1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 57 58 #include <linux/bitmap.h> 59 #include <linux/bootmem.h> 60 #include <linux/err.h> 61 #include <linux/list.h> 62 #include <linux/log2.h> 63 #include <linux/mm.h> 64 #include <linux/module.h> 65 #include <linux/mutex.h> 66 #include <linux/percpu.h> 67 #include <linux/pfn.h> 68 #include <linux/slab.h> 69 #include <linux/spinlock.h> 70 #include <linux/vmalloc.h> 71 #include <linux/workqueue.h> 72 #include <linux/kmemleak.h> 73 74 #include <asm/cacheflush.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/io.h> 78 79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 83 #define PCPU_EMPTY_POP_PAGES_LOW 2 84 #define PCPU_EMPTY_POP_PAGES_HIGH 4 85 86 #ifdef CONFIG_SMP 87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 88 #ifndef __addr_to_pcpu_ptr 89 #define __addr_to_pcpu_ptr(addr) \ 90 (void __percpu *)((unsigned long)(addr) - \ 91 (unsigned long)pcpu_base_addr + \ 92 (unsigned long)__per_cpu_start) 93 #endif 94 #ifndef __pcpu_ptr_to_addr 95 #define __pcpu_ptr_to_addr(ptr) \ 96 (void __force *)((unsigned long)(ptr) + \ 97 (unsigned long)pcpu_base_addr - \ 98 (unsigned long)__per_cpu_start) 99 #endif 100 #else /* CONFIG_SMP */ 101 /* on UP, it's always identity mapped */ 102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 104 #endif /* CONFIG_SMP */ 105 106 struct pcpu_chunk { 107 struct list_head list; /* linked to pcpu_slot lists */ 108 int free_size; /* free bytes in the chunk */ 109 int contig_hint; /* max contiguous size hint */ 110 void *base_addr; /* base address of this chunk */ 111 112 int map_used; /* # of map entries used before the sentry */ 113 int map_alloc; /* # of map entries allocated */ 114 int *map; /* allocation map */ 115 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */ 116 117 void *data; /* chunk data */ 118 int first_free; /* no free below this */ 119 bool immutable; /* no [de]population allowed */ 120 int nr_populated; /* # of populated pages */ 121 unsigned long populated[]; /* populated bitmap */ 122 }; 123 124 static int pcpu_unit_pages __read_mostly; 125 static int pcpu_unit_size __read_mostly; 126 static int pcpu_nr_units __read_mostly; 127 static int pcpu_atom_size __read_mostly; 128 static int pcpu_nr_slots __read_mostly; 129 static size_t pcpu_chunk_struct_size __read_mostly; 130 131 /* cpus with the lowest and highest unit addresses */ 132 static unsigned int pcpu_low_unit_cpu __read_mostly; 133 static unsigned int pcpu_high_unit_cpu __read_mostly; 134 135 /* the address of the first chunk which starts with the kernel static area */ 136 void *pcpu_base_addr __read_mostly; 137 EXPORT_SYMBOL_GPL(pcpu_base_addr); 138 139 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 140 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 141 142 /* group information, used for vm allocation */ 143 static int pcpu_nr_groups __read_mostly; 144 static const unsigned long *pcpu_group_offsets __read_mostly; 145 static const size_t *pcpu_group_sizes __read_mostly; 146 147 /* 148 * The first chunk which always exists. Note that unlike other 149 * chunks, this one can be allocated and mapped in several different 150 * ways and thus often doesn't live in the vmalloc area. 151 */ 152 static struct pcpu_chunk *pcpu_first_chunk; 153 154 /* 155 * Optional reserved chunk. This chunk reserves part of the first 156 * chunk and serves it for reserved allocations. The amount of 157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 158 * area doesn't exist, the following variables contain NULL and 0 159 * respectively. 160 */ 161 static struct pcpu_chunk *pcpu_reserved_chunk; 162 static int pcpu_reserved_chunk_limit; 163 164 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 166 167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 168 169 /* chunks which need their map areas extended, protected by pcpu_lock */ 170 static LIST_HEAD(pcpu_map_extend_chunks); 171 172 /* 173 * The number of empty populated pages, protected by pcpu_lock. The 174 * reserved chunk doesn't contribute to the count. 175 */ 176 static int pcpu_nr_empty_pop_pages; 177 178 /* 179 * Balance work is used to populate or destroy chunks asynchronously. We 180 * try to keep the number of populated free pages between 181 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 182 * empty chunk. 183 */ 184 static void pcpu_balance_workfn(struct work_struct *work); 185 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 186 static bool pcpu_async_enabled __read_mostly; 187 static bool pcpu_atomic_alloc_failed; 188 189 static void pcpu_schedule_balance_work(void) 190 { 191 if (pcpu_async_enabled) 192 schedule_work(&pcpu_balance_work); 193 } 194 195 static bool pcpu_addr_in_first_chunk(void *addr) 196 { 197 void *first_start = pcpu_first_chunk->base_addr; 198 199 return addr >= first_start && addr < first_start + pcpu_unit_size; 200 } 201 202 static bool pcpu_addr_in_reserved_chunk(void *addr) 203 { 204 void *first_start = pcpu_first_chunk->base_addr; 205 206 return addr >= first_start && 207 addr < first_start + pcpu_reserved_chunk_limit; 208 } 209 210 static int __pcpu_size_to_slot(int size) 211 { 212 int highbit = fls(size); /* size is in bytes */ 213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 214 } 215 216 static int pcpu_size_to_slot(int size) 217 { 218 if (size == pcpu_unit_size) 219 return pcpu_nr_slots - 1; 220 return __pcpu_size_to_slot(size); 221 } 222 223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 224 { 225 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 226 return 0; 227 228 return pcpu_size_to_slot(chunk->free_size); 229 } 230 231 /* set the pointer to a chunk in a page struct */ 232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 233 { 234 page->index = (unsigned long)pcpu; 235 } 236 237 /* obtain pointer to a chunk from a page struct */ 238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 239 { 240 return (struct pcpu_chunk *)page->index; 241 } 242 243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 244 { 245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 246 } 247 248 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 249 unsigned int cpu, int page_idx) 250 { 251 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 252 (page_idx << PAGE_SHIFT); 253 } 254 255 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 256 int *rs, int *re, int end) 257 { 258 *rs = find_next_zero_bit(chunk->populated, end, *rs); 259 *re = find_next_bit(chunk->populated, end, *rs + 1); 260 } 261 262 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 263 int *rs, int *re, int end) 264 { 265 *rs = find_next_bit(chunk->populated, end, *rs); 266 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 267 } 268 269 /* 270 * (Un)populated page region iterators. Iterate over (un)populated 271 * page regions between @start and @end in @chunk. @rs and @re should 272 * be integer variables and will be set to start and end page index of 273 * the current region. 274 */ 275 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 276 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 277 (rs) < (re); \ 278 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 279 280 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 281 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 282 (rs) < (re); \ 283 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 284 285 /** 286 * pcpu_mem_zalloc - allocate memory 287 * @size: bytes to allocate 288 * 289 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 290 * kzalloc() is used; otherwise, vzalloc() is used. The returned 291 * memory is always zeroed. 292 * 293 * CONTEXT: 294 * Does GFP_KERNEL allocation. 295 * 296 * RETURNS: 297 * Pointer to the allocated area on success, NULL on failure. 298 */ 299 static void *pcpu_mem_zalloc(size_t size) 300 { 301 if (WARN_ON_ONCE(!slab_is_available())) 302 return NULL; 303 304 if (size <= PAGE_SIZE) 305 return kzalloc(size, GFP_KERNEL); 306 else 307 return vzalloc(size); 308 } 309 310 /** 311 * pcpu_mem_free - free memory 312 * @ptr: memory to free 313 * 314 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 315 */ 316 static void pcpu_mem_free(void *ptr) 317 { 318 kvfree(ptr); 319 } 320 321 /** 322 * pcpu_count_occupied_pages - count the number of pages an area occupies 323 * @chunk: chunk of interest 324 * @i: index of the area in question 325 * 326 * Count the number of pages chunk's @i'th area occupies. When the area's 327 * start and/or end address isn't aligned to page boundary, the straddled 328 * page is included in the count iff the rest of the page is free. 329 */ 330 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) 331 { 332 int off = chunk->map[i] & ~1; 333 int end = chunk->map[i + 1] & ~1; 334 335 if (!PAGE_ALIGNED(off) && i > 0) { 336 int prev = chunk->map[i - 1]; 337 338 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) 339 off = round_down(off, PAGE_SIZE); 340 } 341 342 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { 343 int next = chunk->map[i + 1]; 344 int nend = chunk->map[i + 2] & ~1; 345 346 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) 347 end = round_up(end, PAGE_SIZE); 348 } 349 350 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); 351 } 352 353 /** 354 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 355 * @chunk: chunk of interest 356 * @oslot: the previous slot it was on 357 * 358 * This function is called after an allocation or free changed @chunk. 