1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 if (vma_iter_prealloc(&vmi)) { 587 pr_warn("Allocation of vma tree for process %d failed\n", 588 current->pid); 589 return -ENOMEM; 590 } 591 cleanup_vma_from_mm(vma); 592 593 /* remove from the MM's tree and list */ 594 vma_iter_clear(&vmi, vma->vm_start, vma->vm_end); 595 return 0; 596 } 597 /* 598 * destroy a VMA record 599 */ 600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 601 { 602 if (vma->vm_ops && vma->vm_ops->close) 603 vma->vm_ops->close(vma); 604 if (vma->vm_file) 605 fput(vma->vm_file); 606 put_nommu_region(vma->vm_region); 607 vm_area_free(vma); 608 } 609 610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 611 unsigned long start_addr, 612 unsigned long end_addr) 613 { 614 unsigned long index = start_addr; 615 616 mmap_assert_locked(mm); 617 return mt_find(&mm->mm_mt, &index, end_addr - 1); 618 } 619 EXPORT_SYMBOL(find_vma_intersection); 620 621 /* 622 * look up the first VMA in which addr resides, NULL if none 623 * - should be called with mm->mmap_lock at least held readlocked 624 */ 625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 626 { 627 VMA_ITERATOR(vmi, mm, addr); 628 629 return vma_iter_load(&vmi); 630 } 631 EXPORT_SYMBOL(find_vma); 632 633 /* 634 * At least xtensa ends up having protection faults even with no 635 * MMU.. No stack expansion, at least. 636 */ 637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 638 unsigned long addr, struct pt_regs *regs) 639 { 640 mmap_read_lock(mm); 641 return vma_lookup(mm, addr); 642 } 643 644 /* 645 * expand a stack to a given address 646 * - not supported under NOMMU conditions 647 */ 648 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 649 { 650 return -ENOMEM; 651 } 652 653 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 654 { 655 mmap_read_unlock(mm); 656 return NULL; 657 } 658 659 /* 660 * look up the first VMA exactly that exactly matches addr 661 * - should be called with mm->mmap_lock at least held readlocked 662 */ 663 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 664 unsigned long addr, 665 unsigned long len) 666 { 667 struct vm_area_struct *vma; 668 unsigned long end = addr + len; 669 VMA_ITERATOR(vmi, mm, addr); 670 671 vma = vma_iter_load(&vmi); 672 if (!vma) 673 return NULL; 674 if (vma->vm_start != addr) 675 return NULL; 676 if (vma->vm_end != end) 677 return NULL; 678 679 return vma; 680 } 681 682 /* 683 * determine whether a mapping should be permitted and, if so, what sort of 684 * mapping we're capable of supporting 685 */ 686 static int validate_mmap_request(struct file *file, 687 unsigned long addr, 688 unsigned long len, 689 unsigned long prot, 690 unsigned long flags, 691 unsigned long pgoff, 692 unsigned long *_capabilities) 693 { 694 unsigned long capabilities, rlen; 695 int ret; 696 697 /* do the simple checks first */ 698 if (flags & MAP_FIXED) 699 return -EINVAL; 700 701 if ((flags & MAP_TYPE) != MAP_PRIVATE && 702 (flags & MAP_TYPE) != MAP_SHARED) 703 return -EINVAL; 704 705 if (!len) 706 return -EINVAL; 707 708 /* Careful about overflows.. */ 709 rlen = PAGE_ALIGN(len); 710 if (!rlen || rlen > TASK_SIZE) 711 return -ENOMEM; 712 713 /* offset overflow? */ 714 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 715 return -EOVERFLOW; 716 717 if (file) { 718 /* files must support mmap */ 719 if (!file->f_op->mmap) 720 return -ENODEV; 721 722 /* work out if what we've got could possibly be shared 723 * - we support chardevs that provide their own "memory" 724 * - we support files/blockdevs that are memory backed 725 */ 726 if (file->f_op->mmap_capabilities) { 727 capabilities = file->f_op->mmap_capabilities(file); 728 } else { 729 /* no explicit capabilities set, so assume some 730 * defaults */ 731 switch (file_inode(file)->i_mode & S_IFMT) { 732 case S_IFREG: 733 case S_IFBLK: 734 capabilities = NOMMU_MAP_COPY; 735 break; 736 737 case S_IFCHR: 738 capabilities = 739 NOMMU_MAP_DIRECT | 740 NOMMU_MAP_READ | 741 NOMMU_MAP_WRITE; 742 break; 743 744 default: 745 return -EINVAL; 746 } 747 } 748 749 /* eliminate any capabilities that we can't support on this 750 * device */ 751 if (!file->f_op->get_unmapped_area) 752 capabilities &= ~NOMMU_MAP_DIRECT; 753 if (!