 'm') { 1761 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1762 ext->name, value); 1763 return -EINVAL; 1764 } 1765 *(bool *)ext_val = value == 'y' ? true : false; 1766 break; 1767 case KCFG_TRISTATE: 1768 if (value == 'y') 1769 *(enum libbpf_tristate *)ext_val = TRI_YES; 1770 else if (value == 'm') 1771 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1772 else /* value == 'n' */ 1773 *(enum libbpf_tristate *)ext_val = TRI_NO; 1774 break; 1775 case KCFG_CHAR: 1776 *(char *)ext_val = value; 1777 break; 1778 case KCFG_UNKNOWN: 1779 case KCFG_INT: 1780 case KCFG_CHAR_ARR: 1781 default: 1782 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1783 ext->name, value); 1784 return -EINVAL; 1785 } 1786 ext->is_set = true; 1787 return 0; 1788 } 1789 1790 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1791 const char *value) 1792 { 1793 size_t len; 1794 1795 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1796 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1797 ext->name, value); 1798 return -EINVAL; 1799 } 1800 1801 len = strlen(value); 1802 if (value[len - 1] != '"') { 1803 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1804 ext->name, value); 1805 return -EINVAL; 1806 } 1807 1808 /* strip quotes */ 1809 len -= 2; 1810 if (len >= ext->kcfg.sz) { 1811 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1812 ext->name, value, len, ext->kcfg.sz - 1); 1813 len = ext->kcfg.sz - 1; 1814 } 1815 memcpy(ext_val, value + 1, len); 1816 ext_val[len] = '\0'; 1817 ext->is_set = true; 1818 return 0; 1819 } 1820 1821 static int parse_u64(const char *value, __u64 *res) 1822 { 1823 char *value_end; 1824 int err; 1825 1826 errno = 0; 1827 *res = strtoull(value, &value_end, 0); 1828 if (errno) { 1829 err = -errno; 1830 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1831 return err; 1832 } 1833 if (*value_end) { 1834 pr_warn("failed to parse '%s' as integer completely\n", value); 1835 return -EINVAL; 1836 } 1837 return 0; 1838 } 1839 1840 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1841 { 1842 int bit_sz = ext->kcfg.sz * 8; 1843 1844 if (ext->kcfg.sz == 8) 1845 return true; 1846 1847 /* Validate that value stored in u64 fits in integer of `ext->sz` 1848 * bytes size without any loss of information. If the target integer 1849 * is signed, we rely on the following limits of integer type of 1850 * Y bits and subsequent transformation: 1851 * 1852 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1853 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1854 * 0 <= X + 2^(Y-1) < 2^Y 1855 * 1856 * For unsigned target integer, check that all the (64 - Y) bits are 1857 * zero. 1858 */ 1859 if (ext->kcfg.is_signed) 1860 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1861 else 1862 return (v >> bit_sz) == 0; 1863 } 1864 1865 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1866 __u64 value) 1867 { 1868 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1869 ext->kcfg.type != KCFG_BOOL) { 1870 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1871 ext->name, (unsigned long long)value); 1872 return -EINVAL; 1873 } 1874 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1875 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1876 ext->name, (unsigned long long)value); 1877 return -EINVAL; 1878 1879 } 1880 if (!is_kcfg_value_in_range(ext, value)) { 1881 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1882 ext->name, (unsigned long long)value, ext->kcfg.sz); 1883 return -ERANGE; 1884 } 1885 switch (ext->kcfg.sz) { 1886 case 1: 1887 *(__u8 *)ext_val = value; 1888 break; 1889 case 2: 1890 *(__u16 *)ext_val = value; 1891 break; 1892 case 4: 1893 *(__u32 *)ext_val = value; 1894 break; 1895 case 8: 1896 *(__u64 *)ext_val = value; 1897 break; 1898 default: 1899 return -EINVAL; 1900 } 1901 ext->is_set = true; 1902 return 0; 1903 } 1904 1905 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1906 char *buf, void *data) 1907 { 1908 struct extern_desc *ext; 1909 char *sep, *value; 1910 int len, err = 0; 1911 void *ext_val; 1912 __u64 num; 1913 1914 if (!str_has_pfx(buf, "CONFIG_")) 1915 return 0; 1916 1917 sep = strchr(buf, '='); 1918 if (!sep) { 1919 pr_warn("failed to parse '%s': no separator\n", buf); 1920 return -EINVAL; 1921 } 1922 1923 /* Trim ending '\n' */ 1924 len = strlen(buf); 1925 if (buf[len - 1] == '\n') 1926 buf[len - 1] = '\0'; 1927 /* Split on '=' and ensure that a value is present. */ 1928 *sep = '\0'; 1929 if (!sep[1]) { 1930 *sep = '='; 1931 pr_warn("failed to parse '%s': no value\n", buf); 1932 return -EINVAL; 1933 } 1934 1935 ext = find_extern_by_name(obj, buf); 1936 if (!ext || ext->is_set) 1937 return 0; 1938 1939 ext_val = data + ext->kcfg.data_off; 1940 value = sep + 1; 1941 1942 switch (*value) { 1943 case 'y': case 'n': case 'm': 1944 err = set_kcfg_value_tri(ext, ext_val, *value); 1945 break; 1946 case '"': 1947 err = set_kcfg_value_str(ext, ext_val, value); 1948 break; 1949 default: 1950 /* assume integer */ 1951 err = parse_u64(value, &num); 1952 if (err) { 1953 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1954 return err; 1955 } 1956 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1957 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1958 return -EINVAL; 1959 } 1960 err = set_kcfg_value_num(ext, ext_val, num); 1961 break; 1962 } 1963 if (err) 1964 return err; 1965 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1966 return 0; 1967 } 1968 1969 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1970 { 1971 char buf[PATH_MAX]; 1972 struct utsname uts; 1973 int len, err = 0; 1974 gzFile file; 1975 1976 uname(&uts); 1977 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1978 if (len < 0) 1979 return -EINVAL; 1980 else if (len >= PATH_MAX) 1981 return -ENAMETOOLONG; 1982 1983 /* gzopen also accepts uncompressed files. */ 1984 file = gzopen(buf, "re"); 1985 if (!file) 1986 file = gzopen("/proc/config.gz", "re"); 1987 1988 if (!file) { 1989 pr_warn("failed to open system Kconfig\n"); 1990 return -ENOENT; 1991 } 1992 1993 while (gzgets(file, buf, sizeof(buf))) { 1994 err = bpf_object__process_kconfig_line(obj, buf, data); 1995 if (err) { 1996 pr_warn("error parsing system Kconfig line '%s': %d\n", 1997 buf, err); 1998 goto out; 1999 } 2000 } 2001 2002 out: 2003 gzclose(file); 2004 return err; 2005 } 2006 2007 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2008 const char *config, void *data) 2009 { 2010 char buf[PATH_MAX]; 2011 int err = 0; 2012 FILE *file; 2013 2014 file = fmemopen((void *)config, strlen(config), "r"); 2015 if (!file) { 2016 err = -errno; 2017 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2018 return err; 2019 } 2020 2021 while (fgets(buf, sizeof(buf), file)) { 2022 err = bpf_object__process_kconfig_line(obj, buf, data); 2023 if (err) { 2024 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2025 buf, err); 2026 break; 2027 } 2028 } 2029 2030 fclose(file); 2031 return err; 2032 } 2033 2034 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2035 { 2036 struct extern_desc *last_ext = NULL, *ext; 2037 size_t map_sz; 2038 int i, err; 2039 2040 for (i = 0; i < obj->nr_extern; i++) { 2041 ext = &obj->externs[i]; 2042 if (ext->type == EXT_KCFG) 2043 last_ext = ext; 2044 } 2045 2046 if (!last_ext) 2047 return 0; 2048 2049 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2050 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2051 ".kconfig", obj->efile.symbols_shndx, 2052 NULL, map_sz); 2053 if (err) 2054 return err; 2055 2056 obj->kconfig_map_idx = obj->nr_maps - 1; 2057 2058 return 0; 2059 } 2060 2061 const struct btf_type * 2062 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2063 { 2064 const struct btf_type *t = btf__type_by_id(btf, id); 2065 2066 if (res_id) 2067 *res_id = id; 2068 2069 while (btf_is_mod(t) || btf_is_typedef(t)) { 2070 if (res_id) 2071 *res_id = t->type; 2072 t = btf__type_by_id(btf, t->type); 2073 } 2074 2075 return t; 2076 } 2077 2078 static const struct btf_type * 2079 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2080 { 2081 const struct btf_type *t; 2082 2083 t = skip_mods_and_typedefs(btf, id, NULL); 2084 if (!btf_is_ptr(t)) 2085 return NULL; 2086 2087 t = skip_mods_and_typedefs(btf, t->type, res_id); 2088 2089 return btf_is_func_proto(t) ? t : NULL; 2090 } 2091 2092 static const char *__btf_kind_str(__u16 kind) 2093 { 2094 switch (kind) { 2095 case BTF_KIND_UNKN: return "void"; 2096 case BTF_KIND_INT: return "int"; 2097 case BTF_KIND_PTR: return "ptr"; 2098 case BTF_KIND_ARRAY: return "array"; 2099 case BTF_KIND_STRUCT: return "struct"; 2100 case BTF_KIND_UNION: return "union"; 2101 case BTF_KIND_ENUM: return "enum"; 2102 case BTF_KIND_FWD: return "fwd"; 2103 case BTF_KIND_TYPEDEF: return "typedef"; 2104 case BTF_KIND_VOLATILE: return "volatile"; 2105 case BTF_KIND_CONST: return "const"; 2106 case BTF_KIND_RESTRICT: return "restrict"; 2107 case BTF_KIND_FUNC: return "func"; 2108 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2109 case BTF_KIND_VAR: return "var"; 2110 case BTF_KIND_DATASEC: return "datasec"; 2111 case BTF_KIND_FLOAT: return "float"; 2112 case BTF_KIND_DECL_TAG: return "decl_tag"; 2113 case BTF_KIND_TYPE_TAG: return "type_tag"; 2114 case BTF_KIND_ENUM64: return "enum64"; 2115 default: return "unknown"; 2116 } 2117 } 2118 2119 const char *btf_kind_str(const struct btf_type *t) 2120 { 2121 return __btf_kind_str(btf_kind(t)); 2122 } 2123 2124 /* 2125 * Fetch integer attribute of BTF map definition. Such attributes are 2126 * represented using a pointer to an array, in which dimensionality of array 2127 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2128 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2129 * type definition, while using only sizeof(void *) space in ELF data section. 2130 */ 2131 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2132 const struct btf_member *m, __u32 *res) 2133 { 2134 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2135 const char *name = btf__name_by_offset(btf, m->name_off); 2136 const struct btf_array *arr_info; 2137 const struct btf_type *arr_t; 2138 2139 if (!btf_is_ptr(t)) { 2140 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2141 map_name, name, btf_kind_str(t)); 2142 return false; 2143 } 2144 2145 arr_t = btf__type_by_id(btf, t->type); 2146 if (!arr_t) { 2147 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2148 map_name, name, t->type); 2149 return false; 2150 } 2151 if (!btf_is_array(arr_t)) { 2152 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2153 map_name, name, btf_kind_str(arr_t)); 2154 return false; 2155 } 2156 arr_info = btf_array(arr_t); 2157 *res = arr_info->nelems; 2158 return true; 2159 } 2160 2161 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2162 { 2163 int len; 2164 2165 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2166 if (len < 0) 2167 return -EINVAL; 2168 if (len >= buf_sz) 2169 return -ENAMETOOLONG; 2170 2171 return 0; 2172 } 2173 2174 static int build_map_pin_path(struct bpf_map *map, const char *path) 2175 { 2176 char buf[PATH_MAX]; 2177 int err; 2178 2179 if (!path) 2180 path = "/sys/fs/bpf"; 2181 2182 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2183 if (err) 2184 return err; 2185 2186 return bpf_map__set_pin_path(map, buf); 2187 } 2188 2189 /* should match definition in bpf_helpers.h */ 2190 enum libbpf_pin_type { 2191 LIBBPF_PIN_NONE, 2192 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2193 LIBBPF_PIN_BY_NAME, 2194 }; 2195 2196 int parse_btf_map_def(const char *map_name, struct btf *btf, 2197 const struct btf_type *def_t, bool strict, 2198 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2199 { 2200 const struct btf_type *t; 2201 const struct btf_member *m; 2202 bool is_inner = inner_def == NULL; 2203 int vlen, i; 2204 2205 vlen = btf_vlen(def_t); 2206 m = btf_members(def_t); 2207 for (i = 0; i < vlen; i++, m++) { 2208 const char *name = btf__name_by_offset(btf, m->name_off); 2209 2210 if (!name) { 2211 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2212 return -EINVAL; 2213 } 2214 if (strcmp(name, "type") == 0) { 2215 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2216 return -EINVAL; 2217 map_def->parts |= MAP_DEF_MAP_TYPE; 2218 } else if (strcmp(name, "max_entries") == 0) { 2219 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2220 return -EINVAL; 2221 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2222 } else if (strcmp(name, "map_flags") == 0) { 2223 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2224 return -EINVAL; 2225 map_def->parts |= MAP_DEF_MAP_FLAGS; 2226 } else if (strcmp(name, "numa_node") == 0) { 2227 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2228 return -EINVAL; 2229 map_def->parts |= MAP_DEF_NUMA_NODE; 2230 } else if (strcmp(name, "key_size") == 0) { 2231 __u32 sz; 2232 2233 if (!get_map_field_int(map_name, btf, m, &sz)) 2234 return -EINVAL; 2235 if (map_def->key_size && map_def->key_size != sz) { 2236 pr_warn("map '%s': conflicting key size %u != %u.\n", 2237 map_name, map_def->key_size, sz); 2238 return -EINVAL; 2239 } 2240 map_def->key_size = sz; 2241 map_def->parts |= MAP_DEF_KEY_SIZE; 2242 } else if (strcmp(name, "key") == 0) { 2243 __s64 sz; 2244 2245 t = btf__type_by_id(btf, m->type); 2246 if (!t) { 2247 pr_warn("map '%s': key type [%d] not found.\n", 2248 map_name, m->type); 2249 return -EINVAL; 2250 } 2251 if (!btf_is_ptr(t)) { 2252 pr_warn("map '%s': key spec is not PTR: %s.\n", 2253 map_name, btf_kind_str(t)); 2254 return -EINVAL; 2255 } 2256 sz = btf__resolve_size(btf, t->type); 2257 if (sz < 0) { 2258 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2259 map_name, t->type, (ssize_t)sz); 2260 return sz; 2261 } 2262 if (map_def->key_size && map_def->key_size != sz) { 2263 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2264 map_name, map_def->key_size, (ssize_t)sz); 2265 return -EINVAL; 2266 } 2267 map_def->key_size = sz; 2268 map_def->key_type_id = t->type; 2269 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2270 } else if (strcmp(name, "value_size") == 0) { 2271 __u32 sz; 2272 2273 if (!get_map_field_int(map_name, btf, m, &sz)) 2274 return -EINVAL; 2275 if (map_def->value_size && map_def->value_size != sz) { 2276 pr_warn("map '%s': conflicting value size %u != %u.\n", 2277 map_name, map_def->value_size, sz); 2278 return -EINVAL; 2279 } 2280 map_def->value_size = sz; 2281 map_def->parts |= MAP_DEF_VALUE_SIZE; 2282 } else if (strcmp(name, "value") == 0) { 2283 __s64 sz; 2284 2285 t = btf__type_by_id(btf, m->type); 2286 if (!t) { 2287 pr_warn("map '%s': value type [%d] not found.\n", 2288 map_name, m->type); 2289 return -EINVAL; 2290 } 2291 if (!btf_is_ptr(t)) { 2292 pr_warn("map '%s': value spec is not PTR: %s.\n", 2293 map_name, btf_kind_str(t)); 2294 return -EINVAL; 2295 } 2296 sz = btf__resolve_size(btf, t->type); 2297 if (sz < 0) { 2298 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2299 map_name, t->type, (ssize_t)sz); 2300 return sz; 2301 } 2302 if (map_def->value_size && map_def->value_size != sz) { 2303 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2304 map_name, map_def->value_size, (ssize_t)sz); 2305 return -EINVAL; 2306 } 2307 map_def->value_size = sz; 2308 map_def->value_type_id = t->type; 2309 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2310 } 2311 else if (strcmp(name, "values") == 0) { 2312 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2313 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2314 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2315 char inner_map_name[128]; 2316 int err; 2317 2318 if (is_inner) { 2319 pr_warn("map '%s': multi-level inner maps not supported.\n", 2320 map_name); 2321 return -ENOTSUP; 2322 } 2323 if (i != vlen - 1) { 2324 pr_warn("map '%s': '%s' member should be last.\n", 2325 map_name, name); 2326 return -EINVAL; 2327 } 2328 if (!is_map_in_map && !is_prog_array) { 2329 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2330 map_name); 2331 return -ENOTSUP; 2332 } 2333 if (map_def->value_size && map_def->value_size != 4) { 2334 pr_warn("map '%s': conflicting value size %u != 4.\n", 2335 map_name, map_def->value_size); 2336 return -EINVAL; 2337 } 2338 map_def->value_size = 4; 2339 t = btf__type_by_id(btf, m->type); 2340 if (!t) { 2341 pr_warn("map '%s': %s type [%d] not found.\n", 2342 map_name, desc, m->type); 2343 return -EINVAL; 2344 } 2345 if (!btf_is_array(t) || btf_array(t)->nelems) { 2346 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2347 map_name, desc); 2348 return -EINVAL; 2349 } 2350 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2351 if (!btf_is_ptr(t)) { 2352 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2353 map_name, desc, btf_kind_str(t)); 2354 return -EINVAL; 2355 } 2356 t = skip_mods_and_typedefs(btf, t->type, NULL); 2357 if (is_prog_array) { 2358 if (!btf_is_func_proto(t)) { 2359 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2360 map_name, btf_kind_str(t)); 2361 return -EINVAL; 2362 } 2363 continue; 2364 } 2365 if (!btf_is_struct(t)) { 2366 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2367 map_name, btf_kind_str(t)); 2368 return -EINVAL; 2369 } 2370 2371 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2372 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2373 if (err) 2374 return err; 2375 2376 map_def->parts |= MAP_DEF_INNER_MAP; 2377 } else if (strcmp(name, "pinning") == 0) { 2378 __u32 val; 2379 2380 if (is_inner) { 2381 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2382 return -EINVAL; 2383 } 2384 if (!get_map_field_int(map_name, btf, m, &val)) 2385 return -EINVAL; 2386 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2387 pr_warn("map '%s': invalid pinning value %u.\n", 2388 map_name, val); 2389 return -EINVAL; 2390 } 2391 map_def->pinning = val; 2392 map_def->parts |= MAP_DEF_PINNING; 2393 } else if (strcmp(name, "map_extra") == 0) { 2394 __u32 map_extra; 2395 2396 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2397 return -EINVAL; 2398 map_def->map_extra = map_extra; 2399 map_def->parts |= MAP_DEF_MAP_EXTRA; 2400 } else { 2401 if (strict) { 2402 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2403 return -ENOTSUP; 2404 } 2405 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2406 } 2407 } 2408 2409 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2410 pr_warn("map '%s': map type isn't specified.\n", map_name); 2411 return -EINVAL; 2412 } 2413 2414 return 0; 2415 } 2416 2417 static size_t adjust_ringbuf_sz(size_t sz) 2418 { 2419 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2420 __u32 mul; 2421 2422 /* if user forgot to set any size, make sure they see error */ 2423 if (sz == 0) 2424 return 0; 2425 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2426 * a power-of-2 multiple of kernel's page size. If user diligently 2427 * satisified these conditions, pass the size through. 2428 */ 2429 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2430 return sz; 2431 2432 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2433 * user-set size to satisfy both user size request and kernel 2434 * requirements and substitute correct max_entries for map creation. 2435 */ 2436 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2437 if (mul * page_sz > sz) 2438 return mul * page_sz; 2439 } 2440 2441 /* if it's impossible to satisfy the conditions (i.e., user size is 2442 * very close to UINT_MAX but is not a power-of-2 multiple of 2443 * page_size) then just return original size and let kernel reject it 2444 */ 2445 return sz; 2446 } 2447 2448 static bool map_is_ringbuf(const struct bpf_map *map) 2449 { 2450 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2451 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2452 } 2453 2454 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2455 { 2456 map->def.type = def->map_type; 2457 map->def.key_size = def->key_size; 2458 map->def.value_size = def->value_size; 2459 map->def.max_entries = def->max_entries; 2460 map->def.map_flags = def->map_flags; 2461 map->map_extra = def->map_extra; 2462 2463 map->numa_node = def->numa_node; 2464 map->btf_key_type_id = def->key_type_id; 2465 map->btf_value_type_id = def->value_type_id; 2466 2467 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2468 if (map_is_ringbuf(map)) 2469 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2470 2471 if (def->parts & MAP_DEF_MAP_TYPE) 2472 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2473 2474 if (def->parts & MAP_DEF_KEY_TYPE) 2475 pr_debug("map '%s': found key [%u], sz = %u.\n", 2476 map->name, def->key_type_id, def->key_size); 2477 else if (def->parts & MAP_DEF_KEY_SIZE) 2478 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2479 2480 if (def->parts & MAP_DEF_VALUE_TYPE) 2481 pr_debug("map '%s': found value [%u], sz = %u.\n", 2482 map->name, def->value_type_id, def->value_size); 2483 else if (def->parts & MAP_DEF_VALUE_SIZE) 2484 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2485 2486 if (def->parts & MAP_DEF_MAX_ENTRIES) 2487 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2488 if (def->parts & MAP_DEF_MAP_FLAGS) 2489 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2490 if (def->parts & MAP_DEF_MAP_EXTRA) 2491 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2492 (unsigned long long)def->map_extra); 2493 if (def->parts & MAP_DEF_PINNING) 2494 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2495 if (def->parts & MAP_DEF_NUMA_NODE) 2496 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2497 2498 if (def->parts & MAP_DEF_INNER_MAP) 2499 pr_debug("map '%s': found inner map definition.\n", map->name); 2500 } 2501 2502 static const char *btf_var_linkage_str(__u32 linkage) 2503 { 2504 switch (linkage) { 2505 case BTF_VAR_STATIC: return "static"; 2506 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2507 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2508 default: return "unknown"; 2509 } 2510 } 2511 2512 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2513 const struct btf_type *sec, 2514 int var_idx, int sec_idx, 2515 const Elf_Data *data, bool strict, 2516 const char *pin_root_path) 2517 { 2518 struct btf_map_def map_def = {}, inner_def = {}; 2519 const struct btf_type *var, *def; 2520 const struct btf_var_secinfo *vi; 2521 const struct btf_var *var_extra; 2522 const char *map_name; 2523 struct bpf_map *map; 2524 int err; 2525 2526 vi = btf_var_secinfos(sec) + var_idx; 2527 var = btf__type_by_id(obj->btf, vi->type); 2528 var_extra = btf_var(var); 2529 map_name = btf__name_by_offset(obj->btf, var->name_off); 2530 2531 if (map_name == NULL || map_name[0] == '\0') { 2532 pr_warn("map #%d: empty name.\n", var_idx); 2533 return -EINVAL; 2534 } 2535 if ((__u64)vi->offset + vi->size > data->d_size) { 2536 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2537 return -EINVAL; 2538 } 2539 if (!btf_is_var(var)) { 2540 pr_warn("map '%s': unexpected var kind %s.\n", 2541 map_name, btf_kind_str(var)); 2542 return -EINVAL; 2543 } 2544 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2545 pr_warn("map '%s': unsupported map linkage %s.\n", 2546 map_name, btf_var_linkage_str(var_extra->linkage)); 2547 return -EOPNOTSUPP; 2548 } 2549 2550 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2551 if (!btf_is_struct(def)) { 2552 pr_warn("map '%s': unexpected def kind %s.\n", 2553 map_name, btf_kind_str(var)); 2554 return -EINVAL; 2555 } 2556 if (def->size > vi->size) { 2557 pr_warn("map '%s': invalid def size.\n", map_name); 2558 return -EINVAL; 2559 } 2560 2561 map = bpf_object__add_map(obj); 2562 if (IS_ERR(map)) 2563 return PTR_ERR(map); 2564 map->name = strdup(map_name); 2565 if (!map->name) { 2566 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2567 return -ENOMEM; 2568 } 2569 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2570 map->def.type = BPF_MAP_TYPE_UNSPEC; 2571 map->sec_idx = sec_idx; 2572 map->sec_offset = vi->offset; 2573 map->btf_var_idx = var_idx; 2574 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2575 map_name, map->sec_idx, map->sec_offset); 2576 2577 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2578 if (err) 2579 return err; 2580 2581 fill_map_from_def(map, &map_def); 2582 2583 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2584 err = build_map_pin_path(map, pin_root_path); 2585 if (err) { 2586 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2587 return err; 2588 } 2589 } 2590 2591 if (map_def.parts & MAP_DEF_INNER_MAP) { 2592 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2593 if (!map->inner_map) 2594 return -ENOMEM; 2595 map->inner_map->fd = -1; 2596 map->inner_map->sec_idx = sec_idx; 2597 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2598 if (!map->inner_map->name) 2599 return -ENOMEM; 2600 sprintf(map->inner_map->name, "%s.inner", map_name); 2601 2602 fill_map_from_def(map->inner_map, &inner_def); 2603 } 2604 2605 err = map_fill_btf_type_info(obj, map); 2606 if (err) 2607 return err; 2608 2609 return 0; 2610 } 2611 2612 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2613 const char *pin_root_path) 2614 { 2615 const struct btf_type *sec = NULL; 2616 int nr_types, i, vlen, err; 2617 const struct btf_type *t; 2618 const char *name; 2619 Elf_Data *data; 2620 Elf_Scn *scn; 2621 2622 if (obj->efile.btf_maps_shndx < 0) 2623 return 0; 2624 2625 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2626 data = elf_sec_data(obj, scn); 2627 if (!scn || !data) { 2628 pr_warn("elf: failed to get %s map definitions for %s\n", 2629 MAPS_ELF_SEC, obj->path); 2630 return -EINVAL; 2631 } 2632 2633 nr_types = btf__type_cnt(obj->btf); 2634 for (i = 1; i < nr_types; i++) { 2635 t = btf__type_by_id(obj->btf, i); 2636 if (!btf_is_datasec(t)) 2637 continue; 2638 name = btf__name_by_offset(obj->btf, t->name_off); 2639 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2640 sec = t; 2641 obj->efile.btf_maps_sec_btf_id = i; 2642 break; 2643 } 2644 } 2645 2646 if (!sec) { 2647 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2648 return -ENOENT; 2649 } 2650 2651 vlen = btf_vlen(sec); 2652 for (i = 0; i < vlen; i++) { 2653 err = bpf_object__init_user_btf_map(obj, sec, i, 2654 obj->efile.btf_maps_shndx, 2655 data, strict, 2656 pin_root_path); 2657 if (err) 2658 return err; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static int bpf_object__init_maps(struct bpf_object *obj, 2665 const struct bpf_object_open_opts *opts) 2666 { 2667 const char *pin_root_path; 2668 bool strict; 2669 int err = 0; 2670 2671 strict = !OPTS_GET(opts, relaxed_maps, false); 2672 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2673 2674 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2675 err = err ?: bpf_object__init_global_data_maps(obj); 2676 err = err ?: bpf_object__init_kconfig_map(obj); 2677 err = err ?: bpf_object_init_struct_ops(obj); 2678 2679 return err; 2680 } 2681 2682 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2683 { 2684 Elf64_Shdr *sh; 2685 2686 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2687 if (!sh) 2688 return false; 2689 2690 return sh->sh_flags & SHF_EXECINSTR; 2691 } 2692 2693 static bool btf_needs_sanitization(struct bpf_object *obj) 2694 { 2695 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2696 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2697 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2698 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2699 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2700 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2701 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2702 2703 return !has_func || !has_datasec || !has_func_global || !has_float || 2704 !has_decl_tag || !has_type_tag || !has_enum64; 2705 } 2706 2707 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2708 { 2709 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2710 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2711 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2712 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2713 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2714 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2715 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2716 int enum64_placeholder_id = 0; 2717 struct btf_type *t; 2718 int i, j, vlen; 2719 2720 for (i = 1; i < btf__type_cnt(btf); i++) { 2721 t = (struct btf_type *)btf__type_by_id(btf, i); 2722 2723 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2724 /* replace VAR/DECL_TAG with INT */ 2725 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2726 /* 2727 * using size = 1 is the safest choice, 4 will be too 2728 * big and cause kernel BTF validation failure if 2729 * original variable took less than 4 bytes 2730 */ 2731 t->size = 1; 2732 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2733 } else if (!has_datasec && btf_is_datasec(t)) { 2734 /* replace DATASEC with STRUCT */ 2735 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2736 struct btf_member *m = btf_members(t); 2737 struct btf_type *vt; 2738 char *name; 2739 2740 name = (char *)btf__name_by_offset(btf, t->name_off); 2741 while (*name) { 2742 if (*name == '.') 2743 *name = '_'; 2744 name++; 2745 } 2746 2747 vlen = btf_vlen(t); 2748 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2749 for (j = 0; j < vlen; j++, v++, m++) { 2750 /* order of field assignments is important */ 2751 m->offset = v->offset * 8; 2752 m->type = v->type; 2753 /* preserve variable name as member name */ 2754 vt = (void *)btf__type_by_id(btf, v->type); 2755 m->name_off = vt->name_off; 2756 } 2757 } else if (!has_func && btf_is_func_proto(t)) { 2758 /* replace FUNC_PROTO with ENUM */ 2759 vlen = btf_vlen(t); 2760 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2761 t->size = sizeof(__u32); /* kernel enforced */ 2762 } else if (!has_func && btf_is_func(t)) { 2763 /* replace FUNC with TYPEDEF */ 2764 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2765 } else if (!has_func_global && btf_is_func(t)) { 2766 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2767 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2768 } else if (!has_float && btf_is_float(t)) { 2769 /* replace FLOAT with an equally-sized empty STRUCT; 2770 * since C compilers do not accept e.g. "float" as a 2771 * valid struct name, make it anonymous 2772 */ 2773 t->name_off = 0; 2774 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2775 } else if (!has_type_tag && btf_is_type_tag(t)) { 2776 /* replace TYPE_TAG with a CONST */ 2777 t->name_off = 0; 2778 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2779 } else if (!has_enum64 && btf_is_enum(t)) { 2780 /* clear the kflag */ 2781 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2782 } else if (!has_enum64 && btf_is_enum64(t)) { 2783 /* replace ENUM64 with a union */ 2784 struct btf_member *m; 2785 2786 if (enum64_placeholder_id == 0) { 2787 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2788 if (enum64_placeholder_id < 0) 2789 return enum64_placeholder_id; 2790 2791 t = (struct btf_type *)btf__type_by_id(btf, i); 2792 } 2793 2794 m = btf_members(t); 2795 vlen = btf_vlen(t); 2796 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2797 for (j = 0; j < vlen; j++, m++) { 2798 m->type = enum64_placeholder_id; 2799 m->offset = 0; 2800 } 2801 } 2802 } 2803 2804 return 0; 2805 } 2806 2807 static bool libbpf_needs_btf(const struct bpf_object *obj) 2808 { 2809 return obj->efile.btf_maps_shndx >= 0 || 2810 obj->efile.st_ops_shndx >= 0 || 2811 obj->efile.st_ops_link_shndx >= 0 || 2812 obj->nr_extern > 0; 2813 } 2814 2815 static bool kernel_needs_btf(const struct bpf_object *obj) 2816 { 2817 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2818 } 2819 2820 static int bpf_object__init_btf(struct bpf_object *obj, 2821 Elf_Data *btf_data, 2822 Elf_Data *btf_ext_data) 2823 { 2824 int err = -ENOENT; 2825 2826 if (btf_data) { 2827 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2828 err = libbpf_get_error(obj->btf); 2829 if (err) { 2830 obj->btf = NULL; 2831 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2832 goto out; 2833 } 2834 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2835 btf__set_pointer_size(obj->btf, 8); 2836 } 2837 if (btf_ext_data) { 2838 struct btf_ext_info *ext_segs[3]; 2839 int seg_num, sec_num; 2840 2841 if (!obj->btf) { 2842 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2843 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2844 goto out; 2845 } 2846 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2847 err = libbpf_get_error(obj->btf_ext); 2848 if (err) { 2849 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2850 BTF_EXT_ELF_SEC, err); 2851 obj->btf_ext = NULL; 2852 goto out; 2853 } 2854 2855 /* setup .BTF.ext to ELF section mapping */ 2856 ext_segs[0] = &obj->btf_ext->func_info; 2857 ext_segs[1] = &obj->btf_ext->line_info; 2858 ext_segs[2] = &obj->btf_ext->core_relo_info; 2859 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2860 struct btf_ext_info *seg = ext_segs[seg_num]; 2861 const struct btf_ext_info_sec *sec; 2862 const char *sec_name; 2863 Elf_Scn *scn; 2864 2865 if (seg->sec_cnt == 0) 2866 continue; 2867 2868 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2869 if (!seg->sec_idxs) { 2870 err = -ENOMEM; 2871 goto out; 2872 } 2873 2874 sec_num = 0; 2875 for_each_btf_ext_sec(seg, sec) { 2876 /* preventively increment index to avoid doing 2877 * this before every continue below 2878 */ 2879 sec_num++; 2880 2881 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2882 if (str_is_empty(sec_name)) 2883 continue; 2884 scn = elf_sec_by_name(obj, sec_name); 2885 if (!scn) 2886 continue; 2887 2888 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2889 } 2890 } 2891 } 2892 out: 2893 if (err && libbpf_needs_btf(obj)) { 2894 pr_warn("BTF is required, but is missing or corrupted.\n"); 2895 return err; 2896 } 2897 return 0; 2898 } 2899 2900 static int compare_vsi_off(const void *_a, const void *_b) 2901 { 2902 const struct btf_var_secinfo *a = _a; 2903 const struct btf_var_secinfo *b = _b; 2904 2905 return a->offset - b->offset; 2906 } 2907 2908 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2909 struct btf_type *t) 2910 { 2911 __u32 size = 0, i, vars = btf_vlen(t); 2912 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2913 struct btf_var_secinfo *vsi; 2914 bool fixup_offsets = false; 2915 int err; 2916 2917 if (!sec_name) { 2918 pr_debug("No name found in string section for DATASEC kind.\n"); 2919 return -ENOENT; 2920 } 2921 2922 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2923 * variable offsets set at the previous step. Further, not every 2924 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2925 * all fixups altogether for such sections and go straight to sorting 2926 * VARs within their DATASEC. 2927 */ 2928 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2929 goto sort_vars; 2930 2931 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2932 * fix this up. But BPF static linker already fixes this up and fills 2933 * all the sizes and offsets during static linking. So this step has 2934 * to be optional. But the STV_HIDDEN handling is non-optional for any 2935 * non-extern DATASEC, so the variable fixup loop below handles both 2936 * functions at the same time, paying the cost of BTF VAR <-> ELF 2937 * symbol matching just once. 2938 */ 2939 if (t->size == 0) { 2940 err = find_elf_sec_sz(obj, sec_name, &size); 2941 if (err || !size) { 2942 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2943 sec_name, size, err); 2944 return -ENOENT; 2945 } 2946 2947 t->size = size; 2948 fixup_offsets = true; 2949 } 2950 2951 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2952 const struct btf_type *t_var; 2953 struct btf_var *var; 2954 const char *var_name; 2955 Elf64_Sym *sym; 2956 2957 t_var = btf__type_by_id(btf, vsi->type); 2958 if (!t_var || !btf_is_var(t_var)) { 2959 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2960 return -EINVAL; 2961 } 2962 2963 var = btf_var(t_var); 2964 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2965 continue; 2966 2967 var_name = btf__name_by_offset(btf, t_var->name_off); 2968 if (!var_name) { 2969 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2970 sec_name, i); 2971 return -ENOENT; 2972 } 2973 2974 sym = find_elf_var_sym(obj, var_name); 2975 if (IS_ERR(sym)) { 2976 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2977 sec_name, var_name); 2978 return -ENOENT; 2979 } 2980 2981 if (fixup_offsets) 2982 vsi->offset = sym->st_value; 2983 2984 /* if variable is a global/weak symbol, but has restricted 2985 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2986 * as static. This follows similar logic for functions (BPF 2987 * subprogs) and influences libbpf's further decisions about 2988 * whether to make global data BPF array maps as 2989 * BPF_F_MMAPABLE. 2990 */ 2991 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2992 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2993 var->linkage = BTF_VAR_STATIC; 2994 } 2995 2996 sort_vars: 2997 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2998 return 0; 2999 } 3000 3001 static int bpf_object_fixup_btf(struct bpf_object *obj) 3002 { 3003 int i, n, err = 0; 3004 3005 if (!obj->btf) 3006 return 0; 3007 3008 n = btf__type_cnt(obj->btf); 3009 for (i = 1; i < n; i++) { 3010 struct btf_type *t = btf_type_by_id(obj->btf, i); 3011 3012 /* Loader needs to fix up some of the things compiler 3013 * couldn't get its hands on while emitting BTF. This 3014 * is section size and global variable offset. We use 3015 * the info from the ELF itself for this purpose. 3016 */ 3017 if (btf_is_datasec(t)) { 3018 err = btf_fixup_datasec(obj, obj->btf, t); 3019 if (err) 3020 return err; 3021 } 3022 } 3023 3024 return 0; 3025 } 3026 3027 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3028 { 3029 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3030 prog->type == BPF_PROG_TYPE_LSM) 3031 return true; 3032 3033 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3034 * also need vmlinux BTF 3035 */ 3036 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3037 return true; 3038 3039 return false; 3040 } 3041 3042 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3043 { 3044 struct bpf_program *prog; 3045 int i; 3046 3047 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3048 * is not specified 3049 */ 3050 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3051 return true; 3052 3053 /* Support for typed ksyms needs kernel BTF */ 3054 for (i = 0; i < obj->nr_extern; i++) { 3055 const struct extern_desc *ext; 3056 3057 ext = &obj->externs[i]; 3058 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3059 return true; 3060 } 3061 3062 bpf_object__for_each_program(prog, obj) { 3063 if (!prog->autoload) 3064 continue; 3065 if (prog_needs_vmlinux_btf(prog)) 3066 return true; 3067 } 3068 3069 return false; 3070 } 3071 3072 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3073 { 3074 int err; 3075 3076 /* btf_vmlinux could be loaded earlier */ 3077 if (obj->btf_vmlinux || obj->gen_loader) 3078 return 0; 3079 3080 if (!force && !obj_needs_vmlinux_btf(obj)) 3081 return 0; 3082 3083 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3084 err = libbpf_get_error(obj->btf_vmlinux); 3085 if (err) { 3086 pr_warn("Error loading vmlinux BTF: %d\n", err); 3087 obj->btf_vmlinux = NULL; 3088 return err; 3089 } 3090 return 0; 3091 } 3092 3093 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3094 { 3095 struct btf *kern_btf = obj->btf; 3096 bool btf_mandatory, sanitize; 3097 int i, err = 0; 3098 3099 if (!obj->btf) 3100 return 0; 3101 3102 if (!kernel_supports(obj, FEAT_BTF)) { 3103 if (kernel_needs_btf(obj)) { 3104 err = -EOPNOTSUPP; 3105 goto report; 3106 } 3107 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3108 return 0; 3109 } 3110 3111 /* Even though some subprogs are global/weak, user might prefer more 3112 * permissive BPF verification process that BPF verifier performs for 3113 * static functions, taking into account more context from the caller 3114 * functions. In such case, they need to mark such subprogs with 3115 * __attribute__((visibility("hidden"))) and libbpf will adjust 3116 * corresponding FUNC BTF type to be marked as static and trigger more 3117 * involved BPF verification process. 3118 */ 3119 for (i = 0; i < obj->nr_programs; i++) { 3120 struct bpf_program *prog = &obj->programs[i]; 3121 struct btf_type *t; 3122 const char *name; 3123 int j, n; 3124 3125 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3126 continue; 3127 3128 n = btf__type_cnt(obj->btf); 3129 for (j = 1; j < n; j++) { 3130 t = btf_type_by_id(obj->btf, j); 3131 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3132 continue; 3133 3134 name = btf__str_by_offset(obj->btf, t->name_off); 3135 if (strcmp(name, prog->name) != 0) 3136 continue; 3137 3138 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3139 break; 3140 } 3141 } 3142 3143 sanitize = btf_needs_sanitization(obj); 3144 if (sanitize) { 3145 const void *raw_data; 3146 __u32 sz; 3147 3148 /* clone BTF to sanitize a copy and leave the original intact */ 3149 raw_data = btf__raw_data(obj->btf, &sz); 3150 kern_btf = btf__new(raw_data, sz); 3151 err = libbpf_get_error(kern_btf); 3152 if (err) 3153 return err; 3154 3155 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3156 btf__set_pointer_size(obj->btf, 8); 3157 err = bpf_object__sanitize_btf(obj, kern_btf); 3158 if (err) 3159 return err; 3160 } 3161 3162 if (obj->gen_loader) { 3163 __u32 raw_size = 0; 3164 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3165 3166 if (!raw_data) 3167 return -ENOMEM; 3168 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3169 /* Pretend to have valid FD to pass various fd >= 0 checks. 