359 * New slot according to the changed state is determined and @chunk is 360 * moved to the slot. Note that the reserved chunk is never put on 361 * chunk slots. 362 * 363 * CONTEXT: 364 * pcpu_lock. 365 */ 366 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 367 { 368 int nslot = pcpu_chunk_slot(chunk); 369 370 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 371 if (oslot < nslot) 372 list_move(&chunk->list, &pcpu_slot[nslot]); 373 else 374 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 375 } 376 } 377 378 /** 379 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 380 * @chunk: chunk of interest 381 * @is_atomic: the allocation context 382 * 383 * Determine whether area map of @chunk needs to be extended. If 384 * @is_atomic, only the amount necessary for a new allocation is 385 * considered; however, async extension is scheduled if the left amount is 386 * low. If !@is_atomic, it aims for more empty space. Combined, this 387 * ensures that the map is likely to have enough available space to 388 * accomodate atomic allocations which can't extend maps directly. 389 * 390 * CONTEXT: 391 * pcpu_lock. 392 * 393 * RETURNS: 394 * New target map allocation length if extension is necessary, 0 395 * otherwise. 396 */ 397 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) 398 { 399 int margin, new_alloc; 400 401 lockdep_assert_held(&pcpu_lock); 402 403 if (is_atomic) { 404 margin = 3; 405 406 if (chunk->map_alloc < 407 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) { 408 if (list_empty(&chunk->map_extend_list)) { 409 list_add_tail(&chunk->map_extend_list, 410 &pcpu_map_extend_chunks); 411 pcpu_schedule_balance_work(); 412 } 413 } 414 } else { 415 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; 416 } 417 418 if (chunk->map_alloc >= chunk->map_used + margin) 419 return 0; 420 421 new_alloc = PCPU_DFL_MAP_ALLOC; 422 while (new_alloc < chunk->map_used + margin) 423 new_alloc *= 2; 424 425 return new_alloc; 426 } 427 428 /** 429 * pcpu_extend_area_map - extend area map of a chunk 430 * @chunk: chunk of interest 431 * @new_alloc: new target allocation length of the area map 432 * 433 * Extend area map of @chunk to have @new_alloc entries. 434 * 435 * CONTEXT: 436 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 437 * 438 * RETURNS: 439 * 0 on success, -errno on failure. 440 */ 441 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 442 { 443 int *old = NULL, *new = NULL; 444 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 445 unsigned long flags; 446 447 lockdep_assert_held(&pcpu_alloc_mutex); 448 449 new = pcpu_mem_zalloc(new_size); 450 if (!new) 451 return -ENOMEM; 452 453 /* acquire pcpu_lock and switch to new area map */ 454 spin_lock_irqsave(&pcpu_lock, flags); 455 456 if (new_alloc <= chunk->map_alloc) 457 goto out_unlock; 458 459 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 460 old = chunk->map; 461 462 memcpy(new, old, old_size); 463 464 chunk->map_alloc = new_alloc; 465 chunk->map = new; 466 new = NULL; 467 468 out_unlock: 469 spin_unlock_irqrestore(&pcpu_lock, flags); 470 471 /* 472 * pcpu_mem_free() might end up calling vfree() which uses 473 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 474 */ 475 pcpu_mem_free(old); 476 pcpu_mem_free(new); 477 478 return 0; 479 } 480 481 /** 482 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area 483 * @chunk: chunk the candidate area belongs to 484 * @off: the offset to the start of the candidate area 485 * @this_size: the size of the candidate area 486 * @size: the size of the target allocation 487 * @align: the alignment of the target allocation 488 * @pop_only: only allocate from already populated region 489 * 490 * We're trying to allocate @size bytes aligned at @align. @chunk's area 491 * at @off sized @this_size is a candidate. This function determines 492 * whether the target allocation fits in the candidate area and returns the 493 * number of bytes to pad after @off. If the target area doesn't fit, -1 494 * is returned. 495 * 496 * If @pop_only is %true, this function only considers the already 497 * populated part of the candidate area. 498 */ 499 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, 500 int size, int align, bool pop_only) 501 { 502 int cand_off = off; 503 504 while (true) { 505 int head = ALIGN(cand_off, align) - off; 506 int page_start, page_end, rs, re; 507 508 if (this_size < head + size) 509 return -1; 510 511 if (!pop_only) 512 return head; 513 514 /* 515 * If the first unpopulated page is beyond the end of the 516 * allocation, the whole allocation is populated; 517 * otherwise, retry from the end of the unpopulated area. 518 */ 519 page_start = PFN_DOWN(head + off); 520 page_end = PFN_UP(head + off + size); 521 522 rs = page_start; 523 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); 524 if (rs >= page_end) 525 return head; 526 cand_off = re * PAGE_SIZE; 527 } 528 } 529 530 /** 531 * pcpu_alloc_area - allocate area from a pcpu_chunk 532 * @chunk: chunk of interest 533 * @size: wanted size in bytes 534 * @align: wanted align 535 * @pop_only: allocate only from the populated area 536 * @occ_pages_p: out param for the number of pages the area occupies 537 * 538 * Try to allocate @size bytes area aligned at @align from @chunk. 539 * Note that this function only allocates the offset. It doesn't 540 * populate or map the area. 541 * 542 * @chunk->map must have at least two free slots. 543 * 544 * CONTEXT: 545 * pcpu_lock. 546 * 547 * RETURNS: 548 * Allocated offset in @chunk on success, -1 if no matching area is 549 * found. 550 */ 551 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, 552 bool pop_only, int *occ_pages_p) 553 { 554 int oslot = pcpu_chunk_slot(chunk); 555 int max_contig = 0; 556 int i, off; 557 bool seen_free = false; 558 int *p; 559 560 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { 561 int head, tail; 562 int this_size; 563 564 off = *p; 565 if (off & 1) 566 continue; 567 568 this_size = (p[1] & ~1) - off; 569 570 head = pcpu_fit_in_area(chunk, off, this_size, size, align, 571 pop_only); 572 if (head < 0) { 573 if (!seen_free) { 574 chunk->first_free = i; 575 seen_free = true; 576 } 577 max_contig = max(this_size, max_contig); 578 continue; 579 } 580 581 /* 582 * If head is small or the previous block is free, 583 * merge'em. Note that 'small' is defined as smaller 584 * than sizeof(int), which is very small but isn't too 585 * uncommon for percpu allocations. 586 */ 587 if (head && (head < sizeof(int) || !(p[-1] & 1))) { 588 *p = off += head; 589 if (p[-1] & 1) 590 chunk->free_size -= head; 591 else 592 max_contig = max(*p - p[-1], max_contig); 593 this_size -= head; 594 head = 0; 595 } 596 597 /* if tail is small, just keep it around */ 598 tail = this_size - head - size; 599 if (tail < sizeof(int)) { 600 tail = 0; 601 size = this_size - head; 602 } 603 604 /* split if warranted */ 605 if (head || tail) { 606 int nr_extra = !!head + !!tail; 607 608 /* insert new subblocks */ 609 memmove(p + nr_extra + 1, p + 1, 610 sizeof(chunk->map[0]) * (chunk->map_used - i)); 611 chunk->map_used += nr_extra; 612 613 if (head) { 614 if (!seen_free) { 615 chunk->first_free = i; 616 seen_free = true; 617 } 618 *++p = off += head; 619 ++i; 620 max_contig = max(head, max_contig); 621 } 622 if (tail) { 623 p[1] = off + size; 624 max_contig = max(tail, max_contig); 625 } 626 } 627 628 if (!seen_free) 629 chunk->first_free = i + 1; 630 631 /* update hint and mark allocated */ 632 if (i + 1 == chunk->map_used) 633 chunk->contig_hint = max_contig; /* fully scanned */ 634 else 635 chunk->contig_hint = max(chunk->contig_hint, 636 max_contig); 637 638 chunk->free_size -= size; 639 *p |= 1; 640 641 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 642 pcpu_chunk_relocate(chunk, oslot); 643 return off; 644 } 645 646 chunk->contig_hint = max_contig; /* fully scanned */ 647 pcpu_chunk_relocate(chunk, oslot); 648 649 /* tell the upper layer that this chunk has no matching area */ 650 return -1; 651 } 652 653 /** 654 * pcpu_free_area - free area to a pcpu_chunk 655 * @chunk: chunk of interest 656 * @freeme: offset of area to free 657 * @occ_pages_p: out param for the number of pages the area occupies 658 * 659 * Free area starting from @freeme to @chunk. Note that this function 660 * only modifies the allocation map. It doesn't depopulate or unmap 661 * the area. 662 * 663 * CONTEXT: 664 * pcpu_lock. 665 */ 666 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, 667 int *occ_pages_p) 668 { 669 int oslot = pcpu_chunk_slot(chunk); 670 int off = 0; 671 unsigned i, j; 672 int to_free = 0; 673 int *p; 674 675 freeme |= 1; /* we are searching for <given offset, in use> pair */ 676 677 i = 0; 678 j = chunk->map_used; 679 while (i != j) { 680 unsigned k = (i + j) / 2; 681 off = chunk->map[k]; 682 if (off < freeme) 683 i = k + 1; 684 else if (off > freeme) 685 j = k; 686 else 687 i = j = k; 688 } 689 BUG_ON(off != freeme); 690 691 if (i < chunk->first_free) 692 chunk->first_free = i; 693 694 p = chunk->map + i; 695 *p = off &= ~1; 696 chunk->free_size += (p[1] & ~1) - off; 697 698 *occ_pages_p = pcpu_count_occupied_pages(chunk, i); 699 700 /* merge with next? */ 701 if (!