(file->f_mode & FMODE_CAN_READ)) 754 capabilities &= ~NOMMU_MAP_COPY; 755 756 /* The file shall have been opened with read permission. */ 757 if (!(file->f_mode & FMODE_READ)) 758 return -EACCES; 759 760 if (flags & MAP_SHARED) { 761 /* do checks for writing, appending and locking */ 762 if ((prot & PROT_WRITE) && 763 !(file->f_mode & FMODE_WRITE)) 764 return -EACCES; 765 766 if (IS_APPEND(file_inode(file)) && 767 (file->f_mode & FMODE_WRITE)) 768 return -EACCES; 769 770 if (!(capabilities & NOMMU_MAP_DIRECT)) 771 return -ENODEV; 772 773 /* we mustn't privatise shared mappings */ 774 capabilities &= ~NOMMU_MAP_COPY; 775 } else { 776 /* we're going to read the file into private memory we 777 * allocate */ 778 if (!(capabilities & NOMMU_MAP_COPY)) 779 return -ENODEV; 780 781 /* we don't permit a private writable mapping to be 782 * shared with the backing device */ 783 if (prot & PROT_WRITE) 784 capabilities &= ~NOMMU_MAP_DIRECT; 785 } 786 787 if (capabilities & NOMMU_MAP_DIRECT) { 788 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 789 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 790 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 791 ) { 792 capabilities &= ~NOMMU_MAP_DIRECT; 793 if (flags & MAP_SHARED) { 794 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 795 return -EINVAL; 796 } 797 } 798 } 799 800 /* handle executable mappings and implied executable 801 * mappings */ 802 if (path_noexec(&file->f_path)) { 803 if (prot & PROT_EXEC) 804 return -EPERM; 805 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 806 /* handle implication of PROT_EXEC by PROT_READ */ 807 if (current->personality & READ_IMPLIES_EXEC) { 808 if (capabilities & NOMMU_MAP_EXEC) 809 prot |= PROT_EXEC; 810 } 811 } else if ((prot & PROT_READ) && 812 (prot & PROT_EXEC) && 813 !(capabilities & NOMMU_MAP_EXEC) 814 ) { 815 /* backing file is not executable, try to copy */ 816 capabilities &= ~NOMMU_MAP_DIRECT; 817 } 818 } else { 819 /* anonymous mappings are always memory backed and can be 820 * privately mapped 821 */ 822 capabilities = NOMMU_MAP_COPY; 823 824 /* handle PROT_EXEC implication by PROT_READ */ 825 if ((prot & PROT_READ) && 826 (current->personality & READ_IMPLIES_EXEC)) 827 prot |= PROT_EXEC; 828 } 829 830 /* allow the security API to have its say */ 831 ret = security_mmap_addr(addr); 832 if (ret < 0) 833 return ret; 834 835 /* looks okay */ 836 *_capabilities = capabilities; 837 return 0; 838 } 839 840 /* 841 * we've determined that we can make the mapping, now translate what we 842 * now know into VMA flags 843 */ 844 static unsigned long determine_vm_flags(struct file *file, 845 unsigned long prot, 846 unsigned long flags, 847 unsigned long capabilities) 848 { 849 unsigned long vm_flags; 850 851 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 852 853 if (!file) { 854 /* 855 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 856 * there is no fork(). 857 */ 858 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 859 } else if (flags & MAP_PRIVATE) { 860 /* MAP_PRIVATE file mapping */ 861 if (capabilities & NOMMU_MAP_DIRECT) 862 vm_flags |= (capabilities & NOMMU_VMFLAGS); 863 else 864 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 865 866 if (!(prot & PROT_WRITE) && !current->ptrace) 867 /* 868 * R/O private file mapping which cannot be used to 869 * modify memory, especially also not via active ptrace 870 * (e.g., set breakpoints) or later by upgrading 871 * permissions (no mprotect()). We can try overlaying 872 * the file mapping, which will work e.g., on chardevs, 873 * ramfs/tmpfs/shmfs and romfs/cramf. 