3170 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3171 */ 3172 btf__set_fd(kern_btf, 0); 3173 } else { 3174 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3175 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3176 obj->log_level ? 1 : 0); 3177 } 3178 if (sanitize) { 3179 if (!err) { 3180 /* move fd to libbpf's BTF */ 3181 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3182 btf__set_fd(kern_btf, -1); 3183 } 3184 btf__free(kern_btf); 3185 } 3186 report: 3187 if (err) { 3188 btf_mandatory = kernel_needs_btf(obj); 3189 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3190 btf_mandatory ? "BTF is mandatory, can't proceed." 3191 : "BTF is optional, ignoring."); 3192 if (!btf_mandatory) 3193 err = 0; 3194 } 3195 return err; 3196 } 3197 3198 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3199 { 3200 const char *name; 3201 3202 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3203 if (!name) { 3204 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3205 off, obj->path, elf_errmsg(-1)); 3206 return NULL; 3207 } 3208 3209 return name; 3210 } 3211 3212 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3213 { 3214 const char *name; 3215 3216 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3217 if (!name) { 3218 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3219 off, obj->path, elf_errmsg(-1)); 3220 return NULL; 3221 } 3222 3223 return name; 3224 } 3225 3226 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3227 { 3228 Elf_Scn *scn; 3229 3230 scn = elf_getscn(obj->efile.elf, idx); 3231 if (!scn) { 3232 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3233 idx, obj->path, elf_errmsg(-1)); 3234 return NULL; 3235 } 3236 return scn; 3237 } 3238 3239 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3240 { 3241 Elf_Scn *scn = NULL; 3242 Elf *elf = obj->efile.elf; 3243 const char *sec_name; 3244 3245 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3246 sec_name = elf_sec_name(obj, scn); 3247 if (!sec_name) 3248 return NULL; 3249 3250 if (strcmp(sec_name, name) != 0) 3251 continue; 3252 3253 return scn; 3254 } 3255 return NULL; 3256 } 3257 3258 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3259 { 3260 Elf64_Shdr *shdr; 3261 3262 if (!scn) 3263 return NULL; 3264 3265 shdr = elf64_getshdr(scn); 3266 if (!shdr) { 3267 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3268 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3269 return NULL; 3270 } 3271 3272 return shdr; 3273 } 3274 3275 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3276 { 3277 const char *name; 3278 Elf64_Shdr *sh; 3279 3280 if (!scn) 3281 return NULL; 3282 3283 sh = elf_sec_hdr(obj, scn); 3284 if (!sh) 3285 return NULL; 3286 3287 name = elf_sec_str(obj, sh->sh_name); 3288 if (!name) { 3289 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3290 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3291 return NULL; 3292 } 3293 3294 return name; 3295 } 3296 3297 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3298 { 3299 Elf_Data *data; 3300 3301 if (!scn) 3302 return NULL; 3303 3304 data = elf_getdata(scn, 0); 3305 if (!data) { 3306 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3307 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3308 obj->path, elf_errmsg(-1)); 3309 return NULL; 3310 } 3311 3312 return data; 3313 } 3314 3315 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3316 { 3317 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3318 return NULL; 3319 3320 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3321 } 3322 3323 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3324 { 3325 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3326 return NULL; 3327 3328 return (Elf64_Rel *)data->d_buf + idx; 3329 } 3330 3331 static bool is_sec_name_dwarf(const char *name) 3332 { 3333 /* approximation, but the actual list is too long */ 3334 return str_has_pfx(name, ".debug_"); 3335 } 3336 3337 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3338 { 3339 /* no special handling of .strtab */ 3340 if (hdr->sh_type == SHT_STRTAB) 3341 return true; 3342 3343 /* ignore .llvm_addrsig section as well */ 3344 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3345 return true; 3346 3347 /* no subprograms will lead to an empty .text section, ignore it */ 3348 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3349 strcmp(name, ".text") == 0) 3350 return true; 3351 3352 /* DWARF sections */ 3353 if (is_sec_name_dwarf(name)) 3354 return true; 3355 3356 if (str_has_pfx(name, ".rel")) { 3357 name += sizeof(".rel") - 1; 3358 /* DWARF section relocations */ 3359 if (is_sec_name_dwarf(name)) 3360 return true; 3361 3362 /* .BTF and .BTF.ext don't need relocations */ 3363 if (strcmp(name, BTF_ELF_SEC) == 0 || 3364 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3365 return true; 3366 } 3367 3368 return false; 3369 } 3370 3371 static int cmp_progs(const void *_a, const void *_b) 3372 { 3373 const struct bpf_program *a = _a; 3374 const struct bpf_program *b = _b; 3375 3376 if (a->sec_idx != b->sec_idx) 3377 return a->sec_idx < b->sec_idx ? -1 : 1; 3378 3379 /* sec_insn_off can't be the same within the section */ 3380 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3381 } 3382 3383 static int bpf_object__elf_collect(struct bpf_object *obj) 3384 { 3385 struct elf_sec_desc *sec_desc; 3386 Elf *elf = obj->efile.elf; 3387 Elf_Data *btf_ext_data = NULL; 3388 Elf_Data *btf_data = NULL; 3389 int idx = 0, err = 0; 3390 const char *name; 3391 Elf_Data *data; 3392 Elf_Scn *scn; 3393 Elf64_Shdr *sh; 3394 3395 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3396 * section. Since section count retrieved by elf_getshdrnum() does 3397 * include sec #0, it is already the necessary size of an array to keep 3398 * all the sections. 3399 */ 3400 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3401 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3402 obj->path, elf_errmsg(-1)); 3403 return -LIBBPF_ERRNO__FORMAT; 3404 } 3405 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3406 if (!obj->efile.secs) 3407 return -ENOMEM; 3408 3409 /* a bunch of ELF parsing functionality depends on processing symbols, 3410 * so do the first pass and find the symbol table 3411 */ 3412 scn = NULL; 3413 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3414 sh = elf_sec_hdr(obj, scn); 3415 if (!sh) 3416 return -LIBBPF_ERRNO__FORMAT; 3417 3418 if (sh->sh_type == SHT_SYMTAB) { 3419 if (obj->efile.symbols) { 3420 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3421 return -LIBBPF_ERRNO__FORMAT; 3422 } 3423 3424 data = elf_sec_data(obj, scn); 3425 if (!data) 3426 return -LIBBPF_ERRNO__FORMAT; 3427 3428 idx = elf_ndxscn(scn); 3429 3430 obj->efile.symbols = data; 3431 obj->efile.symbols_shndx = idx; 3432 obj->efile.strtabidx = sh->sh_link; 3433 } 3434 } 3435 3436 if (!obj->efile.symbols) { 3437 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3438 obj->path); 3439 return -ENOENT; 3440 } 3441 3442 scn = NULL; 3443 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3444 idx = elf_ndxscn(scn); 3445 sec_desc = &obj->efile.secs[idx]; 3446 3447 sh = elf_sec_hdr(obj, scn); 3448 if (!sh) 3449 return -LIBBPF_ERRNO__FORMAT; 3450 3451 name = elf_sec_str(obj, sh->sh_name); 3452 if (!name) 3453 return -LIBBPF_ERRNO__FORMAT; 3454 3455 if (ignore_elf_section(sh, name)) 3456 continue; 3457 3458 data = elf_sec_data(obj, scn); 3459 if (!data) 3460 return -LIBBPF_ERRNO__FORMAT; 3461 3462 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3463 idx, name, (unsigned long)data->d_size, 3464 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3465 (int)sh->sh_type); 3466 3467 if (strcmp(name, "license") == 0) { 3468 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3469 if (err) 3470 return err; 3471 } else if (strcmp(name, "version") == 0) { 3472 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3473 if (err) 3474 return err; 3475 } else if (strcmp(name, "maps") == 0) { 3476 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3477 return -ENOTSUP; 3478 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3479 obj->efile.btf_maps_shndx = idx; 3480 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3481 if (sh->sh_type != SHT_PROGBITS) 3482 return -LIBBPF_ERRNO__FORMAT; 3483 btf_data = data; 3484 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3485 if (sh->sh_type != SHT_PROGBITS) 3486 return -LIBBPF_ERRNO__FORMAT; 3487 btf_ext_data = data; 3488 } else if (sh->sh_type == SHT_SYMTAB) { 3489 /* already processed during the first pass above */ 3490 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3491 if (sh->sh_flags & SHF_EXECINSTR) { 3492 if (strcmp(name, ".text") == 0) 3493 obj->efile.text_shndx = idx; 3494 err = bpf_object__add_programs(obj, data, name, idx); 3495 if (err) 3496 return err; 3497 } else if (strcmp(name, DATA_SEC) == 0 || 3498 str_has_pfx(name, DATA_SEC ".")) { 3499 sec_desc->sec_type = SEC_DATA; 3500 sec_desc->shdr = sh; 3501 sec_desc->data = data; 3502 } else if (strcmp(name, RODATA_SEC) == 0 || 3503 str_has_pfx(name, RODATA_SEC ".")) { 3504 sec_desc->sec_type = SEC_RODATA; 3505 sec_desc->shdr = sh; 3506 sec_desc->data = data; 3507 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3508 obj->efile.st_ops_data = data; 3509 obj->efile.st_ops_shndx = idx; 3510 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3511 obj->efile.st_ops_link_data = data; 3512 obj->efile.st_ops_link_shndx = idx; 3513 } else { 3514 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3515 idx, name); 3516 } 3517 } else if (sh->sh_type == SHT_REL) { 3518 int targ_sec_idx = sh->sh_info; /* points to other section */ 3519 3520 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3521 targ_sec_idx >= obj->efile.sec_cnt) 3522 return -LIBBPF_ERRNO__FORMAT; 3523 3524 /* Only do relo for section with exec instructions */ 3525 if (!section_have_execinstr(obj, targ_sec_idx) && 3526 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3527 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3528 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3529 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3530 idx, name, targ_sec_idx, 3531 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3532 continue; 3533 } 3534 3535 sec_desc->sec_type = SEC_RELO; 3536 sec_desc->shdr = sh; 3537 sec_desc->data = data; 3538 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3539 str_has_pfx(name, BSS_SEC "."))) { 3540 sec_desc->sec_type = SEC_BSS; 3541 sec_desc->shdr = sh; 3542 sec_desc->data = data; 3543 } else { 3544 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3545 (size_t)sh->sh_size); 3546 } 3547 } 3548 3549 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3550 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3551 return -LIBBPF_ERRNO__FORMAT; 3552 } 3553 3554 /* sort BPF programs by section name and in-section instruction offset 3555 * for faster search 3556 */ 3557 if (obj->nr_programs) 3558 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3559 3560 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3561 } 3562 3563 static bool sym_is_extern(const Elf64_Sym *sym) 3564 { 3565 int bind = ELF64_ST_BIND(sym->st_info); 3566 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3567 return sym->st_shndx == SHN_UNDEF && 3568 (bind == STB_GLOBAL || bind == STB_WEAK) && 3569 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3570 } 3571 3572 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3573 { 3574 int bind = ELF64_ST_BIND(sym->st_info); 3575 int type = ELF64_ST_TYPE(sym->st_info); 3576 3577 /* in .text section */ 3578 if (sym->st_shndx != text_shndx) 3579 return false; 3580 3581 /* local function */ 3582 if (bind == STB_LOCAL && type == STT_SECTION) 3583 return true; 3584 3585 /* global function */ 3586 return bind == STB_GLOBAL && type == STT_FUNC; 3587 } 3588 3589 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3590 { 3591 const struct btf_type *t; 3592 const char *tname; 3593 int i, n; 3594 3595 if (!btf) 3596 return -ESRCH; 3597 3598 n = btf__type_cnt(btf); 3599 for (i = 1; i < n; i++) { 3600 t = btf__type_by_id(btf, i); 3601 3602 if (!btf_is_var(t) && !btf_is_func(t)) 3603 continue; 3604 3605 tname = btf__name_by_offset(btf, t->name_off); 3606 if (strcmp(tname, ext_name)) 3607 continue; 3608 3609 if (btf_is_var(t) && 3610 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3611 return -EINVAL; 3612 3613 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3614 return -EINVAL; 3615 3616 return i; 3617 } 3618 3619 return -ENOENT; 3620 } 3621 3622 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3623 const struct btf_var_secinfo *vs; 3624 const struct btf_type *t; 3625 int i, j, n; 3626 3627 if (!btf) 3628 return -ESRCH; 3629 3630 n = btf__type_cnt(btf); 3631 for (i = 1; i < n; i++) { 3632 t = btf__type_by_id(btf, i); 3633 3634 if (!btf_is_datasec(t)) 3635 continue; 3636 3637 vs = btf_var_secinfos(t); 3638 for (j = 0; j < btf_vlen(t); j++, vs++) { 3639 if (vs->type == ext_btf_id) 3640 return i; 3641 } 3642 } 3643 3644 return -ENOENT; 3645 } 3646 3647 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3648 bool *is_signed) 3649 { 3650 const struct btf_type *t; 3651 const char *name; 3652 3653 t = skip_mods_and_typedefs(btf, id, NULL); 3654 name = btf__name_by_offset(btf, t->name_off); 3655 3656 if (is_signed) 3657 *is_signed = false; 3658 switch (btf_kind(t)) { 3659 case BTF_KIND_INT: { 3660 int enc = btf_int_encoding(t); 3661 3662 if (enc & BTF_INT_BOOL) 3663 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3664 if (is_signed) 3665 *is_signed = enc & BTF_INT_SIGNED; 3666 if (t->size == 1) 3667 return KCFG_CHAR; 3668 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3669 return KCFG_UNKNOWN; 3670 return KCFG_INT; 3671 } 3672 case BTF_KIND_ENUM: 3673 if (t->size != 4) 3674 return KCFG_UNKNOWN; 3675 if (strcmp(name, "libbpf_tristate")) 3676 return KCFG_UNKNOWN; 3677 return KCFG_TRISTATE; 3678 case BTF_KIND_ENUM64: 3679 if (strcmp(name, "libbpf_tristate")) 3680 return KCFG_UNKNOWN; 3681 return KCFG_TRISTATE; 3682 case BTF_KIND_ARRAY: 3683 if (btf_array(t)->nelems == 0) 3684 return KCFG_UNKNOWN; 3685 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3686 return KCFG_UNKNOWN; 3687 return KCFG_CHAR_ARR; 3688 default: 3689 return KCFG_UNKNOWN; 3690 } 3691 } 3692 3693 static int cmp_externs(const void *_a, const void *_b) 3694 { 3695 const struct extern_desc *a = _a; 3696 const struct extern_desc *b = _b; 3697 3698 if (a->type != b->type) 3699 return a->type < b->type ? -1 : 1; 3700 3701 if (a->type == EXT_KCFG) { 3702 /* descending order by alignment requirements */ 3703 if (a->kcfg.align != b->kcfg.align) 3704 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3705 /* ascending order by size, within same alignment class */ 3706 if (a->kcfg.sz != b->kcfg.sz) 3707 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3708 } 3709 3710 /* resolve ties by name */ 3711 return strcmp(a->name, b->name); 3712 } 3713 3714 static int find_int_btf_id(const struct btf *btf) 3715 { 3716 const struct btf_type *t; 3717 int i, n; 3718 3719 n = btf__type_cnt(btf); 3720 for (i = 1; i < n; i++) { 3721 t = btf__type_by_id(btf, i); 3722 3723 if (btf_is_int(t) && btf_int_bits(t) == 32) 3724 return i; 3725 } 3726 3727 return 0; 3728 } 3729 3730 static int add_dummy_ksym_var(struct btf *btf) 3731 { 3732 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3733 const struct btf_var_secinfo *vs; 3734 const struct btf_type *sec; 3735 3736 if (!btf) 3737 return 0; 3738 3739 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3740 BTF_KIND_DATASEC); 3741 if (sec_btf_id < 0) 3742 return 0; 3743 3744 sec = btf__type_by_id(btf, sec_btf_id); 3745 vs = btf_var_secinfos(sec); 3746 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3747 const struct btf_type *vt; 3748 3749 vt = btf__type_by_id(btf, vs->type); 3750 if (btf_is_func(vt)) 3751 break; 3752 } 3753 3754 /* No func in ksyms sec. No need to add dummy var. */ 3755 if (i == btf_vlen(sec)) 3756 return 0; 3757 3758 int_btf_id = find_int_btf_id(btf); 3759 dummy_var_btf_id = btf__add_var(btf, 3760 "dummy_ksym", 3761 BTF_VAR_GLOBAL_ALLOCATED, 3762 int_btf_id); 3763 if (dummy_var_btf_id < 0) 3764 pr_warn("cannot create a dummy_ksym var\n"); 3765 3766 return dummy_var_btf_id; 3767 } 3768 3769 static int bpf_object__collect_externs(struct bpf_object *obj) 3770 { 3771 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3772 const struct btf_type *t; 3773 struct extern_desc *ext; 3774 int i, n, off, dummy_var_btf_id; 3775 const char *ext_name, *sec_name; 3776 size_t ext_essent_len; 3777 Elf_Scn *scn; 3778 Elf64_Shdr *sh; 3779 3780 if (!obj->efile.symbols) 3781 return 0; 3782 3783 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3784 sh = elf_sec_hdr(obj, scn); 3785 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3786 return -LIBBPF_ERRNO__FORMAT; 3787 3788 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3789 if (dummy_var_btf_id < 0) 3790 return dummy_var_btf_id; 3791 3792 n = sh->sh_size / sh->sh_entsize; 3793 pr_debug("looking for externs among %d symbols...\n", n); 3794 3795 for (i = 0; i < n; i++) { 3796 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3797 3798 if (!sym) 3799 return -LIBBPF_ERRNO__FORMAT; 3800 if (!sym_is_extern(sym)) 3801 continue; 3802 ext_name = elf_sym_str(obj, sym->st_name); 3803 if (!ext_name || !ext_name[0]) 3804 continue; 3805 3806 ext = obj->externs; 3807 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3808 if (!ext) 3809 return -ENOMEM; 3810 obj->externs = ext; 3811 ext = &ext[obj->nr_extern]; 3812 memset(ext, 0, sizeof(*ext)); 3813 obj->nr_extern++; 3814 3815 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3816 if (ext->btf_id <= 0) { 3817 pr_warn("failed to find BTF for extern '%s': %d\n", 3818 ext_name, ext->btf_id); 3819 return ext->btf_id; 3820 } 3821 t = btf__type_by_id(obj->btf, ext->btf_id); 3822 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3823 ext->sym_idx = i; 3824 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3825 3826 ext_essent_len = bpf_core_essential_name_len(ext->name); 3827 ext->essent_name = NULL; 3828 if (ext_essent_len != strlen(ext->name)) { 3829 ext->essent_name = strndup(ext->name, ext_essent_len); 3830 if (!ext->essent_name) 3831 return -ENOMEM; 3832 } 3833 3834 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3835 if (ext->sec_btf_id <= 0) { 3836 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3837 ext_name, ext->btf_id, ext->sec_btf_id); 3838 return ext->sec_btf_id; 3839 } 3840 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3841 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3842 3843 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3844 if (btf_is_func(t)) { 3845 pr_warn("extern function %s is unsupported under %s section\n", 3846 ext->name, KCONFIG_SEC); 3847 return -ENOTSUP; 3848 } 3849 kcfg_sec = sec; 3850 ext->type = EXT_KCFG; 3851 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3852 if (ext->kcfg.sz <= 0) { 3853 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3854 ext_name, ext->kcfg.sz); 3855 return ext->kcfg.sz; 3856 } 3857 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3858 if (ext->kcfg.align <= 0) { 3859 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3860 ext_name, ext->kcfg.align); 3861 return -EINVAL; 3862 } 3863 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3864 &ext->kcfg.is_signed); 3865 if (ext->kcfg.type == KCFG_UNKNOWN) { 3866 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3867 return -ENOTSUP; 3868 } 3869 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3870 ksym_sec = sec; 3871 ext->type = EXT_KSYM; 3872 skip_mods_and_typedefs(obj->btf, t->type, 3873 &ext->ksym.type_id); 3874 } else { 3875 pr_warn("unrecognized extern section '%s'\n", sec_name); 3876 return -ENOTSUP; 3877 } 3878 } 3879 pr_debug("collected %d externs total\n", obj->nr_extern); 3880 3881 if (!obj->nr_extern) 3882 return 0; 3883 3884 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3885 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3886 3887 /* for .ksyms section, we need to turn all externs into allocated 3888 * variables in BTF to pass kernel verification; we do this by 3889 * pretending that each extern is a 8-byte variable 3890 */ 3891 if (ksym_sec) { 3892 /* find existing 4-byte integer type in BTF to use for fake 3893 * extern variables in DATASEC 3894 */ 3895 int int_btf_id = find_int_btf_id(obj->btf); 3896 /* For extern function, a dummy_var added earlier 3897 * will be used to replace the vs->type and 3898 * its name string will be used to refill 3899 * the missing param's name. 3900 */ 3901 const struct btf_type *dummy_var; 3902 3903 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3904 for (i = 0; i < obj->nr_extern; i++) { 3905 ext = &obj->externs[i]; 3906 if (ext->type != EXT_KSYM) 3907 continue; 3908 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3909 i, ext->sym_idx, ext->name); 3910 } 3911 3912 sec = ksym_sec; 3913 n = btf_vlen(sec); 3914 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3915 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3916 struct btf_type *vt; 3917 3918 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3919 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3920 ext = find_extern_by_name(obj, ext_name); 3921 if (!ext) { 3922 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3923 btf_kind_str(vt), ext_name); 3924 return -ESRCH; 3925 } 3926 if (btf_is_func(vt)) { 3927 const struct btf_type *func_proto; 3928 struct btf_param *param; 3929 int j; 3930 3931 func_proto = btf__type_by_id(obj->btf, 3932 vt->type); 3933 param = btf_params(func_proto); 3934 /* Reuse the dummy_var string if the 3935 * func proto does not have param name. 3936 */ 3937 for (j = 0; j < btf_vlen(func_proto); j++) 3938 if (param[j].type && !param[j].name_off) 3939 param[j].name_off = 3940 dummy_var->name_off; 3941 vs->type = dummy_var_btf_id; 3942 vt->info &= ~0xffff; 3943 vt->info |= BTF_FUNC_GLOBAL; 3944 } else { 3945 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3946 vt->type = int_btf_id; 3947 } 3948 vs->offset = off; 3949 vs->size = sizeof(int); 3950 } 3951 sec->size = off; 3952 } 3953 3954 if (kcfg_sec) { 3955 sec = kcfg_sec; 3956 /* for kcfg externs calculate their offsets within a .kconfig map */ 3957 off = 0; 3958 for (i = 0; i < obj->nr_extern; i++) { 3959 ext = &obj->externs[i]; 3960 if (ext->type != EXT_KCFG) 3961 continue; 3962 3963 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3964 off = ext->kcfg.data_off + ext->kcfg.sz; 3965 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3966 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3967 } 3968 sec->size = off; 3969 n = btf_vlen(sec); 3970 for (i = 0; i < n; i++) { 3971 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3972 3973 t = btf__type_by_id(obj->btf, vs->type); 3974 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3975 ext = find_extern_by_name(obj, ext_name); 3976 if (!ext) { 3977 pr_warn("failed to find extern definition for BTF var '%s'\n", 3978 ext_name); 3979 return -ESRCH; 3980 } 3981 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3982 vs->offset = ext->kcfg.data_off; 3983 } 3984 } 3985 return 0; 3986 } 3987 3988 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3989 { 3990 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3991 } 3992 3993 struct bpf_program * 3994 bpf_object__find_program_by_name(const struct bpf_object *obj, 3995 const char *name) 3996 { 3997 struct bpf_program *prog; 3998 3999 bpf_object__for_each_program(prog, obj) { 4000 if (prog_is_subprog(obj, prog)) 4001 continue; 4002 if (!strcmp(prog->name, name)) 4003 return prog; 4004 } 4005 return errno = ENOENT, NULL; 4006 } 4007 4008 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4009 int shndx) 4010 { 4011 switch (obj->efile.secs[shndx].sec_type) { 4012 case SEC_BSS: 4013 case SEC_DATA: 4014 case SEC_RODATA: 4015 return true; 4016 default: 4017 return false; 4018 } 4019 } 4020 4021 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4022 int shndx) 4023 { 4024 return shndx == obj->efile.btf_maps_shndx; 4025 } 4026 4027 static enum libbpf_map_type 4028 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4029 { 4030 if (shndx == obj->efile.symbols_shndx) 4031 return LIBBPF_MAP_KCONFIG; 4032 4033 switch (obj->efile.secs[shndx].sec_type) { 4034 case SEC_BSS: 4035 return LIBBPF_MAP_BSS; 4036 case SEC_DATA: 4037 return LIBBPF_MAP_DATA; 4038 case SEC_RODATA: 4039 return LIBBPF_MAP_RODATA; 4040 default: 4041 return LIBBPF_MAP_UNSPEC; 4042 } 4043 } 4044 4045 static int bpf_program__record_reloc(struct bpf_program *prog, 4046 struct reloc_desc *reloc_desc, 4047 __u32 insn_idx, const char *sym_name, 4048 const Elf64_Sym *sym, const Elf64_Rel *rel) 4049 { 4050 struct bpf_insn *insn = &prog->insns[insn_idx]; 4051 size_t map_idx, nr_maps = prog->obj->nr_maps; 4052 struct bpf_object *obj = prog->obj; 4053 __u32 shdr_idx = sym->st_shndx; 4054 enum libbpf_map_type type; 4055 const char *sym_sec_name; 4056 struct bpf_map *map; 4057 4058 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4059 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4060 prog->name, sym_name, insn_idx, insn->code); 4061 return -LIBBPF_ERRNO__RELOC; 4062 } 4063 4064 if (sym_is_extern(sym)) { 4065 int sym_idx = ELF64_R_SYM(rel->r_info); 4066 int i, n = obj->nr_extern; 4067 struct extern_desc *ext; 4068 4069 for (i = 0; i < n; i++) { 4070 ext = &obj->externs[i]; 4071 if (ext->sym_idx == sym_idx) 4072 break; 4073 } 4074 if (i >= n) { 4075 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4076 prog->name, sym_name, sym_idx); 4077 return -LIBBPF_ERRNO__RELOC; 4078 } 4079 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4080 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4081 if (insn->code == (BPF_JMP | BPF_CALL)) 4082 reloc_desc->type = RELO_EXTERN_CALL; 4083 else 4084 reloc_desc->type = RELO_EXTERN_LD64; 4085 reloc_desc->insn_idx = insn_idx; 4086 reloc_desc->ext_idx = i; 4087 return 0; 4088 } 4089 4090 /* sub-program call relocation */ 4091 if (is_call_insn(insn)) { 4092 if (insn->src_reg != BPF_PSEUDO_CALL) { 4093 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4094 return -LIBBPF_ERRNO__RELOC; 4095 } 4096 /* text_shndx can be 0, if no default "main" program exists */ 4097 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4098 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4099 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4100 prog->name, sym_name, sym_sec_name); 4101 return -LIBBPF_ERRNO__RELOC; 4102 } 4103 if (sym->st_value % BPF_INSN_SZ) { 4104 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4105 prog->name, sym_name, (size_t)sym->st_value); 4106 return -LIBBPF_ERRNO__RELOC; 4107 } 4108 reloc_desc->type = RELO_CALL; 4109 reloc_desc->insn_idx = insn_idx; 4110 reloc_desc->sym_off = sym->st_value; 4111 return 0; 4112 } 4113 4114 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4115 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4116 prog->name, sym_name, shdr_idx); 4117 return -LIBBPF_ERRNO__RELOC; 4118 } 4119 4120 /* loading subprog addresses */ 4121 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4122 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4123 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4124 */ 4125 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4126 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4127 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4128 return -LIBBPF_ERRNO__RELOC; 4129 } 4130 4131 reloc_desc->type = RELO_SUBPROG_ADDR; 4132 reloc_desc->insn_idx = insn_idx; 4133 reloc_desc->sym_off = sym->st_value; 4134 return 0; 4135 } 4136 4137 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4138 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4139 4140 /* generic map reference relocation */ 4141 if (type == LIBBPF_MAP_UNSPEC) { 4142 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4143 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4144 prog->name, sym_name, sym_sec_name); 4145 return -LIBBPF_ERRNO__RELOC; 4146 } 4147 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4148 map = &obj->maps[map_idx]; 4149 if (map->libbpf_type != type || 4150 map->sec_idx != sym->st_shndx || 4151 map->sec_offset != sym->st_value) 4152 continue; 4153 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4154 prog->name, map_idx, map->name, map->sec_idx, 4155 map->sec_offset, insn_idx); 4156 break; 4157 } 4158 if (map_idx >= nr_maps) { 4159 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4160 prog->name, sym_sec_name, (size_t)sym->st_value); 4161 return -LIBBPF_ERRNO__RELOC; 4162 } 4163 reloc_desc->type = RELO_LD64; 4164 reloc_desc->insn_idx = insn_idx; 4165 reloc_desc->map_idx = map_idx; 4166 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4167 return 0; 4168 } 4169 4170 /* global data map relocation */ 4171 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4172 pr_warn("prog '%s': bad data relo against section '%s'\n", 4173 prog->name, sym_sec_name); 4174 return -LIBBPF_ERRNO__RELOC; 4175 } 4176 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4177 map = &obj->maps[map_idx]; 4178 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4179 continue; 4180 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4181 prog->name, map_idx, map->name, map->sec_idx, 4182 map->sec_offset, insn_idx); 4183 break; 4184 } 4185 if (map_idx >= nr_maps) { 4186 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4187 prog->name, sym_sec_name); 4188 return -LIBBPF_ERRNO__RELOC; 4189 } 4190 4191 reloc_desc->type = RELO_DATA; 4192 reloc_desc->insn_idx = insn_idx; 4193 reloc_desc->map_idx = map_idx; 4194 reloc_desc->sym_off = sym->st_value; 4195 return 0; 4196 } 4197 4198 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4199 { 4200 return insn_idx >= prog->sec_insn_off && 4201 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4202 } 4203 4204 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4205 size_t sec_idx, size_t insn_idx) 4206 { 4207 int l = 0, r = obj->nr_programs - 1, m; 4208 struct bpf_program *prog; 4209 4210 if (!obj->nr_programs) 4211 return NULL; 4212 4213 while (l < r) { 4214 m = l + (r - l + 1) / 2; 4215 prog = &obj->programs[m]; 4216 4217 if (prog->sec_idx < sec_idx || 4218 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4219 l = m; 4220 else 4221 r = m - 1; 4222 } 4223 /* matching program could be at index l, but it still might be the 4224 * wrong one, so we need to double check conditions for the last time 4225 */ 4226 prog = &obj->programs[l]; 4227 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4228 return prog; 4229 return NULL; 4230 } 4231 4232 static int 4233 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4234 { 4235 const char *relo_sec_name, *sec_name; 4236 size_t sec_idx = shdr->sh_info, sym_idx; 4237 struct bpf_program *prog; 4238 struct reloc_desc *relos; 4239 int err, i, nrels; 4240 const char *sym_name; 4241 __u32 insn_idx; 4242 Elf_Scn *scn; 4243 Elf_Data *scn_data; 4244 Elf64_Sym *sym; 4245 Elf64_Rel *rel; 4246 4247 if (sec_idx >= obj->efile.sec_cnt) 4248 return -EINVAL; 4249 4250 scn = elf_sec_by_idx(obj, sec_idx); 4251 scn_data = elf_sec_data(obj, scn); 4252 4253 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4254 sec_name = elf_sec_name(obj, scn); 4255 if (!relo_sec_name || !sec_name) 4256 return -EINVAL; 4257 4258 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4259 relo_sec_name, sec_idx, sec_name); 4260 nrels = shdr->sh_size / shdr->sh_entsize; 4261 4262 for (i = 0; i < nrels; i++) { 4263 rel = elf_rel_by_idx(data, i); 4264 if (!rel) { 4265 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4266 return -LIBBPF_ERRNO__FORMAT; 4267 } 4268 4269 sym_idx = ELF64_R_SYM(rel->r_info); 4270 sym = elf_sym_by_idx(obj, sym_idx); 4271 if (!sym) { 4272 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4273 relo_sec_name, sym_idx, i); 4274 return -LIBBPF_ERRNO__FORMAT; 4275 } 4276 4277 if (sym->st_shndx >= obj->efile.sec_cnt) { 4278 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4279 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4280 return -LIBBPF_ERRNO__FORMAT; 4281 } 4282 4283 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4284 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4285 relo_sec_name, (size_t)rel->r_offset, i); 4286 return -LIBBPF_ERRNO__FORMAT; 4287 } 4288 4289 insn_idx = rel->r_offset / BPF_INSN_SZ; 4290 /* relocations against static functions are recorded as 4291 * relocations against the section that contains a function; 4292 * in such case, symbol will be STT_SECTION and sym.st_name 4293 * will point to empty string (0), so fetch section name 4294 * instead 4295 */ 4296 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4297 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4298 else 4299 sym_name = elf_sym_str(obj, sym->st_name); 4300 sym_name = sym_name ?: "<?"; 4301 4302 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4303 relo_sec_name, i, insn_idx, sym_name); 4304 4305 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4306 if (!prog) { 4307 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4308 relo_sec_name, i, sec_name, insn_idx); 4309 continue; 4310 } 4311 4312 relos = libbpf_reallocarray(prog->reloc_desc, 4313 prog->nr_reloc + 1, sizeof(*relos)); 4314 if (!relos) 4315 return -ENOMEM; 4316 prog->reloc_desc = relos; 4317 4318 /* adjust insn_idx to local BPF program frame of reference */ 4319 insn_idx -= prog->sec_insn_off; 4320 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4321 insn_idx, sym_name, sym, rel); 4322 if (err) 4323 return err; 4324 4325 prog->nr_reloc++; 4326 } 4327 return 0; 4328 } 4329 4330 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4331 { 4332 int id; 4333 4334 if (!obj->btf) 4335 return -ENOENT; 4336 4337 /* if it's BTF-defined map, we don't need to search for type IDs. 4338 * For struct_ops map, it does not need btf_key_type_id and 4339 * btf_value_type_id. 4340 */ 4341 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4342 return 0; 4343 4344 /* 4345 * LLVM annotates global data differently in BTF, that is, 4346 * only as '.data', '.bss' or '.rodata'. 4347 */ 4348 if (!bpf_map__is_internal(map)) 4349 return -ENOENT; 4350 4351 id = btf__find_by_name(obj->btf, map->real_name); 4352 if (id < 0) 4353 return id; 4354 4355 map->btf_key_type_id = 0; 4356 map->btf_value_type_id = id; 4357 return 0; 4358 } 4359 4360 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4361 { 4362 char file[PATH_MAX], buff[4096]; 4363 FILE *fp; 4364 __u32 val; 4365 int err; 4366 4367 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4368 memset(info, 0, sizeof(*info)); 4369 4370 fp = fopen(file, "re"); 4371 if (!fp) { 4372 err = -errno; 4373 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4374 err); 4375 return err; 4376 } 4377 4378 while (fgets(buff, sizeof(buff), fp)) { 4379 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4380 info->type = val; 4381 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4382 info->key_size = val; 4383 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4384 info->value_size = val; 4385 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4386 info->max_entries = val; 4387 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4388 info->map_flags = val; 4389 } 4390 4391 fclose(fp); 4392 4393 return 0; 4394 } 4395 4396 bool bpf_map__autocreate(const struct bpf_map *map) 4397 { 4398 return map->autocreate; 4399 } 4400 4401 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4402 { 4403 if (map->obj->loaded) 4404 return libbpf_err(-EBUSY); 4405 4406 map->autocreate = autocreate; 4407 return 0; 4408 } 4409 4410 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4411 { 4412 struct bpf_map_info info; 4413 __u32 len = sizeof(info), name_len; 4414 int new_fd, err; 4415 char *new_name; 4416 4417 memset(&info, 0, len); 4418 err = bpf_map_get_info_by_fd(fd, &info, &len); 4419 if (err && errno == EINVAL) 4420 err = bpf_get_map_info_from_fdinfo(fd, &info); 4421 if (err) 4422 return libbpf_err(err); 4423 4424 name_len = strlen(info.name); 4425 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4426 new_name = strdup(map->name); 4427 else 4428 new_name = strdup(info.name); 4429 4430 if (!new_name) 4431 return libbpf_err(-errno); 4432 4433 /* 4434 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4435 * This is similar to what we do in ensure_good_fd(), but without 4436 * closing original FD. 4437 */ 4438 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4439 if (new_fd < 0) { 4440 err = -errno; 4441 goto err_free_new_name; 4442 } 4443 4444 err = zclose(map->fd); 4445 if (err) { 4446 err = -errno; 4447 goto err_close_new_fd; 4448 } 4449 free(map->name); 4450 4451 map->fd = new_fd; 4452 map->name = new_name; 4453 map->def.type = info.type; 4454 map->def.key_size = info.key_size; 4455 map->def.value_size = info.value_size; 4456 map->def.max_entries = info.max_entries; 4457 map->def.map_flags = info.map_flags; 4458 map->btf_key_type_id = info.btf_key_type_id; 4459 map->btf_value_type_id = info.btf_value_type_id; 4460 map->reused = true; 4461 map->map_extra = info.map_extra; 4462 4463 return 0; 4464 4465 err_close_new_fd: 4466 close(new_fd); 4467 err_free_new_name: 4468 free(new_name); 4469 return libbpf_err(err); 4470 } 4471 4472 __u32 bpf_map__max_entries(const struct bpf_map *map) 4473 { 4474 return map->def.max_entries; 4475 } 4476 4477 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4478 { 4479 if (!bpf_map_type__is_map_in_map(map->def.type)) 4480 return errno = EINVAL, NULL; 4481 4482 return map->inner_map; 4483 } 4484 4485 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4486 { 4487 if (map->obj->loaded) 4488 return libbpf_err(-EBUSY); 4489 4490 map->def.max_entries = max_entries; 4491 4492 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4493 if (map_is_ringbuf(map)) 4494 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4495 4496 return 0; 4497 } 4498 4499 static int 4500 bpf_object__probe_loading(struct bpf_object *obj) 4501 { 4502 char *cp, errmsg[STRERR_BUFSIZE]; 4503 struct bpf_insn insns[] = { 4504 BPF_MOV64_IMM(BPF_REG_0, 0), 4505 BPF_EXIT_INSN(), 4506 }; 4507 int ret, insn_cnt = ARRAY_SIZE(insns); 4508 4509 if (obj->gen_loader) 4510 return 0; 4511 4512 ret = bump_rlimit_memlock(); 4513 if (ret) 4514 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4515 4516 /* make sure basic loading works */ 4517 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4518 if (ret < 0) 4519 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4520 if (ret < 0) { 4521 ret = errno; 4522 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4523 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4524 "program. Make sure your kernel supports BPF " 4525 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4526 "set to big enough value.