(p[1] & 1)) 702 to_free++; 703 /* merge with previous? */ 704 if (i > 0 && !(p[-1] & 1)) { 705 to_free++; 706 i--; 707 p--; 708 } 709 if (to_free) { 710 chunk->map_used -= to_free; 711 memmove(p + 1, p + 1 + to_free, 712 (chunk->map_used - i) * sizeof(chunk->map[0])); 713 } 714 715 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); 716 pcpu_chunk_relocate(chunk, oslot); 717 } 718 719 static struct pcpu_chunk *pcpu_alloc_chunk(void) 720 { 721 struct pcpu_chunk *chunk; 722 723 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 724 if (!chunk) 725 return NULL; 726 727 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 728 sizeof(chunk->map[0])); 729 if (!chunk->map) { 730 pcpu_mem_free(chunk); 731 return NULL; 732 } 733 734 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 735 chunk->map[0] = 0; 736 chunk->map[1] = pcpu_unit_size | 1; 737 chunk->map_used = 1; 738 739 INIT_LIST_HEAD(&chunk->list); 740 INIT_LIST_HEAD(&chunk->map_extend_list); 741 chunk->free_size = pcpu_unit_size; 742 chunk->contig_hint = pcpu_unit_size; 743 744 return chunk; 745 } 746 747 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 748 { 749 if (!chunk) 750 return; 751 pcpu_mem_free(chunk->map); 752 pcpu_mem_free(chunk); 753 } 754 755 /** 756 * pcpu_chunk_populated - post-population bookkeeping 757 * @chunk: pcpu_chunk which got populated 758 * @page_start: the start page 759 * @page_end: the end page 760 * 761 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 762 * the bookkeeping information accordingly. Must be called after each 763 * successful population. 764 */ 765 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, 766 int page_start, int page_end) 767 { 768 int nr = page_end - page_start; 769 770 lockdep_assert_held(&pcpu_lock); 771 772 bitmap_set(chunk->populated, page_start, nr); 773 chunk->nr_populated += nr; 774 pcpu_nr_empty_pop_pages += nr; 775 } 776 777 /** 778 * pcpu_chunk_depopulated - post-depopulation bookkeeping 779 * @chunk: pcpu_chunk which got depopulated 780 * @page_start: the start page 781 * @page_end: the end page 782 * 783 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 784 * Update the bookkeeping information accordingly. Must be called after 785 * each successful depopulation. 786 */ 787 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 788 int page_start, int page_end) 789 { 790 int nr = page_end - page_start; 791 792 lockdep_assert_held(&pcpu_lock); 793 794 bitmap_clear(chunk->populated, page_start, nr); 795 chunk->nr_populated -= nr; 796 pcpu_nr_empty_pop_pages -= nr; 797 } 798 799 /* 800 * Chunk management implementation. 801 * 802 * To allow different implementations, chunk alloc/free and 803 * [de]population are implemented in a separate file which is pulled 804 * into this file and compiled together. The following functions 805 * should be implemented. 806 * 807 * pcpu_populate_chunk - populate the specified range of a chunk 808 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 809 * pcpu_create_chunk - create a new chunk 810 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 811 * pcpu_addr_to_page - translate address to physical address 812 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 813 */ 814 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 815 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 816 static struct pcpu_chunk *pcpu_create_chunk(void); 817 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 818 static struct page *pcpu_addr_to_page(void *addr); 819 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 820 821 #ifdef CONFIG_NEED_PER_CPU_KM 822 #include "percpu-km.c" 823 #else 824 #include "percpu-vm.c" 825 #endif 826 827 /** 828 * pcpu_chunk_addr_search - determine chunk containing specified address 829 * @addr: address for which the chunk needs to be determined. 830 * 831 * RETURNS: 832 * The address of the found chunk. 833 */ 834 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 835 { 836 /* is it in the first chunk? */ 837 if (pcpu_addr_in_first_chunk(addr)) { 838 /* is it in the reserved area? */ 839 if (pcpu_addr_in_reserved_chunk(addr)) 840 return pcpu_reserved_chunk; 841 return pcpu_first_chunk; 842 } 843 844 /* 845 * The address is relative to unit0 which might be unused and 846 * thus unmapped. Offset the address to the unit space of the 847 * current processor before looking it up in the vmalloc 848 * space. Note that any possible cpu id can be used here, so 849 * there's no need to worry about preemption or cpu hotplug. 850 */ 851 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 852 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 853 } 854 855 /** 856 * pcpu_alloc - the percpu allocator 857 * @size: size of area to allocate in bytes 858 * @align: alignment of area (max PAGE_SIZE) 859 * @reserved: allocate from the reserved chunk if available 860 * @gfp: allocation flags 861 * 862 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 863 * contain %GFP_KERNEL, the allocation is atomic. 864 * 865 * RETURNS: 866 * Percpu pointer to the allocated area on success, NULL on failure. 867 */ 868 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 869 gfp_t gfp) 870 { 871 static int warn_limit = 10; 872 struct pcpu_chunk *chunk; 873 const char *err; 874 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 875 int occ_pages = 0; 876 int slot, off, new_alloc, cpu, ret; 877 unsigned long flags; 878 void __percpu *ptr; 879 880 /* 881 * We want the lowest bit of offset available for in-use/free 882 * indicator, so force >= 16bit alignment and make size even. 883 */ 884 if (unlikely(align < 2)) 885 align = 2; 886 887 size = ALIGN(size, 2); 888 889 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 890 !is_power_of_2(align))) { 891 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", 892 size, align); 893 return NULL; 894 } 895 896 if (!is_atomic) 897 mutex_lock(&pcpu_alloc_mutex); 898 899 spin_lock_irqsave(&pcpu_lock, flags); 900 901 /* serve reserved allocations from the reserved chunk if available */ 902 if (reserved && pcpu_reserved_chunk) { 903 chunk = pcpu_reserved_chunk; 904 905 if (size > chunk->contig_hint) { 906 err = "alloc from reserved chunk failed"; 907 goto fail_unlock; 908 } 909 910 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { 911 spin_unlock_irqrestore(&pcpu_lock, flags); 912 if (is_atomic || 913 pcpu_extend_area_map(chunk, new_alloc) < 0) { 914 err = "failed to extend area map of reserved chunk"; 915 goto fail; 916 } 917 spin_lock_irqsave(&pcpu_lock, flags); 918 } 919 920 off = pcpu_alloc_area(chunk, size, align, is_atomic, 921 &occ_pages); 922 if (off >= 0) 923 goto area_found; 924 925 err = "alloc from reserved chunk failed"; 926 goto fail_unlock; 927 } 928 929 restart: 930 /* search through normal chunks */ 931 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 932 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 933 if (size > chunk->contig_hint) 934 continue; 935 936 new_alloc = pcpu_need_to_extend(chunk, is_atomic); 937 if (new_alloc) { 938 if (is_atomic) 939 continue; 940 spin_unlock_irqrestore(&pcpu_lock, flags); 941 if (pcpu_extend_area_map(chunk, 942 new_alloc) < 0) { 943 err = "failed to extend area map"; 944 goto fail; 945 } 946 spin_lock_irqsave(&pcpu_lock, flags); 947 /* 948 * pcpu_lock has been dropped, need to 949 * restart cpu_slot list walking. 950 */ 951 goto restart; 952 } 953 954 off = pcpu_alloc_area(chunk, size, align, is_atomic, 955 &occ_pages); 956 if (off >= 0) 957 goto area_found; 958 } 959 } 960 961 spin_unlock_irqrestore(&pcpu_lock, flags); 962 963 /* 964 * No space left. Create a new chunk. We don't want multiple 965 * tasks to create chunks simultaneously. Serialize and create iff 966 * there's still no empty chunk after grabbing the mutex. 