xref: /openbmc/linux/mm/percpu-stats.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm/percpu-debug.c
4   *
5   * Copyright (C) 2017		Facebook Inc.
6   * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
7   *
8   * Prints statistics about the percpu allocator and backing chunks.
9   */
10  #include <linux/debugfs.h>
11  #include <linux/list.h>
12  #include <linux/percpu.h>
13  #include <linux/seq_file.h>
14  #include <linux/sort.h>
15  #include <linux/vmalloc.h>
16  
17  #include "percpu-internal.h"
18  
19  #define P(X, Y) \
20  	seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y)
21  
22  struct percpu_stats pcpu_stats;
23  struct pcpu_alloc_info pcpu_stats_ai;
24  
cmpint(const void * a,const void * b)25  static int cmpint(const void *a, const void *b)
26  {
27  	return *(int *)a - *(int *)b;
28  }
29  
30  /*
31   * Iterates over all chunks to find the max nr_alloc entries.
32   */
find_max_nr_alloc(void)33  static int find_max_nr_alloc(void)
34  {
35  	struct pcpu_chunk *chunk;
36  	int slot, max_nr_alloc;
37  
38  	max_nr_alloc = 0;
39  	for (slot = 0; slot < pcpu_nr_slots; slot++)
40  		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list)
41  			max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc);
42  
43  	return max_nr_alloc;
44  }
45  
46  /*
47   * Prints out chunk state. Fragmentation is considered between
48   * the beginning of the chunk to the last allocation.
49   *
50   * All statistics are in bytes unless stated otherwise.
51   */
chunk_map_stats(struct seq_file * m,struct pcpu_chunk * chunk,int * buffer)52  static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
53  			    int *buffer)
54  {
55  	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
56  	int i, last_alloc, as_len, start, end;
57  	int *alloc_sizes, *p;
58  	/* statistics */
59  	int sum_frag = 0, max_frag = 0;
60  	int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
61  
62  	alloc_sizes = buffer;
63  
64  	/*
65  	 * find_last_bit returns the start value if nothing found.
66  	 * Therefore, we must determine if it is a failure of find_last_bit
67  	 * and set the appropriate value.
68  	 */
69  	last_alloc = find_last_bit(chunk->alloc_map,
70  				   pcpu_chunk_map_bits(chunk) -
71  				   chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
72  	last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
73  		     last_alloc + 1 : 0;
74  
75  	as_len = 0;
76  	start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
77  
78  	/*
79  	 * If a bit is set in the allocation map, the bound_map identifies
80  	 * where the allocation ends.  If the allocation is not set, the
81  	 * bound_map does not identify free areas as it is only kept accurate
82  	 * on allocation, not free.
83  	 *
84  	 * Positive values are allocations and negative values are free
85  	 * fragments.
86  	 */
87  	while (start < last_alloc) {
88  		if (test_bit(start, chunk->alloc_map)) {
89  			end = find_next_bit(chunk->bound_map, last_alloc,
90  					    start + 1);
91  			alloc_sizes[as_len] = 1;
92  		} else {
93  			end = find_next_bit(chunk->alloc_map, last_alloc,
94  					    start + 1);
95  			alloc_sizes[as_len] = -1;
96  		}
97  
98  		alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
99  
100  		start = end;
101  	}
102  
103  	/*
104  	 * The negative values are free fragments and thus sorting gives the
105  	 * free fragments at the beginning in largest first order.