874 */ 875 vm_flags |= VM_MAYOVERLAY; 876 } else { 877 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 878 vm_flags |= VM_SHARED | VM_MAYSHARE | 879 (capabilities & NOMMU_VMFLAGS); 880 } 881 882 return vm_flags; 883 } 884 885 /* 886 * set up a shared mapping on a file (the driver or filesystem provides and 887 * pins the storage) 888 */ 889 static int do_mmap_shared_file(struct vm_area_struct *vma) 890 { 891 int ret; 892 893 ret = call_mmap(vma->vm_file, vma); 894 if (ret == 0) { 895 vma->vm_region->vm_top = vma->vm_region->vm_end; 896 return 0; 897 } 898 if (ret != -ENOSYS) 899 return ret; 900 901 /* getting -ENOSYS indicates that direct mmap isn't possible (as 902 * opposed to tried but failed) so we can only give a suitable error as 903 * it's not possible to make a private copy if MAP_SHARED was given */ 904 return -ENODEV; 905 } 906 907 /* 908 * set up a private mapping or an anonymous shared mapping 909 */ 910 static int do_mmap_private(struct vm_area_struct *vma, 911 struct vm_region *region, 912 unsigned long len, 913 unsigned long capabilities) 914 { 915 unsigned long total, point; 916 void *base; 917 int ret, order; 918 919 /* 920 * Invoke the file's mapping function so that it can keep track of 921 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 922 * it may attempt to share, which will make is_nommu_shared_mapping() 923 * happy. 924 */ 925 if (capabilities & NOMMU_MAP_DIRECT) { 926 ret = call_mmap(vma->vm_file, vma); 927 /* shouldn't return success if we're not sharing */ 928 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 929 ret = -ENOSYS; 930 if (ret == 0) { 931 vma->vm_region->vm_top = vma->vm_region->vm_end; 932 return 0; 933 } 934 if (ret != -ENOSYS) 935 return ret; 936 937 /* getting an ENOSYS error indicates that direct mmap isn't 938 * possible (as opposed to tried but failed) so we'll try to 939 * make a private copy of the data and map that instead */ 940 } 941 942 943 /* allocate some memory to hold the mapping 944 * - note that this may not return a page-aligned address if the object 945 * we're allocating is smaller than a page 946 */ 947 order = get_order(len); 948 total = 1 << order; 949 point = len >> PAGE_SHIFT; 950 951 /* we don't want to allocate a power-of-2 sized page set */ 952 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 953 total = point; 954 955 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 956 if (!base) 957 goto enomem; 958 959 atomic_long_add(total, &mmap_pages_allocated); 960 961 vm_flags_set(vma, VM_MAPPED_COPY); 962 region->vm_flags = vma->vm_flags; 963 region->vm_start = (unsigned long) base; 964 region->vm_end = region->vm_start + len; 965 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 966 967 vma->vm_start = region->vm_start; 968 vma->vm_end = region->vm_start + len; 969 970 if (vma->vm_file) { 971 /* read the contents of a file into the copy */ 972 loff_t fpos; 973 974 fpos = vma->vm_pgoff; 975 fpos <<= PAGE_SHIFT; 976 977 ret = kernel_read(vma->vm_file, base, len, &fpos); 978 if (ret < 0) 979 goto error_free; 980 981 /* clear the last little bit */ 982 if (ret < len) 983 memset(base + ret, 0, len - ret); 984 985 } else { 986 vma_set_anonymous(vma); 987 } 988 989 return 0; 990 991 error_free: 992 free_page_series(region->vm_start, region->vm_top); 993 region->vm_start = vma->vm_start = 0; 994 region->vm_end = vma->vm_end = 0; 995 region->vm_top = 0; 996 return ret; 997 998 enomem: 999 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1000 len, current->pid, current->comm); 1001 show_free_areas(0, NULL); 1002 return -ENOMEM; 1003 } 1004 1005 /* 1006 * handle mapping creation for uClinux 1007 */ 1008 unsigned long do_mmap(struct file *file, 1009 unsigned long addr, 1010 unsigned long len, 1011 unsigned long prot, 1012 unsigned long flags, 1013 unsigned long pgoff, 1014 unsigned long *populate, 1015 struct list_head *uf) 1016 { 1017 struct vm_area_struct *vma; 1018 struct vm_region *region; 1019 struct rb_node *rb; 1020 vm_flags_t vm_flags; 1021 unsigned long capabilities, result; 1022 int ret; 1023 VMA_ITERATOR(vmi, current->mm, 0); 1024 1025 *populate = 0; 1026 1027 /* decide whether we should attempt the mapping, and if so what sort of 1028 * mapping */ 1029 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1030 &capabilities); 1031 if (ret < 0) 1032 return ret; 1033 1034 /* we ignore the address hint */ 1035 addr = 0; 1036 len = PAGE_ALIGN(len); 1037 1038 /* we've determined that we can make the mapping, now translate what we 1039 * now know into VMA flags */ 1040 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1041 1042 1043 /* we're going to need to record the mapping */ 1044 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1045 if (!region) 1046 goto error_getting_region; 1047 1048 vma = vm_area_alloc(current->mm); 1049 if (!vma) 1050 goto error_getting_vma; 1051 1052 if (vma_iter_prealloc(&vmi)) 1053 goto error_vma_iter_prealloc; 1054 1055 region->vm_usage = 1; 1056 region->vm_flags = vm_flags; 1057 region->vm_pgoff = pgoff; 1058 1059 vm_flags_init(vma, vm_flags); 1060 vma->vm_pgoff = pgoff; 1061 1062 if (file) { 1063 region->vm_file = get_file(file); 1064 vma->vm_file = get_file(file); 1065 } 1066 1067 down_write(&nommu_region_sem); 1068 1069 /* if we want to share, we need to check for regions created by other 1070 * mmap() calls that overlap with our proposed mapping 1071 * - we can only share with a superset match on most regular files 1072 * - shared mappings on character devices and memory backed files are 1073 * permitted to overlap inexactly as far as we are concerned for in 1074 * these cases, sharing is handled in the driver or filesystem rather 1075 * than here 1076 */ 1077 if (is_nommu_shared_mapping(vm_flags)) { 1078 struct vm_region *pregion; 1079 unsigned long pglen, rpglen, pgend, rpgend, start; 1080 1081 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1082 pgend = pgoff + pglen; 1083 1084 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1085 pregion = rb_entry(rb, struct vm_region, vm_rb); 1086 1087 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1088 continue; 1089 1090 /* search for overlapping mappings on the same file */ 1091 if (file_inode(pregion->vm_file) != 1092 file_inode(file)) 1093 continue; 1094 1095 if (pregion->vm_pgoff >= pgend) 1096 continue; 1097 1098 rpglen = pregion->vm_end - pregion->vm_start; 1099 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1100 rpgend = pregion->vm_pgoff + rpglen; 1101 if (pgoff >= rpgend) 1102 continue; 1103 1104 /* handle inexactly overlapping matches between 1105 * mappings */ 1106 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1107 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1108 /* new mapping is not a subset of the region */ 1109 if (!(capabilities & NOMMU_MAP_DIRECT)) 1110 goto sharing_violation; 1111 continue; 1112 } 1113 1114 /* we've found a region we can share */ 1115 pregion->vm_usage++; 1116 vma->vm_region = pregion; 1117 start = pregion->vm_start; 1118 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1119 vma->vm_start = start; 1120 vma->vm_end = start + len; 1121 1122 if (pregion->vm_flags & VM_MAPPED_COPY) 1123 vm_flags_set(vma, VM_MAPPED_COPY); 1124 else { 1125 ret = do_mmap_shared_file(vma); 1126 if (ret < 0) { 1127 vma->vm_region = NULL; 1128 vma->vm_start = 0; 1129 vma->vm_end = 0; 1130 pregion->vm_usage--; 1131 pregion = NULL; 1132 goto error_just_free; 1133 } 1134 } 1135 fput(region->vm_file); 1136 kmem_cache_free(vm_region_jar, region); 1137 region = pregion; 1138 result = start; 1139 goto share; 1140 } 1141 1142 /* obtain the address at which to make a shared mapping 1143 * - this is the hook for quasi-memory character devices to 1144 * tell us the location of a shared mapping 1145 */ 1146 if (capabilities & NOMMU_MAP_DIRECT) { 1147 addr = file->f_op->get_unmapped_area(file, addr, len, 1148 pgoff, flags); 1149 if (IS_ERR_VALUE(addr)) { 1150 ret = addr; 1151 if (ret != -ENOSYS) 1152 goto error_just_free; 1153 1154 /* the driver refused to tell us where to site 1155 * the mapping so we'll have to attempt to copy 1156 * it */ 1157 ret = -ENODEV; 1158 if (!