967 */ 968 if (is_atomic) 969 goto fail; 970 971 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 972 chunk = pcpu_create_chunk(); 973 if (!chunk) { 974 err = "failed to allocate new chunk"; 975 goto fail; 976 } 977 978 spin_lock_irqsave(&pcpu_lock, flags); 979 pcpu_chunk_relocate(chunk, -1); 980 } else { 981 spin_lock_irqsave(&pcpu_lock, flags); 982 } 983 984 goto restart; 985 986 area_found: 987 spin_unlock_irqrestore(&pcpu_lock, flags); 988 989 /* populate if not all pages are already there */ 990 if (!is_atomic) { 991 int page_start, page_end, rs, re; 992 993 page_start = PFN_DOWN(off); 994 page_end = PFN_UP(off + size); 995 996 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { 997 WARN_ON(chunk->immutable); 998 999 ret = pcpu_populate_chunk(chunk, rs, re); 1000 1001 spin_lock_irqsave(&pcpu_lock, flags); 1002 if (ret) { 1003 pcpu_free_area(chunk, off, &occ_pages); 1004 err = "failed to populate"; 1005 goto fail_unlock; 1006 } 1007 pcpu_chunk_populated(chunk, rs, re); 1008 spin_unlock_irqrestore(&pcpu_lock, flags); 1009 } 1010 1011 mutex_unlock(&pcpu_alloc_mutex); 1012 } 1013 1014 if (chunk != pcpu_reserved_chunk) 1015 pcpu_nr_empty_pop_pages -= occ_pages; 1016 1017 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1018 pcpu_schedule_balance_work(); 1019 1020 /* clear the areas and return address relative to base address */ 1021 for_each_possible_cpu(cpu) 1022 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1023 1024 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1025 kmemleak_alloc_percpu(ptr, size, gfp); 1026 return ptr; 1027 1028 fail_unlock: 1029 spin_unlock_irqrestore(&pcpu_lock, flags); 1030 fail: 1031 if (!is_atomic && warn_limit) { 1032 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1033 size, align, is_atomic, err); 1034 dump_stack(); 1035 if (!--warn_limit) 1036 pr_info("limit reached, disable warning\n"); 1037 } 1038 if (is_atomic) { 1039 /* see the flag handling in pcpu_blance_workfn() */ 1040 pcpu_atomic_alloc_failed = true; 1041 pcpu_schedule_balance_work(); 1042 } else { 1043 mutex_unlock(&pcpu_alloc_mutex); 1044 } 1045 return NULL; 1046 } 1047 1048 /** 1049 * __alloc_percpu_gfp - allocate dynamic percpu area 1050 * @size: size of area to allocate in bytes 1051 * @align: alignment of area (max PAGE_SIZE) 1052 * @gfp: allocation flags 1053 * 1054 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1055 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1056 * be called from any context but is a lot more likely to fail. 1057 * 1058 * RETURNS: 1059 * Percpu pointer to the allocated area on success, NULL on failure. 1060 */ 1061 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1062 { 1063 return pcpu_alloc(size, align, false, gfp); 1064 } 1065 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1066 1067 /** 1068 * __alloc_percpu - allocate dynamic percpu area 1069 * @size: size of area to allocate in bytes 1070 * @align: alignment of area (max PAGE_SIZE) 1071 * 1072 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1073 */ 1074 void __percpu *__alloc_percpu(size_t size, size_t align) 1075 { 1076 return pcpu_alloc(size, align, false, GFP_KERNEL); 1077 } 1078 EXPORT_SYMBOL_GPL(__alloc_percpu); 1079 1080 /** 1081 * __alloc_reserved_percpu - allocate reserved percpu area 1082 * @size: size of area to allocate in bytes 1083 * @align: alignment of area (max PAGE_SIZE) 1084 * 1085 * Allocate zero-filled percpu area of @size bytes aligned at @align 1086 * from reserved percpu area if arch has set it up; otherwise, 1087 * allocation is served from the same dynamic area. Might sleep. 1088 * Might trigger writeouts. 1089 * 1090 * CONTEXT: 1091 * Does GFP_KERNEL allocation. 1092 * 1093 * RETURNS: 1094 * Percpu pointer to the allocated area on success, NULL on failure. 1095 */ 1096 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1097 { 1098 return pcpu_alloc(size, align, true, GFP_KERNEL); 1099 } 1100 1101 /** 1102 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1103 * @work: unused 1104 * 1105 * Reclaim all fully free chunks except for the first one. 1106 */ 1107 static void pcpu_balance_workfn(struct work_struct *work) 1108 { 1109 LIST_HEAD(to_free); 1110 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1111 struct pcpu_chunk *chunk, *next; 1112 int slot, nr_to_pop, ret; 1113 1114 /* 1115 * There's no reason to keep around multiple unused chunks and VM 1116 * areas can be scarce. Destroy all free chunks except for one. 1117 */ 1118 mutex_lock(&pcpu_alloc_mutex); 1119 spin_lock_irq(&pcpu_lock); 1120 1121 list_for_each_entry_safe(chunk, next, free_head, list) { 1122 WARN_ON(chunk->immutable); 1123 1124 /* spare the first one */ 1125 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1126 continue; 1127 1128 list_del_init(&chunk->map_extend_list); 1129 list_move(&chunk->list, &to_free); 1130 } 1131 1132 spin_unlock_irq(&pcpu_lock); 1133 1134 list_for_each_entry_safe(chunk, next, &to_free, list) { 1135 int rs, re; 1136 1137 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1138 pcpu_depopulate_chunk(chunk, rs, re); 1139 spin_lock_irq(&pcpu_lock); 1140 pcpu_chunk_depopulated(chunk, rs, re); 1141 spin_unlock_irq(&pcpu_lock); 1142 } 1143 pcpu_destroy_chunk(chunk); 1144 } 1145 1146 /* service chunks which requested async area map extension */ 1147 do { 1148 int new_alloc = 0; 1149 1150 spin_lock_irq(&pcpu_lock); 1151 1152 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks, 1153 struct pcpu_chunk, map_extend_list); 1154 if (chunk) { 1155 list_del_init(&chunk->map_extend_list); 1156 new_alloc = pcpu_need_to_extend(chunk, false); 1157 } 1158 1159 spin_unlock_irq(&pcpu_lock); 1160 1161 if (new_alloc) 1162 pcpu_extend_area_map(chunk, new_alloc); 1163 } while (chunk); 1164 1165 /* 1166 * Ensure there are certain number of free populated pages for 1167 * atomic allocs. Fill up from the most packed so that atomic 1168 * allocs don't increase fragmentation. If atomic allocation 1169 * failed previously, always populate the maximum amount. This 1170 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1171 * failing indefinitely; however, large atomic allocs are not 1172 * something we support properly and can be highly unreliable and 1173 * inefficient. 1174 */ 1175 retry_pop: 1176 if (pcpu_atomic_alloc_failed) { 1177 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1178 /* best effort anyway, don't worry about synchronization */ 1179 pcpu_atomic_alloc_failed = false; 1180 } else { 1181 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1182 pcpu_nr_empty_pop_pages, 1183 0, PCPU_EMPTY_POP_PAGES_HIGH); 1184 } 1185 1186 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1187 int nr_unpop = 0, rs, re; 1188 1189 if (!nr_to_pop) 1190 break; 1191 1192 spin_lock_irq(&pcpu_lock); 1193 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1194 nr_unpop = pcpu_unit_pages - chunk->nr_populated; 1195 if (nr_unpop) 1196 break; 1197 } 1198 spin_unlock_irq(&pcpu_lock); 1199 1200 if (!nr_unpop) 1201 continue; 1202 1203 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1204 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { 1205 int nr = min(re - rs, nr_to_pop); 1206 1207 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1208 if (!ret) { 1209 nr_to_pop -= nr; 1210 spin_lock_irq(&pcpu_lock); 1211 pcpu_chunk_populated(chunk, rs, rs + nr); 1212 spin_unlock_irq(&pcpu_lock); 1213 } else { 1214 nr_to_pop = 0; 1215 } 1216 1217 if (!nr_to_pop) 1218 break; 1219 } 1220 } 1221 1222 if (nr_to_pop) { 1223 /* ran out of chunks to populate, create a new one and retry */ 1224 chunk = pcpu_create_chunk(); 1225 if (chunk) { 1226 spin_lock_irq(&pcpu_lock); 1227 pcpu_chunk_relocate(chunk, -1); 1228 spin_unlock_irq(&pcpu_lock); 1229 goto retry_pop; 1230 } 1231 } 1232 1233 mutex_unlock(&pcpu_alloc_mutex); 1234 } 1235 1236 /** 1237 * free_percpu - free percpu area 1238 * @ptr: pointer to area to free 1239 * 1240 * Free percpu area @ptr. 1241 * 1242 * CONTEXT: 1243 * Can be called from atomic context. 1244 */ 1245 void free_percpu(void __percpu *ptr) 1246 { 1247 void *addr; 1248 struct pcpu_chunk *chunk; 1249 unsigned long flags; 1250 int off, occ_pages; 1251 1252 if (!ptr) 1253 return; 1254 1255 kmemleak_free_percpu(ptr); 1256 1257 addr = __pcpu_ptr_to_addr(ptr); 1258 1259 spin_lock_irqsave(&pcpu_lock, flags); 1260 1261 chunk = pcpu_chunk_addr_search(addr); 1262 off = addr - chunk->base_addr; 1263 1264 pcpu_free_area(chunk, off, &occ_pages); 1265 1266 if (chunk != pcpu_reserved_chunk) 1267 pcpu_nr_empty_pop_pages += occ_pages; 1268 1269 /* if there are more than one fully free chunks, wake up grim reaper */ 1270 if (chunk->free_size == pcpu_unit_size) { 1271 struct pcpu_chunk *pos; 1272 1273 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1274 if (pos != chunk) { 1275 pcpu_schedule_balance_work(); 1276 break; 1277 } 1278 } 1279 1280 spin_unlock_irqrestore(&pcpu_lock, flags); 1281 } 1282 EXPORT_SYMBOL_GPL(free_percpu); 1283 1284 /** 1285 * is_kernel_percpu_address - test whether address is from static percpu area 1286 * @addr: address to test 1287 * 1288 * Test whether @addr belongs to in-kernel static percpu area. Module 1289 * static percpu areas are not considered. For those, use 1290 * is_module_percpu_address(). 