\n", __func__, cp, ret); 4527 return -ret; 4528 } 4529 close(ret); 4530 4531 return 0; 4532 } 4533 4534 static int probe_fd(int fd) 4535 { 4536 if (fd >= 0) 4537 close(fd); 4538 return fd >= 0; 4539 } 4540 4541 static int probe_kern_prog_name(void) 4542 { 4543 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4544 struct bpf_insn insns[] = { 4545 BPF_MOV64_IMM(BPF_REG_0, 0), 4546 BPF_EXIT_INSN(), 4547 }; 4548 union bpf_attr attr; 4549 int ret; 4550 4551 memset(&attr, 0, attr_sz); 4552 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4553 attr.license = ptr_to_u64("GPL"); 4554 attr.insns = ptr_to_u64(insns); 4555 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4556 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4557 4558 /* make sure loading with name works */ 4559 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4560 return probe_fd(ret); 4561 } 4562 4563 static int probe_kern_global_data(void) 4564 { 4565 char *cp, errmsg[STRERR_BUFSIZE]; 4566 struct bpf_insn insns[] = { 4567 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4568 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4569 BPF_MOV64_IMM(BPF_REG_0, 0), 4570 BPF_EXIT_INSN(), 4571 }; 4572 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4573 4574 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4575 if (map < 0) { 4576 ret = -errno; 4577 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4578 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4579 __func__, cp, -ret); 4580 return ret; 4581 } 4582 4583 insns[0].imm = map; 4584 4585 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4586 close(map); 4587 return probe_fd(ret); 4588 } 4589 4590 static int probe_kern_btf(void) 4591 { 4592 static const char strs[] = "\0int"; 4593 __u32 types[] = { 4594 /* int */ 4595 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4596 }; 4597 4598 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4599 strs, sizeof(strs))); 4600 } 4601 4602 static int probe_kern_btf_func(void) 4603 { 4604 static const char strs[] = "\0int\0x\0a"; 4605 /* void x(int a) {} */ 4606 __u32 types[] = { 4607 /* int */ 4608 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4609 /* FUNC_PROTO */ /* [2] */ 4610 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4611 BTF_PARAM_ENC(7, 1), 4612 /* FUNC x */ /* [3] */ 4613 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4614 }; 4615 4616 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4617 strs, sizeof(strs))); 4618 } 4619 4620 static int probe_kern_btf_func_global(void) 4621 { 4622 static const char strs[] = "\0int\0x\0a"; 4623 /* static void x(int a) {} */ 4624 __u32 types[] = { 4625 /* int */ 4626 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4627 /* FUNC_PROTO */ /* [2] */ 4628 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4629 BTF_PARAM_ENC(7, 1), 4630 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4631 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4632 }; 4633 4634 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4635 strs, sizeof(strs))); 4636 } 4637 4638 static int probe_kern_btf_datasec(void) 4639 { 4640 static const char strs[] = "\0x\0.data"; 4641 /* static int a; */ 4642 __u32 types[] = { 4643 /* int */ 4644 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4645 /* VAR x */ /* [2] */ 4646 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4647 BTF_VAR_STATIC, 4648 /* DATASEC val */ /* [3] */ 4649 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4650 BTF_VAR_SECINFO_ENC(2, 0, 4), 4651 }; 4652 4653 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4654 strs, sizeof(strs))); 4655 } 4656 4657 static int probe_kern_btf_float(void) 4658 { 4659 static const char strs[] = "\0float"; 4660 __u32 types[] = { 4661 /* float */ 4662 BTF_TYPE_FLOAT_ENC(1, 4), 4663 }; 4664 4665 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4666 strs, sizeof(strs))); 4667 } 4668 4669 static int probe_kern_btf_decl_tag(void) 4670 { 4671 static const char strs[] = "\0tag"; 4672 __u32 types[] = { 4673 /* int */ 4674 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4675 /* VAR x */ /* [2] */ 4676 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4677 BTF_VAR_STATIC, 4678 /* attr */ 4679 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4680 }; 4681 4682 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4683 strs, sizeof(strs))); 4684 } 4685 4686 static int probe_kern_btf_type_tag(void) 4687 { 4688 static const char strs[] = "\0tag"; 4689 __u32 types[] = { 4690 /* int */ 4691 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4692 /* attr */ 4693 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4694 /* ptr */ 4695 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4696 }; 4697 4698 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4699 strs, sizeof(strs))); 4700 } 4701 4702 static int probe_kern_array_mmap(void) 4703 { 4704 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4705 int fd; 4706 4707 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4708 return probe_fd(fd); 4709 } 4710 4711 static int probe_kern_exp_attach_type(void) 4712 { 4713 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4714 struct bpf_insn insns[] = { 4715 BPF_MOV64_IMM(BPF_REG_0, 0), 4716 BPF_EXIT_INSN(), 4717 }; 4718 int fd, insn_cnt = ARRAY_SIZE(insns); 4719 4720 /* use any valid combination of program type and (optional) 4721 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4722 * to see if kernel supports expected_attach_type field for 4723 * BPF_PROG_LOAD command 4724 */ 4725 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4726 return probe_fd(fd); 4727 } 4728 4729 static int probe_kern_probe_read_kernel(void) 4730 { 4731 struct bpf_insn insns[] = { 4732 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4733 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4734 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4735 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4736 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4737 BPF_EXIT_INSN(), 4738 }; 4739 int fd, insn_cnt = ARRAY_SIZE(insns); 4740 4741 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4742 return probe_fd(fd); 4743 } 4744 4745 static int probe_prog_bind_map(void) 4746 { 4747 char *cp, errmsg[STRERR_BUFSIZE]; 4748 struct bpf_insn insns[] = { 4749 BPF_MOV64_IMM(BPF_REG_0, 0), 4750 BPF_EXIT_INSN(), 4751 }; 4752 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4753 4754 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4755 if (map < 0) { 4756 ret = -errno; 4757 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4758 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4759 __func__, cp, -ret); 4760 return ret; 4761 } 4762 4763 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4764 if (prog < 0) { 4765 close(map); 4766 return 0; 4767 } 4768 4769 ret = bpf_prog_bind_map(prog, map, NULL); 4770 4771 close(map); 4772 close(prog); 4773 4774 return ret >= 0; 4775 } 4776 4777 static int probe_module_btf(void) 4778 { 4779 static const char strs[] = "\0int"; 4780 __u32 types[] = { 4781 /* int */ 4782 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4783 }; 4784 struct bpf_btf_info info; 4785 __u32 len = sizeof(info); 4786 char name[16]; 4787 int fd, err; 4788 4789 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4790 if (fd < 0) 4791 return 0; /* BTF not supported at all */ 4792 4793 memset(&info, 0, sizeof(info)); 4794 info.name = ptr_to_u64(name); 4795 info.name_len = sizeof(name); 4796 4797 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4798 * kernel's module BTF support coincides with support for 4799 * name/name_len fields in struct bpf_btf_info. 4800 */ 4801 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4802 close(fd); 4803 return !err; 4804 } 4805 4806 static int probe_perf_link(void) 4807 { 4808 struct bpf_insn insns[] = { 4809 BPF_MOV64_IMM(BPF_REG_0, 0), 4810 BPF_EXIT_INSN(), 4811 }; 4812 int prog_fd, link_fd, err; 4813 4814 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4815 insns, ARRAY_SIZE(insns), NULL); 4816 if (prog_fd < 0) 4817 return -errno; 4818 4819 /* use invalid perf_event FD to get EBADF, if link is supported; 4820 * otherwise EINVAL should be returned 4821 */ 4822 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4823 err = -errno; /* close() can clobber errno */ 4824 4825 if (link_fd >= 0) 4826 close(link_fd); 4827 close(prog_fd); 4828 4829 return link_fd < 0 && err == -EBADF; 4830 } 4831 4832 static int probe_kern_bpf_cookie(void) 4833 { 4834 struct bpf_insn insns[] = { 4835 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4836 BPF_EXIT_INSN(), 4837 }; 4838 int ret, insn_cnt = ARRAY_SIZE(insns); 4839 4840 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4841 return probe_fd(ret); 4842 } 4843 4844 static int probe_kern_btf_enum64(void) 4845 { 4846 static const char strs[] = "\0enum64"; 4847 __u32 types[] = { 4848 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4849 }; 4850 4851 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4852 strs, sizeof(strs))); 4853 } 4854 4855 static int probe_kern_syscall_wrapper(void); 4856 4857 enum kern_feature_result { 4858 FEAT_UNKNOWN = 0, 4859 FEAT_SUPPORTED = 1, 4860 FEAT_MISSING = 2, 4861 }; 4862 4863 typedef int (*feature_probe_fn)(void); 4864 4865 static struct kern_feature_desc { 4866 const char *desc; 4867 feature_probe_fn probe; 4868 enum kern_feature_result res; 4869 } feature_probes[__FEAT_CNT] = { 4870 [FEAT_PROG_NAME] = { 4871 "BPF program name", probe_kern_prog_name, 4872 }, 4873 [FEAT_GLOBAL_DATA] = { 4874 "global variables", probe_kern_global_data, 4875 }, 4876 [FEAT_BTF] = { 4877 "minimal BTF", probe_kern_btf, 4878 }, 4879 [FEAT_BTF_FUNC] = { 4880 "BTF functions", probe_kern_btf_func, 4881 }, 4882 [FEAT_BTF_GLOBAL_FUNC] = { 4883 "BTF global function", probe_kern_btf_func_global, 4884 }, 4885 [FEAT_BTF_DATASEC] = { 4886 "BTF data section and variable", probe_kern_btf_datasec, 4887 }, 4888 [FEAT_ARRAY_MMAP] = { 4889 "ARRAY map mmap()", probe_kern_array_mmap, 4890 }, 4891 [FEAT_EXP_ATTACH_TYPE] = { 4892 "BPF_PROG_LOAD expected_attach_type attribute", 4893 probe_kern_exp_attach_type, 4894 }, 4895 [FEAT_PROBE_READ_KERN] = { 4896 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4897 }, 4898 [FEAT_PROG_BIND_MAP] = { 4899 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4900 }, 4901 [FEAT_MODULE_BTF] = { 4902 "module BTF support", probe_module_btf, 4903 }, 4904 [FEAT_BTF_FLOAT] = { 4905 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4906 }, 4907 [FEAT_PERF_LINK] = { 4908 "BPF perf link support", probe_perf_link, 4909 }, 4910 [FEAT_BTF_DECL_TAG] = { 4911 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4912 }, 4913 [FEAT_BTF_TYPE_TAG] = { 4914 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4915 }, 4916 [FEAT_MEMCG_ACCOUNT] = { 4917 "memcg-based memory accounting", probe_memcg_account, 4918 }, 4919 [FEAT_BPF_COOKIE] = { 4920 "BPF cookie support", probe_kern_bpf_cookie, 4921 }, 4922 [FEAT_BTF_ENUM64] = { 4923 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4924 }, 4925 [FEAT_SYSCALL_WRAPPER] = { 4926 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4927 }, 4928 }; 4929 4930 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4931 { 4932 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4933 int ret; 4934 4935 if (obj && obj->gen_loader) 4936 /* To generate loader program assume the latest kernel 4937 * to avoid doing extra prog_load, map_create syscalls. 4938 */ 4939 return true; 4940 4941 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4942 ret = feat->probe(); 4943 if (ret > 0) { 4944 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4945 } else if (ret == 0) { 4946 WRITE_ONCE(feat->res, FEAT_MISSING); 4947 } else { 4948 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4949 WRITE_ONCE(feat->res, FEAT_MISSING); 4950 } 4951 } 4952 4953 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4954 } 4955 4956 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4957 { 4958 struct bpf_map_info map_info; 4959 char msg[STRERR_BUFSIZE]; 4960 __u32 map_info_len = sizeof(map_info); 4961 int err; 4962 4963 memset(&map_info, 0, map_info_len); 4964 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4965 if (err && errno == EINVAL) 4966 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4967 if (err) { 4968 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4969 libbpf_strerror_r(errno, msg, sizeof(msg))); 4970 return false; 4971 } 4972 4973 return (map_info.type == map->def.type && 4974 map_info.key_size == map->def.key_size && 4975 map_info.value_size == map->def.value_size && 4976 map_info.max_entries == map->def.max_entries && 4977 map_info.map_flags == map->def.map_flags && 4978 map_info.map_extra == map->map_extra); 4979 } 4980 4981 static int 4982 bpf_object__reuse_map(struct bpf_map *map) 4983 { 4984 char *cp, errmsg[STRERR_BUFSIZE]; 4985 int err, pin_fd; 4986 4987 pin_fd = bpf_obj_get(map->pin_path); 4988 if (pin_fd < 0) { 4989 err = -errno; 4990 if (err == -ENOENT) { 4991 pr_debug("found no pinned map to reuse at '%s'\n", 4992 map->pin_path); 4993 return 0; 4994 } 4995 4996 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4997 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4998 map->pin_path, cp); 4999 return err; 5000 } 5001 5002 if (!map_is_reuse_compat(map, pin_fd)) { 5003 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5004 map->pin_path); 5005 close(pin_fd); 5006 return -EINVAL; 5007 } 5008 5009 err = bpf_map__reuse_fd(map, pin_fd); 5010 close(pin_fd); 5011 if (err) 5012 return err; 5013 5014 map->pinned = true; 5015 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5016 5017 return 0; 5018 } 5019 5020 static int 5021 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5022 { 5023 enum libbpf_map_type map_type = map->libbpf_type; 5024 char *cp, errmsg[STRERR_BUFSIZE]; 5025 int err, zero = 0; 5026 5027 if (obj->gen_loader) { 5028 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5029 map->mmaped, map->def.value_size); 5030 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5031 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5032 return 0; 5033 } 5034 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5035 if (err) { 5036 err = -errno; 5037 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5038 pr_warn("Error setting initial map(%s) contents: %s\n", 5039 map->name, cp); 5040 return err; 5041 } 5042 5043 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5044 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5045 err = bpf_map_freeze(map->fd); 5046 if (err) { 5047 err = -errno; 5048 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5049 pr_warn("Error freezing map(%s) as read-only: %s\n", 5050 map->name, cp); 5051 return err; 5052 } 5053 } 5054 return 0; 5055 } 5056 5057 static void bpf_map__destroy(struct bpf_map *map); 5058 5059 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5060 { 5061 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5062 struct bpf_map_def *def = &map->def; 5063 const char *map_name = NULL; 5064 int err = 0; 5065 5066 if (kernel_supports(obj, FEAT_PROG_NAME)) 5067 map_name = map->name; 5068 create_attr.map_ifindex = map->map_ifindex; 5069 create_attr.map_flags = def->map_flags; 5070 create_attr.numa_node = map->numa_node; 5071 create_attr.map_extra = map->map_extra; 5072 5073 if (bpf_map__is_struct_ops(map)) 5074 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5075 5076 if (obj->btf && btf__fd(obj->btf) >= 0) { 5077 create_attr.btf_fd = btf__fd(obj->btf); 5078 create_attr.btf_key_type_id = map->btf_key_type_id; 5079 create_attr.btf_value_type_id = map->btf_value_type_id; 5080 } 5081 5082 if (bpf_map_type__is_map_in_map(def->type)) { 5083 if (map->inner_map) { 5084 err = bpf_object__create_map(obj, map->inner_map, true); 5085 if (err) { 5086 pr_warn("map '%s': failed to create inner map: %d\n", 5087 map->name, err); 5088 return err; 5089 } 5090 map->inner_map_fd = bpf_map__fd(map->inner_map); 5091 } 5092 if (map->inner_map_fd >= 0) 5093 create_attr.inner_map_fd = map->inner_map_fd; 5094 } 5095 5096 switch (def->type) { 5097 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5098 case BPF_MAP_TYPE_CGROUP_ARRAY: 5099 case BPF_MAP_TYPE_STACK_TRACE: 5100 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5101 case BPF_MAP_TYPE_HASH_OF_MAPS: 5102 case BPF_MAP_TYPE_DEVMAP: 5103 case BPF_MAP_TYPE_DEVMAP_HASH: 5104 case BPF_MAP_TYPE_CPUMAP: 5105 case BPF_MAP_TYPE_XSKMAP: 5106 case BPF_MAP_TYPE_SOCKMAP: 5107 case BPF_MAP_TYPE_SOCKHASH: 5108 case BPF_MAP_TYPE_QUEUE: 5109 case BPF_MAP_TYPE_STACK: 5110 create_attr.btf_fd = 0; 5111 create_attr.btf_key_type_id = 0; 5112 create_attr.btf_value_type_id = 0; 5113 map->btf_key_type_id = 0; 5114 map->btf_value_type_id = 0; 5115 default: 5116 break; 5117 } 5118 5119 if (obj->gen_loader) { 5120 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5121 def->key_size, def->value_size, def->max_entries, 5122 &create_attr, is_inner ? -1 : map - obj->maps); 5123 /* Pretend to have valid FD to pass various fd >= 0 checks. 5124 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5125 */ 5126 map->fd = 0; 5127 } else { 5128 map->fd = bpf_map_create(def->type, map_name, 5129 def->key_size, def->value_size, 5130 def->max_entries, &create_attr); 5131 } 5132 if (map->fd < 0 && (create_attr.btf_key_type_id || 5133 create_attr.btf_value_type_id)) { 5134 char *cp, errmsg[STRERR_BUFSIZE]; 5135 5136 err = -errno; 5137 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5138 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5139 map->name, cp, err); 5140 create_attr.btf_fd = 0; 5141 create_attr.btf_key_type_id = 0; 5142 create_attr.btf_value_type_id = 0; 5143 map->btf_key_type_id = 0; 5144 map->btf_value_type_id = 0; 5145 map->fd = bpf_map_create(def->type, map_name, 5146 def->key_size, def->value_size, 5147 def->max_entries, &create_attr); 5148 } 5149 5150 err = map->fd < 0 ? -errno : 0; 5151 5152 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5153 if (obj->gen_loader) 5154 map->inner_map->fd = -1; 5155 bpf_map__destroy(map->inner_map); 5156 zfree(&map->inner_map); 5157 } 5158 5159 return err; 5160 } 5161 5162 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5163 { 5164 const struct bpf_map *targ_map; 5165 unsigned int i; 5166 int fd, err = 0; 5167 5168 for (i = 0; i < map->init_slots_sz; i++) { 5169 if (!map->init_slots[i]) 5170 continue; 5171 5172 targ_map = map->init_slots[i]; 5173 fd = bpf_map__fd(targ_map); 5174 5175 if (obj->gen_loader) { 5176 bpf_gen__populate_outer_map(obj->gen_loader, 5177 map - obj->maps, i, 5178 targ_map - obj->maps); 5179 } else { 5180 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5181 } 5182 if (err) { 5183 err = -errno; 5184 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5185 map->name, i, targ_map->name, fd, err); 5186 return err; 5187 } 5188 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5189 map->name, i, targ_map->name, fd); 5190 } 5191 5192 zfree(&map->init_slots); 5193 map->init_slots_sz = 0; 5194 5195 return 0; 5196 } 5197 5198 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5199 { 5200 const struct bpf_program *targ_prog; 5201 unsigned int i; 5202 int fd, err; 5203 5204 if (obj->gen_loader) 5205 return -ENOTSUP; 5206 5207 for (i = 0; i < map->init_slots_sz; i++) { 5208 if (!map->init_slots[i]) 5209 continue; 5210 5211 targ_prog = map->init_slots[i]; 5212 fd = bpf_program__fd(targ_prog); 5213 5214 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5215 if (err) { 5216 err = -errno; 5217 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5218 map->name, i, targ_prog->name, fd, err); 5219 return err; 5220 } 5221 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5222 map->name, i, targ_prog->name, fd); 5223 } 5224 5225 zfree(&map->init_slots); 5226 map->init_slots_sz = 0; 5227 5228 return 0; 5229 } 5230 5231 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5232 { 5233 struct bpf_map *map; 5234 int i, err; 5235 5236 for (i = 0; i < obj->nr_maps; i++) { 5237 map = &obj->maps[i]; 5238 5239 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5240 continue; 5241 5242 err = init_prog_array_slots(obj, map); 5243 if (err < 0) { 5244 zclose(map->fd); 5245 return err; 5246 } 5247 } 5248 return 0; 5249 } 5250 5251 static int map_set_def_max_entries(struct bpf_map *map) 5252 { 5253 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5254 int nr_cpus; 5255 5256 nr_cpus = libbpf_num_possible_cpus(); 5257 if (nr_cpus < 0) { 5258 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5259 map->name, nr_cpus); 5260 return nr_cpus; 5261 } 5262 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5263 map->def.max_entries = nr_cpus; 5264 } 5265 5266 return 0; 5267 } 5268 5269 static int 5270 bpf_object__create_maps(struct bpf_object *obj) 5271 { 5272 struct bpf_map *map; 5273 char *cp, errmsg[STRERR_BUFSIZE]; 5274 unsigned int i, j; 5275 int err; 5276 bool retried; 5277 5278 for (i = 0; i < obj->nr_maps; i++) { 5279 map = &obj->maps[i]; 5280 5281 /* To support old kernels, we skip creating global data maps 5282 * (.rodata, .data, .kconfig, etc); later on, during program 5283 * loading, if we detect that at least one of the to-be-loaded 5284 * programs is referencing any global data map, we'll error 5285 * out with program name and relocation index logged. 5286 * This approach allows to accommodate Clang emitting 5287 * unnecessary .rodata.str1.1 sections for string literals, 5288 * but also it allows to have CO-RE applications that use 5289 * global variables in some of BPF programs, but not others. 5290 * If those global variable-using programs are not loaded at 5291 * runtime due to bpf_program__set_autoload(prog, false), 5292 * bpf_object loading will succeed just fine even on old 5293 * kernels. 5294 */ 5295 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5296 map->autocreate = false; 5297 5298 if (!map->autocreate) { 5299 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5300 continue; 5301 } 5302 5303 err = map_set_def_max_entries(map); 5304 if (err) 5305 goto err_out; 5306 5307 retried = false; 5308 retry: 5309 if (map->pin_path) { 5310 err = bpf_object__reuse_map(map); 5311 if (err) { 5312 pr_warn("map '%s': error reusing pinned map\n", 5313 map->name); 5314 goto err_out; 5315 } 5316 if (retried && map->fd < 0) { 5317 pr_warn("map '%s': cannot find pinned map\n", 5318 map->name); 5319 err = -ENOENT; 5320 goto err_out; 5321 } 5322 } 5323 5324 if (map->fd >= 0) { 5325 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5326 map->name, map->fd); 5327 } else { 5328 err = bpf_object__create_map(obj, map, false); 5329 if (err) 5330 goto err_out; 5331 5332 pr_debug("map '%s': created successfully, fd=%d\n", 5333 map->name, map->fd); 5334 5335 if (bpf_map__is_internal(map)) { 5336 err = bpf_object__populate_internal_map(obj, map); 5337 if (err < 0) { 5338 zclose(map->fd); 5339 goto err_out; 5340 } 5341 } 5342 5343 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5344 err = init_map_in_map_slots(obj, map); 5345 if (err < 0) { 5346 zclose(map->fd); 5347 goto err_out; 5348 } 5349 } 5350 } 5351 5352 if (map->pin_path && !map->pinned) { 5353 err = bpf_map__pin(map, NULL); 5354 if (err) { 5355 zclose(map->fd); 5356 if (!retried && err == -EEXIST) { 5357 retried = true; 5358 goto retry; 5359 } 5360 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5361 map->name, map->pin_path, err); 5362 goto err_out; 5363 } 5364 } 5365 } 5366 5367 return 0; 5368 5369 err_out: 5370 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5371 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5372 pr_perm_msg(err); 5373 for (j = 0; j < i; j++) 5374 zclose(obj->maps[j].fd); 5375 return err; 5376 } 5377 5378 static bool bpf_core_is_flavor_sep(const char *s) 5379 { 5380 /* check X___Y name pattern, where X and Y are not underscores */ 5381 return s[0] != '_' && /* X */ 5382 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5383 s[4] != '_'; /* Y */ 5384 } 5385 5386 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5387 * before last triple underscore. Struct name part after last triple 5388 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5389 */ 5390 size_t bpf_core_essential_name_len(const char *name) 5391 { 5392 size_t n = strlen(name); 5393 int i; 5394 5395 for (i = n - 5; i >= 0; i--) { 5396 if (bpf_core_is_flavor_sep(name + i)) 5397 return i + 1; 5398 } 5399 return n; 5400 } 5401 5402 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5403 { 5404 if (!cands) 5405 return; 5406 5407 free(cands->cands); 5408 free(cands); 5409 } 5410 5411 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5412 size_t local_essent_len, 5413 const struct btf *targ_btf, 5414 const char *targ_btf_name, 5415 int targ_start_id, 5416 struct bpf_core_cand_list *cands) 5417 { 5418 struct bpf_core_cand *new_cands, *cand; 5419 const struct btf_type *t, *local_t; 5420 const char *targ_name, *local_name; 5421 size_t targ_essent_len; 5422 int n, i; 5423 5424 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5425 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5426 5427 n = btf__type_cnt(targ_btf); 5428 for (i = targ_start_id; i < n; i++) { 5429 t = btf__type_by_id(targ_btf, i); 5430 if (!btf_kind_core_compat(t, local_t)) 5431 continue; 5432 5433 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5434 if (str_is_empty(targ_name)) 5435 continue; 5436 5437 targ_essent_len = bpf_core_essential_name_len(targ_name); 5438 if (targ_essent_len != local_essent_len) 5439 continue; 5440 5441 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5442 continue; 5443 5444 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5445 local_cand->id, btf_kind_str(local_t), 5446 local_name, i, btf_kind_str(t), targ_name, 5447 targ_btf_name); 5448 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5449 sizeof(*cands->cands)); 5450 if (!new_cands) 5451 return -ENOMEM; 5452 5453 cand = &new_cands[cands->len]; 5454 cand->btf = targ_btf; 5455 cand->id = i; 5456 5457 cands->cands = new_cands; 5458 cands->len++; 5459 } 5460 return 0; 5461 } 5462 5463 static int load_module_btfs(struct bpf_object *obj) 5464 { 5465 struct bpf_btf_info info; 5466 struct module_btf *mod_btf; 5467 struct btf *btf; 5468 char name[64]; 5469 __u32 id = 0, len; 5470 int err, fd; 5471 5472 if (obj->btf_modules_loaded) 5473 return 0; 5474 5475 if (obj->gen_loader) 5476 return 0; 5477 5478 /* don't do this again, even if we find no module BTFs */ 5479 obj->btf_modules_loaded = true; 5480 5481 /* kernel too old to support module BTFs */ 5482 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5483 return 0; 5484 5485 while (true) { 5486 err = bpf_btf_get_next_id(id, &id); 5487 if (err && errno == ENOENT) 5488 return 0; 5489 if (err && errno == EPERM) { 5490 pr_debug("skipping module BTFs loading, missing privileges\n"); 5491 return 0; 5492 } 5493 if (err) { 5494 err = -errno; 5495 pr_warn("failed to iterate BTF objects: %d\n", err); 5496 return err; 5497 } 5498 5499 fd = bpf_btf_get_fd_by_id(id); 5500 if (fd < 0) { 5501 if (errno == ENOENT) 5502 continue; /* expected race: BTF was unloaded */ 5503 err = -errno; 5504 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5505 return err; 5506 } 5507 5508 len = sizeof(info); 5509 memset(&info, 0, sizeof(info)); 5510 info.name = ptr_to_u64(name); 5511 info.name_len = sizeof(name); 5512 5513 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5514 if (err) { 5515 err = -errno; 5516 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5517 goto err_out; 5518 } 5519 5520 /* ignore non-module BTFs */ 5521 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5522 close(fd); 5523 continue; 5524 } 5525 5526 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5527 err = libbpf_get_error(btf); 5528 if (err) { 5529 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5530 name, id, err); 5531 goto err_out; 5532 } 5533 5534 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5535 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5536 if (err) 5537 goto err_out; 5538 5539 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5540 5541 mod_btf->btf = btf; 5542 mod_btf->id = id; 5543 mod_btf->fd = fd; 5544 mod_btf->name = strdup(name); 5545 if (!mod_btf->name) { 5546 err = -ENOMEM; 5547 goto err_out; 5548 } 5549 continue; 5550 5551 err_out: 5552 close(fd); 5553 return err; 5554 } 5555 5556 return 0; 5557 } 5558 5559 static struct bpf_core_cand_list * 5560 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5561 { 5562 struct bpf_core_cand local_cand = {}; 5563 struct bpf_core_cand_list *cands; 5564 const struct btf *main_btf; 5565 const struct btf_type *local_t; 5566 const char *local_name; 5567 size_t local_essent_len; 5568 int err, i; 5569 5570 local_cand.btf = local_btf; 5571 local_cand.id = local_type_id; 5572 local_t = btf__type_by_id(local_btf, local_type_id); 5573 if (!local_t) 5574 return ERR_PTR(-EINVAL); 5575 5576 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5577 if (str_is_empty(local_name)) 5578 return ERR_PTR(-EINVAL); 5579 local_essent_len = bpf_core_essential_name_len(local_name); 5580 5581 cands = calloc(1, sizeof(*cands)); 5582 if (!cands) 5583 return ERR_PTR(-ENOMEM); 5584 5585 /* Attempt to find target candidates in vmlinux BTF first */ 5586 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5587 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5588 if (err) 5589 goto err_out; 5590 5591 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5592 if (cands->len) 5593 return cands; 5594 5595 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5596 if (obj->btf_vmlinux_override) 5597 return cands; 5598 5599 /* now look through module BTFs, trying to still find candidates */ 5600 err = load_module_btfs(obj); 5601 if (err) 5602 goto err_out; 5603 5604 for (i = 0; i < obj->btf_module_cnt; i++) { 5605 err = bpf_core_add_cands(&local_cand, local_essent_len, 5606 obj->btf_modules[i].btf, 5607 obj->btf_modules[i].name, 5608 btf__type_cnt(obj->btf_vmlinux), 5609 cands); 5610 if (err) 5611 goto err_out; 5612 } 5613 5614 return cands; 5615 err_out: 5616 bpf_core_free_cands(cands); 5617 return ERR_PTR(err); 5618 } 5619 5620 /* Check local and target types for compatibility. This check is used for 5621 * type-based CO-RE relocations and follow slightly different rules than 5622 * field-based relocations. This function assumes that root types were already 5623 * checked for name match. Beyond that initial root-level name check, names 5624 * are completely ignored. Compatibility rules are as follows: 5625 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5626 * kind should match for local and target types (i.e., STRUCT is not 5627 * compatible with UNION); 5628 * - for ENUMs, the size is ignored; 5629 * - for INT, size and signedness are ignored; 5630 * - for ARRAY, dimensionality is ignored, element types are checked for 5631 * compatibility recursively; 5632 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5633 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5634 * - FUNC_PROTOs are compatible if they have compatible signature: same 5635 * number of input args and compatible return and argument types. 5636 * These rules are not set in stone and probably will be adjusted as we get 5637 * more experience with using BPF CO-RE relocations. 5638 */ 5639 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5640 const struct btf *targ_btf, __u32 targ_id) 5641 { 5642 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5643 } 5644 5645 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5646 const struct btf *targ_btf, __u32 targ_id) 5647 { 5648 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5649 } 5650 5651 static size_t bpf_core_hash_fn(const long key, void *ctx) 5652 { 5653 return key; 5654 } 5655 5656 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5657 { 5658 return k1 == k2; 5659 } 5660 5661 static int record_relo_core(struct bpf_program *prog, 5662 const struct bpf_core_relo *core_relo, int insn_idx) 5663 { 5664 struct reloc_desc *relos, *relo; 5665 5666 relos = libbpf_reallocarray(prog->reloc_desc, 5667 prog->nr_reloc + 1, sizeof(*relos)); 5668 if (!relos) 5669 return -ENOMEM; 5670 relo = &relos[prog->nr_reloc]; 5671 relo->type = RELO_CORE; 5672 relo->insn_idx = insn_idx; 5673 relo->core_relo = core_relo; 5674 prog->reloc_desc = relos; 5675 prog->nr_reloc++; 5676 return 0; 5677 } 5678 5679 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5680 { 5681 struct reloc_desc *relo; 5682 int i; 5683 5684 for (i = 0; i < prog->nr_reloc; i++) { 5685 relo = &prog->reloc_desc[i]; 5686 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5687 continue; 5688 5689 return relo->core_relo; 5690 } 5691 5692 return NULL; 5693 } 5694 5695 static int bpf_core_resolve_relo(struct bpf_program *prog, 5696 const struct bpf_core_relo *relo, 5697 int relo_idx, 5698 const struct btf *local_btf, 5699 struct hashmap *cand_cache, 5700 struct bpf_core_relo_res *targ_res) 5701 { 5702 struct bpf_core_spec specs_scratch[3] = {}; 5703 struct bpf_core_cand_list *cands = NULL; 5704 const char *prog_name = prog->name; 5705 const struct btf_type *local_type; 5706 const char *local_name; 5707 __u32 local_id = relo->type_id; 5708 int err; 5709 5710 local_type = btf__type_by_id(local_btf, local_id); 5711 if (!local_type) 5712 return -EINVAL; 5713 5714 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5715 if (!local_name) 5716 return -EINVAL; 5717 5718 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5719 !hashmap__find(cand_cache, local_id, &cands)) { 5720 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5721 if (IS_ERR(cands)) { 5722 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5723 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5724 local_name, PTR_ERR(cands)); 5725 return PTR_ERR(cands); 5726 } 5727 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5728 if (err) { 5729 bpf_core_free_cands(cands); 5730 return err; 5731 } 5732 } 5733 5734 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5735 targ_res); 5736 } 5737 5738 static int 5739 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5740 { 5741 const struct btf_ext_info_sec *sec; 5742 struct bpf_core_relo_res targ_res; 5743 const struct bpf_core_relo *rec; 5744 const struct btf_ext_info *seg; 5745 struct hashmap_entry *entry; 5746 struct hashmap *cand_cache = NULL; 5747 struct bpf_program *prog; 5748 struct bpf_insn *insn; 5749 const char *sec_name; 5750 int i, err = 0, insn_idx, sec_idx, sec_num; 5751 5752 if (obj->btf_ext->core_relo_info.len == 0) 5753 return 0; 5754 5755 if (targ_btf_path) { 5756 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5757 err = libbpf_get_error(obj->btf_vmlinux_override); 5758 if (err) { 5759 pr_warn("failed to parse target BTF: %d\n", err); 5760 return err; 5761 } 5762 } 5763 5764 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5765 if (IS_ERR(cand_cache)) { 5766 err = PTR_ERR(cand_cache); 5767 goto out; 5768 } 5769 5770 seg = &obj->btf_ext->core_relo_info; 5771 sec_num = 0; 5772 for_each_btf_ext_sec(seg, sec) { 5773 sec_idx = seg->sec_idxs[sec_num]; 5774 sec_num++; 5775 5776 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5777 if (str_is_empty(sec_name)) { 5778 err = -EINVAL; 5779 goto out; 5780 } 5781 5782 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5783 5784 for_each_btf_ext_rec(seg, sec, i, rec) { 5785 if (rec->insn_off % BPF_INSN_SZ) 5786 return -EINVAL; 5787 insn_idx = rec->insn_off / BPF_INSN_SZ; 5788 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5789 if (!prog) { 5790 /* When __weak subprog is "overridden" by another instance 5791 * of the subprog from a different object file, linker still 5792 * appends all the .BTF.ext info that used to belong to that 5793 * eliminated subprogram. 5794 * This is similar to what x86-64 linker does for relocations. 5795 * So just ignore such relocations just like we ignore 5796 * subprog instructions when discovering subprograms. 5797 */ 5798 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5799 sec_name, i, insn_idx); 5800 continue; 5801 } 5802 /* no need to apply CO-RE relocation if the program is 5803 * not going to be loaded 5804 */ 5805 if (!prog->autoload) 5806 continue; 5807 5808 /* adjust insn_idx from section frame of reference to the local 5809 * program's frame of reference; (sub-)program code is not yet 5810 * relocated, so it's enough to just subtract in-section offset 5811 */ 5812 insn_idx = insn_idx - prog->sec_insn_off; 5813 if (insn_idx >= prog->insns_cnt) 5814 return -EINVAL; 5815 insn = &prog->insns[insn_idx]; 5816 5817 err = record_relo_core(prog, rec, insn_idx); 5818 if (err) { 5819 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5820 prog->name, i, err); 5821 goto out; 5822 } 5823 5824 if (prog->obj->gen_loader) 5825 continue; 5826 5827 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5828 if (err) { 5829 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5830 prog->name, i, err); 5831 goto out; 5832 } 5833 5834 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5835 if (err) { 5836 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5837 prog->name, i, insn_idx, err); 5838 goto out; 5839 } 5840 } 5841 } 5842 5843 out: 5844 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5845 btf__free(obj->btf_vmlinux_override); 5846 obj->btf_vmlinux_override = NULL; 5847 5848 if (!IS_ERR_OR_NULL(cand_cache)) { 5849 hashmap__for_each_entry(cand_cache, entry, i) { 5850 bpf_core_free_cands(entry->pvalue); 5851 } 5852 hashmap__free(cand_cache); 5853 } 5854 return err; 5855 } 5856 5857 /* base map load ldimm64 special constant, used also for log fixup logic */ 5858 #define POISON_LDIMM64_MAP_BASE 2001000000 5859 #define POISON_LDIMM64_MAP_PFX "200100" 5860 5861 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5862 int insn_idx, struct bpf_insn *insn, 5863 int map_idx, const struct bpf_map *map) 5864 { 5865 int i; 5866 5867 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5868 prog->name, relo_idx, insn_idx, map_idx, map->name); 5869 5870 /* we turn single ldimm64 into two identical invalid calls */ 5871 for (i = 0; i < 2; i++) { 5872 insn->code = BPF_JMP | BPF_CALL; 5873 insn->dst_reg = 0; 5874 insn->src_reg = 0; 5875 insn->off = 0; 5876 /* if this instruction is reachable (not a dead code), 5877 * verifier will complain with something like: 5878 * invalid func unknown#2001000123 5879 * where lower 123 is map index into obj->maps[] array 5880 */ 5881 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5882 5883 insn++; 5884 } 5885 } 5886 5887 /* unresolved kfunc call special constant, used also for log fixup logic */ 5888 #define POISON_CALL_KFUNC_BASE 2002000000 5889 #define POISON_CALL_KFUNC_PFX "2002" 5890 5891 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5892 int insn_idx, struct bpf_insn *insn, 5893 int ext_idx, const struct extern_desc *ext) 5894 { 5895 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5896 prog->name, relo_idx, insn_idx, ext->name); 5897 5898 /* we turn kfunc call into invalid helper call with identifiable constant */ 5899 insn->code = BPF_JMP | BPF_CALL; 5900 insn->dst_reg = 0; 5901 insn->src_reg = 0; 5902 insn->off = 0; 5903 /* if this instruction is reachable (not a dead code), 5904 * verifier will complain with something like: 5905 * invalid func unknown#2001000123 5906 * where lower 123 is extern index into obj->externs[] array 5907 */ 5908 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5909 } 5910 5911 /* Relocate data references within program code: 5912 * - map references; 5913 * - global variable references; 5914 * - extern references. 5915 */ 5916 static int 5917 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5918 { 5919 int i; 5920 5921 for (i = 0; i < prog->nr_reloc; i++) { 5922 struct reloc_desc *relo = &prog->reloc_desc[i]; 5923 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5924 const struct bpf_map *map; 5925 struct extern_desc *ext; 5926 5927 switch (relo->type) { 5928 case RELO_LD64: 5929 map = &obj->maps[relo->map_idx]; 5930 if (obj->gen_loader) { 5931 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5932 insn[0].imm = relo->map_idx; 5933 } else if (map->autocreate) { 5934 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5935 insn[0].imm = map->fd; 5936 } else { 5937 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5938 relo->map_idx, map); 5939 } 5940 break; 5941 case RELO_DATA: 5942 map = &obj->maps[relo->map_idx]; 5943 insn[1].imm = insn[0].imm + relo->sym_off; 5944 if (obj->gen_loader) { 5945 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5946 insn[0].imm = relo->map_idx; 5947 } else if (map->autocreate) { 5948 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5949 insn[0].imm = map->fd; 5950 } else { 5951 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5952 relo->map_idx, map); 5953 } 5954 break; 5955 case RELO_EXTERN_LD64: 5956 ext = &obj->externs[relo->ext_idx]; 5957 if (ext->type == EXT_KCFG) { 5958 if (obj->gen_loader) { 5959 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5960 insn[0].imm = obj->kconfig_map_idx; 5961 } else { 5962 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5963 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5964 } 5965 insn[1].imm = ext->kcfg.data_off; 5966 } else /* EXT_KSYM */ { 5967 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5968 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5969 insn[0].imm = ext->ksym.kernel_btf_id; 5970 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5971 } else { /* typeless ksyms or unresolved typed ksyms */ 5972 insn[0].imm = (__u32)ext->ksym.addr; 5973 insn[1].imm = ext->ksym.addr >> 32; 5974 } 5975 } 5976 break; 5977 case RELO_EXTERN_CALL: 5978 ext = &obj->externs[relo->ext_idx]; 5979 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5980 if (ext->is_set) { 5981 insn[0].imm = ext->ksym.kernel_btf_id; 5982 insn[0].off = ext->ksym.btf_fd_idx; 5983 } else { /* unresolved weak kfunc call */ 5984 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5985 relo->ext_idx, ext); 5986 } 5987 break; 5988 case RELO_SUBPROG_ADDR: 5989 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5990 pr_warn("prog '%s': relo #%d: bad insn\n", 5991 prog->name, i); 5992 return -EINVAL; 5993 } 5994 /* handled already */ 5995 break; 5996 case RELO_CALL: 5997 /* handled already */ 5998 break; 5999 case RELO_CORE: 6000 /* will be handled by bpf_program_record_relos() */ 6001 break; 6002 default: 6003 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6004 prog->name, i, relo->type); 6005 return -EINVAL; 6006 } 6007 } 6008 6009 return 0; 6010 } 6011 6012 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6013 const struct bpf_program *prog, 6014 const struct btf_ext_info *ext_info, 6015 void **prog_info, __u32 *prog_rec_cnt, 6016 __u32 *prog_rec_sz) 6017 { 6018 void *copy_start = NULL, *copy_end = NULL; 6019 void *rec, *rec_end, *new_prog_info; 6020 const struct btf_ext_info_sec *sec; 6021 size_t old_sz, new_sz; 6022 int i, sec_num, sec_idx, off_adj; 6023 6024 sec_num = 0; 6025 for_each_btf_ext_sec(ext_info, sec) { 6026 sec_idx = ext_info->sec_idxs[sec_num]; 6027 sec_num++; 6028 if (prog->sec_idx != sec_idx) 6029 continue; 6030 6031 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6032 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6033 6034 if (insn_off < prog->sec_insn_off) 6035 continue; 6036 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6037 break; 6038 6039 if (!copy_start) 6040 copy_start = rec; 6041 copy_end = rec + ext_info->rec_size; 6042 } 6043 6044 if (!copy_start) 6045 return -ENOENT; 6046 6047 /* append func/line info of a given (sub-)program to the main 6048 * program func/line info 6049 */ 6050 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6051 new_sz = old_sz + (copy_end - copy_start); 6052 new_prog_info = realloc(*prog_info, new_sz); 6053 if (!new_prog_info) 6054 return -ENOMEM; 6055 *prog_info = new_prog_info; 6056 *prog_rec_cnt = new_sz / ext_info->rec_size; 6057 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6058 6059 /* Kernel instruction offsets are in units of 8-byte 6060 * instructions, while .BTF.ext instruction offsets generated 6061 * by Clang are in units of bytes. So convert Clang offsets 6062 * into kernel offsets and adjust offset according to program 6063 * relocated position. 