106  	 */
107  	if (as_len > 0) {
108  		sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
109  
110  		/* iterate through the unallocated fragments */
111  		for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
112  			sum_frag -= *p;
113  			max_frag = max(max_frag, -1 * (*p));
114  		}
115  
116  		cur_min_alloc = alloc_sizes[i];
117  		cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
118  		cur_max_alloc = alloc_sizes[as_len - 1];
119  	}
120  
121  	P("nr_alloc", chunk->nr_alloc);
122  	P("max_alloc_size", chunk->max_alloc_size);
123  	P("empty_pop_pages", chunk->nr_empty_pop_pages);
124  	P("first_bit", chunk_md->first_free);
125  	P("free_bytes", chunk->free_bytes);
126  	P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
127  	P("sum_frag", sum_frag);
128  	P("max_frag", max_frag);
129  	P("cur_min_alloc", cur_min_alloc);
130  	P("cur_med_alloc", cur_med_alloc);
131  	P("cur_max_alloc", cur_max_alloc);
132  	seq_putc(m, '\n');
133  }
134  
percpu_stats_show(struct seq_file * m,void * v)135  static int percpu_stats_show(struct seq_file *m, void *v)
136  {
137  	struct pcpu_chunk *chunk;
138  	int slot, max_nr_alloc;
139  	int *buffer;
140  
141  alloc_buffer:
142  	spin_lock_irq(&pcpu_lock);
143  	max_nr_alloc = find_max_nr_alloc();
144  	spin_unlock_irq(&pcpu_lock);
145  
146  	/* there can be at most this many free and allocated fragments */
147  	buffer = vmalloc_array(2 * max_nr_alloc + 1, sizeof(int));
148  	if (!buffer)
149  		return -ENOMEM;
150  
151  	spin_lock_irq(&pcpu_lock);
152  
153  	/* if the buffer allocated earlier is too small */
154  	if (max_nr_alloc < find_max_nr_alloc()) {
155  		spin_unlock_irq(&pcpu_lock);
156  		vfree(buffer);
157  		goto alloc_buffer;
158  	}
159  
160  #define PL(X)								\
161  	seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
162  
163  	seq_printf(m,
164  			"Percpu Memory Statistics\n"
165  			"Allocation Info:\n"
166  			"----------------------------------------\n");
167  	PL(unit_size);
168  	PL(static_size);
169  	PL(reserved_size);
170  	PL(dyn_size);
171  	PL(atom_size);
172  	PL(alloc_size);
173  	seq_putc(m, '\n');
174  
175  #undef PL
176  
177  #define PU(X) \
178  	seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
179  
180  	seq_printf(m,
181  			"Global Stats:\n"
182  			"----------------------------------------\n");
183  	PU(nr_alloc);
184  	PU(nr_dealloc);
185  	PU(nr_cur_alloc);
186  	PU(nr_max_alloc);
187  	PU(nr_chunks);
188  	PU(nr_max_chunks);
189  	PU(min_alloc_size);
190  	PU(max_alloc_size);
191  	P("empty_pop_pages", pcpu_nr_empty_pop_pages);
192  	seq_putc(m, '\n');
193  
194  #undef PU
195  
196  	seq_printf(m,
197  			"Per Chunk Stats:\n"
198  			"----------------------------------------\n");
199  
200  	if (pcpu_reserved_chunk) {
201  		seq_puts(m, "Chunk: <- Reserved Chunk\n");
202  		chunk_map_stats(m, pcpu_reserved_chunk, buffer);
203  	}
204  
205  	for (slot = 0; slot < pcpu_nr_slots; slot++) {
206  		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
207  			if (chunk == pcpu_first_chunk)
208  				seq_puts(m, "Chunk: <- First Chunk\n");
209  			else if (slot == pcpu_to_depopulate_slot)
210  				seq_puts(m, "Chunk (to_depopulate)\n");
211  			else if (slot == pcpu_sidelined_slot)
212  				seq_puts(m, "Chunk (sidelined):\n");
213  			else
214  				seq_puts(m, "Chunk:\n");
215  			chunk_map_stats(m, chunk, buffer);
216  		}
217  	}
218  
219  	spin_unlock_irq(&pcpu_lock);
220  
221  	vfree(buffer);
222  
223  	return 0;
224  }
225  DEFINE_SHOW_ATTRIBUTE(percpu_stats);
226  
init_percpu_stats_debugfs(void)227  static int __init init_percpu_stats_debugfs(void)
228  {
229  	debugfs_create_file("percpu_stats", 0444, NULL, NULL,
230  			&percpu_stats_fops);
231  
232  	return 0;
233  }
234  
235  late_initcall(init_percpu_stats_debugfs);
236