1291 * 1292 * RETURNS: 1293 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1294 */ 1295 bool is_kernel_percpu_address(unsigned long addr) 1296 { 1297 #ifdef CONFIG_SMP 1298 const size_t static_size = __per_cpu_end - __per_cpu_start; 1299 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1300 unsigned int cpu; 1301 1302 for_each_possible_cpu(cpu) { 1303 void *start = per_cpu_ptr(base, cpu); 1304 1305 if ((void *)addr >= start && (void *)addr < start + static_size) 1306 return true; 1307 } 1308 #endif 1309 /* on UP, can't distinguish from other static vars, always false */ 1310 return false; 1311 } 1312 1313 /** 1314 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1315 * @addr: the address to be converted to physical address 1316 * 1317 * Given @addr which is dereferenceable address obtained via one of 1318 * percpu access macros, this function translates it into its physical 1319 * address. The caller is responsible for ensuring @addr stays valid 1320 * until this function finishes. 1321 * 1322 * percpu allocator has special setup for the first chunk, which currently 1323 * supports either embedding in linear address space or vmalloc mapping, 1324 * and, from the second one, the backing allocator (currently either vm or 1325 * km) provides translation. 1326 * 1327 * The addr can be translated simply without checking if it falls into the 1328 * first chunk. But the current code reflects better how percpu allocator 1329 * actually works, and the verification can discover both bugs in percpu 1330 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1331 * code. 1332 * 1333 * RETURNS: 1334 * The physical address for @addr. 1335 */ 1336 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1337 { 1338 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1339 bool in_first_chunk = false; 1340 unsigned long first_low, first_high; 1341 unsigned int cpu; 1342 1343 /* 1344 * The following test on unit_low/high isn't strictly 1345 * necessary but will speed up lookups of addresses which 1346 * aren't in the first chunk. 1347 */ 1348 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1349 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1350 pcpu_unit_pages); 1351 if ((unsigned long)addr >= first_low && 1352 (unsigned long)addr < first_high) { 1353 for_each_possible_cpu(cpu) { 1354 void *start = per_cpu_ptr(base, cpu); 1355 1356 if (addr >= start && addr < start + pcpu_unit_size) { 1357 in_first_chunk = true; 1358 break; 1359 } 1360 } 1361 } 1362 1363 if (in_first_chunk) { 1364 if (!is_vmalloc_addr(addr)) 1365 return __pa(addr); 1366 else 1367 return page_to_phys(vmalloc_to_page(addr)) + 1368 offset_in_page(addr); 1369 } else 1370 return page_to_phys(pcpu_addr_to_page(addr)) + 1371 offset_in_page(addr); 1372 } 1373 1374 /** 1375 * pcpu_alloc_alloc_info - allocate percpu allocation info 1376 * @nr_groups: the number of groups 1377 * @nr_units: the number of units 1378 * 1379 * Allocate ai which is large enough for @nr_groups groups containing 1380 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1381 * cpu_map array which is long enough for @nr_units and filled with 1382 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1383 * pointer of other groups. 1384 * 1385 * RETURNS: 1386 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1387 * failure. 1388 */ 1389 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1390 int nr_units) 1391 { 1392 struct pcpu_alloc_info *ai; 1393 size_t base_size, ai_size; 1394 void *ptr; 1395 int unit; 1396 1397 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1398 __alignof__(ai->groups[0].cpu_map[0])); 1399 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1400 1401 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1402 if (!ptr) 1403 return NULL; 1404 ai = ptr; 1405 ptr += base_size; 1406 1407 ai->groups[0].cpu_map = ptr; 1408 1409 for (unit = 0; unit < nr_units; unit++) 1410 ai->groups[0].cpu_map[unit] = NR_CPUS; 1411 1412 ai->nr_groups = nr_groups; 1413 ai->__ai_size = PFN_ALIGN(ai_size); 1414 1415 return ai; 1416 } 1417 1418 /** 1419 * pcpu_free_alloc_info - free percpu allocation info 1420 * @ai: pcpu_alloc_info to free 1421 * 1422 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1423 */ 1424 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1425 { 1426 memblock_free_early(__pa(ai), ai->__ai_size); 1427 } 1428 1429 /** 1430 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1431 * @lvl: loglevel 1432 * @ai: allocation info to dump 1433 * 1434 * Print out information about @ai using loglevel @lvl. 1435 */ 1436 static void pcpu_dump_alloc_info(const char *lvl, 1437 const struct pcpu_alloc_info *ai) 1438 { 1439 int group_width = 1, cpu_width = 1, width; 1440 char empty_str[] = "--------"; 1441 int alloc = 0, alloc_end = 0; 1442 int group, v; 1443 int upa, apl; /* units per alloc, allocs per line */ 1444 1445 v = ai->nr_groups; 1446 while (v /= 10) 1447 group_width++; 1448 1449 v = num_possible_cpus(); 1450 while (v /= 10) 1451 cpu_width++; 1452 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1453 1454 upa = ai->alloc_size / ai->unit_size; 1455 width = upa * (cpu_width + 1) + group_width + 3; 1456 apl = rounddown_pow_of_two(max(60 / width, 1)); 1457 1458 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1459 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1460 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1461 1462 for (group = 0; group < ai->nr_groups; group++) { 1463 const struct pcpu_group_info *gi = &ai->groups[group]; 1464 int unit = 0, unit_end = 0; 1465 1466 BUG_ON(gi->nr_units % upa); 1467 for (alloc_end += gi->nr_units / upa; 1468 alloc < alloc_end; alloc++) { 1469 if (!(alloc % apl)) { 1470 pr_cont("\n"); 1471 printk("%spcpu-alloc: ", lvl); 1472 } 1473 pr_cont("[%0*d] ", group_width, group); 1474 1475 for (unit_end += upa; unit < unit_end; unit++) 1476 if (gi->cpu_map[unit] != NR_CPUS) 1477 pr_cont("%0*d ", 1478 cpu_width, gi->cpu_map[unit]); 1479 else 1480 pr_cont("%s ", empty_str); 1481 } 1482 } 1483 pr_cont("\n"); 1484 } 1485 1486 /** 1487 * pcpu_setup_first_chunk - initialize the first percpu chunk 1488 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1489 * @base_addr: mapped address 1490 * 1491 * Initialize the first percpu chunk which contains the kernel static 1492 * perpcu area. This function is to be called from arch percpu area 1493 * setup path. 1494 * 1495 * @ai contains all information necessary to initialize the first 1496 * chunk and prime the dynamic percpu allocator. 1497 * 1498 * @ai->static_size is the size of static percpu area. 1499 * 1500 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1501 * reserve after the static area in the first chunk. This reserves 1502 * the first chunk such that it's available only through reserved 1503 * percpu allocation. This is primarily used to serve module percpu 1504 * static areas on architectures where the addressing model has 1505 * limited offset range for symbol relocations to guarantee module 1506 * percpu symbols fall inside the relocatable range. 1507 * 1508 * @ai->dyn_size determines the number of bytes available for dynamic 1509 * allocation in the first chunk. The area between @ai->static_size + 1510 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1511 * 1512 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1513 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1514 * @ai->dyn_size. 1515 * 1516 * @ai->atom_size is the allocation atom size and used as alignment 1517 * for vm areas. 1518 * 1519 * @ai->alloc_size is the allocation size and always multiple of 1520 * @ai->atom_size. This is larger than @ai->atom_size if 1521 * @ai->unit_size is larger than @ai->atom_size. 1522 * 1523 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1524 * percpu areas. Units which should be colocated are put into the 1525 * same group. Dynamic VM areas will be allocated according to these 1526 * groupings. If @ai->nr_groups is zero, a single group containing 1527 * all units is assumed. 1528 * 1529 * The caller should have mapped the first chunk at @base_addr and 1530 * copied static data to each unit. 1531 * 1532 * If the first chunk ends up with both reserved and dynamic areas, it 1533 * is served by two chunks - one to serve the core static and reserved 1534 * areas and the other for the dynamic area. They share the same vm 1535 * and page map but uses different area allocation map to stay away 1536 * from each other. The latter chunk is circulated in the chunk slots 1537 * and available for dynamic allocation like any other chunks. 