6064 */ 6065 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6066 rec = new_prog_info + old_sz; 6067 rec_end = new_prog_info + new_sz; 6068 for (; rec < rec_end; rec += ext_info->rec_size) { 6069 __u32 *insn_off = rec; 6070 6071 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6072 } 6073 *prog_rec_sz = ext_info->rec_size; 6074 return 0; 6075 } 6076 6077 return -ENOENT; 6078 } 6079 6080 static int 6081 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6082 struct bpf_program *main_prog, 6083 const struct bpf_program *prog) 6084 { 6085 int err; 6086 6087 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6088 * supprot func/line info 6089 */ 6090 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6091 return 0; 6092 6093 /* only attempt func info relocation if main program's func_info 6094 * relocation was successful 6095 */ 6096 if (main_prog != prog && !main_prog->func_info) 6097 goto line_info; 6098 6099 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6100 &main_prog->func_info, 6101 &main_prog->func_info_cnt, 6102 &main_prog->func_info_rec_size); 6103 if (err) { 6104 if (err != -ENOENT) { 6105 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6106 prog->name, err); 6107 return err; 6108 } 6109 if (main_prog->func_info) { 6110 /* 6111 * Some info has already been found but has problem 6112 * in the last btf_ext reloc. Must have to error out. 6113 */ 6114 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6115 return err; 6116 } 6117 /* Have problem loading the very first info. Ignore the rest. */ 6118 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6119 prog->name); 6120 } 6121 6122 line_info: 6123 /* don't relocate line info if main program's relocation failed */ 6124 if (main_prog != prog && !main_prog->line_info) 6125 return 0; 6126 6127 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6128 &main_prog->line_info, 6129 &main_prog->line_info_cnt, 6130 &main_prog->line_info_rec_size); 6131 if (err) { 6132 if (err != -ENOENT) { 6133 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6134 prog->name, err); 6135 return err; 6136 } 6137 if (main_prog->line_info) { 6138 /* 6139 * Some info has already been found but has problem 6140 * in the last btf_ext reloc. Must have to error out. 6141 */ 6142 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6143 return err; 6144 } 6145 /* Have problem loading the very first info. Ignore the rest. */ 6146 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6147 prog->name); 6148 } 6149 return 0; 6150 } 6151 6152 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6153 { 6154 size_t insn_idx = *(const size_t *)key; 6155 const struct reloc_desc *relo = elem; 6156 6157 if (insn_idx == relo->insn_idx) 6158 return 0; 6159 return insn_idx < relo->insn_idx ? -1 : 1; 6160 } 6161 6162 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6163 { 6164 if (!prog->nr_reloc) 6165 return NULL; 6166 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6167 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6168 } 6169 6170 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6171 { 6172 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6173 struct reloc_desc *relos; 6174 int i; 6175 6176 if (main_prog == subprog) 6177 return 0; 6178 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6179 /* if new count is zero, reallocarray can return a valid NULL result; 6180 * in this case the previous pointer will be freed, so we *have to* 6181 * reassign old pointer to the new value (even if it's NULL) 6182 */ 6183 if (!relos && new_cnt) 6184 return -ENOMEM; 6185 if (subprog->nr_reloc) 6186 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6187 sizeof(*relos) * subprog->nr_reloc); 6188 6189 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6190 relos[i].insn_idx += subprog->sub_insn_off; 6191 /* After insn_idx adjustment the 'relos' array is still sorted 6192 * by insn_idx and doesn't break bsearch. 6193 */ 6194 main_prog->reloc_desc = relos; 6195 main_prog->nr_reloc = new_cnt; 6196 return 0; 6197 } 6198 6199 static int 6200 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6201 struct bpf_program *prog) 6202 { 6203 size_t sub_insn_idx, insn_idx, new_cnt; 6204 struct bpf_program *subprog; 6205 struct bpf_insn *insns, *insn; 6206 struct reloc_desc *relo; 6207 int err; 6208 6209 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6210 if (err) 6211 return err; 6212 6213 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6214 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6215 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6216 continue; 6217 6218 relo = find_prog_insn_relo(prog, insn_idx); 6219 if (relo && relo->type == RELO_EXTERN_CALL) 6220 /* kfunc relocations will be handled later 6221 * in bpf_object__relocate_data() 6222 */ 6223 continue; 6224 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6225 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6226 prog->name, insn_idx, relo->type); 6227 return -LIBBPF_ERRNO__RELOC; 6228 } 6229 if (relo) { 6230 /* sub-program instruction index is a combination of 6231 * an offset of a symbol pointed to by relocation and 6232 * call instruction's imm field; for global functions, 6233 * call always has imm = -1, but for static functions 6234 * relocation is against STT_SECTION and insn->imm 6235 * points to a start of a static function 6236 * 6237 * for subprog addr relocation, the relo->sym_off + insn->imm is 6238 * the byte offset in the corresponding section. 6239 */ 6240 if (relo->type == RELO_CALL) 6241 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6242 else 6243 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6244 } else if (insn_is_pseudo_func(insn)) { 6245 /* 6246 * RELO_SUBPROG_ADDR relo is always emitted even if both 6247 * functions are in the same section, so it shouldn't reach here. 6248 */ 6249 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6250 prog->name, insn_idx); 6251 return -LIBBPF_ERRNO__RELOC; 6252 } else { 6253 /* if subprogram call is to a static function within 6254 * the same ELF section, there won't be any relocation 6255 * emitted, but it also means there is no additional 6256 * offset necessary, insns->imm is relative to 6257 * instruction's original position within the section 6258 */ 6259 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6260 } 6261 6262 /* we enforce that sub-programs should be in .text section */ 6263 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6264 if (!subprog) { 6265 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6266 prog->name); 6267 return -LIBBPF_ERRNO__RELOC; 6268 } 6269 6270 /* if it's the first call instruction calling into this 6271 * subprogram (meaning this subprog hasn't been processed 6272 * yet) within the context of current main program: 6273 * - append it at the end of main program's instructions blog; 6274 * - process is recursively, while current program is put on hold; 6275 * - if that subprogram calls some other not yet processes 6276 * subprogram, same thing will happen recursively until 6277 * there are no more unprocesses subprograms left to append 6278 * and relocate. 6279 */ 6280 if (subprog->sub_insn_off == 0) { 6281 subprog->sub_insn_off = main_prog->insns_cnt; 6282 6283 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6284 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6285 if (!insns) { 6286 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6287 return -ENOMEM; 6288 } 6289 main_prog->insns = insns; 6290 main_prog->insns_cnt = new_cnt; 6291 6292 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6293 subprog->insns_cnt * sizeof(*insns)); 6294 6295 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6296 main_prog->name, subprog->insns_cnt, subprog->name); 6297 6298 /* The subprog insns are now appended. Append its relos too. */ 6299 err = append_subprog_relos(main_prog, subprog); 6300 if (err) 6301 return err; 6302 err = bpf_object__reloc_code(obj, main_prog, subprog); 6303 if (err) 6304 return err; 6305 } 6306 6307 /* main_prog->insns memory could have been re-allocated, so 6308 * calculate pointer again 6309 */ 6310 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6311 /* calculate correct instruction position within current main 6312 * prog; each main prog can have a different set of 6313 * subprograms appended (potentially in different order as 6314 * well), so position of any subprog can be different for 6315 * different main programs 6316 */ 6317 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6318 6319 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6320 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6321 } 6322 6323 return 0; 6324 } 6325 6326 /* 6327 * Relocate sub-program calls. 6328 * 6329 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6330 * main prog) is processed separately. For each subprog (non-entry functions, 6331 * that can be called from either entry progs or other subprogs) gets their 6332 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6333 * hasn't been yet appended and relocated within current main prog. Once its 6334 * relocated, sub_insn_off will point at the position within current main prog 6335 * where given subprog was appended. This will further be used to relocate all 6336 * the call instructions jumping into this subprog. 6337 * 6338 * We start with main program and process all call instructions. If the call 6339 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6340 * is zero), subprog instructions are appended at the end of main program's 6341 * instruction array. Then main program is "put on hold" while we recursively 6342 * process newly appended subprogram. If that subprogram calls into another 6343 * subprogram that hasn't been appended, new subprogram is appended again to 6344 * the *main* prog's instructions (subprog's instructions are always left 6345 * untouched, as they need to be in unmodified state for subsequent main progs 6346 * and subprog instructions are always sent only as part of a main prog) and 6347 * the process continues recursively. Once all the subprogs called from a main 6348 * prog or any of its subprogs are appended (and relocated), all their 6349 * positions within finalized instructions array are known, so it's easy to 6350 * rewrite call instructions with correct relative offsets, corresponding to 6351 * desired target subprog. 6352 * 6353 * Its important to realize that some subprogs might not be called from some 6354 * main prog and any of its called/used subprogs. Those will keep their 6355 * subprog->sub_insn_off as zero at all times and won't be appended to current 6356 * main prog and won't be relocated within the context of current main prog. 6357 * They might still be used from other main progs later. 6358 * 6359 * Visually this process can be shown as below. Suppose we have two main 6360 * programs mainA and mainB and BPF object contains three subprogs: subA, 6361 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6362 * subC both call subB: 6363 * 6364 * +--------+ +-------+ 6365 * | v v | 6366 * +--+---+ +--+-+-+ +---+--+ 6367 * | subA | | subB | | subC | 6368 * +--+---+ +------+ +---+--+ 6369 * ^ ^ 6370 * | | 6371 * +---+-------+ +------+----+ 6372 * | mainA | | mainB | 6373 * +-----------+ +-----------+ 6374 * 6375 * We'll start relocating mainA, will find subA, append it and start 6376 * processing sub A recursively: 6377 * 6378 * +-----------+------+ 6379 * | mainA | subA | 6380 * +-----------+------+ 6381 * 6382 * At this point we notice that subB is used from subA, so we append it and 6383 * relocate (there are no further subcalls from subB): 6384 * 6385 * +-----------+------+------+ 6386 * | mainA | subA | subB | 6387 * +-----------+------+------+ 6388 * 6389 * At this point, we relocate subA calls, then go one level up and finish with 6390 * relocatin mainA calls. mainA is done. 6391 * 6392 * For mainB process is similar but results in different order. We start with 6393 * mainB and skip subA and subB, as mainB never calls them (at least 6394 * directly), but we see subC is needed, so we append and start processing it: 6395 * 6396 * +-----------+------+ 6397 * | mainB | subC | 6398 * +-----------+------+ 6399 * Now we see subC needs subB, so we go back to it, append and relocate it: 6400 * 6401 * +-----------+------+------+ 6402 * | mainB | subC | subB | 6403 * +-----------+------+------+ 6404 * 6405 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6406 */ 6407 static int 6408 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6409 { 6410 struct bpf_program *subprog; 6411 int i, err; 6412 6413 /* mark all subprogs as not relocated (yet) within the context of 6414 * current main program 6415 */ 6416 for (i = 0; i < obj->nr_programs; i++) { 6417 subprog = &obj->programs[i]; 6418 if (!prog_is_subprog(obj, subprog)) 6419 continue; 6420 6421 subprog->sub_insn_off = 0; 6422 } 6423 6424 err = bpf_object__reloc_code(obj, prog, prog); 6425 if (err) 6426 return err; 6427 6428 return 0; 6429 } 6430 6431 static void 6432 bpf_object__free_relocs(struct bpf_object *obj) 6433 { 6434 struct bpf_program *prog; 6435 int i; 6436 6437 /* free up relocation descriptors */ 6438 for (i = 0; i < obj->nr_programs; i++) { 6439 prog = &obj->programs[i]; 6440 zfree(&prog->reloc_desc); 6441 prog->nr_reloc = 0; 6442 } 6443 } 6444 6445 static int cmp_relocs(const void *_a, const void *_b) 6446 { 6447 const struct reloc_desc *a = _a; 6448 const struct reloc_desc *b = _b; 6449 6450 if (a->insn_idx != b->insn_idx) 6451 return a->insn_idx < b->insn_idx ? -1 : 1; 6452 6453 /* no two relocations should have the same insn_idx, but ... */ 6454 if (a->type != b->type) 6455 return a->type < b->type ? -1 : 1; 6456 6457 return 0; 6458 } 6459 6460 static void bpf_object__sort_relos(struct bpf_object *obj) 6461 { 6462 int i; 6463 6464 for (i = 0; i < obj->nr_programs; i++) { 6465 struct bpf_program *p = &obj->programs[i]; 6466 6467 if (!p->nr_reloc) 6468 continue; 6469 6470 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6471 } 6472 } 6473 6474 static int 6475 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6476 { 6477 struct bpf_program *prog; 6478 size_t i, j; 6479 int err; 6480 6481 if (obj->btf_ext) { 6482 err = bpf_object__relocate_core(obj, targ_btf_path); 6483 if (err) { 6484 pr_warn("failed to perform CO-RE relocations: %d\n", 6485 err); 6486 return err; 6487 } 6488 bpf_object__sort_relos(obj); 6489 } 6490 6491 /* Before relocating calls pre-process relocations and mark 6492 * few ld_imm64 instructions that points to subprogs. 6493 * Otherwise bpf_object__reloc_code() later would have to consider 6494 * all ld_imm64 insns as relocation candidates. That would 6495 * reduce relocation speed, since amount of find_prog_insn_relo() 6496 * would increase and most of them will fail to find a relo. 6497 */ 6498 for (i = 0; i < obj->nr_programs; i++) { 6499 prog = &obj->programs[i]; 6500 for (j = 0; j < prog->nr_reloc; j++) { 6501 struct reloc_desc *relo = &prog->reloc_desc[j]; 6502 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6503 6504 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6505 if (relo->type == RELO_SUBPROG_ADDR) 6506 insn[0].src_reg = BPF_PSEUDO_FUNC; 6507 } 6508 } 6509 6510 /* relocate subprogram calls and append used subprograms to main 6511 * programs; each copy of subprogram code needs to be relocated 6512 * differently for each main program, because its code location might 6513 * have changed. 6514 * Append subprog relos to main programs to allow data relos to be 6515 * processed after text is completely relocated. 6516 */ 6517 for (i = 0; i < obj->nr_programs; i++) { 6518 prog = &obj->programs[i]; 6519 /* sub-program's sub-calls are relocated within the context of 6520 * its main program only 6521 */ 6522 if (prog_is_subprog(obj, prog)) 6523 continue; 6524 if (!prog->autoload) 6525 continue; 6526 6527 err = bpf_object__relocate_calls(obj, prog); 6528 if (err) { 6529 pr_warn("prog '%s': failed to relocate calls: %d\n", 6530 prog->name, err); 6531 return err; 6532 } 6533 } 6534 /* Process data relos for main programs */ 6535 for (i = 0; i < obj->nr_programs; i++) { 6536 prog = &obj->programs[i]; 6537 if (prog_is_subprog(obj, prog)) 6538 continue; 6539 if (!prog->autoload) 6540 continue; 6541 err = bpf_object__relocate_data(obj, prog); 6542 if (err) { 6543 pr_warn("prog '%s': failed to relocate data references: %d\n", 6544 prog->name, err); 6545 return err; 6546 } 6547 } 6548 6549 return 0; 6550 } 6551 6552 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6553 Elf64_Shdr *shdr, Elf_Data *data); 6554 6555 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6556 Elf64_Shdr *shdr, Elf_Data *data) 6557 { 6558 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6559 int i, j, nrels, new_sz; 6560 const struct btf_var_secinfo *vi = NULL; 6561 const struct btf_type *sec, *var, *def; 6562 struct bpf_map *map = NULL, *targ_map = NULL; 6563 struct bpf_program *targ_prog = NULL; 6564 bool is_prog_array, is_map_in_map; 6565 const struct btf_member *member; 6566 const char *name, *mname, *type; 6567 unsigned int moff; 6568 Elf64_Sym *sym; 6569 Elf64_Rel *rel; 6570 void *tmp; 6571 6572 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6573 return -EINVAL; 6574 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6575 if (!sec) 6576 return -EINVAL; 6577 6578 nrels = shdr->sh_size / shdr->sh_entsize; 6579 for (i = 0; i < nrels; i++) { 6580 rel = elf_rel_by_idx(data, i); 6581 if (!rel) { 6582 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6583 return -LIBBPF_ERRNO__FORMAT; 6584 } 6585 6586 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6587 if (!sym) { 6588 pr_warn(".maps relo #%d: symbol %zx not found\n", 6589 i, (size_t)ELF64_R_SYM(rel->r_info)); 6590 return -LIBBPF_ERRNO__FORMAT; 6591 } 6592 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6593 6594 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6595 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6596 (size_t)rel->r_offset, sym->st_name, name); 6597 6598 for (j = 0; j < obj->nr_maps; j++) { 6599 map = &obj->maps[j]; 6600 if (map->sec_idx != obj->efile.btf_maps_shndx) 6601 continue; 6602 6603 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6604 if (vi->offset <= rel->r_offset && 6605 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6606 break; 6607 } 6608 if (j == obj->nr_maps) { 6609 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6610 i, name, (size_t)rel->r_offset); 6611 return -EINVAL; 6612 } 6613 6614 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6615 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6616 type = is_map_in_map ? "map" : "prog"; 6617 if (is_map_in_map) { 6618 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6619 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6620 i, name); 6621 return -LIBBPF_ERRNO__RELOC; 6622 } 6623 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6624 map->def.key_size != sizeof(int)) { 6625 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6626 i, map->name, sizeof(int)); 6627 return -EINVAL; 6628 } 6629 targ_map = bpf_object__find_map_by_name(obj, name); 6630 if (!targ_map) { 6631 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6632 i, name); 6633 return -ESRCH; 6634 } 6635 } else if (is_prog_array) { 6636 targ_prog = bpf_object__find_program_by_name(obj, name); 6637 if (!targ_prog) { 6638 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6639 i, name); 6640 return -ESRCH; 6641 } 6642 if (targ_prog->sec_idx != sym->st_shndx || 6643 targ_prog->sec_insn_off * 8 != sym->st_value || 6644 prog_is_subprog(obj, targ_prog)) { 6645 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6646 i, name); 6647 return -LIBBPF_ERRNO__RELOC; 6648 } 6649 } else { 6650 return -EINVAL; 6651 } 6652 6653 var = btf__type_by_id(obj->btf, vi->type); 6654 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6655 if (btf_vlen(def) == 0) 6656 return -EINVAL; 6657 member = btf_members(def) + btf_vlen(def) - 1; 6658 mname = btf__name_by_offset(obj->btf, member->name_off); 6659 if (strcmp(mname, "values")) 6660 return -EINVAL; 6661 6662 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6663 if (rel->r_offset - vi->offset < moff) 6664 return -EINVAL; 6665 6666 moff = rel->r_offset - vi->offset - moff; 6667 /* here we use BPF pointer size, which is always 64 bit, as we 6668 * are parsing ELF that was built for BPF target 6669 */ 6670 if (moff % bpf_ptr_sz) 6671 return -EINVAL; 6672 moff /= bpf_ptr_sz; 6673 if (moff >= map->init_slots_sz) { 6674 new_sz = moff + 1; 6675 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6676 if (!tmp) 6677 return -ENOMEM; 6678 map->init_slots = tmp; 6679 memset(map->init_slots + map->init_slots_sz, 0, 6680 (new_sz - map->init_slots_sz) * host_ptr_sz); 6681 map->init_slots_sz = new_sz; 6682 } 6683 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6684 6685 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6686 i, map->name, moff, type, name); 6687 } 6688 6689 return 0; 6690 } 6691 6692 static int bpf_object__collect_relos(struct bpf_object *obj) 6693 { 6694 int i, err; 6695 6696 for (i = 0; i < obj->efile.sec_cnt; i++) { 6697 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6698 Elf64_Shdr *shdr; 6699 Elf_Data *data; 6700 int idx; 6701 6702 if (sec_desc->sec_type != SEC_RELO) 6703 continue; 6704 6705 shdr = sec_desc->shdr; 6706 data = sec_desc->data; 6707 idx = shdr->sh_info; 6708 6709 if (shdr->sh_type != SHT_REL) { 6710 pr_warn("internal error at %d\n", __LINE__); 6711 return -LIBBPF_ERRNO__INTERNAL; 6712 } 6713 6714 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6715 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6716 else if (idx == obj->efile.btf_maps_shndx) 6717 err = bpf_object__collect_map_relos(obj, shdr, data); 6718 else 6719 err = bpf_object__collect_prog_relos(obj, shdr, data); 6720 if (err) 6721 return err; 6722 } 6723 6724 bpf_object__sort_relos(obj); 6725 return 0; 6726 } 6727 6728 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6729 { 6730 if (BPF_CLASS(insn->code) == BPF_JMP && 6731 BPF_OP(insn->code) == BPF_CALL && 6732 BPF_SRC(insn->code) == BPF_K && 6733 insn->src_reg == 0 && 6734 insn->dst_reg == 0) { 6735 *func_id = insn->imm; 6736 return true; 6737 } 6738 return false; 6739 } 6740 6741 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6742 { 6743 struct bpf_insn *insn = prog->insns; 6744 enum bpf_func_id func_id; 6745 int i; 6746 6747 if (obj->gen_loader) 6748 return 0; 6749 6750 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6751 if (!insn_is_helper_call(insn, &func_id)) 6752 continue; 6753 6754 /* on kernels that don't yet support 6755 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6756 * to bpf_probe_read() which works well for old kernels 6757 */ 6758 switch (func_id) { 6759 case BPF_FUNC_probe_read_kernel: 6760 case BPF_FUNC_probe_read_user: 6761 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6762 insn->imm = BPF_FUNC_probe_read; 6763 break; 6764 case BPF_FUNC_probe_read_kernel_str: 6765 case BPF_FUNC_probe_read_user_str: 6766 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6767 insn->imm = BPF_FUNC_probe_read_str; 6768 break; 6769 default: 6770 break; 6771 } 6772 } 6773 return 0; 6774 } 6775 6776 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6777 int *btf_obj_fd, int *btf_type_id); 6778 6779 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6780 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6781 struct bpf_prog_load_opts *opts, long cookie) 6782 { 6783 enum sec_def_flags def = cookie; 6784 6785 /* old kernels might not support specifying expected_attach_type */ 6786 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6787 opts->expected_attach_type = 0; 6788 6789 if (def & SEC_SLEEPABLE) 6790 opts->prog_flags |= BPF_F_SLEEPABLE; 6791 6792 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6793 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6794 6795 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6796 int btf_obj_fd = 0, btf_type_id = 0, err; 6797 const char *attach_name; 6798 6799 attach_name = strchr(prog->sec_name, '/'); 6800 if (!attach_name) { 6801 /* if BPF program is annotated with just SEC("fentry") 6802 * (or similar) without declaratively specifying 6803 * target, then it is expected that target will be 6804 * specified with bpf_program__set_attach_target() at 6805 * runtime before BPF object load step. If not, then 6806 * there is nothing to load into the kernel as BPF 6807 * verifier won't be able to validate BPF program 6808 * correctness anyways. 6809 */ 6810 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6811 prog->name); 6812 return -EINVAL; 6813 } 6814 attach_name++; /* skip over / */ 6815 6816 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6817 if (err) 6818 return err; 6819 6820 /* cache resolved BTF FD and BTF type ID in the prog */ 6821 prog->attach_btf_obj_fd = btf_obj_fd; 6822 prog->attach_btf_id = btf_type_id; 6823 6824 /* but by now libbpf common logic is not utilizing 6825 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6826 * this callback is called after opts were populated by 6827 * libbpf, so this callback has to update opts explicitly here 6828 */ 6829 opts->attach_btf_obj_fd = btf_obj_fd; 6830 opts->attach_btf_id = btf_type_id; 6831 } 6832 return 0; 6833 } 6834 6835 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6836 6837 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6838 struct bpf_insn *insns, int insns_cnt, 6839 const char *license, __u32 kern_version, int *prog_fd) 6840 { 6841 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6842 const char *prog_name = NULL; 6843 char *cp, errmsg[STRERR_BUFSIZE]; 6844 size_t log_buf_size = 0; 6845 char *log_buf = NULL, *tmp; 6846 int btf_fd, ret, err; 6847 bool own_log_buf = true; 6848 __u32 log_level = prog->log_level; 6849 6850 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6851 /* 6852 * The program type must be set. Most likely we couldn't find a proper 6853 * section definition at load time, and thus we didn't infer the type. 6854 */ 6855 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6856 prog->name, prog->sec_name); 6857 return -EINVAL; 6858 } 6859 6860 if (!insns || !insns_cnt) 6861 return -EINVAL; 6862 6863 load_attr.expected_attach_type = prog->expected_attach_type; 6864 if (kernel_supports(obj, FEAT_PROG_NAME)) 6865 prog_name = prog->name; 6866 load_attr.attach_prog_fd = prog->attach_prog_fd; 6867 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6868 load_attr.attach_btf_id = prog->attach_btf_id; 6869 load_attr.kern_version = kern_version; 6870 load_attr.prog_ifindex = prog->prog_ifindex; 6871 6872 /* specify func_info/line_info only if kernel supports them */ 6873 btf_fd = bpf_object__btf_fd(obj); 6874 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6875 load_attr.prog_btf_fd = btf_fd; 6876 load_attr.func_info = prog->func_info; 6877 load_attr.func_info_rec_size = prog->func_info_rec_size; 6878 load_attr.func_info_cnt = prog->func_info_cnt; 6879 load_attr.line_info = prog->line_info; 6880 load_attr.line_info_rec_size = prog->line_info_rec_size; 6881 load_attr.line_info_cnt = prog->line_info_cnt; 6882 } 6883 load_attr.log_level = log_level; 6884 load_attr.prog_flags = prog->prog_flags; 6885 load_attr.fd_array = obj->fd_array; 6886 6887 /* adjust load_attr if sec_def provides custom preload callback */ 6888 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6889 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6890 if (err < 0) { 6891 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6892 prog->name, err); 6893 return err; 6894 } 6895 insns = prog->insns; 6896 insns_cnt = prog->insns_cnt; 6897 } 6898 6899 if (obj->gen_loader) { 6900 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6901 license, insns, insns_cnt, &load_attr, 6902 prog - obj->programs); 6903 *prog_fd = -1; 6904 return 0; 6905 } 6906 6907 retry_load: 6908 /* if log_level is zero, we don't request logs initially even if 6909 * custom log_buf is specified; if the program load fails, then we'll 6910 * bump log_level to 1 and use either custom log_buf or we'll allocate 6911 * our own and retry the load to get details on what failed 6912 */ 6913 if (log_level) { 6914 if (prog->log_buf) { 6915 log_buf = prog->log_buf; 6916 log_buf_size = prog->log_size; 6917 own_log_buf = false; 6918 } else if (obj->log_buf) { 6919 log_buf = obj->log_buf; 6920 log_buf_size = obj->log_size; 6921 own_log_buf = false; 6922 } else { 6923 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6924 tmp = realloc(log_buf, log_buf_size); 6925 if (!tmp) { 6926 ret = -ENOMEM; 6927 goto out; 6928 } 6929 log_buf = tmp; 6930 log_buf[0] = '\0'; 6931 own_log_buf = true; 6932 } 6933 } 6934 6935 load_attr.log_buf = log_buf; 6936 load_attr.log_size = log_buf_size; 6937 load_attr.log_level = log_level; 6938 6939 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6940 if (ret >= 0) { 6941 if (log_level && own_log_buf) { 6942 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6943 prog->name, log_buf); 6944 } 6945 6946 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6947 struct bpf_map *map; 6948 int i; 6949 6950 for (i = 0; i < obj->nr_maps; i++) { 6951 map = &prog->obj->maps[i]; 6952 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6953 continue; 6954 6955 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6956 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6957 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6958 prog->name, map->real_name, cp); 6959 /* Don't fail hard if can't bind rodata. */ 6960 } 6961 } 6962 } 6963 6964 *prog_fd = ret; 6965 ret = 0; 6966 goto out; 6967 } 6968 6969 if (log_level == 0) { 6970 log_level = 1; 6971 goto retry_load; 6972 } 6973 /* On ENOSPC, increase log buffer size and retry, unless custom 6974 * log_buf is specified. 6975 * Be careful to not overflow u32, though. Kernel's log buf size limit 6976 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6977 * multiply by 2 unless we are sure we'll fit within 32 bits. 6978 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6979 */ 6980 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6981 goto retry_load; 6982 6983 ret = -errno; 6984 6985 /* post-process verifier log to improve error descriptions */ 6986 fixup_verifier_log(prog, log_buf, log_buf_size); 6987 6988 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6989 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6990 pr_perm_msg(ret); 6991 6992 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6993 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6994 prog->name, log_buf); 6995 } 6996 6997 out: 6998 if (own_log_buf) 6999 free(log_buf); 7000 return ret; 7001 } 7002 7003 static char *find_prev_line(char *buf, char *cur) 7004 { 7005 char *p; 7006 7007 if (cur == buf) /* end of a log buf */ 7008 return NULL; 7009 7010 p = cur - 1; 7011 while (p - 1 >= buf && *(p - 1) != '\n') 7012 p--; 7013 7014 return p; 7015 } 7016 7017 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7018 char *orig, size_t orig_sz, const char *patch) 7019 { 7020 /* size of the remaining log content to the right from the to-be-replaced part */ 7021 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7022 size_t patch_sz = strlen(patch); 7023 7024 if (patch_sz != orig_sz) { 7025 /* If patch line(s) are longer than original piece of verifier log, 7026 * shift log contents by (patch_sz - orig_sz) bytes to the right 7027 * starting from after to-be-replaced part of the log. 7028 * 7029 * If patch line(s) are shorter than original piece of verifier log, 7030 * shift log contents by (orig_sz - patch_sz) bytes to the left 7031 * starting from after to-be-replaced part of the log 7032 * 7033 * We need to be careful about not overflowing available 7034 * buf_sz capacity. If that's the case, we'll truncate the end 7035 * of the original log, as necessary. 7036 */ 7037 if (patch_sz > orig_sz) { 7038 if (orig + patch_sz >= buf + buf_sz) { 7039 /* patch is big enough to cover remaining space completely */ 7040 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7041 rem_sz = 0; 7042 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7043 /* patch causes part of remaining log to be truncated */ 7044 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7045 } 7046 } 7047 /* shift remaining log to the right by calculated amount */ 7048 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7049 } 7050 7051 memcpy(orig, patch, patch_sz); 7052 } 7053 7054 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7055 char *buf, size_t buf_sz, size_t log_sz, 7056 char *line1, char *line2, char *line3) 7057 { 7058 /* Expected log for failed and not properly guarded CO-RE relocation: 7059 * line1 -> 123: (85) call unknown#195896080 7060 * line2 -> invalid func unknown#195896080 7061 * line3 -> <anything else or end of buffer> 7062 * 7063 * "123" is the index of the instruction that was poisoned. We extract 7064 * instruction index to find corresponding CO-RE relocation and 7065 * replace this part of the log with more relevant information about 7066 * failed CO-RE relocation. 7067 */ 7068 const struct bpf_core_relo *relo; 7069 struct bpf_core_spec spec; 7070 char patch[512], spec_buf[256]; 7071 int insn_idx, err, spec_len; 7072 7073 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7074 return; 7075 7076 relo = find_relo_core(prog, insn_idx); 7077 if (!relo) 7078 return; 7079 7080 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7081 if (err) 7082 return; 7083 7084 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7085 snprintf(patch, sizeof(patch), 7086 "%d: <invalid CO-RE relocation>\n" 7087 "failed to resolve CO-RE relocation %s%s\n", 7088 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7089 7090 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7091 } 7092 7093 static void fixup_log_missing_map_load(struct bpf_program *prog, 7094 char *buf, size_t buf_sz, size_t log_sz, 7095 char *line1, char *line2, char *line3) 7096 { 7097 /* Expected log for failed and not properly guarded map reference: 7098 * line1 -> 123: (85) call unknown#2001000345 7099 * line2 -> invalid func unknown#2001000345 7100 * line3 -> <anything else or end of buffer> 7101 * 7102 * "123" is the index of the instruction that was poisoned. 7103 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7104 */ 7105 struct bpf_object *obj = prog->obj; 7106 const struct bpf_map *map; 7107 int insn_idx, map_idx; 7108 char patch[128]; 7109 7110 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7111 return; 7112 7113 map_idx -= POISON_LDIMM64_MAP_BASE; 7114 if (map_idx < 0 || map_idx >= obj->nr_maps) 7115 return; 7116 map = &obj->maps[map_idx]; 7117 7118 snprintf(patch, sizeof(patch), 7119 "%d: <invalid BPF map reference>\n" 7120 "BPF map '%s' is referenced but wasn't created\n", 7121 insn_idx, map->name); 7122 7123 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7124 } 7125 7126 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7127 char *buf, size_t buf_sz, size_t log_sz, 7128 char *line1, char *line2, char *line3) 7129 { 7130 /* Expected log for failed and not properly guarded kfunc call: 7131 * line1 -> 123: (85) call unknown#2002000345 7132 * line2 -> invalid func unknown#2002000345 7133 * line3 -> <anything else or end of buffer> 7134 * 7135 * "123" is the index of the instruction that was poisoned. 