xref: /openbmc/linux/net/rds/tcp_listen.c (revision f291209eca5eba0b4704fa0832af57b12dbc1a02)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <linux/in.h>
36 #include <net/tcp.h>
37 #include <trace/events/sock.h>
38 
39 #include "rds.h"
40 #include "tcp.h"
41 
rds_tcp_keepalive(struct socket * sock)42 void rds_tcp_keepalive(struct socket *sock)
43 {
44 	/* values below based on xs_udp_default_timeout */
45 	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
46 	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
47 
48 	sock_set_keepalive(sock->sk);
49 	tcp_sock_set_keepcnt(sock->sk, keepcnt);
50 	tcp_sock_set_keepidle(sock->sk, keepidle);
51 	/* KEEPINTVL is the interval between successive probes. We follow
52 	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
53 	 */
54 	tcp_sock_set_keepintvl(sock->sk, keepidle);
55 }
56 
57 /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
58  * client's ipaddr < server's ipaddr. Otherwise, close the accepted
59  * socket and force a reconneect from smaller -> larger ip addr. The reason
60  * we special case cp_index 0 is to allow the rds probe ping itself to itself
61  * get through efficiently.
62  * Since reconnects are only initiated from the node with the numerically
63  * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
64  * by moving them to CONNECTING in this function.
65  */
66 static
rds_tcp_accept_one_path(struct rds_connection * conn)67 struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
68 {
69 	int i;
70 	int npaths = max_t(int, 1, conn->c_npaths);
71 
72 	/* for mprds, all paths MUST be initiated by the peer
73 	 * with the smaller address.
74 	 */
75 	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
76 		/* Make sure we initiate at least one path if this
77 		 * has not already been done; rds_start_mprds() will
78 		 * take care of additional paths, if necessary.
79 		 */
80 		if (npaths == 1)
81 			rds_conn_path_connect_if_down(&conn->c_path[0]);
82 		return NULL;
83 	}
84 
85 	for (i = 0; i < npaths; i++) {
86 		struct rds_conn_path *cp = &conn->c_path[i];
87 
88 		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
89 					     RDS_CONN_CONNECTING) ||
90 		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
91 					     RDS_CONN_CONNECTING)) {
92 			return cp->cp_transport_data;
93 		}
94 	}
95 	return NULL;
96 }
97 
rds_tcp_accept_one(struct socket * sock)98 int rds_tcp_accept_one(struct socket *sock)
99 {
100 	struct socket *new_sock = NULL;
101 	struct rds_connection *conn;
102 	int ret;
103 	struct inet_sock *inet;
104 	struct rds_tcp_connection *rs_tcp = NULL;
105 	int conn_state;
106 	struct rds_conn_path *cp;
107 	struct in6_addr *my_addr, *peer_addr;
108 #if !IS_ENABLED(CONFIG_IPV6)
109 	struct in6_addr saddr, daddr;
110 #endif
111 	int dev_if = 0;
112 
113 	if (!sock) /* module unload or netns delete in progress */
114 		return -ENETUNREACH;
115 
116 	ret = sock_create_lite(sock->sk->sk_family,
117 			       sock->sk->sk_type, sock->sk->sk_protocol,
118 			       &new_sock);
119 	if (ret)
120 		goto out;
121 
122 	ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true);
123 	if (ret < 0)
124 		goto out;
125 
126 	/* sock_create_lite() does not get a hold on the owner module so we
127 	 * need to do it here.  Note that sock_release() uses sock->ops to
128 	 * determine if it needs to decrement the reference count.  So set
129 	 * sock->ops after calling accept() in case that fails.  And there's
130 	 * no need to do try_module_get() as the listener should have a hold
131 	 * already.