1538 * 1539 * RETURNS: 1540 * 0 on success, -errno on failure. 1541 */ 1542 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1543 void *base_addr) 1544 { 1545 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1546 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1547 size_t dyn_size = ai->dyn_size; 1548 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1549 struct pcpu_chunk *schunk, *dchunk = NULL; 1550 unsigned long *group_offsets; 1551 size_t *group_sizes; 1552 unsigned long *unit_off; 1553 unsigned int cpu; 1554 int *unit_map; 1555 int group, unit, i; 1556 1557 #define PCPU_SETUP_BUG_ON(cond) do { \ 1558 if (unlikely(cond)) { \ 1559 pr_emerg("failed to initialize, %s\n", #cond); \ 1560 pr_emerg("cpu_possible_mask=%*pb\n", \ 1561 cpumask_pr_args(cpu_possible_mask)); \ 1562 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1563 BUG(); \ 1564 } \ 1565 } while (0) 1566 1567 /* sanity checks */ 1568 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1569 #ifdef CONFIG_SMP 1570 PCPU_SETUP_BUG_ON(!ai->static_size); 1571 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 1572 #endif 1573 PCPU_SETUP_BUG_ON(!base_addr); 1574 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 1575 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1576 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 1577 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1578 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1579 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1580 1581 /* process group information and build config tables accordingly */ 1582 group_offsets = memblock_virt_alloc(ai->nr_groups * 1583 sizeof(group_offsets[0]), 0); 1584 group_sizes = memblock_virt_alloc(ai->nr_groups * 1585 sizeof(group_sizes[0]), 0); 1586 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 1587 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 1588 1589 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1590 unit_map[cpu] = UINT_MAX; 1591 1592 pcpu_low_unit_cpu = NR_CPUS; 1593 pcpu_high_unit_cpu = NR_CPUS; 1594 1595 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1596 const struct pcpu_group_info *gi = &ai->groups[group]; 1597 1598 group_offsets[group] = gi->base_offset; 1599 group_sizes[group] = gi->nr_units * ai->unit_size; 1600 1601 for (i = 0; i < gi->nr_units; i++) { 1602 cpu = gi->cpu_map[i]; 1603 if (cpu == NR_CPUS) 1604 continue; 1605 1606 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 1607 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1608 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1609 1610 unit_map[cpu] = unit + i; 1611 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1612 1613 /* determine low/high unit_cpu */ 1614 if (pcpu_low_unit_cpu == NR_CPUS || 1615 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1616 pcpu_low_unit_cpu = cpu; 1617 if (pcpu_high_unit_cpu == NR_CPUS || 1618 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1619 pcpu_high_unit_cpu = cpu; 1620 } 1621 } 1622 pcpu_nr_units = unit; 1623 1624 for_each_possible_cpu(cpu) 1625 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1626 1627 /* we're done parsing the input, undefine BUG macro and dump config */ 1628 #undef PCPU_SETUP_BUG_ON 1629 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1630 1631 pcpu_nr_groups = ai->nr_groups; 1632 pcpu_group_offsets = group_offsets; 1633 pcpu_group_sizes = group_sizes; 1634 pcpu_unit_map = unit_map; 1635 pcpu_unit_offsets = unit_off; 1636 1637 /* determine basic parameters */ 1638 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1639 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1640 pcpu_atom_size = ai->atom_size; 1641 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1642 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1643 1644 /* 1645 * Allocate chunk slots. The additional last slot is for 1646 * empty chunks. 1647 */ 1648 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1649 pcpu_slot = memblock_virt_alloc( 1650 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 1651 for (i = 0; i < pcpu_nr_slots; i++) 1652 INIT_LIST_HEAD(&pcpu_slot[i]); 1653 1654 /* 1655 * Initialize static chunk. If reserved_size is zero, the 1656 * static chunk covers static area + dynamic allocation area 1657 * in the first chunk. If reserved_size is not zero, it 1658 * covers static area + reserved area (mostly used for module 1659 * static percpu allocation). 1660 */ 1661 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1662 INIT_LIST_HEAD(&schunk->list); 1663 INIT_LIST_HEAD(&schunk->map_extend_list); 1664 schunk->base_addr = base_addr; 1665 schunk->map = smap; 1666 schunk->map_alloc = ARRAY_SIZE(smap); 1667 schunk->immutable = true; 1668 bitmap_fill(schunk->populated, pcpu_unit_pages); 1669 schunk->nr_populated = pcpu_unit_pages; 1670 1671 if (ai->reserved_size) { 1672 schunk->free_size = ai->reserved_size; 1673 pcpu_reserved_chunk = schunk; 1674 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1675 } else { 1676 schunk->free_size = dyn_size; 1677 dyn_size = 0; /* dynamic area covered */ 1678 } 1679 schunk->contig_hint = schunk->free_size; 1680 1681 schunk->map[0] = 1; 1682 schunk->map[1] = ai->static_size; 1683 schunk->map_used = 1; 1684 if (schunk->free_size) 1685 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size; 1686 schunk->map[schunk->map_used] |= 1; 1687 1688 /* init dynamic chunk if necessary */ 1689 if (dyn_size) { 1690 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1691 INIT_LIST_HEAD(&dchunk->list); 1692 INIT_LIST_HEAD(&dchunk->map_extend_list); 1693 dchunk->base_addr = base_addr; 1694 dchunk->map = dmap; 1695 dchunk->map_alloc = ARRAY_SIZE(dmap); 1696 dchunk->immutable = true; 1697 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1698 dchunk->nr_populated = pcpu_unit_pages; 1699 1700 dchunk->contig_hint = dchunk->free_size = dyn_size; 1701 dchunk->map[0] = 1; 1702 dchunk->map[1] = pcpu_reserved_chunk_limit; 1703 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; 1704 dchunk->map_used = 2; 1705 } 1706 1707 /* link the first chunk in */ 1708 pcpu_first_chunk = dchunk ?: schunk; 1709 pcpu_nr_empty_pop_pages += 1710 pcpu_count_occupied_pages(pcpu_first_chunk, 1); 1711 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1712 1713 /* we're done */ 1714 pcpu_base_addr = base_addr; 1715 return 0; 1716 } 1717 1718 #ifdef CONFIG_SMP 1719 1720 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 1721 [PCPU_FC_AUTO] = "auto", 1722 [PCPU_FC_EMBED] = "embed", 1723 [PCPU_FC_PAGE] = "page", 1724 }; 1725 1726 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1727 1728 static int __init percpu_alloc_setup(char *str) 1729 { 1730 if (!str) 1731 return -EINVAL; 1732 1733 if (0) 1734 /* nada */; 1735 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1736 else if (!strcmp(str, "embed")) 1737 pcpu_chosen_fc = PCPU_FC_EMBED; 1738 #endif 1739 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1740 else if (!strcmp(str, "page")) 1741 pcpu_chosen_fc = PCPU_FC_PAGE; 1742 #endif 1743 else 1744 pr_warn("unknown allocator %s specified\n", str); 1745 1746 return 0; 1747 } 1748 early_param("percpu_alloc", percpu_alloc_setup); 1749 1750 /* 1751 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1752 * Build it if needed by the arch config or the generic setup is going 1753 * to be used. 1754 */ 1755 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1756 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1757 #define BUILD_EMBED_FIRST_CHUNK 1758 #endif 1759 1760 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1761 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1762 #define BUILD_PAGE_FIRST_CHUNK 1763 #endif 1764 1765 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1766 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1767 /** 1768 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1769 * @reserved_size: the size of reserved percpu area in bytes 1770 * @dyn_size: minimum free size for dynamic allocation in bytes 1771 * @atom_size: allocation atom size 1772 * @cpu_distance_fn: callback to determine distance between cpus, optional 1773 * 1774 * This function determines grouping of units, their mappings to cpus 1775 * and other parameters considering needed percpu size, allocation 1776 * atom size and distances between CPUs. 1777 * 1778 * Groups are always multiples of atom size and CPUs which are of 1779 * LOCAL_DISTANCE both ways are grouped together and share space for 1780 * units in the same group. The returned configuration is guaranteed 1781 * to have CPUs on different nodes on different groups and >=75% usage 1782 * of allocated virtual address space. 