7136 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7137 */ 7138 struct bpf_object *obj = prog->obj; 7139 const struct extern_desc *ext; 7140 int insn_idx, ext_idx; 7141 char patch[128]; 7142 7143 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7144 return; 7145 7146 ext_idx -= POISON_CALL_KFUNC_BASE; 7147 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7148 return; 7149 ext = &obj->externs[ext_idx]; 7150 7151 snprintf(patch, sizeof(patch), 7152 "%d: <invalid kfunc call>\n" 7153 "kfunc '%s' is referenced but wasn't resolved\n", 7154 insn_idx, ext->name); 7155 7156 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7157 } 7158 7159 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7160 { 7161 /* look for familiar error patterns in last N lines of the log */ 7162 const size_t max_last_line_cnt = 10; 7163 char *prev_line, *cur_line, *next_line; 7164 size_t log_sz; 7165 int i; 7166 7167 if (!buf) 7168 return; 7169 7170 log_sz = strlen(buf) + 1; 7171 next_line = buf + log_sz - 1; 7172 7173 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7174 cur_line = find_prev_line(buf, next_line); 7175 if (!cur_line) 7176 return; 7177 7178 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7179 prev_line = find_prev_line(buf, cur_line); 7180 if (!prev_line) 7181 continue; 7182 7183 /* failed CO-RE relocation case */ 7184 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7185 prev_line, cur_line, next_line); 7186 return; 7187 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7188 prev_line = find_prev_line(buf, cur_line); 7189 if (!prev_line) 7190 continue; 7191 7192 /* reference to uncreated BPF map */ 7193 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7194 prev_line, cur_line, next_line); 7195 return; 7196 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7197 prev_line = find_prev_line(buf, cur_line); 7198 if (!prev_line) 7199 continue; 7200 7201 /* reference to unresolved kfunc */ 7202 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7203 prev_line, cur_line, next_line); 7204 return; 7205 } 7206 } 7207 } 7208 7209 static int bpf_program_record_relos(struct bpf_program *prog) 7210 { 7211 struct bpf_object *obj = prog->obj; 7212 int i; 7213 7214 for (i = 0; i < prog->nr_reloc; i++) { 7215 struct reloc_desc *relo = &prog->reloc_desc[i]; 7216 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7217 int kind; 7218 7219 switch (relo->type) { 7220 case RELO_EXTERN_LD64: 7221 if (ext->type != EXT_KSYM) 7222 continue; 7223 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7224 BTF_KIND_VAR : BTF_KIND_FUNC; 7225 bpf_gen__record_extern(obj->gen_loader, ext->name, 7226 ext->is_weak, !ext->ksym.type_id, 7227 true, kind, relo->insn_idx); 7228 break; 7229 case RELO_EXTERN_CALL: 7230 bpf_gen__record_extern(obj->gen_loader, ext->name, 7231 ext->is_weak, false, false, BTF_KIND_FUNC, 7232 relo->insn_idx); 7233 break; 7234 case RELO_CORE: { 7235 struct bpf_core_relo cr = { 7236 .insn_off = relo->insn_idx * 8, 7237 .type_id = relo->core_relo->type_id, 7238 .access_str_off = relo->core_relo->access_str_off, 7239 .kind = relo->core_relo->kind, 7240 }; 7241 7242 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7243 break; 7244 } 7245 default: 7246 continue; 7247 } 7248 } 7249 return 0; 7250 } 7251 7252 static int 7253 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7254 { 7255 struct bpf_program *prog; 7256 size_t i; 7257 int err; 7258 7259 for (i = 0; i < obj->nr_programs; i++) { 7260 prog = &obj->programs[i]; 7261 err = bpf_object__sanitize_prog(obj, prog); 7262 if (err) 7263 return err; 7264 } 7265 7266 for (i = 0; i < obj->nr_programs; i++) { 7267 prog = &obj->programs[i]; 7268 if (prog_is_subprog(obj, prog)) 7269 continue; 7270 if (!prog->autoload) { 7271 pr_debug("prog '%s': skipped loading\n", prog->name); 7272 continue; 7273 } 7274 prog->log_level |= log_level; 7275 7276 if (obj->gen_loader) 7277 bpf_program_record_relos(prog); 7278 7279 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7280 obj->license, obj->kern_version, &prog->fd); 7281 if (err) { 7282 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7283 return err; 7284 } 7285 } 7286 7287 bpf_object__free_relocs(obj); 7288 return 0; 7289 } 7290 7291 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7292 7293 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7294 { 7295 struct bpf_program *prog; 7296 int err; 7297 7298 bpf_object__for_each_program(prog, obj) { 7299 prog->sec_def = find_sec_def(prog->sec_name); 7300 if (!prog->sec_def) { 7301 /* couldn't guess, but user might manually specify */ 7302 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7303 prog->name, prog->sec_name); 7304 continue; 7305 } 7306 7307 prog->type = prog->sec_def->prog_type; 7308 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7309 7310 /* sec_def can have custom callback which should be called 7311 * after bpf_program is initialized to adjust its properties 7312 */ 7313 if (prog->sec_def->prog_setup_fn) { 7314 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7315 if (err < 0) { 7316 pr_warn("prog '%s': failed to initialize: %d\n", 7317 prog->name, err); 7318 return err; 7319 } 7320 } 7321 } 7322 7323 return 0; 7324 } 7325 7326 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7327 const struct bpf_object_open_opts *opts) 7328 { 7329 const char *obj_name, *kconfig, *btf_tmp_path; 7330 struct bpf_object *obj; 7331 char tmp_name[64]; 7332 int err; 7333 char *log_buf; 7334 size_t log_size; 7335 __u32 log_level; 7336 7337 if (elf_version(EV_CURRENT) == EV_NONE) { 7338 pr_warn("failed to init libelf for %s\n", 7339 path ? : "(mem buf)"); 7340 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7341 } 7342 7343 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7344 return ERR_PTR(-EINVAL); 7345 7346 obj_name = OPTS_GET(opts, object_name, NULL); 7347 if (obj_buf) { 7348 if (!obj_name) { 7349 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7350 (unsigned long)obj_buf, 7351 (unsigned long)obj_buf_sz); 7352 obj_name = tmp_name; 7353 } 7354 path = obj_name; 7355 pr_debug("loading object '%s' from buffer\n", obj_name); 7356 } 7357 7358 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7359 log_size = OPTS_GET(opts, kernel_log_size, 0); 7360 log_level = OPTS_GET(opts, kernel_log_level, 0); 7361 if (log_size > UINT_MAX) 7362 return ERR_PTR(-EINVAL); 7363 if (log_size && !log_buf) 7364 return ERR_PTR(-EINVAL); 7365 7366 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7367 if (IS_ERR(obj)) 7368 return obj; 7369 7370 obj->log_buf = log_buf; 7371 obj->log_size = log_size; 7372 obj->log_level = log_level; 7373 7374 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7375 if (btf_tmp_path) { 7376 if (strlen(btf_tmp_path) >= PATH_MAX) { 7377 err = -ENAMETOOLONG; 7378 goto out; 7379 } 7380 obj->btf_custom_path = strdup(btf_tmp_path); 7381 if (!obj->btf_custom_path) { 7382 err = -ENOMEM; 7383 goto out; 7384 } 7385 } 7386 7387 kconfig = OPTS_GET(opts, kconfig, NULL); 7388 if (kconfig) { 7389 obj->kconfig = strdup(kconfig); 7390 if (!obj->kconfig) { 7391 err = -ENOMEM; 7392 goto out; 7393 } 7394 } 7395 7396 err = bpf_object__elf_init(obj); 7397 err = err ? : bpf_object__check_endianness(obj); 7398 err = err ? : bpf_object__elf_collect(obj); 7399 err = err ? : bpf_object__collect_externs(obj); 7400 err = err ? : bpf_object_fixup_btf(obj); 7401 err = err ? : bpf_object__init_maps(obj, opts); 7402 err = err ? : bpf_object_init_progs(obj, opts); 7403 err = err ? : bpf_object__collect_relos(obj); 7404 if (err) 7405 goto out; 7406 7407 bpf_object__elf_finish(obj); 7408 7409 return obj; 7410 out: 7411 bpf_object__close(obj); 7412 return ERR_PTR(err); 7413 } 7414 7415 struct bpf_object * 7416 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7417 { 7418 if (!path) 7419 return libbpf_err_ptr(-EINVAL); 7420 7421 pr_debug("loading %s\n", path); 7422 7423 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7424 } 7425 7426 struct bpf_object *bpf_object__open(const char *path) 7427 { 7428 return bpf_object__open_file(path, NULL); 7429 } 7430 7431 struct bpf_object * 7432 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7433 const struct bpf_object_open_opts *opts) 7434 { 7435 if (!obj_buf || obj_buf_sz == 0) 7436 return libbpf_err_ptr(-EINVAL); 7437 7438 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7439 } 7440 7441 static int bpf_object_unload(struct bpf_object *obj) 7442 { 7443 size_t i; 7444 7445 if (!obj) 7446 return libbpf_err(-EINVAL); 7447 7448 for (i = 0; i < obj->nr_maps; i++) { 7449 zclose(obj->maps[i].fd); 7450 if (obj->maps[i].st_ops) 7451 zfree(&obj->maps[i].st_ops->kern_vdata); 7452 } 7453 7454 for (i = 0; i < obj->nr_programs; i++) 7455 bpf_program__unload(&obj->programs[i]); 7456 7457 return 0; 7458 } 7459 7460 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7461 { 7462 struct bpf_map *m; 7463 7464 bpf_object__for_each_map(m, obj) { 7465 if (!bpf_map__is_internal(m)) 7466 continue; 7467 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7468 m->def.map_flags &= ~BPF_F_MMAPABLE; 7469 } 7470 7471 return 0; 7472 } 7473 7474 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7475 { 7476 char sym_type, sym_name[500]; 7477 unsigned long long sym_addr; 7478 int ret, err = 0; 7479 FILE *f; 7480 7481 f = fopen("/proc/kallsyms", "re"); 7482 if (!f) { 7483 err = -errno; 7484 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7485 return err; 7486 } 7487 7488 while (true) { 7489 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7490 &sym_addr, &sym_type, sym_name); 7491 if (ret == EOF && feof(f)) 7492 break; 7493 if (ret != 3) { 7494 pr_warn("failed to read kallsyms entry: %d\n", ret); 7495 err = -EINVAL; 7496 break; 7497 } 7498 7499 err = cb(sym_addr, sym_type, sym_name, ctx); 7500 if (err) 7501 break; 7502 } 7503 7504 fclose(f); 7505 return err; 7506 } 7507 7508 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7509 const char *sym_name, void *ctx) 7510 { 7511 struct bpf_object *obj = ctx; 7512 const struct btf_type *t; 7513 struct extern_desc *ext; 7514 7515 ext = find_extern_by_name(obj, sym_name); 7516 if (!ext || ext->type != EXT_KSYM) 7517 return 0; 7518 7519 t = btf__type_by_id(obj->btf, ext->btf_id); 7520 if (!btf_is_var(t)) 7521 return 0; 7522 7523 if (ext->is_set && ext->ksym.addr != sym_addr) { 7524 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7525 sym_name, ext->ksym.addr, sym_addr); 7526 return -EINVAL; 7527 } 7528 if (!ext->is_set) { 7529 ext->is_set = true; 7530 ext->ksym.addr = sym_addr; 7531 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7532 } 7533 return 0; 7534 } 7535 7536 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7537 { 7538 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7539 } 7540 7541 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7542 __u16 kind, struct btf **res_btf, 7543 struct module_btf **res_mod_btf) 7544 { 7545 struct module_btf *mod_btf; 7546 struct btf *btf; 7547 int i, id, err; 7548 7549 btf = obj->btf_vmlinux; 7550 mod_btf = NULL; 7551 id = btf__find_by_name_kind(btf, ksym_name, kind); 7552 7553 if (id == -ENOENT) { 7554 err = load_module_btfs(obj); 7555 if (err) 7556 return err; 7557 7558 for (i = 0; i < obj->btf_module_cnt; i++) { 7559 /* we assume module_btf's BTF FD is always >0 */ 7560 mod_btf = &obj->btf_modules[i]; 7561 btf = mod_btf->btf; 7562 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7563 if (id != -ENOENT) 7564 break; 7565 } 7566 } 7567 if (id <= 0) 7568 return -ESRCH; 7569 7570 *res_btf = btf; 7571 *res_mod_btf = mod_btf; 7572 return id; 7573 } 7574 7575 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7576 struct extern_desc *ext) 7577 { 7578 const struct btf_type *targ_var, *targ_type; 7579 __u32 targ_type_id, local_type_id; 7580 struct module_btf *mod_btf = NULL; 7581 const char *targ_var_name; 7582 struct btf *btf = NULL; 7583 int id, err; 7584 7585 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7586 if (id < 0) { 7587 if (id == -ESRCH && ext->is_weak) 7588 return 0; 7589 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7590 ext->name); 7591 return id; 7592 } 7593 7594 /* find local type_id */ 7595 local_type_id = ext->ksym.type_id; 7596 7597 /* find target type_id */ 7598 targ_var = btf__type_by_id(btf, id); 7599 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7600 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7601 7602 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7603 btf, targ_type_id); 7604 if (err <= 0) { 7605 const struct btf_type *local_type; 7606 const char *targ_name, *local_name; 7607 7608 local_type = btf__type_by_id(obj->btf, local_type_id); 7609 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7610 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7611 7612 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7613 ext->name, local_type_id, 7614 btf_kind_str(local_type), local_name, targ_type_id, 7615 btf_kind_str(targ_type), targ_name); 7616 return -EINVAL; 7617 } 7618 7619 ext->is_set = true; 7620 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7621 ext->ksym.kernel_btf_id = id; 7622 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7623 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7624 7625 return 0; 7626 } 7627 7628 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7629 struct extern_desc *ext) 7630 { 7631 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7632 struct module_btf *mod_btf = NULL; 7633 const struct btf_type *kern_func; 7634 struct btf *kern_btf = NULL; 7635 int ret; 7636 7637 local_func_proto_id = ext->ksym.type_id; 7638 7639 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7640 &mod_btf); 7641 if (kfunc_id < 0) { 7642 if (kfunc_id == -ESRCH && ext->is_weak) 7643 return 0; 7644 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7645 ext->name); 7646 return kfunc_id; 7647 } 7648 7649 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7650 kfunc_proto_id = kern_func->type; 7651 7652 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7653 kern_btf, kfunc_proto_id); 7654 if (ret <= 0) { 7655 if (ext->is_weak) 7656 return 0; 7657 7658 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7659 ext->name, local_func_proto_id, 7660 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7661 return -EINVAL; 7662 } 7663 7664 /* set index for module BTF fd in fd_array, if unset */ 7665 if (mod_btf && !mod_btf->fd_array_idx) { 7666 /* insn->off is s16 */ 7667 if (obj->fd_array_cnt == INT16_MAX) { 7668 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7669 ext->name, mod_btf->fd_array_idx); 7670 return -E2BIG; 7671 } 7672 /* Cannot use index 0 for module BTF fd */ 7673 if (!obj->fd_array_cnt) 7674 obj->fd_array_cnt = 1; 7675 7676 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7677 obj->fd_array_cnt + 1); 7678 if (ret) 7679 return ret; 7680 mod_btf->fd_array_idx = obj->fd_array_cnt; 7681 /* we assume module BTF FD is always >0 */ 7682 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7683 } 7684 7685 ext->is_set = true; 7686 ext->ksym.kernel_btf_id = kfunc_id; 7687 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7688 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7689 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7690 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7691 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7692 */ 7693 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7694 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7695 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7696 7697 return 0; 7698 } 7699 7700 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7701 { 7702 const struct btf_type *t; 7703 struct extern_desc *ext; 7704 int i, err; 7705 7706 for (i = 0; i < obj->nr_extern; i++) { 7707 ext = &obj->externs[i]; 7708 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7709 continue; 7710 7711 if (obj->gen_loader) { 7712 ext->is_set = true; 7713 ext->ksym.kernel_btf_obj_fd = 0; 7714 ext->ksym.kernel_btf_id = 0; 7715 continue; 7716 } 7717 t = btf__type_by_id(obj->btf, ext->btf_id); 7718 if (btf_is_var(t)) 7719 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7720 else 7721 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7722 if (err) 7723 return err; 7724 } 7725 return 0; 7726 } 7727 7728 static int bpf_object__resolve_externs(struct bpf_object *obj, 7729 const char *extra_kconfig) 7730 { 7731 bool need_config = false, need_kallsyms = false; 7732 bool need_vmlinux_btf = false; 7733 struct extern_desc *ext; 7734 void *kcfg_data = NULL; 7735 int err, i; 7736 7737 if (obj->nr_extern == 0) 7738 return 0; 7739 7740 if (obj->kconfig_map_idx >= 0) 7741 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7742 7743 for (i = 0; i < obj->nr_extern; i++) { 7744 ext = &obj->externs[i]; 7745 7746 if (ext->type == EXT_KSYM) { 7747 if (ext->ksym.type_id) 7748 need_vmlinux_btf = true; 7749 else 7750 need_kallsyms = true; 7751 continue; 7752 } else if (ext->type == EXT_KCFG) { 7753 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7754 __u64 value = 0; 7755 7756 /* Kconfig externs need actual /proc/config.gz */ 7757 if (str_has_pfx(ext->name, "CONFIG_")) { 7758 need_config = true; 7759 continue; 7760 } 7761 7762 /* Virtual kcfg externs are customly handled by libbpf */ 7763 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7764 value = get_kernel_version(); 7765 if (!value) { 7766 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7767 return -EINVAL; 7768 } 7769 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7770 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7771 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7772 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7773 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7774 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7775 * __kconfig externs, where LINUX_ ones are virtual and filled out 7776 * customly by libbpf (their values don't come from Kconfig). 7777 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7778 * __weak, it defaults to zero value, just like for CONFIG_xxx 7779 * externs. 7780 */ 7781 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7782 return -EINVAL; 7783 } 7784 7785 err = set_kcfg_value_num(ext, ext_ptr, value); 7786 if (err) 7787 return err; 7788 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7789 ext->name, (long long)value); 7790 } else { 7791 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7792 return -EINVAL; 7793 } 7794 } 7795 if (need_config && extra_kconfig) { 7796 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7797 if (err) 7798 return -EINVAL; 7799 need_config = false; 7800 for (i = 0; i < obj->nr_extern; i++) { 7801 ext = &obj->externs[i]; 7802 if (ext->type == EXT_KCFG && !ext->is_set) { 7803 need_config = true; 7804 break; 7805 } 7806 } 7807 } 7808 if (need_config) { 7809 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7810 if (err) 7811 return -EINVAL; 7812 } 7813 if (need_kallsyms) { 7814 err = bpf_object__read_kallsyms_file(obj); 7815 if (err) 7816 return -EINVAL; 7817 } 7818 if (need_vmlinux_btf) { 7819 err = bpf_object__resolve_ksyms_btf_id(obj); 7820 if (err) 7821 return -EINVAL; 7822 } 7823 for (i = 0; i < obj->nr_extern; i++) { 7824 ext = &obj->externs[i]; 7825 7826 if (!ext->is_set && !ext->is_weak) { 7827 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7828 return -ESRCH; 7829 } else if (!ext->is_set) { 7830 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7831 ext->name); 7832 } 7833 } 7834 7835 return 0; 7836 } 7837 7838 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7839 { 7840 struct bpf_struct_ops *st_ops; 7841 __u32 i; 7842 7843 st_ops = map->st_ops; 7844 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7845 struct bpf_program *prog = st_ops->progs[i]; 7846 void *kern_data; 7847 int prog_fd; 7848 7849 if (!prog) 7850 continue; 7851 7852 prog_fd = bpf_program__fd(prog); 7853 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7854 *(unsigned long *)kern_data = prog_fd; 7855 } 7856 } 7857 7858 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7859 { 7860 int i; 7861 7862 for (i = 0; i < obj->nr_maps; i++) 7863 if (bpf_map__is_struct_ops(&obj->maps[i])) 7864 bpf_map_prepare_vdata(&obj->maps[i]); 7865 7866 return 0; 7867 } 7868 7869 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7870 { 7871 int err, i; 7872 7873 if (!obj) 7874 return libbpf_err(-EINVAL); 7875 7876 if (obj->loaded) { 7877 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7878 return libbpf_err(-EINVAL); 7879 } 7880 7881 if (obj->gen_loader) 7882 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7883 7884 err = bpf_object__probe_loading(obj); 7885 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7886 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7887 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7888 err = err ? : bpf_object__sanitize_maps(obj); 7889 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7890 err = err ? : bpf_object__create_maps(obj); 7891 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7892 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7893 err = err ? : bpf_object_init_prog_arrays(obj); 7894 err = err ? : bpf_object_prepare_struct_ops(obj); 7895 7896 if (obj->gen_loader) { 7897 /* reset FDs */ 7898 if (obj->btf) 7899 btf__set_fd(obj->btf, -1); 7900 for (i = 0; i < obj->nr_maps; i++) 7901 obj->maps[i].fd = -1; 7902 if (!err) 7903 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7904 } 7905 7906 /* clean up fd_array */ 7907 zfree(&obj->fd_array); 7908 7909 /* clean up module BTFs */ 7910 for (i = 0; i < obj->btf_module_cnt; i++) { 7911 close(obj->btf_modules[i].fd); 7912 btf__free(obj->btf_modules[i].btf); 7913 free(obj->btf_modules[i].name); 7914 } 7915 free(obj->btf_modules); 7916 7917 /* clean up vmlinux BTF */ 7918 btf__free(obj->btf_vmlinux); 7919 obj->btf_vmlinux = NULL; 7920 7921 obj->loaded = true; /* doesn't matter if successfully or not */ 7922 7923 if (err) 7924 goto out; 7925 7926 return 0; 7927 out: 7928 /* unpin any maps that were auto-pinned during load */ 7929 for (i = 0; i < obj->nr_maps; i++) 7930 if (obj->maps[i].pinned && !obj->maps[i].reused) 7931 bpf_map__unpin(&obj->maps[i], NULL); 7932 7933 bpf_object_unload(obj); 7934 pr_warn("failed to load object '%s'\n", obj->path); 7935 return libbpf_err(err); 7936 } 7937 7938 int bpf_object__load(struct bpf_object *obj) 7939 { 7940 return bpf_object_load(obj, 0, NULL); 7941 } 7942 7943 static int make_parent_dir(const char *path) 7944 { 7945 char *cp, errmsg[STRERR_BUFSIZE]; 7946 char *dname, *dir; 7947 int err = 0; 7948 7949 dname = strdup(path); 7950 if (dname == NULL) 7951 return -ENOMEM; 7952 7953 dir = dirname(dname); 7954 if (mkdir(dir, 0700) && errno != EEXIST) 7955 err = -errno; 7956 7957 free(dname); 7958 if (err) { 7959 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7960 pr_warn("failed to mkdir %s: %s\n", path, cp); 7961 } 7962 return err; 7963 } 7964 7965 static int check_path(const char *path) 7966 { 7967 char *cp, errmsg[STRERR_BUFSIZE]; 7968 struct statfs st_fs; 7969 char *dname, *dir; 7970 int err = 0; 7971 7972 if (path == NULL) 7973 return -EINVAL; 7974 7975 dname = strdup(path); 7976 if (dname == NULL) 7977 return -ENOMEM; 7978 7979 dir = dirname(dname); 7980 if (statfs(dir, &st_fs)) { 7981 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7982 pr_warn("failed to statfs %s: %s\n", dir, cp); 7983 err = -errno; 7984 } 7985 free(dname); 7986 7987 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7988 pr_warn("specified path %s is not on BPF FS\n", path); 7989 err = -EINVAL; 7990 } 7991 7992 return err; 7993 } 7994 7995 int bpf_program__pin(struct bpf_program *prog, const char *path) 7996 { 7997 char *cp, errmsg[STRERR_BUFSIZE]; 7998 int err; 7999 8000 if (prog->fd < 0) { 8001 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8002 return libbpf_err(-EINVAL); 8003 } 8004 8005 err = make_parent_dir(path); 8006 if (err) 8007 return libbpf_err(err); 8008 8009 err = check_path(path); 8010 if (err) 8011 return libbpf_err(err); 8012 8013 if (bpf_obj_pin(prog->fd, path)) { 8014 err = -errno; 8015 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8016 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8017 return libbpf_err(err); 8018 } 8019 8020 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8021 return 0; 8022 } 8023 8024 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8025 { 8026 int err; 8027 8028 if (prog->fd < 0) { 8029 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8030 return libbpf_err(-EINVAL); 8031 } 8032 8033 err = check_path(path); 8034 if (err) 8035 return libbpf_err(err); 8036 8037 err = unlink(path); 8038 if (err) 8039 return libbpf_err(-errno); 8040 8041 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8042 return 0; 8043 } 8044 8045 int bpf_map__pin(struct bpf_map *map, const char *path) 8046 { 8047 char *cp, errmsg[STRERR_BUFSIZE]; 8048 int err; 8049 8050 if (map == NULL) { 8051 pr_warn("invalid map pointer\n"); 8052 return libbpf_err(-EINVAL); 8053 } 8054 8055 if (map->pin_path) { 8056 if (path && strcmp(path, map->pin_path)) { 8057 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8058 bpf_map__name(map), map->pin_path, path); 8059 return libbpf_err(-EINVAL); 8060 } else if (map->pinned) { 8061 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8062 bpf_map__name(map), map->pin_path); 8063 return 0; 8064 } 8065 } else { 8066 if (!path) { 8067 pr_warn("missing a path to pin map '%s' at\n", 8068 bpf_map__name(map)); 8069 return libbpf_err(-EINVAL); 8070 } else if (map->pinned) { 8071 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8072 return libbpf_err(-EEXIST); 8073 } 8074 8075 map->pin_path = strdup(path); 8076 if (!map->pin_path) { 8077 err = -errno; 8078 goto out_err; 8079 } 8080 } 8081 8082 err = make_parent_dir(map->pin_path); 8083 if (err) 8084 return libbpf_err(err); 8085 8086 err = check_path(map->pin_path); 8087 if (err) 8088 return libbpf_err(err); 8089 8090 if (bpf_obj_pin(map->fd, map->pin_path)) { 8091 err = -errno; 8092 goto out_err; 8093 } 8094 8095 map->pinned = true; 8096 pr_debug("pinned map '%s'\n", map->pin_path); 8097 8098 return 0; 8099 8100 out_err: 8101 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8102 pr_warn("failed to pin map: %s\n", cp); 8103 return libbpf_err(err); 8104 } 8105 8106 int bpf_map__unpin(struct bpf_map *map, const char *path) 8107 { 8108 int err; 8109 8110 if (map == NULL) { 8111 pr_warn("invalid map pointer\n"); 8112 return libbpf_err(-EINVAL); 8113 } 8114 8115 if (map->pin_path) { 8116 if (path && strcmp(path, map->pin_path)) { 8117 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8118 bpf_map__name(map), map->pin_path, path); 8119 return libbpf_err(-EINVAL); 8120 } 8121 path = map->pin_path; 8122 } else if (!path) { 8123 pr_warn("no path to unpin map '%s' from\n", 8124 bpf_map__name(map)); 8125 return libbpf_err(-EINVAL); 8126 } 8127 8128 err = check_path(path); 8129 if (err) 8130 return libbpf_err(err); 8131 8132 err = unlink(path); 8133 if (err != 0) 8134 return libbpf_err(-errno); 8135 8136 map->pinned = false; 8137 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8138 8139 return 0; 8140 } 8141 8142 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8143 { 8144 char *new = NULL; 8145 8146 if (path) { 8147 new = strdup(path); 8148 if (!new) 8149 return libbpf_err(-errno); 8150 } 8151 8152 free(map->pin_path); 8153 map->pin_path = new; 8154 return 0; 8155 } 8156 8157 __alias(bpf_map__pin_path) 8158 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8159 8160 const char *bpf_map__pin_path(const struct bpf_map *map) 8161 { 8162 return map->pin_path; 8163 } 8164 8165 bool bpf_map__is_pinned(const struct bpf_map *map) 8166 { 8167 return map->pinned; 8168 } 8169 8170 static void sanitize_pin_path(char *s) 8171 { 8172 /* bpffs disallows periods in path names */ 8173 while (*s) { 8174 if (*s == '.') 8175 *s = '_'; 8176 s++; 8177 } 8178 } 8179 8180 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8181 { 8182 struct bpf_map *map; 8183 int err; 8184 8185 if (!obj) 8186 return libbpf_err(-ENOENT); 8187 8188 if (!obj->loaded) { 8189 pr_warn("object not yet loaded; load it first\n"); 8190 return libbpf_err(-ENOENT); 8191 } 8192 8193 bpf_object__for_each_map(map, obj) { 8194 char *pin_path = NULL; 8195 char buf[PATH_MAX]; 8196 8197 if (!map->autocreate) 8198 continue; 8199 8200 if (path) { 8201 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8202 if (err) 8203 goto err_unpin_maps; 8204 sanitize_pin_path(buf); 8205 pin_path = buf; 8206 } else if (!map->pin_path) { 8207 continue; 8208 } 8209 8210 err = bpf_map__pin(map, pin_path); 8211 if (err) 8212 goto err_unpin_maps; 8213 } 8214 8215 return 0; 8216 8217 err_unpin_maps: 8218 while ((map = bpf_object__prev_map(obj, map))) { 8219 if (!map->pin_path) 8220 continue; 8221 8222 bpf_map__unpin(map, NULL); 8223 } 8224 8225 return libbpf_err(err); 8226 } 8227 8228 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8229 { 8230 struct bpf_map *map; 8231 int err; 8232 8233 if (!obj) 8234 return libbpf_err(-ENOENT); 8235 8236 bpf_object__for_each_map(map, obj) { 8237 char *pin_path = NULL; 8238 char buf[PATH_MAX]; 8239 8240 if (path) { 8241 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8242 if (err) 8243 return libbpf_err(err); 8244 sanitize_pin_path(buf); 8245 pin_path = buf; 8246 } else if (!map->pin_path) { 8247 continue; 8248 } 8249 8250 err = bpf_map__unpin(map, pin_path); 8251 if (err) 8252 return libbpf_err(err); 8253 } 8254 8255 return 0; 8256 } 8257 8258 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8259 { 8260 struct bpf_program *prog; 8261 char buf[PATH_MAX]; 8262 int err; 8263 8264 if (!obj) 8265 return libbpf_err(-ENOENT); 8266 8267 if (!obj->loaded) { 8268 pr_warn("object not yet loaded; load it first\n"); 8269 return libbpf_err(-ENOENT); 8270 } 8271 8272 bpf_object__for_each_program(prog, obj) { 8273 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8274 if (err) 8275 goto err_unpin_programs; 8276 8277 err = bpf_program__pin(prog, buf); 8278 if (err) 8279 goto err_unpin_programs; 8280 } 8281 8282 return 0; 8283 8284 err_unpin_programs: 8285 while ((prog = bpf_object__prev_program(obj, prog))) { 8286 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8287 continue; 8288 8289 bpf_program__unpin(prog, buf); 8290 } 8291 8292 return libbpf_err(err); 8293 } 8294 8295 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8296 { 8297 struct bpf_program *prog; 8298 int err; 8299 8300 if (!obj) 8301 return libbpf_err(-ENOENT); 8302 8303 bpf_object__for_each_program(prog, obj) { 8304 char buf[PATH_MAX]; 8305 8306 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8307 if (err) 8308 return libbpf_err(err); 8309 8310 err = bpf_program__unpin(prog, buf); 8311 if (err) 8312 return libbpf_err(err); 8313 } 8314 8315 return 0; 8316 } 8317 8318 int bpf_object__pin(struct bpf_object *obj, const char *path) 8319 { 8320 int err; 8321 8322 err = bpf_object__pin_maps(obj, path); 8323 if (err) 8324 return libbpf_err(err); 8325 8326 err = bpf_object__pin_programs(obj, path); 8327 if (err) { 8328 bpf_object__unpin_maps(obj, path); 8329 return libbpf_err(err); 8330 } 8331 8332 return 0; 8333 } 8334 8335 static void bpf_map__destroy(struct bpf_map *map) 8336 { 8337 if (map->inner_map) { 8338 bpf_map__destroy(map->inner_map); 8339 zfree(&map->inner_map); 8340 } 8341 8342 zfree(&map->init_slots); 8343 map->init_slots_sz = 0; 8344 8345 if (map->mmaped) { 8346 size_t mmap_sz; 8347 8348 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8349 munmap(map->mmaped, mmap_sz); 8350 map->mmaped = NULL; 8351 } 8352 8353 if (map->st_ops) { 8354 zfree(&map->st_ops->data); 8355 zfree(&map->st_ops->progs); 8356 zfree(&map->st_ops->kern_func_off); 8357 zfree(&map->st_ops); 8358 } 8359 8360 zfree(&map->name); 8361 zfree(&map->real_name); 8362 zfree(&map->pin_path); 8363 8364 if (map->fd >= 0) 8365 zclose(map->fd); 8366 } 8367 8368 void bpf_object__close(struct bpf_object *obj) 8369 { 8370 size_t i; 8371 8372 if (IS_ERR_OR_NULL(obj)) 8373 return; 8374 8375 usdt_manager_free(obj->usdt_man); 8376 obj->usdt_man = NULL; 8377 8378 bpf_gen__free(obj->gen_loader); 8379 bpf_object__elf_finish(obj); 8380 bpf_object_unload(obj); 8381 btf__free(obj->btf); 8382 btf_ext__free(obj->btf_ext); 8383 8384 for (i = 0; i < obj->nr_maps; i++) 8385 bpf_map__destroy(&obj->maps[i]); 8386 8387 zfree(&obj->btf_custom_path); 8388 zfree(&obj->kconfig); 8389 8390 for (i = 0; i < obj->nr_extern; i++) 8391 zfree(&obj->externs[i].essent_name); 8392 8393 zfree(&obj->externs); 8394 obj->nr_extern = 0; 8395 8396 zfree(&obj->maps); 8397 obj->nr_maps = 0; 8398 8399 if (obj->programs && obj->nr_programs) { 8400 for (i = 0; i < obj->nr_programs; i++) 8401 bpf_program__exit(&obj->programs[i]); 8402 } 8403 zfree(&obj->programs); 8404 8405 free(obj); 8406 } 8407 8408 const char *bpf_object__name(const struct bpf_object *obj) 8409 { 8410 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8411 } 8412 8413 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8414 { 8415 return obj ? obj->kern_version : 0; 8416 } 8417 8418 struct btf *bpf_object__btf(const struct bpf_object *obj) 8419 { 8420 return obj ? obj->btf : NULL; 8421 } 8422 8423 int bpf_object__btf_fd(const struct bpf_object *obj) 8424 { 8425 return obj->btf ? btf__fd(obj->btf) : -1; 8426 } 8427 8428 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8429 { 8430 if (obj->loaded) 8431 return libbpf_err(-EINVAL); 8432 8433 obj->kern_version = kern_version; 8434 8435 return 0; 8436 } 8437 8438 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8439 { 8440 struct bpf_gen *gen; 8441 8442 if (!opts) 8443 return -EFAULT; 8444 if (!OPTS_VALID(opts, gen_loader_opts)) 8445 return -EINVAL; 8446 gen = calloc(sizeof(*gen), 1); 8447 if (!gen) 8448 return -ENOMEM; 8449 gen->opts = opts; 8450 obj->gen_loader = gen; 8451 return 0; 8452 } 8453 8454 static struct bpf_program * 8455 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8456 bool forward) 8457 { 8458 size_t nr_programs = obj->nr_programs; 8459 ssize_t idx; 8460 8461 if (!nr_programs) 8462 return NULL; 8463 8464 if (!p) 8465 /* Iter from the beginning */ 8466 return forward ? &obj->programs[0] : 8467 &obj->programs[nr_programs - 1]; 8468 8469 if (p->obj != obj) { 8470 pr_warn("error: program handler doesn't match object\n"); 8471 return errno = EINVAL, NULL; 8472 } 8473 8474 idx = (p - obj->programs) + (forward ? 1 : -1); 8475 if (idx >= obj->nr_programs || idx < 0) 8476 return NULL; 8477 return &obj->programs[idx]; 8478 } 8479 8480 struct bpf_program * 8481 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8482 { 8483 struct bpf_program *prog = prev; 8484 8485 do { 8486 prog = __bpf_program__iter(prog, obj, true); 8487 } while (prog && prog_is_subprog(obj, prog)); 8488 8489 return prog; 8490 } 8491 8492 struct bpf_program * 8493 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8494 { 8495 struct bpf_program *prog = next; 8496 8497 do { 8498 prog = __bpf_program__iter(prog, obj, false); 8499 } while (prog && prog_is_subprog(obj, prog)); 8500 8501 return prog; 8502 } 8503 8504 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8505 { 8506 prog->prog_ifindex = ifindex; 8507 } 8508 8509 const char *bpf_program__name(const struct bpf_program *prog) 8510 { 8511 return prog->name; 8512 } 8513 8514 const char *bpf_program__section_name(const struct bpf_program *prog) 8515 { 8516 return prog->sec_name; 8517 } 8518 8519 bool bpf_program__autoload(const struct bpf_program *prog) 8520 { 8521 return prog->autoload; 8522 } 8523 8524 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8525 { 8526 if (prog->obj->loaded) 8527 return libbpf_err(-EINVAL); 8528 8529 prog->autoload = autoload; 8530 return 0; 8531 } 8532 8533 bool bpf_program__autoattach(const struct bpf_program *prog) 8534 { 8535 return prog->autoattach; 8536 } 8537 8538 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8539 { 8540 prog->autoattach = autoattach; 8541 } 8542 8543 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8544 { 8545 return prog->insns; 8546 } 8547 8548 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8549 { 8550 return prog->insns_cnt; 8551 } 8552 8553 int bpf_program__set_insns(struct bpf_program *prog, 8554 struct bpf_insn *new_insns, size_t new_insn_cnt) 8555 { 8556 struct bpf_insn *insns; 8557 8558 if (prog->obj->loaded) 8559 return -EBUSY; 8560 8561 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8562 /* NULL is a valid return from reallocarray if the new count is zero */ 8563 if (!insns && new_insn_cnt) { 8564 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8565 return -ENOMEM; 8566 } 8567 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8568 8569 prog->insns = insns; 8570 prog->insns_cnt = new_insn_cnt; 8571 return 0; 8572 } 8573 8574 int bpf_program__fd(const struct bpf_program *prog) 8575 { 8576 if (!prog) 8577 return libbpf_err(-EINVAL); 8578 8579 if (prog->fd < 0) 8580 return libbpf_err(-ENOENT); 8581 8582 return prog->fd; 8583 } 8584 8585 __alias(bpf_program__type) 8586 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8587 8588 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8589 { 8590 return prog->type; 8591 } 8592 8593 static size_t custom_sec_def_cnt; 8594 static struct bpf_sec_def *custom_sec_defs; 8595 static struct bpf_sec_def custom_fallback_def; 8596 static bool has_custom_fallback_def; 8597 static int last_custom_sec_def_handler_id; 8598 8599 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8600 { 8601 if (prog->obj->loaded) 8602 return libbpf_err(-EBUSY); 8603 8604 /* if type is not changed, do nothing */ 8605 if (prog->type == type) 8606 return 0; 8607 8608 prog->type = type; 8609 8610 /* If a program type was changed, we need to reset associated SEC() 8611 * handler, as it will be invalid now. The only exception is a generic 8612 * fallback handler, which by definition is program type-agnostic and 8613 * is a catch-all custom handler, optionally set by the application, 8614 * so should be able to handle any type of BPF program. 8615 */ 8616 if (prog->sec_def != &custom_fallback_def) 8617 prog->sec_def = NULL; 8618 return 0; 8619 } 8620 8621 __alias(bpf_program__expected_attach_type) 8622 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8623 8624 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8625 { 8626 return prog->expected_attach_type; 8627 } 8628 8629 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8630 enum bpf_attach_type type) 8631 { 8632 if (prog->obj->loaded) 8633 return libbpf_err(-EBUSY); 8634 8635 prog->expected_attach_type = type; 8636 return 0; 8637 } 8638 8639 __u32 bpf_program__flags(const struct bpf_program *prog) 8640 { 8641 return prog->prog_flags; 8642 } 8643 8644 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8645 { 8646 if (prog->obj->loaded) 8647 return libbpf_err(-EBUSY); 8648 8649 prog->prog_flags = flags; 8650 return 0; 8651 } 8652 8653 __u32 bpf_program__log_level(const struct bpf_program *prog) 8654 { 8655 return prog->log_level; 8656 } 8657 8658 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8659 { 8660 if (prog->obj->loaded) 8661 return libbpf_err(-EBUSY); 8662 8663 prog->log_level = log_level; 8664 return 0; 8665 } 8666 8667 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8668 { 8669 *log_size = prog->log_size; 8670 return prog->log_buf; 8671 } 8672 8673 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8674 { 8675 if (log_size && !log_buf) 8676 return -EINVAL; 8677 if (prog->log_size > UINT_MAX) 8678 return -EINVAL; 8679 if (prog->obj->loaded) 8680 return -EBUSY; 8681 8682 prog->log_buf = log_buf; 8683 prog->log_size = log_size; 8684 return 0; 8685 } 8686 8687 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8688 .sec = (char *)sec_pfx, \ 8689 .prog_type = BPF_PROG_TYPE_##ptype, \ 8690 .expected_attach_type = atype, \ 8691 .cookie = (long)(flags), \ 8692 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8693 __VA_ARGS__ \ 8694 } 8695 8696 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8697 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8698 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8699 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8700 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8701 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8702 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8703 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8704 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8705 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8706 8707 static const struct bpf_sec_def section_defs[] = { 8708 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8709 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8710 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8711 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8712 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8713 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8714 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8715 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8716 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8717 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8718 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8719 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8720 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8721 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8722 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8723 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8724 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8725 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8726 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8727 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8728 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8729 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8730 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8731 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8732 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8733 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8734 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8735 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8736 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8737 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8738 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8739 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8740 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8741 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8742 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8743 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8744 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8745 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8746 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8747 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8748 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8749 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8750 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8751 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8752 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8753 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8754 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8755 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8756 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8757 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8758 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8759 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8760 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8761 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8762 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8763 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8764 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8765 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8766 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8767 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8768 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8769 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8770 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8771 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8772 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8773 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8774 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8775 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8776 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8777 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8778 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8779 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8780 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8781 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8782 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8783 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8784 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8785 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8786 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8787 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8788 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8789 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8790 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8791 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8792 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8793 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8794 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8795 }; 8796 8797 int libbpf_register_prog_handler(const char *sec, 8798 enum bpf_prog_type prog_type, 8799 enum bpf_attach_type exp_attach_type, 8800 const struct libbpf_prog_handler_opts *opts) 8801 { 8802 struct bpf_sec_def *sec_def; 8803 8804 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8805 return libbpf_err(-EINVAL); 8806 8807 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8808 return libbpf_err(-E2BIG); 8809 8810 if (sec) { 8811 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8812 sizeof(*sec_def)); 8813 if (!sec_def) 8814 return libbpf_err(-ENOMEM); 8815 8816 custom_sec_defs = sec_def; 8817 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8818 } else { 8819 if (has_custom_fallback_def) 8820 return libbpf_err(-EBUSY); 8821 8822 sec_def = &custom_fallback_def; 8823 } 8824 8825 sec_def->sec = sec ? strdup(sec) : NULL; 8826 if (sec && !sec_def->sec) 8827 return libbpf_err(-ENOMEM); 8828 8829 sec_def->prog_type = prog_type; 8830 sec_def->expected_attach_type = exp_attach_type; 8831 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8832 8833 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8834 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8835 