132 	 */
133 	new_sock->ops = sock->ops;
134 	__module_get(new_sock->ops->owner);
135 
136 	rds_tcp_keepalive(new_sock);
137 	if (!rds_tcp_tune(new_sock)) {
138 		ret = -EINVAL;
139 		goto out;
140 	}
141 
142 	inet = inet_sk(new_sock->sk);
143 
144 #if IS_ENABLED(CONFIG_IPV6)
145 	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
146 	peer_addr = &new_sock->sk->sk_v6_daddr;
147 #else
148 	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
149 	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
150 	my_addr = &saddr;
151 	peer_addr = &daddr;
152 #endif
153 	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
154 		 sock->sk->sk_family,
155 		 my_addr, ntohs(inet->inet_sport),
156 		 peer_addr, ntohs(inet->inet_dport));
157 
158 #if IS_ENABLED(CONFIG_IPV6)
159 	/* sk_bound_dev_if is not set if the peer address is not link local
160 	 * address.  In this case, it happens that mcast_oif is set.  So
161 	 * just use it.
162 	 */
163 	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
164 	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
165 		struct ipv6_pinfo *inet6;
166 
167 		inet6 = inet6_sk(new_sock->sk);
168 		dev_if = inet6->mcast_oif;
169 	} else {
170 		dev_if = new_sock->sk->sk_bound_dev_if;
171 	}
172 #endif
173 
174 	if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) {
175 		/* local address connection is only allowed via loopback */
176 		ret = -EOPNOTSUPP;
177 		goto out;
178 	}
179 
180 	conn = rds_conn_create(sock_net(sock->sk),
181 			       my_addr, peer_addr,
182 			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
183 
184 	if (IS_ERR(conn)) {
185 		ret = PTR_ERR(conn);
186 		goto out;
187 	}
188 	/* An incoming SYN request came in, and TCP just accepted it.
189 	 *
190 	 * If the client reboots, this conn will need to be cleaned up.
191 	 * rds_tcp_state_change() will do that cleanup
192 	 */
193 	rs_tcp = rds_tcp_accept_one_path(conn);
194 	if (!rs_tcp)
195 		goto rst_nsk;
196 	mutex_lock(&rs_tcp->t_conn_path_lock);
197 	cp = rs_tcp->t_cpath;
198 	conn_state = rds_conn_path_state(cp);
199 	WARN_ON(conn_state == RDS_CONN_UP);
200 	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
201 		goto rst_nsk;
202 	if (rs_tcp->t_sock) {
203 		/* Duelling SYN has been handled in rds_tcp_accept_one() */
204 		rds_tcp_reset_callbacks(new_sock, cp);
205 		/* rds_connect_path_complete() marks RDS_CONN_UP */
206 		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
207 	} else {
208 		rds_tcp_set_callbacks(new_sock, cp);
209 		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
210 	}
211 	new_sock = NULL;
212 	ret = 0;
213 	if (conn->c_npaths == 0)
214 		rds_send_ping(cp->cp_conn, cp->cp_index);
215 	goto out;
216 rst_nsk:
217 	/* reset the newly returned accept sock and bail.
218 	 * It is safe to set linger on new_sock because the RDS connection
219 	 * has not been brought up on new_sock, so no RDS-level data could
220 	 * be pending on it. By setting linger, we achieve the side-effect
221 	 * of avoiding TIME_WAIT state on new_sock.
222 	 */
223 	sock_no_linger(new_sock->sk);
224 	kernel_sock_shutdown(new_sock, SHUT_RDWR);
225 	ret = 0;
226 out:
227 	if (rs_tcp)
228 		mutex_unlock(&rs_tcp->t_conn_path_lock);
229 	if (new_sock)
230 		sock_release(new_sock);
231 	return ret;
232 }
233 
rds_tcp_listen_data_ready(struct sock * sk)234 void rds_tcp_listen_data_ready(struct sock *sk)
235 {
236 	void (*ready)(struct sock *sk);
237 
238 	trace_sk_data_ready(sk);
239 	rdsdebug("listen data ready sk %p\n", sk);
240 
241 	read_lock_bh(&sk->sk_callback_lock);
242 	ready = sk->sk_user_data;
243 	if (!ready) { /* check for teardown race */
244 		ready = sk->sk_data_ready;
245 		goto out;
246 	}
247 
248 	/*
249 	 * ->sk_data_ready is also called for a newly established child socket
250 	 * before it has been accepted and the accepter has set up their
251 	 * data_ready.. we only want to queue listen work for our listening
252 	 * socket
253 	 *
254 	 * (*ready)() may be null if we are racing with netns delete, and
255 	 * the listen socket is being torn down.