1783 * 1784 * RETURNS: 1785 * On success, pointer to the new allocation_info is returned. On 1786 * failure, ERR_PTR value is returned. 1787 */ 1788 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1789 size_t reserved_size, size_t dyn_size, 1790 size_t atom_size, 1791 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1792 { 1793 static int group_map[NR_CPUS] __initdata; 1794 static int group_cnt[NR_CPUS] __initdata; 1795 const size_t static_size = __per_cpu_end - __per_cpu_start; 1796 int nr_groups = 1, nr_units = 0; 1797 size_t size_sum, min_unit_size, alloc_size; 1798 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1799 int last_allocs, group, unit; 1800 unsigned int cpu, tcpu; 1801 struct pcpu_alloc_info *ai; 1802 unsigned int *cpu_map; 1803 1804 /* this function may be called multiple times */ 1805 memset(group_map, 0, sizeof(group_map)); 1806 memset(group_cnt, 0, sizeof(group_cnt)); 1807 1808 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1809 size_sum = PFN_ALIGN(static_size + reserved_size + 1810 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1811 dyn_size = size_sum - static_size - reserved_size; 1812 1813 /* 1814 * Determine min_unit_size, alloc_size and max_upa such that 1815 * alloc_size is multiple of atom_size and is the smallest 1816 * which can accommodate 4k aligned segments which are equal to 1817 * or larger than min_unit_size. 1818 */ 1819 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1820 1821 alloc_size = roundup(min_unit_size, atom_size); 1822 upa = alloc_size / min_unit_size; 1823 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1824 upa--; 1825 max_upa = upa; 1826 1827 /* group cpus according to their proximity */ 1828 for_each_possible_cpu(cpu) { 1829 group = 0; 1830 next_group: 1831 for_each_possible_cpu(tcpu) { 1832 if (cpu == tcpu) 1833 break; 1834 if (group_map[tcpu] == group && cpu_distance_fn && 1835 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1836 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1837 group++; 1838 nr_groups = max(nr_groups, group + 1); 1839 goto next_group; 1840 } 1841 } 1842 group_map[cpu] = group; 1843 group_cnt[group]++; 1844 } 1845 1846 /* 1847 * Expand unit size until address space usage goes over 75% 1848 * and then as much as possible without using more address 1849 * space. 1850 */ 1851 last_allocs = INT_MAX; 1852 for (upa = max_upa; upa; upa--) { 1853 int allocs = 0, wasted = 0; 1854 1855 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 1856 continue; 1857 1858 for (group = 0; group < nr_groups; group++) { 1859 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1860 allocs += this_allocs; 1861 wasted += this_allocs * upa - group_cnt[group]; 1862 } 1863 1864 /* 1865 * Don't accept if wastage is over 1/3. The 1866 * greater-than comparison ensures upa==1 always 1867 * passes the following check. 1868 */ 1869 if (wasted > num_possible_cpus() / 3) 1870 continue; 1871 1872 /* and then don't consume more memory */ 1873 if (allocs > last_allocs) 1874 break; 1875 last_allocs = allocs; 1876 best_upa = upa; 1877 } 1878 upa = best_upa; 1879 1880 /* allocate and fill alloc_info */ 1881 for (group = 0; group < nr_groups; group++) 1882 nr_units += roundup(group_cnt[group], upa); 1883 1884 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1885 if (!ai) 1886 return ERR_PTR(-ENOMEM); 1887 cpu_map = ai->groups[0].cpu_map; 1888 1889 for (group = 0; group < nr_groups; group++) { 1890 ai->groups[group].cpu_map = cpu_map; 1891 cpu_map += roundup(group_cnt[group], upa); 1892 } 1893 1894 ai->static_size = static_size; 1895 ai->reserved_size = reserved_size; 1896 ai->dyn_size = dyn_size; 1897 ai->unit_size = alloc_size / upa; 1898 ai->atom_size = atom_size; 1899 ai->alloc_size = alloc_size; 1900 1901 for (group = 0, unit = 0; group_cnt[group]; group++) { 1902 struct pcpu_group_info *gi = &ai->groups[group]; 1903 1904 /* 1905 * Initialize base_offset as if all groups are located 1906 * back-to-back. The caller should update this to 1907 * reflect actual allocation. 1908 */ 1909 gi->base_offset = unit * ai->unit_size; 1910 1911 for_each_possible_cpu(cpu) 1912 if (group_map[cpu] == group) 1913 gi->cpu_map[gi->nr_units++] = cpu; 1914 gi->nr_units = roundup(gi->nr_units, upa); 1915 unit += gi->nr_units; 1916 } 1917 BUG_ON(unit != nr_units); 1918 1919 return ai; 1920 } 1921 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1922 1923 #if defined(BUILD_EMBED_FIRST_CHUNK) 1924 /** 1925 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1926 * @reserved_size: the size of reserved percpu area in bytes 1927 * @dyn_size: minimum free size for dynamic allocation in bytes 1928 * @atom_size: allocation atom size 1929 * @cpu_distance_fn: callback to determine distance between cpus, optional 1930 * @alloc_fn: function to allocate percpu page 1931 * @free_fn: function to free percpu page 1932 * 1933 * This is a helper to ease setting up embedded first percpu chunk and 1934 * can be called where pcpu_setup_first_chunk() is expected. 1935 * 1936 * If this function is used to setup the first chunk, it is allocated 1937 * by calling @alloc_fn and used as-is without being mapped into 1938 * vmalloc area. Allocations are always whole multiples of @atom_size 1939 * aligned to @atom_size. 1940 * 1941 * This enables the first chunk to piggy back on the linear physical 1942 * mapping which often uses larger page size. Please note that this 1943 * can result in very sparse cpu->unit mapping on NUMA machines thus 1944 * requiring large vmalloc address space. Don't use this allocator if 1945 * vmalloc space is not orders of magnitude larger than distances 1946 * between node memory addresses (ie. 32bit NUMA machines). 1947 * 1948 * @dyn_size specifies the minimum dynamic area size. 1949 * 1950 * If the needed size is smaller than the minimum or specified unit 1951 * size, the leftover is returned using @free_fn. 1952 * 1953 * RETURNS: 1954 * 0 on success, -errno on failure. 1955 */ 1956 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1957 size_t atom_size, 1958 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1959 pcpu_fc_alloc_fn_t alloc_fn, 1960 pcpu_fc_free_fn_t free_fn) 1961 { 1962 void *base = (void *)ULONG_MAX; 1963 void **areas = NULL; 1964 struct pcpu_alloc_info *ai; 1965 size_t size_sum, areas_size; 1966 unsigned long max_distance; 1967 int group, i, highest_group, rc; 1968 1969 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1970 cpu_distance_fn); 1971 if (IS_ERR(ai)) 1972 return PTR_ERR(ai); 1973 1974 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1975 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1976 1977 areas = memblock_virt_alloc_nopanic(areas_size, 0); 1978 if (!areas) { 1979 rc = -ENOMEM; 1980 goto out_free; 1981 } 1982 1983 /* allocate, copy and determine base address & max_distance */ 1984 highest_group = 0; 1985 for (group = 0; group < ai->nr_groups; group++) { 1986 struct pcpu_group_info *gi = &ai->groups[group]; 1987 unsigned int cpu = NR_CPUS; 1988 void *ptr; 1989 1990 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1991 cpu = gi->cpu_map[i]; 1992 BUG_ON(cpu == NR_CPUS); 1993 1994 /* allocate space for the whole group */ 1995 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1996 if (!ptr) { 1997 rc = -ENOMEM; 1998 goto out_free_areas; 1999 } 2000 /* kmemleak tracks the percpu allocations separately */ 2001 kmemleak_free(ptr); 2002 areas[group] = ptr; 2003 2004 base = min(ptr, base); 2005 if (ptr > areas[highest_group]) 2006 highest_group = group; 2007 } 2008 max_distance = areas[highest_group] - base; 2009 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2010 2011 /* warn if maximum distance is further than 75% of vmalloc space */ 2012 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2013 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2014 max_distance, VMALLOC_TOTAL); 2015 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2016 /* and fail if we have fallback */ 2017 rc = -EINVAL; 2018 goto out_free_areas; 2019 #endif 2020 } 2021 2022 /* 2023 * Copy data and free unused parts. This should happen after all 2024 * allocations are complete; otherwise, we may end up with 2025 * overlapping groups. 