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8836 8837 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8838 8839 if (sec) 8840 custom_sec_def_cnt++; 8841 else 8842 has_custom_fallback_def = true; 8843 8844 return sec_def->handler_id; 8845 } 8846 8847 int libbpf_unregister_prog_handler(int handler_id) 8848 { 8849 struct bpf_sec_def *sec_defs; 8850 int i; 8851 8852 if (handler_id <= 0) 8853 return libbpf_err(-EINVAL); 8854 8855 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8856 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8857 has_custom_fallback_def = false; 8858 return 0; 8859 } 8860 8861 for (i = 0; i < custom_sec_def_cnt; i++) { 8862 if (custom_sec_defs[i].handler_id == handler_id) 8863 break; 8864 } 8865 8866 if (i == custom_sec_def_cnt) 8867 return libbpf_err(-ENOENT); 8868 8869 free(custom_sec_defs[i].sec); 8870 for (i = i + 1; i < custom_sec_def_cnt; i++) 8871 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8872 custom_sec_def_cnt--; 8873 8874 /* try to shrink the array, but it's ok if we couldn't */ 8875 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8876 /* if new count is zero, reallocarray can return a valid NULL result; 8877 * in this case the previous pointer will be freed, so we *have to* 8878 * reassign old pointer to the new value (even if it's NULL) 8879 */ 8880 if (sec_defs || custom_sec_def_cnt == 0) 8881 custom_sec_defs = sec_defs; 8882 8883 return 0; 8884 } 8885 8886 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8887 { 8888 size_t len = strlen(sec_def->sec); 8889 8890 /* "type/" always has to have proper SEC("type/extras") form */ 8891 if (sec_def->sec[len - 1] == '/') { 8892 if (str_has_pfx(sec_name, sec_def->sec)) 8893 return true; 8894 return false; 8895 } 8896 8897 /* "type+" means it can be either exact SEC("type") or 8898 * well-formed SEC("type/extras") with proper '/' separator 8899 */ 8900 if (sec_def->sec[len - 1] == '+') { 8901 len--; 8902 /* not even a prefix */ 8903 if (strncmp(sec_name, sec_def->sec, len) != 0) 8904 return false; 8905 /* exact match or has '/' separator */ 8906 if (sec_name[len] == '\0' || sec_name[len] == '/') 8907 return true; 8908 return false; 8909 } 8910 8911 return strcmp(sec_name, sec_def->sec) == 0; 8912 } 8913 8914 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8915 { 8916 const struct bpf_sec_def *sec_def; 8917 int i, n; 8918 8919 n = custom_sec_def_cnt; 8920 for (i = 0; i < n; i++) { 8921 sec_def = &custom_sec_defs[i]; 8922 if (sec_def_matches(sec_def, sec_name)) 8923 return sec_def; 8924 } 8925 8926 n = ARRAY_SIZE(section_defs); 8927 for (i = 0; i < n; i++) { 8928 sec_def = §ion_defs[i]; 8929 if (sec_def_matches(sec_def, sec_name)) 8930 return sec_def; 8931 } 8932 8933 if (has_custom_fallback_def) 8934 return &custom_fallback_def; 8935 8936 return NULL; 8937 } 8938 8939 #define MAX_TYPE_NAME_SIZE 32 8940 8941 static char *libbpf_get_type_names(bool attach_type) 8942 { 8943 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8944 char *buf; 8945 8946 buf = malloc(len); 8947 if (!buf) 8948 return NULL; 8949 8950 buf[0] = '\0'; 8951 /* Forge string buf with all available names */ 8952 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8953 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8954 8955 if (attach_type) { 8956 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8957 continue; 8958 8959 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8960 continue; 8961 } 8962 8963 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8964 free(buf); 8965 return NULL; 8966 } 8967 strcat(buf, " "); 8968 strcat(buf, section_defs[i].sec); 8969 } 8970 8971 return buf; 8972 } 8973 8974 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8975 enum bpf_attach_type *expected_attach_type) 8976 { 8977 const struct bpf_sec_def *sec_def; 8978 char *type_names; 8979 8980 if (!name) 8981 return libbpf_err(-EINVAL); 8982 8983 sec_def = find_sec_def(name); 8984 if (sec_def) { 8985 *prog_type = sec_def->prog_type; 8986 *expected_attach_type = sec_def->expected_attach_type; 8987 return 0; 8988 } 8989 8990 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8991 type_names = libbpf_get_type_names(false); 8992 if (type_names != NULL) { 8993 pr_debug("supported section(type) names are:%s\n", type_names); 8994 free(type_names); 8995 } 8996 8997 return libbpf_err(-ESRCH); 8998 } 8999 9000 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9001 { 9002 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9003 return NULL; 9004 9005 return attach_type_name[t]; 9006 } 9007 9008 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9009 { 9010 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9011 return NULL; 9012 9013 return link_type_name[t]; 9014 } 9015 9016 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9017 { 9018 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9019 return NULL; 9020 9021 return map_type_name[t]; 9022 } 9023 9024 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9025 { 9026 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9027 return NULL; 9028 9029 return prog_type_name[t]; 9030 } 9031 9032 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9033 int sec_idx, 9034 size_t offset) 9035 { 9036 struct bpf_map *map; 9037 size_t i; 9038 9039 for (i = 0; i < obj->nr_maps; i++) { 9040 map = &obj->maps[i]; 9041 if (!bpf_map__is_struct_ops(map)) 9042 continue; 9043 if (map->sec_idx == sec_idx && 9044 map->sec_offset <= offset && 9045 offset - map->sec_offset < map->def.value_size) 9046 return map; 9047 } 9048 9049 return NULL; 9050 } 9051 9052 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9053 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9054 Elf64_Shdr *shdr, Elf_Data *data) 9055 { 9056 const struct btf_member *member; 9057 struct bpf_struct_ops *st_ops; 9058 struct bpf_program *prog; 9059 unsigned int shdr_idx; 9060 const struct btf *btf; 9061 struct bpf_map *map; 9062 unsigned int moff, insn_idx; 9063 const char *name; 9064 __u32 member_idx; 9065 Elf64_Sym *sym; 9066 Elf64_Rel *rel; 9067 int i, nrels; 9068 9069 btf = obj->btf; 9070 nrels = shdr->sh_size / shdr->sh_entsize; 9071 for (i = 0; i < nrels; i++) { 9072 rel = elf_rel_by_idx(data, i); 9073 if (!rel) { 9074 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9075 return -LIBBPF_ERRNO__FORMAT; 9076 } 9077 9078 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9079 if (!sym) { 9080 pr_warn("struct_ops reloc: symbol %zx not found\n", 9081 (size_t)ELF64_R_SYM(rel->r_info)); 9082 return -LIBBPF_ERRNO__FORMAT; 9083 } 9084 9085 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9086 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9087 if (!map) { 9088 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9089 (size_t)rel->r_offset); 9090 return -EINVAL; 9091 } 9092 9093 moff = rel->r_offset - map->sec_offset; 9094 shdr_idx = sym->st_shndx; 9095 st_ops = map->st_ops; 9096 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9097 map->name, 9098 (long long)(rel->r_info >> 32), 9099 (long long)sym->st_value, 9100 shdr_idx, (size_t)rel->r_offset, 9101 map->sec_offset, sym->st_name, name); 9102 9103 if (shdr_idx >= SHN_LORESERVE) { 9104 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9105 map->name, (size_t)rel->r_offset, shdr_idx); 9106 return -LIBBPF_ERRNO__RELOC; 9107 } 9108 if (sym->st_value % BPF_INSN_SZ) { 9109 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9110 map->name, (unsigned long long)sym->st_value); 9111 return -LIBBPF_ERRNO__FORMAT; 9112 } 9113 insn_idx = sym->st_value / BPF_INSN_SZ; 9114 9115 member = find_member_by_offset(st_ops->type, moff * 8); 9116 if (!member) { 9117 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9118 map->name, moff); 9119 return -EINVAL; 9120 } 9121 member_idx = member - btf_members(st_ops->type); 9122 name = btf__name_by_offset(btf, member->name_off); 9123 9124 if (!resolve_func_ptr(btf, member->type, NULL)) { 9125 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9126 map->name, name); 9127 return -EINVAL; 9128 } 9129 9130 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9131 if (!prog) { 9132 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9133 map->name, shdr_idx, name); 9134 return -EINVAL; 9135 } 9136 9137 /* prevent the use of BPF prog with invalid type */ 9138 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9139 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9140 map->name, prog->name); 9141 return -EINVAL; 9142 } 9143 9144 /* if we haven't yet processed this BPF program, record proper 9145 * attach_btf_id and member_idx 9146 */ 9147 if (!prog->attach_btf_id) { 9148 prog->attach_btf_id = st_ops->type_id; 9149 prog->expected_attach_type = member_idx; 9150 } 9151 9152 /* struct_ops BPF prog can be re-used between multiple 9153 * .struct_ops & .struct_ops.link as long as it's the 9154 * same struct_ops struct definition and the same 9155 * function pointer field 9156 */ 9157 if (prog->attach_btf_id != st_ops->type_id || 9158 prog->expected_attach_type != member_idx) { 9159 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9160 map->name, prog->name, prog->sec_name, prog->type, 9161 prog->attach_btf_id, prog->expected_attach_type, name); 9162 return -EINVAL; 9163 } 9164 9165 st_ops->progs[member_idx] = prog; 9166 } 9167 9168 return 0; 9169 } 9170 9171 #define BTF_TRACE_PREFIX "btf_trace_" 9172 #define BTF_LSM_PREFIX "bpf_lsm_" 9173 #define BTF_ITER_PREFIX "bpf_iter_" 9174 #define BTF_MAX_NAME_SIZE 128 9175 9176 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9177 const char **prefix, int *kind) 9178 { 9179 switch (attach_type) { 9180 case BPF_TRACE_RAW_TP: 9181 *prefix = BTF_TRACE_PREFIX; 9182 *kind = BTF_KIND_TYPEDEF; 9183 break; 9184 case BPF_LSM_MAC: 9185 case BPF_LSM_CGROUP: 9186 *prefix = BTF_LSM_PREFIX; 9187 *kind = BTF_KIND_FUNC; 9188 break; 9189 case BPF_TRACE_ITER: 9190 *prefix = BTF_ITER_PREFIX; 9191 *kind = BTF_KIND_FUNC; 9192 break; 9193 default: 9194 *prefix = ""; 9195 *kind = BTF_KIND_FUNC; 9196 } 9197 } 9198 9199 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9200 const char *name, __u32 kind) 9201 { 9202 char btf_type_name[BTF_MAX_NAME_SIZE]; 9203 int ret; 9204 9205 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9206 "%s%s", prefix, name); 9207 /* snprintf returns the number of characters written excluding the 9208 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9209 * indicates truncation. 9210 */ 9211 if (ret < 0 || ret >= sizeof(btf_type_name)) 9212 return -ENAMETOOLONG; 9213 return btf__find_by_name_kind(btf, btf_type_name, kind); 9214 } 9215 9216 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9217 enum bpf_attach_type attach_type) 9218 { 9219 const char *prefix; 9220 int kind; 9221 9222 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9223 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9224 } 9225 9226 int libbpf_find_vmlinux_btf_id(const char *name, 9227 enum bpf_attach_type attach_type) 9228 { 9229 struct btf *btf; 9230 int err; 9231 9232 btf = btf__load_vmlinux_btf(); 9233 err = libbpf_get_error(btf); 9234 if (err) { 9235 pr_warn("vmlinux BTF is not found\n"); 9236 return libbpf_err(err); 9237 } 9238 9239 err = find_attach_btf_id(btf, name, attach_type); 9240 if (err <= 0) 9241 pr_warn("%s is not found in vmlinux BTF\n", name); 9242 9243 btf__free(btf); 9244 return libbpf_err(err); 9245 } 9246 9247 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9248 { 9249 struct bpf_prog_info info; 9250 __u32 info_len = sizeof(info); 9251 struct btf *btf; 9252 int err; 9253 9254 memset(&info, 0, info_len); 9255 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9256 if (err) { 9257 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9258 attach_prog_fd, err); 9259 return err; 9260 } 9261 9262 err = -EINVAL; 9263 if (!info.btf_id) { 9264 pr_warn("The target program doesn't have BTF\n"); 9265 goto out; 9266 } 9267 btf = btf__load_from_kernel_by_id(info.btf_id); 9268 err = libbpf_get_error(btf); 9269 if (err) { 9270 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9271 goto out; 9272 } 9273 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9274 btf__free(btf); 9275 if (err <= 0) { 9276 pr_warn("%s is not found in prog's BTF\n", name); 9277 goto out; 9278 } 9279 out: 9280 return err; 9281 } 9282 9283 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9284 enum bpf_attach_type attach_type, 9285 int *btf_obj_fd, int *btf_type_id) 9286 { 9287 int ret, i; 9288 9289 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9290 if (ret > 0) { 9291 *btf_obj_fd = 0; /* vmlinux BTF */ 9292 *btf_type_id = ret; 9293 return 0; 9294 } 9295 if (ret != -ENOENT) 9296 return ret; 9297 9298 ret = load_module_btfs(obj); 9299 if (ret) 9300 return ret; 9301 9302 for (i = 0; i < obj->btf_module_cnt; i++) { 9303 const struct module_btf *mod = &obj->btf_modules[i]; 9304 9305 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9306 if (ret > 0) { 9307 *btf_obj_fd = mod->fd; 9308 *btf_type_id = ret; 9309 return 0; 9310 } 9311 if (ret == -ENOENT) 9312 continue; 9313 9314 return ret; 9315 } 9316 9317 return -ESRCH; 9318 } 9319 9320 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9321 int *btf_obj_fd, int *btf_type_id) 9322 { 9323 enum bpf_attach_type attach_type = prog->expected_attach_type; 9324 __u32 attach_prog_fd = prog->attach_prog_fd; 9325 int err = 0; 9326 9327 /* BPF program's BTF ID */ 9328 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9329 if (!attach_prog_fd) { 9330 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9331 return -EINVAL; 9332 } 9333 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9334 if (err < 0) { 9335 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9336 prog->name, attach_prog_fd, attach_name, err); 9337 return err; 9338 } 9339 *btf_obj_fd = 0; 9340 *btf_type_id = err; 9341 return 0; 9342 } 9343 9344 /* kernel/module BTF ID */ 9345 if (prog->obj->gen_loader) { 9346 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9347 *btf_obj_fd = 0; 9348 *btf_type_id = 1; 9349 } else { 9350 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9351 } 9352 if (err) { 9353 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9354 prog->name, attach_name, err); 9355 return err; 9356 } 9357 return 0; 9358 } 9359 9360 int libbpf_attach_type_by_name(const char *name, 9361 enum bpf_attach_type *attach_type) 9362 { 9363 char *type_names; 9364 const struct bpf_sec_def *sec_def; 9365 9366 if (!name) 9367 return libbpf_err(-EINVAL); 9368 9369 sec_def = find_sec_def(name); 9370 if (!sec_def) { 9371 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9372 type_names = libbpf_get_type_names(true); 9373 if (type_names != NULL) { 9374 pr_debug("attachable section(type) names are:%s\n", type_names); 9375 free(type_names); 9376 } 9377 9378 return libbpf_err(-EINVAL); 9379 } 9380 9381 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9382 return libbpf_err(-EINVAL); 9383 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9384 return libbpf_err(-EINVAL); 9385 9386 *attach_type = sec_def->expected_attach_type; 9387 return 0; 9388 } 9389 9390 int bpf_map__fd(const struct bpf_map *map) 9391 { 9392 return map ? map->fd : libbpf_err(-EINVAL); 9393 } 9394 9395 static bool map_uses_real_name(const struct bpf_map *map) 9396 { 9397 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9398 * their user-visible name differs from kernel-visible name. Users see 9399 * such map's corresponding ELF section name as a map name. 9400 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9401 * maps to know which name has to be returned to the user. 9402 */ 9403 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9404 return true; 9405 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9406 return true; 9407 return false; 9408 } 9409 9410 const char *bpf_map__name(const struct bpf_map *map) 9411 { 9412 if (!map) 9413 return NULL; 9414 9415 if (map_uses_real_name(map)) 9416 return map->real_name; 9417 9418 return map->name; 9419 } 9420 9421 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9422 { 9423 return map->def.type; 9424 } 9425 9426 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9427 { 9428 if (map->fd >= 0) 9429 return libbpf_err(-EBUSY); 9430 map->def.type = type; 9431 return 0; 9432 } 9433 9434 __u32 bpf_map__map_flags(const struct bpf_map *map) 9435 { 9436 return map->def.map_flags; 9437 } 9438 9439 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9440 { 9441 if (map->fd >= 0) 9442 return libbpf_err(-EBUSY); 9443 map->def.map_flags = flags; 9444 return 0; 9445 } 9446 9447 __u64 bpf_map__map_extra(const struct bpf_map *map) 9448 { 9449 return map->map_extra; 9450 } 9451 9452 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9453 { 9454 if (map->fd >= 0) 9455 return libbpf_err(-EBUSY); 9456 map->map_extra = map_extra; 9457 return 0; 9458 } 9459 9460 __u32 bpf_map__numa_node(const struct bpf_map *map) 9461 { 9462 return map->numa_node; 9463 } 9464 9465 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9466 { 9467 if (map->fd >= 0) 9468 return libbpf_err(-EBUSY); 9469 map->numa_node = numa_node; 9470 return 0; 9471 } 9472 9473 __u32 bpf_map__key_size(const struct bpf_map *map) 9474 { 9475 return map->def.key_size; 9476 } 9477 9478 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9479 { 9480 if (map->fd >= 0) 9481 return libbpf_err(-EBUSY); 9482 map->def.key_size = size; 9483 return 0; 9484 } 9485 9486 __u32 bpf_map__value_size(const struct bpf_map *map) 9487 { 9488 return map->def.value_size; 9489 } 9490 9491 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9492 { 9493 struct btf *btf; 9494 struct btf_type *datasec_type, *var_type; 9495 struct btf_var_secinfo *var; 9496 const struct btf_type *array_type; 9497 const struct btf_array *array; 9498 int vlen, element_sz, new_array_id; 9499 __u32 nr_elements; 9500 9501 /* check btf existence */ 9502 btf = bpf_object__btf(map->obj); 9503 if (!btf) 9504 return -ENOENT; 9505 9506 /* verify map is datasec */ 9507 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9508 if (!btf_is_datasec(datasec_type)) { 9509 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9510 bpf_map__name(map)); 9511 return -EINVAL; 9512 } 9513 9514 /* verify datasec has at least one var */ 9515 vlen = btf_vlen(datasec_type); 9516 if (vlen == 0) { 9517 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9518 bpf_map__name(map)); 9519 return -EINVAL; 9520 } 9521 9522 /* verify last var in the datasec is an array */ 9523 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9524 var_type = btf_type_by_id(btf, var->type); 9525 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9526 if (!btf_is_array(array_type)) { 9527 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9528 bpf_map__name(map)); 9529 return -EINVAL; 9530 } 9531 9532 /* verify request size aligns with array */ 9533 array = btf_array(array_type); 9534 element_sz = btf__resolve_size(btf, array->type); 9535 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9536 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9537 bpf_map__name(map), element_sz, size); 9538 return -EINVAL; 9539 } 9540 9541 /* create a new array based on the existing array, but with new length */ 9542 nr_elements = (size - var->offset) / element_sz; 9543 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9544 if (new_array_id < 0) 9545 return new_array_id; 9546 9547 /* adding a new btf type invalidates existing pointers to btf objects, 9548 * so refresh pointers before proceeding 9549 */ 9550 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9551 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9552 var_type = btf_type_by_id(btf, var->type); 9553 9554 /* finally update btf info */ 9555 datasec_type->size = size; 9556 var->size = size - var->offset; 9557 var_type->type = new_array_id; 9558 9559 return 0; 9560 } 9561 9562 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9563 { 9564 if (map->fd >= 0) 9565 return libbpf_err(-EBUSY); 9566 9567 if (map->mmaped) { 9568 int err; 9569 size_t mmap_old_sz, mmap_new_sz; 9570 9571 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9572 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9573 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9574 if (err) { 9575 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9576 bpf_map__name(map), err); 9577 return err; 9578 } 9579 err = map_btf_datasec_resize(map, size); 9580 if (err && err != -ENOENT) { 9581 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9582 bpf_map__name(map), err); 9583 map->btf_value_type_id = 0; 9584 map->btf_key_type_id = 0; 9585 } 9586 } 9587 9588 map->def.value_size = size; 9589 return 0; 9590 } 9591 9592 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9593 { 9594 return map ? map->btf_key_type_id : 0; 9595 } 9596 9597 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9598 { 9599 return map ? map->btf_value_type_id : 0; 9600 } 9601 9602 int bpf_map__set_initial_value(struct bpf_map *map, 9603 const void *data, size_t size) 9604 { 9605 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9606 size != map->def.value_size || map->fd >= 0) 9607 return libbpf_err(-EINVAL); 9608 9609 memcpy(map->mmaped, data, size); 9610 return 0; 9611 } 9612 9613 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9614 { 9615 if (!map->mmaped) 9616 return NULL; 9617 *psize = map->def.value_size; 9618 return map->mmaped; 9619 } 9620 9621 bool bpf_map__is_internal(const struct bpf_map *map) 9622 { 9623 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9624 } 9625 9626 __u32 bpf_map__ifindex(const struct bpf_map *map) 9627 { 9628 return map->map_ifindex; 9629 } 9630 9631 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9632 { 9633 if (map->fd >= 0) 9634 return libbpf_err(-EBUSY); 9635 map->map_ifindex = ifindex; 9636 return 0; 9637 } 9638 9639 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9640 { 9641 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9642 pr_warn("error: unsupported map type\n"); 9643 return libbpf_err(-EINVAL); 9644 } 9645 if (map->inner_map_fd != -1) { 9646 pr_warn("error: inner_map_fd already specified\n"); 9647 return libbpf_err(-EINVAL); 9648 } 9649 if (map->inner_map) { 9650 bpf_map__destroy(map->inner_map); 9651 zfree(&map->inner_map); 9652 } 9653 map->inner_map_fd = fd; 9654 return 0; 9655 } 9656 9657 static struct bpf_map * 9658 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9659 { 9660 ssize_t idx; 9661 struct bpf_map *s, *e; 9662 9663 if (!obj || !obj->maps) 9664 return errno = EINVAL, NULL; 9665 9666 s = obj->maps; 9667 e = obj->maps + obj->nr_maps; 9668 9669 if ((m < s) || (m >= e)) { 9670 pr_warn("error in %s: map handler doesn't belong to object\n", 9671 __func__); 9672 return errno = EINVAL, NULL; 9673 } 9674 9675 idx = (m - obj->maps) + i; 9676 if (idx >= obj->nr_maps || idx < 0) 9677 return NULL; 9678 return &obj->maps[idx]; 9679 } 9680 9681 struct bpf_map * 9682 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9683 { 9684 if (prev == NULL) 9685 return obj->maps; 9686 9687 return __bpf_map__iter(prev, obj, 1); 9688 } 9689 9690 struct bpf_map * 9691 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9692 { 9693 if (next == NULL) { 9694 if (!obj->nr_maps) 9695 return NULL; 9696 return obj->maps + obj->nr_maps - 1; 9697 } 9698 9699 return __bpf_map__iter(next, obj, -1); 9700 } 9701 9702 struct bpf_map * 9703 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9704 { 9705 struct bpf_map *pos; 9706 9707 bpf_object__for_each_map(pos, obj) { 9708 /* if it's a special internal map name (which always starts 9709 * with dot) then check if that special name matches the 9710 * real map name (ELF section name) 9711 */ 9712 if (name[0] == '.') { 9713 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9714 return pos; 9715 continue; 9716 } 9717 /* otherwise map name has to be an exact match */ 9718 if (map_uses_real_name(pos)) { 9719 if (strcmp(pos->real_name, name) == 0) 9720 return pos; 9721 continue; 9722 } 9723 if (strcmp(pos->name, name) == 0) 9724 return pos; 9725 } 9726 return errno = ENOENT, NULL; 9727 } 9728 9729 int 9730 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9731 { 9732 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9733 } 9734 9735 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9736 size_t value_sz, bool check_value_sz) 9737 { 9738 if (map->fd <= 0) 9739 return -ENOENT; 9740 9741 if (map->def.key_size != key_sz) { 9742 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9743 map->name, key_sz, map->def.key_size); 9744 return -EINVAL; 9745 } 9746 9747 if (!check_value_sz) 9748 return 0; 9749 9750 switch (map->def.type) { 9751 case BPF_MAP_TYPE_PERCPU_ARRAY: 9752 case BPF_MAP_TYPE_PERCPU_HASH: 9753 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9754 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9755 int num_cpu = libbpf_num_possible_cpus(); 9756 size_t elem_sz = roundup(map->def.value_size, 8); 9757 9758 if (value_sz != num_cpu * elem_sz) { 9759 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9760 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9761 return -EINVAL; 9762 } 9763 break; 9764 } 9765 default: 9766 if (map->def.value_size != value_sz) { 9767 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9768 map->name, value_sz, map->def.value_size); 9769 return -EINVAL; 9770 } 9771 break; 9772 } 9773 return 0; 9774 } 9775 9776 int bpf_map__lookup_elem(const struct bpf_map *map, 9777 const void *key, size_t key_sz, 9778 void *value, size_t value_sz, __u64 flags) 9779 { 9780 int err; 9781 9782 err = validate_map_op(map, key_sz, value_sz, true); 9783 if (err) 9784 return libbpf_err(err); 9785 9786 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9787 } 9788 9789 int bpf_map__update_elem(const struct bpf_map *map, 9790 const void *key, size_t key_sz, 9791 const void *value, size_t value_sz, __u64 flags) 9792 { 9793 int err; 9794 9795 err = validate_map_op(map, key_sz, value_sz, true); 9796 if (err) 9797 return libbpf_err(err); 9798 9799 return bpf_map_update_elem(map->fd, key, value, flags); 9800 } 9801 9802 int bpf_map__delete_elem(const struct bpf_map *map, 9803 const void *key, size_t key_sz, __u64 flags) 9804 { 9805 int err; 9806 9807 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9808 if (err) 9809 return libbpf_err(err); 9810 9811 return bpf_map_delete_elem_flags(map->fd, key, flags); 9812 } 9813 9814 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9815 const void *key, size_t key_sz, 9816 void *value, size_t value_sz, __u64 flags) 9817 { 9818 int err; 9819 9820 err = validate_map_op(map, key_sz, value_sz, true); 9821 if (err) 9822 return libbpf_err(err); 9823 9824 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9825 } 9826 9827 int bpf_map__get_next_key(const struct bpf_map *map, 9828 const void *cur_key, void *next_key, size_t key_sz) 9829 { 9830 int err; 9831 9832 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9833 if (err) 9834 return libbpf_err(err); 9835 9836 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9837 } 9838 9839 long libbpf_get_error(const void *ptr) 9840 { 9841 if (!IS_ERR_OR_NULL(ptr)) 9842 return 0; 9843 9844 if (IS_ERR(ptr)) 9845 errno = -PTR_ERR(ptr); 9846 9847 /* If ptr == NULL, then errno should be already set by the failing 9848 * API, because libbpf never returns NULL on success and it now always 9849 * sets errno on error. So no extra errno handling for ptr == NULL 9850 * case. 9851 */ 9852 return -errno; 9853 } 9854 9855 /* Replace link's underlying BPF program with the new one */ 9856 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9857 { 9858 int ret; 9859 9860 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9861 return libbpf_err_errno(ret); 9862 } 9863 9864 /* Release "ownership" of underlying BPF resource (typically, BPF program 9865 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9866 * link, when destructed through bpf_link__destroy() call won't attempt to 9867 * detach/unregisted that BPF resource. This is useful in situations where, 9868 * say, attached BPF program has to outlive userspace program that attached it 9869 * in the system. Depending on type of BPF program, though, there might be 9870 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9871 * exit of userspace program doesn't trigger automatic detachment and clean up 9872 * inside the kernel. 9873 */ 9874 void bpf_link__disconnect(struct bpf_link *link) 9875 { 9876 link->disconnected = true; 9877 } 9878 9879 int bpf_link__destroy(struct bpf_link *link) 9880 { 9881 int err = 0; 9882 9883 if (IS_ERR_OR_NULL(link)) 9884 return 0; 9885 9886 if (!link->disconnected && link->detach) 9887 err = link->detach(link); 9888 if (link->pin_path) 9889 free(link->pin_path); 9890 if (link->dealloc) 9891 link->dealloc(link); 9892 else 9893 free(link); 9894 9895 return libbpf_err(err); 9896 } 9897 9898 int bpf_link__fd(const struct bpf_link *link) 9899 { 9900 return link->fd; 9901 } 9902 9903 const char *bpf_link__pin_path(const struct bpf_link *link) 9904 { 9905 return link->pin_path; 9906 } 9907 9908 static int bpf_link__detach_fd(struct bpf_link *link) 9909 { 9910 return libbpf_err_errno(close(link->fd)); 9911 } 9912 9913 struct bpf_link *bpf_link__open(const char *path) 9914 { 9915 struct bpf_link *link; 9916 int fd; 9917 9918 fd = bpf_obj_get(path); 9919 if (fd < 0) { 9920 fd = -errno; 9921 pr_warn("failed to open link at %s: %d\n", path, fd); 9922 return libbpf_err_ptr(fd); 9923 } 9924 9925 link = calloc(1, sizeof(*link)); 9926 if (!link) { 9927 close(fd); 9928 return libbpf_err_ptr(-ENOMEM); 9929 } 9930 link->detach = &bpf_link__detach_fd; 9931 link->fd = fd; 9932 9933 link->pin_path = strdup(path); 9934 if (!link->pin_path) { 9935 bpf_link__destroy(link); 9936 return libbpf_err_ptr(-ENOMEM); 9937 } 9938 9939 return link; 9940 } 9941 9942 int bpf_link__detach(struct bpf_link *link) 9943 { 9944 return bpf_link_detach(link->fd) ? -errno : 0; 9945 } 9946 9947 int bpf_link__pin(struct bpf_link *link, const char *path) 9948 { 9949 int err; 9950 9951 if (link->pin_path) 9952 return libbpf_err(-EBUSY); 9953 err = make_parent_dir(path); 9954 if (err) 9955 return libbpf_err(err); 9956 err = check_path(path); 9957 if (err) 9958 return libbpf_err(err); 9959 9960 link->pin_path = strdup(path); 9961 if (!link->pin_path) 9962 return libbpf_err(-ENOMEM); 9963 9964 if (bpf_obj_pin(link->fd, link->pin_path)) { 9965 err = -errno; 9966 zfree(&link->pin_path); 9967 return libbpf_err(err); 9968 } 9969 9970 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9971 return 0; 9972 } 9973 9974 int bpf_link__unpin(struct bpf_link *link) 9975 { 9976 int err; 9977 9978 if (!link->pin_path) 9979 return libbpf_err(-EINVAL); 9980 9981 err = unlink(link->pin_path); 9982 if (err != 0) 9983 return -errno; 9984 9985 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9986 zfree(&link->pin_path); 9987 return 0; 9988 } 9989 9990 struct bpf_link_perf { 9991 struct bpf_link link; 9992 int perf_event_fd; 9993 /* legacy kprobe support: keep track of probe identifier and type */ 9994 char *legacy_probe_name; 9995 bool legacy_is_kprobe; 9996 bool legacy_is_retprobe; 9997 }; 9998 9999 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10000 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10001 10002 static int bpf_link_perf_detach(struct bpf_link *link) 10003 { 10004 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10005 int err = 0; 10006 10007 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10008 err = -errno; 10009 10010 if (perf_link->perf_event_fd != link->fd) 10011 close(perf_link->perf_event_fd); 10012 close(link->fd); 10013 10014 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10015 if (perf_link->legacy_probe_name) { 10016 if (perf_link->legacy_is_kprobe) { 10017 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10018 perf_link->legacy_is_retprobe); 10019 } else { 10020 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10021 perf_link->legacy_is_retprobe); 10022 } 10023 } 10024 10025 return err; 10026 } 10027 10028 static void bpf_link_perf_dealloc(struct bpf_link *link) 10029 { 10030 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10031 10032 free(perf_link->legacy_probe_name); 10033 free(perf_link); 10034 } 10035 10036 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10037 const struct bpf_perf_event_opts *opts) 10038 { 10039 char errmsg[STRERR_BUFSIZE]; 10040 struct bpf_link_perf *link; 10041 int prog_fd, link_fd = -1, err; 10042 bool force_ioctl_attach; 10043 10044 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10045 return libbpf_err_ptr(-EINVAL); 10046 10047 if (pfd < 0) { 10048 pr_warn("prog '%s': invalid perf event FD %d\n", 10049 prog->name, pfd); 10050 return libbpf_err_ptr(-EINVAL); 10051 } 10052 prog_fd = bpf_program__fd(prog); 10053 if (prog_fd < 0) { 10054 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10055 prog->name); 10056 return libbpf_err_ptr(-EINVAL); 10057 } 10058 10059 link = calloc(1, sizeof(*link)); 10060 if (!link) 10061 return libbpf_err_ptr(-ENOMEM); 10062 link->link.detach = &bpf_link_perf_detach; 10063 link->link.dealloc = &bpf_link_perf_dealloc; 10064 link->perf_event_fd = pfd; 10065 10066 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10067 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10068 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10069 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10070 10071 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10072 if (link_fd < 0) { 10073 err = -errno; 10074 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10075 prog->name, pfd, 10076 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10077 goto err_out; 10078 } 10079 link->link.fd = link_fd; 10080 } else { 10081 if (OPTS_GET(opts, bpf_cookie, 0)) { 10082 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10083 err = -EOPNOTSUPP; 10084 goto err_out; 10085 } 10086 10087 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10088 err = -errno; 10089 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10090 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10091 if (err == -EPROTO) 10092 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10093 prog->name, pfd); 10094 goto err_out; 10095 } 10096 link->link.fd = pfd; 10097 } 10098 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10099 err = -errno; 10100 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10101 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10102 goto err_out; 10103 } 10104 10105 return &link->link; 10106 err_out: 10107 if (link_fd >= 0) 10108 close(link_fd); 10109 free(link); 10110 return libbpf_err_ptr(err); 10111 } 10112 10113 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10114 { 10115 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10116 } 10117 10118 /* 10119 * this function is expected to parse integer in the range of [0, 2^31-1] from 10120 * given file using scanf format string fmt. If actual parsed value is 10121 * negative, the result might be indistinguishable from error 10122 */ 10123 static int parse_uint_from_file(const char *file, const char *fmt) 10124 { 10125 char buf[STRERR_BUFSIZE]; 10126 int err, ret; 10127 FILE *f; 10128 10129 f = fopen(file, "re"); 10130 if (!f) { 10131 err = -errno; 10132 pr_debug("failed to open '%s': %s\n", file, 10133 libbpf_strerror_r(err, buf, sizeof(buf))); 10134 return err; 10135 } 10136 err = fscanf(f, fmt, &ret); 10137 if (err != 1) { 10138 err = err == EOF ? -EIO : -errno; 10139 pr_debug("failed to parse '%s': %s\n", file, 10140 libbpf_strerror_r(err, buf, sizeof(buf))); 10141 fclose(f); 10142 return err; 10143 } 10144 fclose(f); 10145 return ret; 10146 } 10147 10148 static int determine_kprobe_perf_type(void) 10149 { 10150 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10151 10152 return parse_uint_from_file(file, "%d\n"); 10153 } 10154 10155 static int determine_uprobe_perf_type(void) 10156 { 10157 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10158 10159 return parse_uint_from_file(file, "%d\n"); 10160 } 10161 10162 static int determine_kprobe_retprobe_bit(void) 10163 { 10164 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10165 10166 return parse_uint_from_file(file, "config:%d\n"); 10167 } 10168 10169 static int determine_uprobe_retprobe_bit(void) 10170 { 10171 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10172 10173 return parse_uint_from_file(file, "config:%d\n"); 10174 } 10175 10176 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10177 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10178 10179 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10180 uint64_t offset, int pid, size_t ref_ctr_off) 10181 { 10182 const size_t attr_sz = sizeof(struct perf_event_attr); 10183 struct perf_event_attr attr; 10184 char errmsg[STRERR_BUFSIZE]; 10185 int type, pfd; 10186 10187 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10188 return -EINVAL; 10189 10190 memset(&attr, 0, attr_sz); 10191 10192 type = uprobe ? determine_uprobe_perf_type() 10193 : determine_kprobe_perf_type(); 10194 if (type < 0) { 10195 pr_warn("failed to determine %s perf type: %s\n", 10196 uprobe ? "uprobe" : "kprobe", 10197 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10198 return type; 10199 } 10200 if (retprobe) { 10201 int bit = uprobe ? determine_uprobe_retprobe_bit() 10202 : determine_kprobe_retprobe_bit(); 10203 10204 if (bit < 0) { 10205 pr_warn("failed to determine %s retprobe bit: %s\n", 10206 uprobe ? "uprobe" : "kprobe", 10207 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10208 return bit; 10209 } 10210 attr.config |= 1 << bit; 10211 } 10212 attr.size = attr_sz; 10213 attr.type = type; 10214 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10215 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10216 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10217 10218 /* pid filter is meaningful only for uprobes */ 10219 pfd = syscall(__NR_perf_event_open, &attr, 10220 pid < 0 ? -1 : pid /* pid */, 10221 pid == -1 ? 0 : -1 /* cpu */, 10222 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10223 return pfd >= 0 ? pfd : -errno; 10224 } 10225 10226 static int append_to_file(const char *file, const char *fmt, ...) 10227 { 10228 int fd, n, err = 0; 10229 va_list ap; 10230 char buf[1024]; 10231 10232 va_start(ap, fmt); 10233 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10234 va_end(ap); 10235 10236 if (n < 0 || n >= sizeof(buf)) 10237 return -EINVAL; 10238 10239 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10240 if (fd < 0) 10241 return -errno; 10242 10243 if (write(fd, buf, n) < 0) 10244 err = -errno; 10245 10246 close(fd); 10247 return err; 10248 } 10249 10250 #define DEBUGFS "/sys/kernel/debug/tracing" 10251 #define TRACEFS "/sys/kernel/tracing" 10252 10253 static bool use_debugfs(void) 10254 { 10255 static int has_debugfs = -1; 10256 10257 if (has_debugfs < 0) 10258 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10259 10260 return has_debugfs == 1; 10261 } 10262 10263 static const char *tracefs_path(void) 10264 { 10265 return use_debugfs() ? DEBUGFS : TRACEFS; 10266 } 10267 10268 static const char *tracefs_kprobe_events(void) 10269 { 10270 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10271 } 10272 10273 static const char *tracefs_uprobe_events(void) 10274 { 10275 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10276 } 10277 10278 static const char *tracefs_available_filter_functions(void) 10279 { 10280 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10281 : TRACEFS"/available_filter_functions"; 10282 } 10283 10284 static const char *tracefs_available_filter_functions_addrs(void) 10285 { 10286 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10287 : TRACEFS"/available_filter_functions_addrs"; 10288 } 10289 10290 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10291 const char *kfunc_name, size_t offset) 10292 { 10293 static int index = 0; 10294 int i; 10295 10296 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10297 __sync_fetch_and_add(&index, 1)); 10298 10299 /* sanitize binary_path in the probe name */ 10300 for (i = 0; buf[i]; i++) { 10301 if (!isalnum(buf[i])) 10302 buf[i] = '_'; 10303 } 10304 } 10305 10306 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10307 const char *kfunc_name, size_t offset) 10308 { 10309 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10310 retprobe ? 'r' : 'p', 10311 retprobe ? "kretprobes" : "kprobes", 10312 probe_name, kfunc_name, offset); 10313 } 10314 10315 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10316 { 10317 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10318 retprobe ? "kretprobes" : "kprobes", probe_name); 10319 } 10320 10321 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10322 { 10323 char file[256]; 10324 10325 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10326 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10327 10328 return parse_uint_from_file(file, "%d\n"); 10329 } 10330 10331 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10332 const char *kfunc_name, size_t offset, int pid) 10333 { 10334 const size_t attr_sz = sizeof(struct perf_event_attr); 10335 struct perf_event_attr attr; 10336 char errmsg[STRERR_BUFSIZE]; 10337 int type, pfd, err; 10338 10339 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10340 if (err < 0) { 10341 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10342 kfunc_name, offset, 10343 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10344 return err; 10345 } 10346 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10347 if (type < 0) { 10348 err = type; 10349 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10350 kfunc_name, offset, 10351 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10352 goto err_clean_legacy; 10353 } 10354 10355 memset(&attr, 0, attr_sz); 10356 attr.size = attr_sz; 10357 attr.config = type; 10358 attr.type = PERF_TYPE_TRACEPOINT; 10359 10360 pfd = syscall(__NR_perf_event_open, &attr, 10361 pid < 0 ? -1 : pid, /* pid */ 10362 pid == -1 ? 