256 	 */
257 	if (sk->sk_state == TCP_LISTEN)
258 		rds_tcp_accept_work(sk);
259 	else
260 		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
261 
262 out:
263 	read_unlock_bh(&sk->sk_callback_lock);
264 	if (ready)
265 		ready(sk);
266 }
267 
rds_tcp_listen_init(struct net * net,bool isv6)268 struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
269 {
270 	struct socket *sock = NULL;
271 	struct sockaddr_storage ss;
272 	struct sockaddr_in6 *sin6;
273 	struct sockaddr_in *sin;
274 	int addr_len;
275 	int ret;
276 
277 	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
278 			       IPPROTO_TCP, &sock);
279 	if (ret < 0) {
280 		rdsdebug("could not create %s listener socket: %d\n",
281 			 isv6 ? "IPv6" : "IPv4", ret);
282 		goto out;
283 	}
284 
285 	sock->sk->sk_reuse = SK_CAN_REUSE;
286 	tcp_sock_set_nodelay(sock->sk);
287 
288 	write_lock_bh(&sock->sk->sk_callback_lock);
289 	sock->sk->sk_user_data = sock->sk->sk_data_ready;
290 	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
291 	write_unlock_bh(&sock->sk->sk_callback_lock);
292 
293 	if (isv6) {
294 		sin6 = (struct sockaddr_in6 *)&ss;
295 		sin6->sin6_family = PF_INET6;
296 		sin6->sin6_addr = in6addr_any;
297 		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
298 		sin6->sin6_scope_id = 0;
299 		sin6->sin6_flowinfo = 0;
300 		addr_len = sizeof(*sin6);
301 	} else {
302 		sin = (struct sockaddr_in *)&ss;
303 		sin->sin_family = PF_INET;
304 		sin->sin_addr.s_addr = INADDR_ANY;
305 		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
306 		addr_len = sizeof(*sin);
307 	}
308 
309 	ret = kernel_bind(sock, (struct sockaddr *)&ss, addr_len);
310 	if (ret < 0) {
311 		rdsdebug("could not bind %s listener socket: %d\n",
312 			 isv6 ? "IPv6" : "IPv4", ret);
313 		goto out;
314 	}
315 
316 	ret = sock->ops->listen(sock, 64);
317 	if (ret < 0)
318 		goto out;
319 
320 	return sock;
321 out:
322 	if (sock)
323 		sock_release(sock);
324 	return NULL;
325 }
326 
rds_tcp_listen_stop(struct socket * sock,struct work_struct * acceptor)327 void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
328 {
329 	struct sock *sk;
330 
331 	if (!sock)
332 		return;
333 
334 	sk = sock->sk;
335 
336 	/* serialize with and prevent further callbacks */
337 	lock_sock(sk);
338 	write_lock_bh(&sk->sk_callback_lock);
339 	if (sk->sk_user_data) {
340 		sk->sk_data_ready = sk->sk_user_data;
341 		sk->sk_user_data = NULL;
342 	}
343 	write_unlock_bh(&sk->sk_callback_lock);
344 	release_sock(sk);
345 
346 	/* wait for accepts to stop and close the socket */
347 	flush_workqueue(rds_wq);
348 	flush_work(acceptor);
349 	sock_release(sock);
350 }
351