2026 */ 2027 for (group = 0; group < ai->nr_groups; group++) { 2028 struct pcpu_group_info *gi = &ai->groups[group]; 2029 void *ptr = areas[group]; 2030 2031 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2032 if (gi->cpu_map[i] == NR_CPUS) { 2033 /* unused unit, free whole */ 2034 free_fn(ptr, ai->unit_size); 2035 continue; 2036 } 2037 /* copy and return the unused part */ 2038 memcpy(ptr, __per_cpu_load, ai->static_size); 2039 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2040 } 2041 } 2042 2043 /* base address is now known, determine group base offsets */ 2044 for (group = 0; group < ai->nr_groups; group++) { 2045 ai->groups[group].base_offset = areas[group] - base; 2046 } 2047 2048 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2049 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2050 ai->dyn_size, ai->unit_size); 2051 2052 rc = pcpu_setup_first_chunk(ai, base); 2053 goto out_free; 2054 2055 out_free_areas: 2056 for (group = 0; group < ai->nr_groups; group++) 2057 if (areas[group]) 2058 free_fn(areas[group], 2059 ai->groups[group].nr_units * ai->unit_size); 2060 out_free: 2061 pcpu_free_alloc_info(ai); 2062 if (areas) 2063 memblock_free_early(__pa(areas), areas_size); 2064 return rc; 2065 } 2066 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2067 2068 #ifdef BUILD_PAGE_FIRST_CHUNK 2069 /** 2070 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2071 * @reserved_size: the size of reserved percpu area in bytes 2072 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2073 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2074 * @populate_pte_fn: function to populate pte 2075 * 2076 * This is a helper to ease setting up page-remapped first percpu 2077 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2078 * 2079 * This is the basic allocator. Static percpu area is allocated 2080 * page-by-page into vmalloc area. 2081 * 2082 * RETURNS: 2083 * 0 on success, -errno on failure. 2084 */ 2085 int __init pcpu_page_first_chunk(size_t reserved_size, 2086 pcpu_fc_alloc_fn_t alloc_fn, 2087 pcpu_fc_free_fn_t free_fn, 2088 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2089 { 2090 static struct vm_struct vm; 2091 struct pcpu_alloc_info *ai; 2092 char psize_str[16]; 2093 int unit_pages; 2094 size_t pages_size; 2095 struct page **pages; 2096 int unit, i, j, rc; 2097 int upa; 2098 int nr_g0_units; 2099 2100 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2101 2102 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2103 if (IS_ERR(ai)) 2104 return PTR_ERR(ai); 2105 BUG_ON(ai->nr_groups != 1); 2106 upa = ai->alloc_size/ai->unit_size; 2107 nr_g0_units = roundup(num_possible_cpus(), upa); 2108 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { 2109 pcpu_free_alloc_info(ai); 2110 return -EINVAL; 2111 } 2112 2113 unit_pages = ai->unit_size >> PAGE_SHIFT; 2114 2115 /* unaligned allocations can't be freed, round up to page size */ 2116 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2117 sizeof(pages[0])); 2118 pages = memblock_virt_alloc(pages_size, 0); 2119 2120 /* allocate pages */ 2121 j = 0; 2122 for (unit = 0; unit < num_possible_cpus(); unit++) { 2123 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2124 for (i = 0; i < unit_pages; i++) { 2125 void *ptr; 2126 2127 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2128 if (!ptr) { 2129 pr_warn("failed to allocate %s page for cpu%u\n", 2130 psize_str, cpu); 2131 goto enomem; 2132 } 2133 /* kmemleak tracks the percpu allocations separately */ 2134 kmemleak_free(ptr); 2135 pages[j++] = virt_to_page(ptr); 2136 } 2137 } 2138 2139 /* allocate vm area, map the pages and copy static data */ 2140 vm.flags = VM_ALLOC; 2141 vm.size = num_possible_cpus() * ai->unit_size; 2142 vm_area_register_early(&vm, PAGE_SIZE); 2143 2144 for (unit = 0; unit < num_possible_cpus(); unit++) { 2145 unsigned long unit_addr = 2146 (unsigned long)vm.addr + unit * ai->unit_size; 2147 2148 for (i = 0; i < unit_pages; i++) 2149 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2150 2151 /* pte already populated, the following shouldn't fail */ 2152 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2153 unit_pages); 2154 if (rc < 0) 2155 panic("failed to map percpu area, err=%d\n", rc); 2156 2157 /* 2158 * FIXME: Archs with virtual cache should flush local 2159 * cache for the linear mapping here - something 2160 * equivalent to flush_cache_vmap() on the local cpu. 2161 * flush_cache_vmap() can't be used as most supporting 2162 * data structures are not set up yet. 2163 */ 2164 2165 /* copy static data */ 2166 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2167 } 2168 2169 /* we're ready, commit */ 2170 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2171 unit_pages, psize_str, vm.addr, ai->static_size, 2172 ai->reserved_size, ai->dyn_size); 2173 2174 rc = pcpu_setup_first_chunk(ai, vm.addr); 2175 goto out_free_ar; 2176 2177 enomem: 2178 while (--j >= 0) 2179 free_fn(page_address(pages[j]), PAGE_SIZE); 2180 rc = -ENOMEM; 2181 out_free_ar: 2182 memblock_free_early(__pa(pages), pages_size); 2183 pcpu_free_alloc_info(ai); 2184 return rc; 2185 } 2186 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2187 2188 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2189 /* 2190 * Generic SMP percpu area setup. 2191 * 2192 * The embedding helper is used because its behavior closely resembles 2193 * the original non-dynamic generic percpu area setup. This is 2194 * important because many archs have addressing restrictions and might 2195 * fail if the percpu area is located far away from the previous 2196 * location. As an added bonus, in non-NUMA cases, embedding is 2197 * generally a good idea TLB-wise because percpu area can piggy back 2198 * on the physical linear memory mapping which uses large page 2199 * mappings on applicable archs. 2200 */ 2201 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2202 EXPORT_SYMBOL(__per_cpu_offset); 2203 2204 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2205 size_t align) 2206 { 2207 return memblock_virt_alloc_from_nopanic( 2208 size, align, __pa(MAX_DMA_ADDRESS)); 2209 } 2210 2211 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2212 { 2213 memblock_free_early(__pa(ptr), size); 2214 } 2215 2216 void __init setup_per_cpu_areas(void) 2217 { 2218 unsigned long delta; 2219 unsigned int cpu; 2220 int rc; 2221 2222 /* 2223 * Always reserve area for module percpu variables. That's 2224 * what the legacy allocator did. 2225 */ 2226 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2227 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2228 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2229 if (rc < 0) 2230 panic("Failed to initialize percpu areas."); 2231 2232 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2233 for_each_possible_cpu(cpu) 2234 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2235 } 2236 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2237 2238 #else /* CONFIG_SMP */ 2239 2240 /* 2241 * UP percpu area setup. 2242 * 2243 * UP always uses km-based percpu allocator with identity mapping. 2244 * Static percpu variables are indistinguishable from the usual static 2245 * variables and don't require any special preparation. 2246 */ 2247 void __init setup_per_cpu_areas(void) 2248 { 2249 const size_t unit_size = 2250 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2251 PERCPU_DYNAMIC_RESERVE)); 2252 struct pcpu_alloc_info *ai; 2253 void *fc; 2254 2255 ai = pcpu_alloc_alloc_info(1, 1); 2256 fc = memblock_virt_alloc_from_nopanic(unit_size, 2257 PAGE_SIZE, 2258 __pa(MAX_DMA_ADDRESS)); 2259 if (!ai || !fc) 2260 panic("Failed to allocate memory for percpu areas."); 2261 /* kmemleak tracks the percpu allocations separately */ 2262 kmemleak_free(fc); 2263 2264 ai->dyn_size = unit_size; 2265 ai->unit_size = unit_size; 2266 ai->atom_size = unit_size; 2267 ai->alloc_size = unit_size; 2268 ai->groups[0].nr_units = 1; 2269 ai->groups[0].cpu_map[0] = 0; 2270 2271 if (pcpu_setup_first_chunk(ai, fc) < 0) 2272 panic("Failed to initialize percpu areas."); 2273 } 2274 2275 #endif /* CONFIG_SMP */ 2276 2277 /* 2278 * First and reserved chunks are initialized with temporary allocation 2279 * map in initdata so that they can be used before slab is online. 2280 * This function is called after slab is brought up and replaces those 2281 * with properly allocated maps. 2282 */ 2283 void __init percpu_init_late(void) 2284 { 2285 struct pcpu_chunk *target_chunks[] = 2286 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 2287 struct pcpu_chunk *chunk; 2288 unsigned long flags; 2289 int i; 2290 2291 for (i = 0; (chunk = target_chunks[i]); i++) { 2292 int *map; 2293 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 2294 2295 BUILD_BUG_ON(size > PAGE_SIZE); 2296 2297 map = pcpu_mem_zalloc(size); 2298 BUG_ON(!map); 2299 2300 spin_lock_irqsave(&pcpu_lock, flags); 2301 memcpy(map, chunk->map, size); 2302 chunk->map = map; 2303 spin_unlock_irqrestore(&pcpu_lock, flags); 2304 } 2305 } 2306 2307 /* 2308 * Percpu allocator is initialized early during boot when neither slab or 2309 * workqueue is available. Plug async management until everything is up 2310 * and running. 2311 */ 2312 static int __init percpu_enable_async(void) 2313 { 2314 pcpu_async_enabled = true; 2315 return 0; 2316 } 2317 subsys_initcall(percpu_enable_async); 2318