0 : -1, /* cpu */ 10363 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10364 if (pfd < 0) { 10365 err = -errno; 10366 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10367 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10368 goto err_clean_legacy; 10369 } 10370 return pfd; 10371 10372 err_clean_legacy: 10373 /* Clear the newly added legacy kprobe_event */ 10374 remove_kprobe_event_legacy(probe_name, retprobe); 10375 return err; 10376 } 10377 10378 static const char *arch_specific_syscall_pfx(void) 10379 { 10380 #if defined(__x86_64__) 10381 return "x64"; 10382 #elif defined(__i386__) 10383 return "ia32"; 10384 #elif defined(__s390x__) 10385 return "s390x"; 10386 #elif defined(__s390__) 10387 return "s390"; 10388 #elif defined(__arm__) 10389 return "arm"; 10390 #elif defined(__aarch64__) 10391 return "arm64"; 10392 #elif defined(__mips__) 10393 return "mips"; 10394 #elif defined(__riscv) 10395 return "riscv"; 10396 #elif defined(__powerpc__) 10397 return "powerpc"; 10398 #elif defined(__powerpc64__) 10399 return "powerpc64"; 10400 #else 10401 return NULL; 10402 #endif 10403 } 10404 10405 static int probe_kern_syscall_wrapper(void) 10406 { 10407 char syscall_name[64]; 10408 const char *ksys_pfx; 10409 10410 ksys_pfx = arch_specific_syscall_pfx(); 10411 if (!ksys_pfx) 10412 return 0; 10413 10414 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10415 10416 if (determine_kprobe_perf_type() >= 0) { 10417 int pfd; 10418 10419 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10420 if (pfd >= 0) 10421 close(pfd); 10422 10423 return pfd >= 0 ? 1 : 0; 10424 } else { /* legacy mode */ 10425 char probe_name[128]; 10426 10427 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10428 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10429 return 0; 10430 10431 (void)remove_kprobe_event_legacy(probe_name, false); 10432 return 1; 10433 } 10434 } 10435 10436 struct bpf_link * 10437 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10438 const char *func_name, 10439 const struct bpf_kprobe_opts *opts) 10440 { 10441 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10442 enum probe_attach_mode attach_mode; 10443 char errmsg[STRERR_BUFSIZE]; 10444 char *legacy_probe = NULL; 10445 struct bpf_link *link; 10446 size_t offset; 10447 bool retprobe, legacy; 10448 int pfd, err; 10449 10450 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10451 return libbpf_err_ptr(-EINVAL); 10452 10453 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10454 retprobe = OPTS_GET(opts, retprobe, false); 10455 offset = OPTS_GET(opts, offset, 0); 10456 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10457 10458 legacy = determine_kprobe_perf_type() < 0; 10459 switch (attach_mode) { 10460 case PROBE_ATTACH_MODE_LEGACY: 10461 legacy = true; 10462 pe_opts.force_ioctl_attach = true; 10463 break; 10464 case PROBE_ATTACH_MODE_PERF: 10465 if (legacy) 10466 return libbpf_err_ptr(-ENOTSUP); 10467 pe_opts.force_ioctl_attach = true; 10468 break; 10469 case PROBE_ATTACH_MODE_LINK: 10470 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10471 return libbpf_err_ptr(-ENOTSUP); 10472 break; 10473 case PROBE_ATTACH_MODE_DEFAULT: 10474 break; 10475 default: 10476 return libbpf_err_ptr(-EINVAL); 10477 } 10478 10479 if (!legacy) { 10480 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10481 func_name, offset, 10482 -1 /* pid */, 0 /* ref_ctr_off */); 10483 } else { 10484 char probe_name[256]; 10485 10486 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10487 func_name, offset); 10488 10489 legacy_probe = strdup(probe_name); 10490 if (!legacy_probe) 10491 return libbpf_err_ptr(-ENOMEM); 10492 10493 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10494 offset, -1 /* pid */); 10495 } 10496 if (pfd < 0) { 10497 err = -errno; 10498 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10499 prog->name, retprobe ? "kretprobe" : "kprobe", 10500 func_name, offset, 10501 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10502 goto err_out; 10503 } 10504 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10505 err = libbpf_get_error(link); 10506 if (err) { 10507 close(pfd); 10508 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10509 prog->name, retprobe ? "kretprobe" : "kprobe", 10510 func_name, offset, 10511 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10512 goto err_clean_legacy; 10513 } 10514 if (legacy) { 10515 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10516 10517 perf_link->legacy_probe_name = legacy_probe; 10518 perf_link->legacy_is_kprobe = true; 10519 perf_link->legacy_is_retprobe = retprobe; 10520 } 10521 10522 return link; 10523 10524 err_clean_legacy: 10525 if (legacy) 10526 remove_kprobe_event_legacy(legacy_probe, retprobe); 10527 err_out: 10528 free(legacy_probe); 10529 return libbpf_err_ptr(err); 10530 } 10531 10532 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10533 bool retprobe, 10534 const char *func_name) 10535 { 10536 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10537 .retprobe = retprobe, 10538 ); 10539 10540 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10541 } 10542 10543 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10544 const char *syscall_name, 10545 const struct bpf_ksyscall_opts *opts) 10546 { 10547 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10548 char func_name[128]; 10549 10550 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10551 return libbpf_err_ptr(-EINVAL); 10552 10553 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10554 /* arch_specific_syscall_pfx() should never return NULL here 10555 * because it is guarded by kernel_supports(). However, since 10556 * compiler does not know that we have an explicit conditional 10557 * as well. 10558 */ 10559 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10560 arch_specific_syscall_pfx() ? : "", syscall_name); 10561 } else { 10562 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10563 } 10564 10565 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10566 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10567 10568 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10569 } 10570 10571 /* Adapted from perf/util/string.c */ 10572 static bool glob_match(const char *str, const char *pat) 10573 { 10574 while (*str && *pat && *pat != '*') { 10575 if (*pat == '?') { /* Matches any single character */ 10576 str++; 10577 pat++; 10578 continue; 10579 } 10580 if (*str != *pat) 10581 return false; 10582 str++; 10583 pat++; 10584 } 10585 /* Check wild card */ 10586 if (*pat == '*') { 10587 while (*pat == '*') 10588 pat++; 10589 if (!*pat) /* Tail wild card matches all */ 10590 return true; 10591 while (*str) 10592 if (glob_match(str++, pat)) 10593 return true; 10594 } 10595 return !*str && !*pat; 10596 } 10597 10598 struct kprobe_multi_resolve { 10599 const char *pattern; 10600 unsigned long *addrs; 10601 size_t cap; 10602 size_t cnt; 10603 }; 10604 10605 struct avail_kallsyms_data { 10606 char **syms; 10607 size_t cnt; 10608 struct kprobe_multi_resolve *res; 10609 }; 10610 10611 static int avail_func_cmp(const void *a, const void *b) 10612 { 10613 return strcmp(*(const char **)a, *(const char **)b); 10614 } 10615 10616 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10617 const char *sym_name, void *ctx) 10618 { 10619 struct avail_kallsyms_data *data = ctx; 10620 struct kprobe_multi_resolve *res = data->res; 10621 int err; 10622 10623 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10624 return 0; 10625 10626 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10627 if (err) 10628 return err; 10629 10630 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10631 return 0; 10632 } 10633 10634 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10635 { 10636 const char *available_functions_file = tracefs_available_filter_functions(); 10637 struct avail_kallsyms_data data; 10638 char sym_name[500]; 10639 FILE *f; 10640 int err = 0, ret, i; 10641 char **syms = NULL; 10642 size_t cap = 0, cnt = 0; 10643 10644 f = fopen(available_functions_file, "re"); 10645 if (!f) { 10646 err = -errno; 10647 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10648 return err; 10649 } 10650 10651 while (true) { 10652 char *name; 10653 10654 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10655 if (ret == EOF && feof(f)) 10656 break; 10657 10658 if (ret != 1) { 10659 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10660 err = -EINVAL; 10661 goto cleanup; 10662 } 10663 10664 if (!glob_match(sym_name, res->pattern)) 10665 continue; 10666 10667 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10668 if (err) 10669 goto cleanup; 10670 10671 name = strdup(sym_name); 10672 if (!name) { 10673 err = -errno; 10674 goto cleanup; 10675 } 10676 10677 syms[cnt++] = name; 10678 } 10679 10680 /* no entries found, bail out */ 10681 if (cnt == 0) { 10682 err = -ENOENT; 10683 goto cleanup; 10684 } 10685 10686 /* sort available functions */ 10687 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10688 10689 data.syms = syms; 10690 data.res = res; 10691 data.cnt = cnt; 10692 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10693 10694 if (res->cnt == 0) 10695 err = -ENOENT; 10696 10697 cleanup: 10698 for (i = 0; i < cnt; i++) 10699 free((char *)syms[i]); 10700 free(syms); 10701 10702 fclose(f); 10703 return err; 10704 } 10705 10706 static bool has_available_filter_functions_addrs(void) 10707 { 10708 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10709 } 10710 10711 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10712 { 10713 const char *available_path = tracefs_available_filter_functions_addrs(); 10714 char sym_name[500]; 10715 FILE *f; 10716 int ret, err = 0; 10717 unsigned long long sym_addr; 10718 10719 f = fopen(available_path, "re"); 10720 if (!f) { 10721 err = -errno; 10722 pr_warn("failed to open %s: %d\n", available_path, err); 10723 return err; 10724 } 10725 10726 while (true) { 10727 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10728 if (ret == EOF && feof(f)) 10729 break; 10730 10731 if (ret != 2) { 10732 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10733 ret); 10734 err = -EINVAL; 10735 goto cleanup; 10736 } 10737 10738 if (!glob_match(sym_name, res->pattern)) 10739 continue; 10740 10741 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10742 sizeof(*res->addrs), res->cnt + 1); 10743 if (err) 10744 goto cleanup; 10745 10746 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10747 } 10748 10749 if (res->cnt == 0) 10750 err = -ENOENT; 10751 10752 cleanup: 10753 fclose(f); 10754 return err; 10755 } 10756 10757 struct bpf_link * 10758 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10759 const char *pattern, 10760 const struct bpf_kprobe_multi_opts *opts) 10761 { 10762 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10763 struct kprobe_multi_resolve res = { 10764 .pattern = pattern, 10765 }; 10766 struct bpf_link *link = NULL; 10767 char errmsg[STRERR_BUFSIZE]; 10768 const unsigned long *addrs; 10769 int err, link_fd, prog_fd; 10770 const __u64 *cookies; 10771 const char **syms; 10772 bool retprobe; 10773 size_t cnt; 10774 10775 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10776 return libbpf_err_ptr(-EINVAL); 10777 10778 syms = OPTS_GET(opts, syms, false); 10779 addrs = OPTS_GET(opts, addrs, false); 10780 cnt = OPTS_GET(opts, cnt, false); 10781 cookies = OPTS_GET(opts, cookies, false); 10782 10783 if (!pattern && !addrs && !syms) 10784 return libbpf_err_ptr(-EINVAL); 10785 if (pattern && (addrs || syms || cookies || cnt)) 10786 return libbpf_err_ptr(-EINVAL); 10787 if (!pattern && !cnt) 10788 return libbpf_err_ptr(-EINVAL); 10789 if (addrs && syms) 10790 return libbpf_err_ptr(-EINVAL); 10791 10792 if (pattern) { 10793 if (has_available_filter_functions_addrs()) 10794 err = libbpf_available_kprobes_parse(&res); 10795 else 10796 err = libbpf_available_kallsyms_parse(&res); 10797 if (err) 10798 goto error; 10799 addrs = res.addrs; 10800 cnt = res.cnt; 10801 } 10802 10803 retprobe = OPTS_GET(opts, retprobe, false); 10804 10805 lopts.kprobe_multi.syms = syms; 10806 lopts.kprobe_multi.addrs = addrs; 10807 lopts.kprobe_multi.cookies = cookies; 10808 lopts.kprobe_multi.cnt = cnt; 10809 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10810 10811 link = calloc(1, sizeof(*link)); 10812 if (!link) { 10813 err = -ENOMEM; 10814 goto error; 10815 } 10816 link->detach = &bpf_link__detach_fd; 10817 10818 prog_fd = bpf_program__fd(prog); 10819 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10820 if (link_fd < 0) { 10821 err = -errno; 10822 pr_warn("prog '%s': failed to attach: %s\n", 10823 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10824 goto error; 10825 } 10826 link->fd = link_fd; 10827 free(res.addrs); 10828 return link; 10829 10830 error: 10831 free(link); 10832 free(res.addrs); 10833 return libbpf_err_ptr(err); 10834 } 10835 10836 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10837 { 10838 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10839 unsigned long offset = 0; 10840 const char *func_name; 10841 char *func; 10842 int n; 10843 10844 *link = NULL; 10845 10846 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10847 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10848 return 0; 10849 10850 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10851 if (opts.retprobe) 10852 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10853 else 10854 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10855 10856 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10857 if (n < 1) { 10858 pr_warn("kprobe name is invalid: %s\n", func_name); 10859 return -EINVAL; 10860 } 10861 if (opts.retprobe && offset != 0) { 10862 free(func); 10863 pr_warn("kretprobes do not support offset specification\n"); 10864 return -EINVAL; 10865 } 10866 10867 opts.offset = offset; 10868 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10869 free(func); 10870 return libbpf_get_error(*link); 10871 } 10872 10873 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10874 { 10875 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10876 const char *syscall_name; 10877 10878 *link = NULL; 10879 10880 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10881 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10882 return 0; 10883 10884 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10885 if (opts.retprobe) 10886 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10887 else 10888 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10889 10890 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10891 return *link ? 0 : -errno; 10892 } 10893 10894 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10895 { 10896 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10897 const char *spec; 10898 char *pattern; 10899 int n; 10900 10901 *link = NULL; 10902 10903 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10904 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10905 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10906 return 0; 10907 10908 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10909 if (opts.retprobe) 10910 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10911 else 10912 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10913 10914 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10915 if (n < 1) { 10916 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10917 return -EINVAL; 10918 } 10919 10920 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10921 free(pattern); 10922 return libbpf_get_error(*link); 10923 } 10924 10925 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10926 const char *binary_path, uint64_t offset) 10927 { 10928 int i; 10929 10930 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10931 10932 /* sanitize binary_path in the probe name */ 10933 for (i = 0; buf[i]; i++) { 10934 if (!isalnum(buf[i])) 10935 buf[i] = '_'; 10936 } 10937 } 10938 10939 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10940 const char *binary_path, size_t offset) 10941 { 10942 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10943 retprobe ? 'r' : 'p', 10944 retprobe ? "uretprobes" : "uprobes", 10945 probe_name, binary_path, offset); 10946 } 10947 10948 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10949 { 10950 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10951 retprobe ? "uretprobes" : "uprobes", probe_name); 10952 } 10953 10954 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10955 { 10956 char file[512]; 10957 10958 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10959 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10960 10961 return parse_uint_from_file(file, "%d\n"); 10962 } 10963 10964 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10965 const char *binary_path, size_t offset, int pid) 10966 { 10967 const size_t attr_sz = sizeof(struct perf_event_attr); 10968 struct perf_event_attr attr; 10969 int type, pfd, err; 10970 10971 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10972 if (err < 0) { 10973 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10974 binary_path, (size_t)offset, err); 10975 return err; 10976 } 10977 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10978 if (type < 0) { 10979 err = type; 10980 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10981 binary_path, offset, err); 10982 goto err_clean_legacy; 10983 } 10984 10985 memset(&attr, 0, attr_sz); 10986 attr.size = attr_sz; 10987 attr.config = type; 10988 attr.type = PERF_TYPE_TRACEPOINT; 10989 10990 pfd = syscall(__NR_perf_event_open, &attr, 10991 pid < 0 ? -1 : pid, /* pid */ 10992 pid == -1 ? 0 : -1, /* cpu */ 10993 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10994 if (pfd < 0) { 10995 err = -errno; 10996 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10997 goto err_clean_legacy; 10998 } 10999 return pfd; 11000 11001 err_clean_legacy: 11002 /* Clear the newly added legacy uprobe_event */ 11003 remove_uprobe_event_legacy(probe_name, retprobe); 11004 return err; 11005 } 11006 11007 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 11008 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 11009 { 11010 while ((scn = elf_nextscn(elf, scn)) != NULL) { 11011 GElf_Shdr sh; 11012 11013 if (!gelf_getshdr(scn, &sh)) 11014 continue; 11015 if (sh.sh_type == sh_type) 11016 return scn; 11017 } 11018 return NULL; 11019 } 11020 11021 /* Find offset of function name in the provided ELF object. "binary_path" is 11022 * the path to the ELF binary represented by "elf", and only used for error 11023 * reporting matters. "name" matches symbol name or name@@LIB for library 11024 * functions. 11025 */ 11026 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 11027 { 11028 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 11029 bool is_shared_lib, is_name_qualified; 11030 long ret = -ENOENT; 11031 size_t name_len; 11032 GElf_Ehdr ehdr; 11033 11034 if (!gelf_getehdr(elf, &ehdr)) { 11035 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 11036 ret = -LIBBPF_ERRNO__FORMAT; 11037 goto out; 11038 } 11039 /* for shared lib case, we do not need to calculate relative offset */ 11040 is_shared_lib = ehdr.e_type == ET_DYN; 11041 11042 name_len = strlen(name); 11043 /* Does name specify "@@LIB"? */ 11044 is_name_qualified = strstr(name, "@@") != NULL; 11045 11046 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 11047 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 11048 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 11049 * reported as a warning/error. 11050 */ 11051 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 11052 size_t nr_syms, strtabidx, idx; 11053 Elf_Data *symbols = NULL; 11054 Elf_Scn *scn = NULL; 11055 int last_bind = -1; 11056 const char *sname; 11057 GElf_Shdr sh; 11058 11059 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 11060 if (!scn) { 11061 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 11062 binary_path); 11063 continue; 11064 } 11065 if (!gelf_getshdr(scn, &sh)) 11066 continue; 11067 strtabidx = sh.sh_link; 11068 symbols = elf_getdata(scn, 0); 11069 if (!symbols) { 11070 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 11071 binary_path, elf_errmsg(-1)); 11072 ret = -LIBBPF_ERRNO__FORMAT; 11073 goto out; 11074 } 11075 nr_syms = symbols->d_size / sh.sh_entsize; 11076 11077 for (idx = 0; idx < nr_syms; idx++) { 11078 int curr_bind; 11079 GElf_Sym sym; 11080 Elf_Scn *sym_scn; 11081 GElf_Shdr sym_sh; 11082 11083 if (!gelf_getsym(symbols, idx, &sym)) 11084 continue; 11085 11086 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 11087 continue; 11088 11089 sname = elf_strptr(elf, strtabidx, sym.st_name); 11090 if (!sname) 11091 continue; 11092 11093 curr_bind = GELF_ST_BIND(sym.st_info); 11094 11095 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 11096 if (strncmp(sname, name, name_len) != 0) 11097 continue; 11098 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 11099 * additional characters in sname should be of the form "@@LIB". 11100 */ 11101 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 11102 continue; 11103 11104 if (ret >= 0) { 11105 /* handle multiple matches */ 11106 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 11107 /* Only accept one non-weak bind. */ 11108 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 11109 sname, name, binary_path); 11110 ret = -LIBBPF_ERRNO__FORMAT; 11111 goto out; 11112 } else if (curr_bind == STB_WEAK) { 11113 /* already have a non-weak bind, and 11114 * this is a weak bind, so ignore. 11115 */ 11116 continue; 11117 } 11118 } 11119 11120 /* Transform symbol's virtual address (absolute for 11121 * binaries and relative for shared libs) into file 11122 * offset, which is what kernel is expecting for 11123 * uprobe/uretprobe attachment. 11124 * See Documentation/trace/uprobetracer.rst for more 11125 * details. 11126 * This is done by looking up symbol's containing 11127 * section's header and using it's virtual address 11128 * (sh_addr) and corresponding file offset (sh_offset) 11129 * to transform sym.st_value (virtual address) into 11130 * desired final file offset. 11131 */ 11132 sym_scn = elf_getscn(elf, sym.st_shndx); 11133 if (!sym_scn) 11134 continue; 11135 if (!gelf_getshdr(sym_scn, &sym_sh)) 11136 continue; 11137 11138 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 11139 last_bind = curr_bind; 11140 } 11141 if (ret > 0) 11142 break; 11143 } 11144 11145 if (ret > 0) { 11146 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 11147 ret); 11148 } else { 11149 if (ret == 0) { 11150 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 11151 is_shared_lib ? "should not be 0 in a shared library" : 11152 "try using shared library path instead"); 11153 ret = -ENOENT; 11154 } else { 11155 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 11156 } 11157 } 11158 out: 11159 return ret; 11160 } 11161 11162 /* Find offset of function name in ELF object specified by path. "name" matches 11163 * symbol name or name@@LIB for library functions. 11164 */ 11165 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 11166 { 11167 char errmsg[STRERR_BUFSIZE]; 11168 long ret = -ENOENT; 11169 Elf *elf; 11170 int fd; 11171 11172 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 11173 if (fd < 0) { 11174 ret = -errno; 11175 pr_warn("failed to open %s: %s\n", binary_path, 11176 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 11177 return ret; 11178 } 11179 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 11180 if (!elf) { 11181 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 11182 close(fd); 11183 return -LIBBPF_ERRNO__FORMAT; 11184 } 11185 11186 ret = elf_find_func_offset(elf, binary_path, name); 11187 elf_end(elf); 11188 close(fd); 11189 return ret; 11190 } 11191 11192 /* Find offset of function name in archive specified by path. Currently 11193 * supported are .zip files that do not compress their contents, as used on 11194 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11195 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11196 * library functions. 11197 * 11198 * An overview of the APK format specifically provided here: 11199 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11200 */ 11201 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11202 const char *func_name) 11203 { 11204 struct zip_archive *archive; 11205 struct zip_entry entry; 11206 long ret; 11207 Elf *elf; 11208 11209 archive = zip_archive_open(archive_path); 11210 if (IS_ERR(archive)) { 11211 ret = PTR_ERR(archive); 11212 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11213 return ret; 11214 } 11215 11216 ret = zip_archive_find_entry(archive, file_name, &entry); 11217 if (ret) { 11218 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11219 archive_path, ret); 11220 goto out; 11221 } 11222 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11223 (unsigned long)entry.data_offset); 11224 11225 if (entry.compression) { 11226 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11227 archive_path); 11228 ret = -LIBBPF_ERRNO__FORMAT; 11229 goto out; 11230 } 11231 11232 elf = elf_memory((void *)entry.data, entry.data_length); 11233 if (!elf) { 11234 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11235 elf_errmsg(-1)); 11236 ret = -LIBBPF_ERRNO__LIBELF; 11237 goto out; 11238 } 11239 11240 ret = elf_find_func_offset(elf, file_name, func_name); 11241 if (ret > 0) { 11242 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11243 func_name, file_name, archive_path, entry.data_offset, ret, 11244 ret + entry.data_offset); 11245 ret += entry.data_offset; 11246 } 11247 elf_end(elf); 11248 11249 out: 11250 zip_archive_close(archive); 11251 return ret; 11252 } 11253 11254 static const char *arch_specific_lib_paths(void) 11255 { 11256 /* 11257 * Based on https://packages.debian.org/sid/libc6. 11258 * 11259 * Assume that the traced program is built for the same architecture 11260 * as libbpf, which should cover the vast majority of cases. 11261 */ 11262 #if defined(__x86_64__) 11263 return "/lib/x86_64-linux-gnu"; 11264 #elif defined(__i386__) 11265 return "/lib/i386-linux-gnu"; 11266 #elif defined(__s390x__) 11267 return "/lib/s390x-linux-gnu"; 11268 #elif defined(__s390__) 11269 return "/lib/s390-linux-gnu"; 11270 #elif defined(__arm__) && defined(__SOFTFP__) 11271 return "/lib/arm-linux-gnueabi"; 11272 #elif defined(__arm__) && !defined(__SOFTFP__) 11273 return "/lib/arm-linux-gnueabihf"; 11274 #elif defined(__aarch64__) 11275 return "/lib/aarch64-linux-gnu"; 11276 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11277 return "/lib/mips64el-linux-gnuabi64"; 11278 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11279 return "/lib/mipsel-linux-gnu"; 11280 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11281 return "/lib/powerpc64le-linux-gnu"; 11282 #elif defined(__sparc__) && defined(__arch64__) 11283 return "/lib/sparc64-linux-gnu"; 11284 #elif defined(__riscv) && __riscv_xlen == 64 11285 return "/lib/riscv64-linux-gnu"; 11286 #else 11287 return NULL; 11288 #endif 11289 } 11290 11291 /* Get full path to program/shared library. */ 11292 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11293 { 11294 const char *search_paths[3] = {}; 11295 int i, perm; 11296 11297 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11298 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11299 search_paths[1] = "/usr/lib64:/usr/lib"; 11300 search_paths[2] = arch_specific_lib_paths(); 11301 perm = R_OK; 11302 } else { 11303 search_paths[0] = getenv("PATH"); 11304 search_paths[1] = "/usr/bin:/usr/sbin"; 11305 perm = R_OK | X_OK; 11306 } 11307 11308 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11309 const char *s; 11310 11311 if (!search_paths[i]) 11312 continue; 11313 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11314 char *next_path; 11315 int seg_len; 11316 11317 if (s[0] == ':') 11318 s++; 11319 next_path = strchr(s, ':'); 11320 seg_len = next_path ? next_path - s : strlen(s); 11321 if (!seg_len) 11322 continue; 11323 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11324 /* ensure it has required permissions */ 11325 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11326 continue; 11327 pr_debug("resolved '%s' to '%s'\n", file, result); 11328 return 0; 11329 } 11330 } 11331 return -ENOENT; 11332 } 11333 11334 LIBBPF_API struct bpf_link * 11335 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11336 const char *binary_path, size_t func_offset, 11337 const struct bpf_uprobe_opts *opts) 11338 { 11339 const char *archive_path = NULL, *archive_sep = NULL; 11340 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11341 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11342 enum probe_attach_mode attach_mode; 11343 char full_path[PATH_MAX]; 11344 struct bpf_link *link; 11345 size_t ref_ctr_off; 11346 int pfd, err; 11347 bool retprobe, legacy; 11348 const char *func_name; 11349 11350 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11351 return libbpf_err_ptr(-EINVAL); 11352 11353 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11354 retprobe = OPTS_GET(opts, retprobe, false); 11355 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11356 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11357 11358 if (!binary_path) 11359 return libbpf_err_ptr(-EINVAL); 11360 11361 /* Check if "binary_path" refers to an archive. */ 11362 archive_sep = strstr(binary_path, "!/"); 11363 if (archive_sep) { 11364 full_path[0] = '\0'; 11365 libbpf_strlcpy(full_path, binary_path, 11366 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11367 archive_path = full_path; 11368 binary_path = archive_sep + 2; 11369 } else if (!strchr(binary_path, '/')) { 11370 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11371 if (err) { 11372 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11373 prog->name, binary_path, err); 11374 return libbpf_err_ptr(err); 11375 } 11376 binary_path = full_path; 11377 } 11378 func_name = OPTS_GET(opts, func_name, NULL); 11379 if (func_name) { 11380 long sym_off; 11381 11382 if (archive_path) { 11383 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11384 func_name); 11385 binary_path = archive_path; 11386 } else { 11387 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11388 } 11389 if (sym_off < 0) 11390 return libbpf_err_ptr(sym_off); 11391 func_offset += sym_off; 11392 } 11393 11394 legacy = determine_uprobe_perf_type() < 0; 11395 switch (attach_mode) { 11396 case PROBE_ATTACH_MODE_LEGACY: 11397 legacy = true; 11398 pe_opts.force_ioctl_attach = true; 11399 break; 11400 case PROBE_ATTACH_MODE_PERF: 11401 if (legacy) 11402 return libbpf_err_ptr(-ENOTSUP); 11403 pe_opts.force_ioctl_attach = true; 11404 break; 11405 case PROBE_ATTACH_MODE_LINK: 11406 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11407 return libbpf_err_ptr(-ENOTSUP); 11408 break; 11409 case PROBE_ATTACH_MODE_DEFAULT: 11410 break; 11411 default: 11412 return libbpf_err_ptr(-EINVAL); 11413 } 11414 11415 if (!legacy) { 11416 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11417 func_offset, pid, ref_ctr_off); 11418 } else { 11419 char probe_name[PATH_MAX + 64]; 11420 11421 if (ref_ctr_off) 11422 return libbpf_err_ptr(-EINVAL); 11423 11424 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11425 binary_path, func_offset); 11426 11427 legacy_probe = strdup(probe_name); 11428 if (!legacy_probe) 11429 return libbpf_err_ptr(-ENOMEM); 11430 11431 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11432 binary_path, func_offset, pid); 11433 } 11434 if (pfd < 0) { 11435 err = -errno; 11436 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11437 prog->name, retprobe ? "uretprobe" : "uprobe", 11438 binary_path, func_offset, 11439 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11440 goto err_out; 11441 } 11442 11443 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11444 err = libbpf_get_error(link); 11445 if (err) { 11446 close(pfd); 11447 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11448 prog->name, retprobe ? "uretprobe" : "uprobe", 11449 binary_path, func_offset, 11450 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11451 goto err_clean_legacy; 11452 } 11453 if (legacy) { 11454 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11455 11456 perf_link->legacy_probe_name = legacy_probe; 11457 perf_link->legacy_is_kprobe = false; 11458 perf_link->legacy_is_retprobe = retprobe; 11459 } 11460 return link; 11461 11462 err_clean_legacy: 11463 if (legacy) 11464 remove_uprobe_event_legacy(legacy_probe, retprobe); 11465 err_out: 11466 free(legacy_probe); 11467 return libbpf_err_ptr(err); 11468 } 11469 11470 /* Format of u[ret]probe section definition supporting auto-attach: 11471 * u[ret]probe/binary:function[+offset] 11472 * 11473 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11474 * full binary path via bpf_program__attach_uprobe_opts. 11475 * 11476 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11477 * specified (and auto-attach is not possible) or the above format is specified for 11478 * auto-attach. 11479 */ 11480 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11481 { 11482 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11483 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11484 int n, ret = -EINVAL; 11485 long offset = 0; 11486 11487 *link = NULL; 11488 11489 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11490 &probe_type, &binary_path, &func_name, &offset); 11491 switch (n) { 11492 case 1: 11493 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11494 ret = 0; 11495 break; 11496 case 2: 11497 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11498 prog->name, prog->sec_name); 11499 break; 11500 case 3: 11501 case 4: 11502 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11503 strcmp(probe_type, "uretprobe.s") == 0; 11504 if (opts.retprobe && offset != 0) { 11505 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11506 prog->name); 11507 break; 11508 } 11509 opts.func_name = func_name; 11510 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11511 ret = libbpf_get_error(*link); 11512 break; 11513 default: 11514 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11515 prog->sec_name); 11516 break; 11517 } 11518 free(probe_type); 11519 free(binary_path); 11520 free(func_name); 11521 11522 return ret; 11523 } 11524 11525 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11526 bool retprobe, pid_t pid, 11527 const char *binary_path, 11528 size_t func_offset) 11529 { 11530 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11531 11532 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11533 } 11534 11535 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11536 pid_t pid, const char *binary_path, 11537 const char *usdt_provider, const char *usdt_name, 11538 const struct bpf_usdt_opts *opts) 11539 { 11540 char resolved_path[512]; 11541 struct bpf_object *obj = prog->obj; 11542 struct bpf_link *link; 11543 __u64 usdt_cookie; 11544 int err; 11545 11546 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11547 return libbpf_err_ptr(-EINVAL); 11548 11549 if (bpf_program__fd(prog) < 0) { 11550 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11551 prog->name); 11552 return libbpf_err_ptr(-EINVAL); 11553 } 11554 11555 if (!binary_path) 11556 return libbpf_err_ptr(-EINVAL); 11557 11558 if (!strchr(binary_path, '/')) { 11559 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11560 if (err) { 11561 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11562 prog->name, binary_path, err); 11563 return libbpf_err_ptr(err); 11564 } 11565 binary_path = resolved_path; 11566 } 11567 11568 /* USDT manager is instantiated lazily on first USDT attach. It will 11569 * be destroyed together with BPF object in bpf_object__close(). 11570 */ 11571 if (IS_ERR(obj->usdt_man)) 11572 return libbpf_ptr(obj->usdt_man); 11573 if (!obj->usdt_man) { 11574 obj->usdt_man = usdt_manager_new(obj); 11575 if (IS_ERR(obj->usdt_man)) 11576 return libbpf_ptr(obj->usdt_man); 11577 } 11578 11579 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11580 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11581 usdt_provider, usdt_name, usdt_cookie); 11582 err = libbpf_get_error(link); 11583 if (err) 11584 return libbpf_err_ptr(err); 11585 return link; 11586 } 11587 11588 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11589 { 11590 char *path = NULL, *provider = NULL, *name = NULL; 11591 const char *sec_name; 11592 int n, err; 11593 11594 sec_name = bpf_program__section_name(prog); 11595 if (strcmp(sec_name, "usdt") == 0) { 11596 /* no auto-attach for just SEC("usdt") */ 11597 *link = NULL; 11598 return 0; 11599 } 11600 11601 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11602 if (n != 3) { 11603 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11604 sec_name); 11605 err = -EINVAL; 11606 } else { 11607 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11608 provider, name, NULL); 11609 err = libbpf_get_error(*link); 11610 } 11611 free(path); 11612 free(provider); 11613 free(name); 11614 return err; 11615 } 11616 11617 static int determine_tracepoint_id(const char *tp_category, 11618 const char *tp_name) 11619 { 11620 char file[PATH_MAX]; 11621 int ret; 11622 11623 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11624 tracefs_path(), tp_category, tp_name); 11625 if (ret < 0) 11626 return -errno; 11627 if (ret >= sizeof(file)) { 11628 pr_debug("tracepoint %s/%s path is too long\n", 11629 tp_category, tp_name); 11630 return -E2BIG; 11631 } 11632 return parse_uint_from_file(file, "%d\n"); 11633 } 11634 11635 static int perf_event_open_tracepoint(const char *tp_category, 11636 const char *tp_name) 11637 { 11638 const size_t attr_sz = sizeof(struct perf_event_attr); 11639 struct perf_event_attr attr; 11640 char errmsg[STRERR_BUFSIZE]; 11641 int tp_id, pfd, err; 11642 11643 tp_id = determine_tracepoint_id(tp_category, tp_name); 11644 if (tp_id < 0) { 11645 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11646 tp_category, tp_name, 11647 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11648 return tp_id; 11649 } 11650 11651 memset(&attr, 0, attr_sz); 11652 attr.type = PERF_TYPE_TRACEPOINT; 11653 attr.size = attr_sz; 11654 attr.config = tp_id; 11655 11656 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11657 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11658 if (pfd < 0) { 11659 err = -errno; 11660 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11661 tp_category, tp_name, 11662 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11663 return err; 11664 } 11665 return pfd; 11666 } 11667 11668 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11669 const char *tp_category, 11670 const char *tp_name, 11671 const struct bpf_tracepoint_opts *opts) 11672 { 11673 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11674 char errmsg[STRERR_BUFSIZE]; 11675 struct bpf_link *link; 11676 int pfd, err; 11677 11678 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11679 return libbpf_err_ptr(-EINVAL); 11680 11681 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11682 11683 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11684 if (pfd < 0) { 11685 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11686 prog->name, tp_category, tp_name, 11687 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11688 return libbpf_err_ptr(pfd); 11689 } 11690 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11691 err = libbpf_get_error(link); 11692 if (err) { 11693 close(pfd); 11694 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11695 prog->name, tp_category, tp_name, 11696 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11697 return libbpf_err_ptr(err); 11698 } 11699 return link; 11700 } 11701 11702 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11703 const char *tp_category, 11704 const char *tp_name) 11705 { 11706 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11707 } 11708 11709 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11710 { 11711 char *sec_name, *tp_cat, *tp_name; 11712 11713 *link = NULL; 11714 11715 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11716 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11717 return 0; 11718 11719 sec_name = strdup(prog->sec_name); 11720 if (!sec_name) 11721 return -ENOMEM; 11722 11723 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11724 if (str_has_pfx(prog->sec_name, "tp/")) 11725 tp_cat = sec_name + sizeof("tp/") - 1; 11726 else 11727 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11728 tp_name = strchr(tp_cat, '/'); 11729 if (!tp_name) { 11730 free(sec_name); 11731 return -EINVAL; 11732 } 11733 *tp_name = '\0'; 11734 tp_name++; 11735 11736 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11737 free(sec_name); 11738 return libbpf_get_error(*link); 11739 } 11740 11741 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11742 const char *tp_name) 11743 { 11744 char errmsg[STRERR_BUFSIZE]; 11745 struct bpf_link *link; 11746 int prog_fd, pfd; 11747 11748 prog_fd = bpf_program__fd(prog); 11749 if (prog_fd < 0) { 11750 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11751 return libbpf_err_ptr(-EINVAL); 11752 } 11753 11754 link = calloc(1, sizeof(*link)); 11755 if (!link) 11756 return libbpf_err_ptr(-ENOMEM); 11757 link->detach = &bpf_link__detach_fd; 11758 11759 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11760 if (pfd < 0) { 11761 pfd = -errno; 11762 free(link); 11763 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11764 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11765 return libbpf_err_ptr(pfd); 11766 } 11767 link->fd = pfd; 11768 return link; 11769 } 11770 11771 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11772 { 11773 static const char *const prefixes[] = { 11774 "raw_tp", 11775 "raw_tracepoint", 11776 "raw_tp.w", 11777 "raw_tracepoint.w", 11778 }; 11779 size_t i; 11780 const char *tp_name = NULL; 11781 11782 *link = NULL; 11783 11784 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11785 size_t pfx_len; 11786 11787 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11788 continue; 11789 11790 pfx_len = strlen(prefixes[i]); 11791 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11792 if (prog->sec_name[pfx_len] == '\0') 11793 return 0; 11794 11795 if (prog->sec_name[pfx_len] != '/') 11796 continue; 11797 11798 tp_name = prog->sec_name + pfx_len + 1; 11799 break; 11800 } 11801 11802 if (!tp_name) { 11803 pr_warn("prog '%s': invalid section name '%s'\n", 11804 prog->name, prog->sec_name); 11805 return -EINVAL; 11806 } 11807 11808 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11809 return libbpf_get_error(*link); 11810 } 11811 11812 /* Common logic for all BPF program types that attach to a btf_id */ 11813 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11814 const struct bpf_trace_opts *opts) 11815 { 11816 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11817 char errmsg[STRERR_BUFSIZE]; 11818 struct bpf_link *link; 11819 int prog_fd, pfd; 11820 11821 if (!OPTS_VALID(opts, bpf_trace_opts)) 11822 return libbpf_err_ptr(-EINVAL); 11823 11824 prog_fd = bpf_program__fd(prog); 11825 if (prog_fd < 0) { 11826 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11827 return libbpf_err_ptr(-EINVAL); 11828 } 11829 11830 link = calloc(1, sizeof(*link)); 11831 if (!link) 11832 return libbpf_err_ptr(-ENOMEM); 11833 link->detach = &bpf_link__detach_fd; 11834 11835 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11836 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11837 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11838 if (pfd < 0) { 11839 pfd = -errno; 11840 free(link); 11841 pr_warn("prog '%s': failed to attach: %s\n", 11842 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11843 return libbpf_err_ptr(pfd); 11844 } 11845 link->fd = pfd; 11846 return link; 11847 } 11848 11849 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11850 { 11851 return bpf_program__attach_btf_id(prog, NULL); 11852 } 11853 11854 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11855 const struct bpf_trace_opts *opts) 11856 { 11857 return bpf_program__attach_btf_id(prog, opts); 11858 } 11859 11860 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11861 { 11862 return bpf_program__attach_btf_id(prog, NULL); 11863 } 11864 11865 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11866 { 11867 *link = bpf_program__attach_trace(prog); 11868 return libbpf_get_error(*link); 11869 } 11870 11871 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11872 { 11873 *link = bpf_program__attach_lsm(prog); 11874 return libbpf_get_error(*link); 11875 } 11876 11877 static struct bpf_link * 11878 bpf_program_attach_fd(const struct bpf_program *prog, 11879 int target_fd, const char *target_name, 11880 const struct bpf_link_create_opts *opts) 11881 { 11882 enum bpf_attach_type attach_type; 11883 char errmsg[STRERR_BUFSIZE]; 11884 struct bpf_link *link; 11885 int prog_fd, link_fd; 11886 11887 prog_fd = bpf_program__fd(prog); 11888 if (prog_fd < 0) { 11889 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11890 return libbpf_err_ptr(-EINVAL); 11891 } 11892 11893 link = calloc(1, sizeof(*link)); 11894 if (!link) 11895 return libbpf_err_ptr(-ENOMEM); 11896 link->detach = &bpf_link__detach_fd; 11897 11898 attach_type = bpf_program__expected_attach_type(prog); 11899 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 11900 if (link_fd < 0) { 11901 link_fd = -errno; 11902 free(link); 11903 pr_warn("prog '%s': failed to attach to %s: %s\n", 11904 prog->name, target_name, 11905 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11906 return libbpf_err_ptr(link_fd); 11907 } 11908 link->fd = link_fd; 11909 return link; 11910 } 11911 11912 struct bpf_link * 11913 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11914 { 11915 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 11916 } 11917 11918 struct bpf_link * 11919 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11920 { 11921 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 11922 } 11923 11924 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11925 { 11926 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11927 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 11928 } 11929 11930 struct bpf_link * 11931 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 11932 const struct bpf_tcx_opts *opts) 11933 { 11934 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11935 __u32 relative_id; 11936 int relative_fd; 11937 11938 if (!OPTS_VALID(opts, bpf_tcx_opts)) 11939 return libbpf_err_ptr(-EINVAL); 11940 11941 relative_id = OPTS_GET(opts, relative_id, 0); 11942 relative_fd = OPTS_GET(opts, relative_fd, 0); 11943 11944 /* validate we don't have unexpected combinations of non-zero fields */ 11945 if (!ifindex) { 11946 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 11947 prog->name); 11948 return libbpf_err_ptr(-EINVAL); 11949 } 11950 if (relative_fd && relative_id) { 11951 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 11952 prog->name); 11953 return libbpf_err_ptr(-EINVAL); 11954 } 11955 11956 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 11957 link_create_opts.tcx.relative_fd = relative_fd; 11958 link_create_opts.tcx.relative_id = relative_id; 11959 link_create_opts.flags = OPTS_GET(opts, flags, 0); 11960 11961 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11962 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 11963 } 11964 11965 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11966 int target_fd, 11967 const char *attach_func_name) 11968 { 11969 int btf_id; 11970 11971 if (!!target_fd != !!attach_func_name) { 11972 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11973 prog->name); 11974 return libbpf_err_ptr(-EINVAL); 11975 } 11976 11977 if (prog->type != BPF_PROG_TYPE_EXT) { 11978 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11979 prog->name); 11980 return libbpf_err_ptr(-EINVAL); 11981 } 11982 11983 if (target_fd) { 11984 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 11985 11986 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11987 if (btf_id < 0) 11988 return libbpf_err_ptr(btf_id); 11989 11990 target_opts.target_btf_id = btf_id; 11991 11992 return bpf_program_attach_fd(prog, target_fd, "freplace", 11993 &target_opts); 11994 } else { 11995 /* no target, so use raw_tracepoint_open for compatibility 11996 * with old kernels 11997 */ 11998 return bpf_program__attach_trace(prog); 11999 } 12000 } 12001 12002 struct bpf_link * 12003 bpf_program__attach_iter(const struct bpf_program *prog, 12004 const struct bpf_iter_attach_opts *opts) 12005 { 12006 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12007 char errmsg[STRERR_BUFSIZE]; 12008 struct bpf_link *link; 12009 int prog_fd, link_fd; 12010 __u32 target_fd = 0; 12011 12012 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12013 return libbpf_err_ptr(-EINVAL); 12014 12015 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12016 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12017 12018 prog_fd = bpf_program__fd(prog); 12019 if (prog_fd < 0) { 12020 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12021 return libbpf_err_ptr(-EINVAL); 12022 } 12023 12024 link = calloc(1, sizeof(*link)); 12025 if (!link) 12026 return libbpf_err_ptr(-ENOMEM); 12027 link->detach = &bpf_link__detach_fd; 12028 12029 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12030 &link_create_opts); 12031 if (link_fd < 0) { 12032 link_fd = -errno; 12033 free(link); 12034 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12035 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12036 return libbpf_err_ptr(link_fd); 12037 } 12038 link->fd = link_fd; 12039 return link; 12040 } 12041 12042 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12043 { 12044 *link = bpf_program__attach_iter(prog, NULL); 12045 return libbpf_get_error(*link); 12046 } 12047 12048 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12049 const struct bpf_netfilter_opts *opts) 12050 { 12051 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12052 struct bpf_link *link; 12053 int prog_fd, link_fd; 12054 12055 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12056 return libbpf_err_ptr(-EINVAL); 12057 12058 prog_fd = bpf_program__fd(prog); 12059 if (prog_fd < 0) { 12060 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12061 return libbpf_err_ptr(-EINVAL); 12062 } 12063 12064 link = calloc(1, sizeof(*link)); 12065 if (!link) 12066 return libbpf_err_ptr(-ENOMEM); 12067 12068 link->detach = &bpf_link__detach_fd; 12069 12070 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12071 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12072 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12073 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12074 12075 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12076 if (link_fd < 0) { 12077 char errmsg[STRERR_BUFSIZE]; 12078 12079 link_fd = -errno; 12080 free(link); 12081 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12082 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12083 return libbpf_err_ptr(link_fd); 12084 } 12085 link->fd = link_fd; 12086 12087 return link; 12088 } 12089 12090 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12091 { 12092 struct bpf_link *link = NULL; 12093 int err; 12094 12095 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12096 return libbpf_err_ptr(-EOPNOTSUPP); 12097 12098 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12099 if (err) 12100 return libbpf_err_ptr(err); 12101 12102 /* When calling bpf_program__attach() explicitly, auto-attach support 12103 * is expected to work, so NULL returned link is considered an error. 12104 * This is different for skeleton's attach, see comment in 12105 * bpf_object__attach_skeleton(). 12106 */ 12107 if (!link) 12108 return libbpf_err_ptr(-EOPNOTSUPP); 12109 12110 return link; 12111 } 12112 12113 struct bpf_link_struct_ops { 12114 struct bpf_link link; 12115 int map_fd; 12116 }; 12117 12118 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12119 { 12120 struct bpf_link_struct_ops *st_link; 12121 __u32 zero = 0; 12122 12123 st_link = container_of(link, struct bpf_link_struct_ops, link); 12124 12125 if (st_link->map_fd < 0) 12126 /* w/o a real link */ 12127 return bpf_map_delete_elem(link->fd, &zero); 12128 12129 return close(link->fd); 12130 } 12131 12132 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12133 { 12134 struct bpf_link_struct_ops *link; 12135 __u32 zero = 0; 12136 int err, fd; 12137 12138 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12139 return libbpf_err_ptr(-EINVAL); 12140 12141 link = calloc(1, sizeof(*link)); 12142 if (!link) 12143 return libbpf_err_ptr(-EINVAL); 12144 12145 /* kern_vdata should be prepared during the loading phase. */ 12146 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12147 /* It can be EBUSY if the map has been used to create or 12148 * update a link before. We don't allow updating the value of 12149 * a struct_ops once it is set. That ensures that the value 12150 * never changed. So, it is safe to skip EBUSY. 12151 */ 12152 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12153 free(link); 12154 return libbpf_err_ptr(err); 12155 } 12156 12157 link->link.detach = bpf_link__detach_struct_ops; 12158 12159 if (!(map->def.map_flags & BPF_F_LINK)) { 12160 /* w/o a real link */ 12161 link->link.fd = map->fd; 12162 link->map_fd = -1; 12163 return &link->link; 12164 } 12165 12166 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12167 if (fd < 0) { 12168 free(link); 12169 return libbpf_err_ptr(fd); 12170 } 12171 12172 link->link.fd = fd; 12173 link->map_fd = map->fd; 12174 12175 return &link->link; 12176 } 12177 12178 /* 12179 * Swap the back struct_ops of a link with a new struct_ops map. 12180 */ 12181 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12182 { 12183 struct bpf_link_struct_ops *st_ops_link; 12184 __u32 zero = 0; 12185 int err; 12186 12187 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12188 return -EINVAL; 12189 12190 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12191 /* Ensure the type of a link is correct */ 12192 if (st_ops_link->map_fd < 0) 12193 return -EINVAL; 12194 12195 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12196 /* It can be EBUSY if the map has been used to create or 12197 * update a link before. We don't allow updating the value of 12198 * a struct_ops once it is set. That ensures that the value 12199 * never changed. So, it is safe to skip EBUSY. 12200 */ 12201 if (err && err != -EBUSY) 12202 return err; 12203 12204 err = bpf_link_update(link->fd, map->fd, NULL); 12205 if (err < 0) 12206 return err; 12207 12208 st_ops_link->map_fd = map->fd; 12209 12210 return 0; 12211 } 12212 12213 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12214 void *private_data); 12215 12216 static enum bpf_perf_event_ret 12217 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12218 void **copy_mem, size_t *copy_size, 12219 bpf_perf_event_print_t fn, void *private_data) 12220 { 12221 struct perf_event_mmap_page *header = mmap_mem; 12222 __u64 data_head = ring_buffer_read_head(header); 12223 __u64 data_tail = header->data_tail; 12224 void *base = ((__u8 *)header) + page_size; 12225 int ret = LIBBPF_PERF_EVENT_CONT; 12226 struct perf_event_header *ehdr; 12227 size_t ehdr_size; 12228 12229 while (data_head != data_tail) { 12230 ehdr = base + (data_tail & (mmap_size - 1)); 12231 ehdr_size = ehdr->size; 12232 12233 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12234 void *copy_start = ehdr; 12235 size_t len_first = base + mmap_size - copy_start; 12236 size_t len_secnd = ehdr_size - len_first; 12237 12238 if (*copy_size < ehdr_size) { 12239 free(*copy_mem); 12240 *copy_mem = malloc(ehdr_size); 12241 if (!*copy_mem) { 12242 *copy_size = 0; 12243 ret = LIBBPF_PERF_EVENT_ERROR; 12244 break; 12245 } 12246 *copy_size = ehdr_size; 12247 } 12248 12249 memcpy(*copy_mem, copy_start, len_first); 12250 memcpy(*copy_mem + len_first, base, len_secnd); 12251 ehdr = *copy_mem; 12252 } 12253 12254 ret = fn(ehdr, private_data); 12255 data_tail += ehdr_size; 12256 if (ret != LIBBPF_PERF_EVENT_CONT) 12257 break; 12258 } 12259 12260 ring_buffer_write_tail(header, data_tail); 12261 return libbpf_err(ret); 12262 } 12263 12264 struct perf_buffer; 12265 12266 struct perf_buffer_params { 12267 struct perf_event_attr *attr; 12268 /* if event_cb is specified, it takes precendence */ 12269 perf_buffer_event_fn event_cb; 12270 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12271 perf_buffer_sample_fn sample_cb; 12272 perf_buffer_lost_fn lost_cb; 12273 void *ctx; 12274 int cpu_cnt; 12275 int *cpus; 12276 int *map_keys; 12277 }; 12278 12279 struct perf_cpu_buf { 12280 struct perf_buffer *pb; 12281 void *base; /* mmap()'ed memory */ 12282 void *buf; /* for reconstructing segmented data */ 12283 size_t buf_size; 12284 int fd; 12285 int cpu; 12286 int map_key; 12287 }; 12288 12289 struct perf_buffer { 12290 perf_buffer_event_fn event_cb; 12291 perf_buffer_sample_fn sample_cb; 12292 perf_buffer_lost_fn lost_cb; 12293 void *ctx; /* passed into callbacks */ 12294 12295 size_t page_size; 12296 size_t mmap_size; 12297 struct perf_cpu_buf **cpu_bufs; 12298 struct epoll_event *events; 12299 int cpu_cnt; /* number of allocated CPU buffers */ 12300 int epoll_fd; /* perf event FD */ 12301 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12302 }; 12303 12304 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12305 struct perf_cpu_buf *cpu_buf) 12306 { 12307 if (!cpu_buf) 12308 return; 12309 if (cpu_buf->base && 12310 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12311 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12312 if (cpu_buf->fd >= 0) { 12313 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12314 close(cpu_buf->fd); 12315 } 12316 free(cpu_buf->buf); 12317 free(cpu_buf); 12318 } 12319 12320 void perf_buffer__free(struct perf_buffer *pb) 12321 { 12322 int i; 12323 12324 if (IS_ERR_OR_NULL(pb)) 12325 return; 12326 if (pb->cpu_bufs) { 12327 for (i = 0; i < pb->cpu_cnt; i++) { 12328 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12329 12330 if (!cpu_buf) 12331 continue; 12332 12333 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12334 perf_buffer__free_cpu_buf(pb, cpu_buf); 12335 } 12336 free(pb->cpu_bufs); 12337 } 12338 if (pb->epoll_fd >= 0) 12339 close(pb->epoll_fd); 12340 free(pb->events); 12341 free(pb); 12342 } 12343 12344 static struct perf_cpu_buf * 12345 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12346 int cpu, int map_key) 12347 { 12348 struct perf_cpu_buf *cpu_buf; 12349 char msg[STRERR_BUFSIZE]; 12350 int err; 12351 12352 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12353 if (!cpu_buf) 12354 return ERR_PTR(-ENOMEM); 12355 12356 cpu_buf->pb = pb; 12357 cpu_buf->cpu = cpu; 12358 cpu_buf->map_key = map_key; 12359 12360 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12361 -1, PERF_FLAG_FD_CLOEXEC); 12362 if (cpu_buf->fd < 0) { 12363 err = -errno; 12364 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12365 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12366 goto error; 12367 } 12368 12369 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12370 PROT_READ | PROT_WRITE, MAP_SHARED, 12371 cpu_buf->fd, 0); 12372 if (cpu_buf->base == MAP_FAILED) { 12373 cpu_buf->base = NULL; 12374 err = -errno; 12375 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12376 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12377 goto error; 12378 } 12379 12380 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12381 err = -errno; 12382 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12383 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12384 goto error; 12385 } 12386 12387 return cpu_buf; 12388 12389 error: 12390 perf_buffer__free_cpu_buf(pb, cpu_buf); 12391 return (struct perf_cpu_buf *)ERR_PTR(err); 12392 } 12393 12394 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12395 struct perf_buffer_params *p); 12396 12397 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12398 perf_buffer_sample_fn sample_cb, 12399 perf_buffer_lost_fn lost_cb, 12400 void *ctx, 12401 const struct perf_buffer_opts *opts) 12402 { 12403 const size_t attr_sz = sizeof(struct perf_event_attr); 12404 struct perf_buffer_params p = {}; 12405 struct perf_event_attr attr; 12406 __u32 sample_period; 12407 12408 if (!OPTS_VALID(opts, perf_buffer_opts)) 12409 return libbpf_err_ptr(-EINVAL); 12410 12411 sample_period = OPTS_GET(opts, sample_period, 1); 12412 if (!sample_period) 12413 sample_period = 1; 12414 12415 memset(&attr, 0, attr_sz); 12416 attr.size = attr_sz; 12417 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12418 attr.type = PERF_TYPE_SOFTWARE; 12419 attr.sample_type = PERF_SAMPLE_RAW; 12420 attr.sample_period = sample_period; 12421 attr.wakeup_events = sample_period; 12422 12423 p.attr = &attr; 12424 p.sample_cb = sample_cb; 12425 p.lost_cb = lost_cb; 12426 p.ctx = ctx; 12427 12428 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12429 } 12430 12431 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12432 struct perf_event_attr *attr, 12433 perf_buffer_event_fn event_cb, void *ctx, 12434 const struct perf_buffer_raw_opts *opts) 12435 { 12436 struct perf_buffer_params p = {}; 12437 12438 if (!attr) 12439 return libbpf_err_ptr(-EINVAL); 12440 12441 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12442 return libbpf_err_ptr(-EINVAL); 12443 12444 p.attr = attr; 12445 p.event_cb = event_cb; 12446 p.ctx = ctx; 12447 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12448 p.cpus = OPTS_GET(opts, cpus, NULL); 12449 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12450 12451 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12452 } 12453 12454 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12455 struct perf_buffer_params *p) 12456 { 12457 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12458 struct bpf_map_info map; 12459 char msg[STRERR_BUFSIZE]; 12460 struct perf_buffer *pb; 12461 bool *online = NULL; 12462 __u32 map_info_len; 12463 int err, i, j, n; 12464 12465 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12466 pr_warn("page count should be power of two, but is %zu\n", 12467 page_cnt); 12468 return ERR_PTR(-EINVAL); 12469 } 12470 12471 /* best-effort sanity checks */ 12472 memset(&map, 0, sizeof(map)); 12473 map_info_len = sizeof(map); 12474 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12475 if (err) { 12476 err = -errno; 12477 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12478 * -EBADFD, -EFAULT, or -E2BIG on real error 12479 */ 12480 if (err != -EINVAL) { 12481 pr_warn("failed to get map info for map FD %d: %s\n", 12482 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12483 return ERR_PTR(err); 12484 } 12485 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12486 map_fd); 12487 } else { 12488 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12489 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12490 map.name); 12491 return ERR_PTR(-EINVAL); 12492 } 12493 } 12494 12495 pb = calloc(1, sizeof(*pb)); 12496 if (!pb) 12497 return ERR_PTR(-ENOMEM); 12498 12499 pb->event_cb = p->event_cb; 12500 pb->sample_cb = p->sample_cb; 12501 pb->lost_cb = p->lost_cb; 12502 pb->ctx = p->ctx; 12503 12504 pb->page_size = getpagesize(); 12505 pb->mmap_size = pb->page_size * page_cnt; 12506 pb->map_fd = map_fd; 12507 12508 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12509 if (pb->epoll_fd < 0) { 12510 err = -errno; 12511 pr_warn("failed to create epoll instance: %s\n", 12512 libbpf_strerror_r(err, msg, sizeof(msg))); 12513 goto error; 12514 } 12515 12516 if (p->cpu_cnt > 0) { 12517 pb->cpu_cnt = p->cpu_cnt; 12518 } else { 12519 pb->cpu_cnt = libbpf_num_possible_cpus(); 12520 if (pb->cpu_cnt < 0) { 12521 err = pb->cpu_cnt; 12522 goto error; 12523 } 12524 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12525 pb->cpu_cnt = map.max_entries; 12526 } 12527 12528 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12529 if (!pb->events) { 12530 err = -ENOMEM; 12531 pr_warn("failed to allocate events: out of memory\n"); 12532 goto error; 12533 } 12534 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12535 if (!pb->cpu_bufs) { 12536 err = -ENOMEM; 12537 pr_warn("failed to allocate buffers: out of memory\n"); 12538 goto error; 12539 } 12540 12541 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12542 if (err) { 12543 pr_warn("failed to get online CPU mask: %d\n", err); 12544 goto error; 12545 } 12546 12547 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12548 struct perf_cpu_buf *cpu_buf; 12549 int cpu, map_key; 12550 12551 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12552 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12553 12554 /* in case user didn't explicitly requested particular CPUs to 12555 * be attached to, skip offline/not present CPUs 12556 */ 12557 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12558 continue; 12559 12560 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12561 if (IS_ERR(cpu_buf)) { 12562 err = PTR_ERR(cpu_buf); 12563 goto error; 12564 } 12565 12566 pb->cpu_bufs[j] = cpu_buf; 12567 12568 err = bpf_map_update_elem(pb->map_fd, &map_key, 12569 &cpu_buf->fd, 0); 12570 if (err) { 12571 err = -errno; 12572 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12573 cpu, map_key, cpu_buf->fd, 12574 libbpf_strerror_r(err, msg, sizeof(msg))); 12575 goto error; 12576 } 12577 12578 pb->events[j].events = EPOLLIN; 12579 pb->events[j].data.ptr = cpu_buf; 12580 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12581 &pb->events[j]) < 0) { 12582 err = -errno; 12583 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12584 cpu, cpu_buf->fd, 12585 libbpf_strerror_r(err, msg, sizeof(msg))); 12586 goto error; 12587 } 12588 j++; 12589 } 12590 pb->cpu_cnt = j; 12591 free(online); 12592 12593 return pb; 12594 12595 error: 12596 free(online); 12597 if (pb) 12598 perf_buffer__free(pb); 12599 return ERR_PTR(err); 12600 } 12601 12602 struct perf_sample_raw { 12603 struct perf_event_header header; 12604 uint32_t size; 12605 char data[]; 12606 }; 12607 12608 struct perf_sample_lost { 12609 struct perf_event_header header; 12610 uint64_t id; 12611 uint64_t lost; 12612 uint64_t sample_id; 12613 }; 12614 12615 static enum bpf_perf_event_ret 12616 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12617 { 12618 struct perf_cpu_buf *cpu_buf = ctx; 12619 struct perf_buffer *pb = cpu_buf->pb; 12620 void *data = e; 12621 12622 /* user wants full control over parsing perf event */ 12623 if (pb->event_cb) 12624 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12625 12626 switch (e->type) { 12627 case PERF_RECORD_SAMPLE: { 12628 struct perf_sample_raw *s = data; 12629 12630 if (pb->sample_cb) 12631 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12632 break; 12633 } 12634 case PERF_RECORD_LOST: { 12635 struct perf_sample_lost *s = data; 12636 12637 if (pb->lost_cb) 12638 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12639 break; 12640 } 12641 default: 12642 pr_warn("unknown perf sample type %d\n", e->type); 12643 return LIBBPF_PERF_EVENT_ERROR; 12644 } 12645 return LIBBPF_PERF_EVENT_CONT; 12646 } 12647 12648 static int perf_buffer__process_records(struct perf_buffer *pb, 12649 struct perf_cpu_buf *cpu_buf) 12650 { 12651 enum bpf_perf_event_ret ret; 12652 12653 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12654 pb->page_size, &cpu_buf->buf, 12655 &cpu_buf->buf_size, 12656 perf_buffer__process_record, cpu_buf); 12657 if (ret != LIBBPF_PERF_EVENT_CONT) 12658 return ret; 12659 return 0; 12660 } 12661 12662 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12663 { 12664 return pb->epoll_fd; 12665 } 12666 12667 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12668 { 12669 int i, cnt, err; 12670 12671 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12672 if (cnt < 0) 12673 return -errno; 12674 12675 for (i = 0; i < cnt; i++) { 12676 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12677 12678 err = perf_buffer__process_records(pb, cpu_buf); 12679 if (err) { 12680 pr_warn("error while processing records: %d\n", err); 12681 return libbpf_err(err); 12682 } 12683 } 12684 return cnt; 12685 } 12686 12687 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12688 * manager. 12689 */ 12690 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12691 { 12692 return pb->cpu_cnt; 12693 } 12694 12695 /* 12696 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12697 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12698 * select()/poll()/epoll() Linux syscalls. 12699 */ 12700 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12701 { 12702 struct perf_cpu_buf *cpu_buf; 12703 12704 if (buf_idx >= pb->cpu_cnt) 12705 return libbpf_err(-EINVAL); 12706 12707 cpu_buf = pb->cpu_bufs[buf_idx]; 12708 if (!cpu_buf) 12709 return libbpf_err(-ENOENT); 12710 12711 return cpu_buf->fd; 12712 } 12713 12714 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12715 { 12716 struct perf_cpu_buf *cpu_buf; 12717 12718 if (buf_idx >= pb->cpu_cnt) 12719 return libbpf_err(-EINVAL); 12720 12721 cpu_buf = pb->cpu_bufs[buf_idx]; 12722 if (!cpu_buf) 12723 return libbpf_err(-ENOENT); 12724 12725 *buf = cpu_buf->base; 12726 *buf_size = pb->mmap_size; 12727 return 0; 12728 } 12729 12730 /* 12731 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12732 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12733 * consume, do nothing and return success. 12734 * Returns: 12735 * - 0 on success; 12736 * - <0 on failure. 12737 */ 12738 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12739 { 12740 struct perf_cpu_buf *cpu_buf; 12741 12742 if (buf_idx >= pb->cpu_cnt) 12743 return libbpf_err(-EINVAL); 12744 12745 cpu_buf = pb->cpu_bufs[buf_idx]; 12746 if (!cpu_buf) 12747 return libbpf_err(-ENOENT); 12748 12749 return perf_buffer__process_records(pb, cpu_buf); 12750 } 12751 12752 int perf_buffer__consume(struct perf_buffer *pb) 12753 { 12754 int i, err; 12755 12756 for (i = 0; i < pb->cpu_cnt; i++) { 12757 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12758 12759 if (!cpu_buf) 12760 continue; 12761 12762 err = perf_buffer__process_records(pb, cpu_buf); 12763 if (err) { 12764 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12765 return libbpf_err(err); 12766 } 12767 } 12768 return 0; 12769 } 12770 12771 int bpf_program__set_attach_target(struct bpf_program *prog, 12772 int attach_prog_fd, 12773 const char *attach_func_name) 12774 { 12775 int btf_obj_fd = 0, btf_id = 0, err; 12776 12777 if (!prog || attach_prog_fd < 0) 12778 return libbpf_err(-EINVAL); 12779 12780 if (prog->obj->loaded) 12781 return libbpf_err(-EINVAL); 12782 12783 if (attach_prog_fd && !attach_func_name) { 12784 /* remember attach_prog_fd and let bpf_program__load() find 12785 * BTF ID during the program load 12786 */ 12787 prog->attach_prog_fd = attach_prog_fd; 12788 return 0; 12789 } 12790 12791 if (attach_prog_fd) { 12792 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12793 attach_prog_fd); 12794 if (btf_id < 0) 12795 return libbpf_err(btf_id); 12796 } else { 12797 if (!attach_func_name) 12798 return libbpf_err(-EINVAL); 12799 12800 /* load btf_vmlinux, if not yet */ 12801 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12802 if (err) 12803 return libbpf_err(err); 12804 err = find_kernel_btf_id(prog->obj, attach_func_name, 12805 prog->expected_attach_type, 12806 &btf_obj_fd, &btf_id); 12807 if (err) 12808 return libbpf_err(err); 12809 } 12810 12811 prog->attach_btf_id = btf_id; 12812 prog->attach_btf_obj_fd = btf_obj_fd; 12813 prog->attach_prog_fd = attach_prog_fd; 12814 return 0; 12815 } 12816 12817 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12818 { 12819 int err = 0, n, len, start, end = -1; 12820 bool *tmp; 12821 12822 *mask = NULL; 12823 *mask_sz = 0; 12824 12825 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12826 while (*s) { 12827 if (*s == ',' || *s == '\n') { 12828 s++; 12829 continue; 12830 } 12831 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12832 if (n <= 0 || n > 2) { 12833 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12834 err = -EINVAL; 12835 goto cleanup; 12836 } else if (n == 1) { 12837 end = start; 12838 } 12839 if (start < 0 || start > end) { 12840 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12841 start, end, s); 12842 err = -EINVAL; 12843 goto cleanup; 12844 } 12845 tmp = realloc(*mask, end + 1); 12846 if (!tmp) { 12847 err = -ENOMEM; 12848 goto cleanup; 12849 } 12850 *mask = tmp; 12851 memset(tmp + *mask_sz, 0, start - *mask_sz); 12852 memset(tmp + start, 1, end - start + 1); 12853 *mask_sz = end + 1; 12854 s += len; 12855 } 12856 if (!*mask_sz) { 12857 pr_warn("Empty CPU range\n"); 12858 return -EINVAL; 12859 } 12860 return 0; 12861 cleanup: 12862 free(*mask); 12863 *mask = NULL; 12864 return err; 12865 } 12866 12867 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12868 { 12869 int fd, err = 0, len; 12870 char buf[128]; 12871 12872 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12873 if (fd < 0) { 12874 err = -errno; 12875 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12876 return err; 12877 } 12878 len = read(fd, buf, sizeof(buf)); 12879 close(fd); 12880 if (len <= 0) { 12881 err = len ? -errno : -EINVAL; 12882 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12883 return err; 12884 } 12885 if (len >= sizeof(buf)) { 12886 pr_warn("CPU mask is too big in file %s\n", fcpu); 12887 return -E2BIG; 12888 } 12889 buf[len] = '\0'; 12890 12891 return parse_cpu_mask_str(buf, mask, mask_sz); 12892 } 12893 12894 int libbpf_num_possible_cpus(void) 12895 { 12896 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12897 static int cpus; 12898 int err, n, i, tmp_cpus; 12899 bool *mask; 12900 12901 tmp_cpus = READ_ONCE(cpus); 12902 if (tmp_cpus > 0) 12903 return tmp_cpus; 12904 12905 err = parse_cpu_mask_file(fcpu, &mask, &n); 12906 if (err) 12907 return libbpf_err(err); 12908 12909 tmp_cpus = 0; 12910 for (i = 0; i < n; i++) { 12911 if (mask[i]) 12912 tmp_cpus++; 12913 } 12914 free(mask); 12915 12916 WRITE_ONCE(cpus, tmp_cpus); 12917 return tmp_cpus; 12918 } 12919 12920 static int populate_skeleton_maps(const struct bpf_object *obj, 12921 struct bpf_map_skeleton *maps, 12922 size_t map_cnt) 12923 { 12924 int i; 12925 12926 for (i = 0; i < map_cnt; i++) { 12927 struct bpf_map **map = maps[i].map; 12928 const char *name = maps[i].name; 12929 void **mmaped = maps[i].mmaped; 12930 12931 *map = bpf_object__find_map_by_name(obj, name); 12932 if (!*map) { 12933 pr_warn("failed to find skeleton map '%s'\n", name); 12934 return -ESRCH; 12935 } 12936 12937 /* externs shouldn't be pre-setup from user code */ 12938 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12939 *mmaped = (*map)->mmaped; 12940 } 12941 return 0; 12942 } 12943 12944 static int populate_skeleton_progs(const struct bpf_object *obj, 12945 struct bpf_prog_skeleton *progs, 12946 size_t prog_cnt) 12947 { 12948 int i; 12949 12950 for (i = 0; i < prog_cnt; i++) { 12951 struct bpf_program **prog = progs[i].prog; 12952 const char *name = progs[i].name; 12953 12954 *prog = bpf_object__find_program_by_name(obj, name); 12955 if (!*prog) { 12956 pr_warn("failed to find skeleton program '%s'\n", name); 12957 return -ESRCH; 12958 } 12959 } 12960 return 0; 12961 } 12962 12963 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12964 const struct bpf_object_open_opts *opts) 12965 { 12966 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12967 .object_name = s->name, 12968 ); 12969 struct bpf_object *obj; 12970 int err; 12971 12972 /* Attempt to preserve opts->object_name, unless overriden by user 12973 * explicitly. Overwriting object name for skeletons is discouraged, 12974 * as it breaks global data maps, because they contain object name 12975 * prefix as their own map name prefix. When skeleton is generated, 12976 * bpftool is making an assumption that this name will stay the same. 12977 */ 12978 if (opts) { 12979 memcpy(&skel_opts, opts, sizeof(*opts)); 12980 if (!opts->object_name) 12981 skel_opts.object_name = s->name; 12982 } 12983 12984 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12985 err = libbpf_get_error(obj); 12986 if (err) { 12987 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12988 s->name, err); 12989 return libbpf_err(err); 12990 } 12991 12992 *s->obj = obj; 12993 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12994 if (err) { 12995 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12996 return libbpf_err(err); 12997 } 12998 12999 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13000 if (err) { 13001 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13002 return libbpf_err(err); 13003 } 13004 13005 return 0; 13006 } 13007 13008 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13009 { 13010 int err, len, var_idx, i; 13011 const char *var_name; 13012 const struct bpf_map *map; 13013 struct btf *btf; 13014 __u32 map_type_id; 13015 const struct btf_type *map_type, *var_type; 13016 const struct bpf_var_skeleton *var_skel; 13017 struct btf_var_secinfo *var; 13018 13019 if (!s->obj) 13020 return libbpf_err(-EINVAL); 13021 13022 btf = bpf_object__btf(s->obj); 13023 if (!btf) { 13024 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13025 bpf_object__name(s->obj)); 13026 return libbpf_err(-errno); 13027 } 13028 13029 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13030 if (err) { 13031 pr_warn("failed to populate subskeleton maps: %d\n", err); 13032 return libbpf_err(err); 13033 } 13034 13035 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13036 if (err) { 13037 pr_warn("failed to populate subskeleton maps: %d\n", err); 13038 return libbpf_err(err); 13039 } 13040 13041 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13042 var_skel = &s->vars[var_idx]; 13043 map = *var_skel->map; 13044 map_type_id = bpf_map__btf_value_type_id(map); 13045 map_type = btf__type_by_id(btf, map_type_id); 13046 13047 if (!btf_is_datasec(map_type)) { 13048 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13049 bpf_map__name(map), 13050 __btf_kind_str(btf_kind(map_type))); 13051 return libbpf_err(-EINVAL); 13052 } 13053 13054 len = btf_vlen(map_type); 13055 var = btf_var_secinfos(map_type); 13056 for (i = 0; i < len; i++, var++) { 13057 var_type = btf__type_by_id(btf, var->type); 13058 var_name = btf__name_by_offset(btf, var_type->name_off); 13059 if (strcmp(var_name, var_skel->name) == 0) { 13060 *var_skel->addr = map->mmaped + var->offset; 13061 break; 13062 } 13063 } 13064 } 13065 return 0; 13066 } 13067 13068 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13069 { 13070 if (!s) 13071 return; 13072 free(s->maps); 13073 free(s->progs); 13074 free(s->vars); 13075 free(s); 13076 } 13077 13078 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13079 { 13080 int i, err; 13081 13082 err = bpf_object__load(*s->obj); 13083 if (err) { 13084 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13085 return libbpf_err(err); 13086 } 13087 13088 for (i = 0; i < s->map_cnt; i++) { 13089 struct bpf_map *map = *s->maps[i].map; 13090 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13091 int prot, map_fd = bpf_map__fd(map); 13092 void **mmaped = s->maps[i].mmaped; 13093 13094 if (!mmaped) 13095 continue; 13096 13097 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13098 *mmaped = NULL; 13099 continue; 13100 } 13101 13102 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13103 prot = PROT_READ; 13104 else 13105 prot = PROT_READ | PROT_WRITE; 13106 13107 /* Remap anonymous mmap()-ed "map initialization image" as 13108 * a BPF map-backed mmap()-ed memory, but preserving the same 13109 * memory address. This will cause kernel to change process' 13110 * page table to point to a different piece of kernel memory, 13111 * but from userspace point of view memory address (and its 13112 * contents, being identical at this point) will stay the 13113 * same. This mapping will be released by bpf_object__close() 13114 * as per normal clean up procedure, so we don't need to worry 13115 * about it from skeleton's clean up perspective. 13116 */ 13117 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13118 if (*mmaped == MAP_FAILED) { 13119 err = -errno; 13120 *mmaped = NULL; 13121 pr_warn("failed to re-mmap() map '%s': %d\n", 13122 bpf_map__name(map), err); 13123 return libbpf_err(err); 13124 } 13125 } 13126 13127 return 0; 13128 } 13129 13130 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13131 { 13132 int i, err; 13133 13134 for (i = 0; i < s->prog_cnt; i++) { 13135 struct bpf_program *prog = *s->progs[i].prog; 13136 struct bpf_link **link = s->progs[i].link; 13137 13138 if (!prog->autoload || !prog->autoattach) 13139 continue; 13140 13141 /* auto-attaching not supported for this program */ 13142 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13143 continue; 13144 13145 /* if user already set the link manually, don't attempt auto-attach */ 13146 if (*link) 13147 continue; 13148 13149 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13150 if (err) { 13151 pr_warn("prog '%s': failed to auto-attach: %d\n", 13152 bpf_program__name(prog), err); 13153 return libbpf_err(err); 13154 } 13155 13156 /* It's possible that for some SEC() definitions auto-attach 13157 * is supported in some cases (e.g., if definition completely 13158 * specifies target information), but is not in other cases. 13159 * SEC("uprobe") is one such case. If user specified target 13160 * binary and function name, such BPF program can be 13161 * auto-attached. But if not, it shouldn't trigger skeleton's 13162 * attach to fail. It should just be skipped. 13163 * attach_fn signals such case with returning 0 (no error) and 13164 * setting link to NULL. 13165 */ 13166 } 13167 13168 return 0; 13169 } 13170 13171 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13172 { 13173 int i; 13174 13175 for (i = 0; i < s->prog_cnt; i++) { 13176 struct bpf_link **link = s->progs[i].link; 13177 13178 bpf_link__destroy(*link); 13179 *link = NULL; 13180 } 13181 } 13182 13183 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13184 { 13185 if (!s) 13186 return; 13187 13188 if (s->progs) 13189 bpf_object__detach_skeleton(s); 13190 if (s->obj) 13191 bpf_object__close(*s->obj); 13192 free(s->maps); 13193 free(s->progs); 13194 free(s); 13195 } 13196