(capabilities & NOMMU_MAP_COPY)) 1159 goto error_just_free; 1160 1161 capabilities &= ~NOMMU_MAP_DIRECT; 1162 } else { 1163 vma->vm_start = region->vm_start = addr; 1164 vma->vm_end = region->vm_end = addr + len; 1165 } 1166 } 1167 } 1168 1169 vma->vm_region = region; 1170 1171 /* set up the mapping 1172 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1173 */ 1174 if (file && vma->vm_flags & VM_SHARED) 1175 ret = do_mmap_shared_file(vma); 1176 else 1177 ret = do_mmap_private(vma, region, len, capabilities); 1178 if (ret < 0) 1179 goto error_just_free; 1180 add_nommu_region(region); 1181 1182 /* clear anonymous mappings that don't ask for uninitialized data */ 1183 if (!vma->vm_file && 1184 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1185 !(flags & MAP_UNINITIALIZED))) 1186 memset((void *)region->vm_start, 0, 1187 region->vm_end - region->vm_start); 1188 1189 /* okay... we have a mapping; now we have to register it */ 1190 result = vma->vm_start; 1191 1192 current->mm->total_vm += len >> PAGE_SHIFT; 1193 1194 share: 1195 BUG_ON(!vma->vm_region); 1196 setup_vma_to_mm(vma, current->mm); 1197 current->mm->map_count++; 1198 /* add the VMA to the tree */ 1199 vma_iter_store(&vmi, vma); 1200 1201 /* we flush the region from the icache only when the first executable 1202 * mapping of it is made */ 1203 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1204 flush_icache_user_range(region->vm_start, region->vm_end); 1205 region->vm_icache_flushed = true; 1206 } 1207 1208 up_write(&nommu_region_sem); 1209 1210 return result; 1211 1212 error_just_free: 1213 up_write(&nommu_region_sem); 1214 error: 1215 vma_iter_free(&vmi); 1216 if (region->vm_file) 1217 fput(region->vm_file); 1218 kmem_cache_free(vm_region_jar, region); 1219 if (vma->vm_file) 1220 fput(vma->vm_file); 1221 vm_area_free(vma); 1222 return ret; 1223 1224 sharing_violation: 1225 up_write(&nommu_region_sem); 1226 pr_warn("Attempt to share mismatched mappings\n"); 1227 ret = -EINVAL; 1228 goto error; 1229 1230 error_getting_vma: 1231 kmem_cache_free(vm_region_jar, region); 1232 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1233 len, current->pid); 1234 show_free_areas(0, NULL); 1235 return -ENOMEM; 1236 1237 error_getting_region: 1238 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1239 len, current->pid); 1240 show_free_areas(0, NULL); 1241 return -ENOMEM; 1242 1243 error_vma_iter_prealloc: 1244 kmem_cache_free(vm_region_jar, region); 1245 vm_area_free(vma); 1246 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1247 show_free_areas(0, NULL); 1248 return -ENOMEM; 1249 1250 } 1251 1252 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1253 unsigned long prot, unsigned long flags, 1254 unsigned long fd, unsigned long pgoff) 1255 { 1256 struct file *file = NULL; 1257 unsigned long retval = -EBADF; 1258 1259 audit_mmap_fd(fd, flags); 1260 if (!(flags & MAP_ANONYMOUS)) { 1261 file = fget(fd); 1262 if (!file) 1263 goto out; 1264 } 1265 1266 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1267 1268 if (file) 1269 fput(file); 1270 out: 1271 return retval; 1272 } 1273 1274 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1275 unsigned long, prot, unsigned long, flags, 1276 unsigned long, fd, unsigned long, pgoff) 1277 { 1278 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1279 } 1280 1281 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1282 struct mmap_arg_struct { 1283 unsigned long addr; 1284 unsigned long len; 1285 unsigned long prot; 1286 unsigned long flags; 1287 unsigned long fd; 1288 unsigned long offset; 1289 }; 1290 1291 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1292 { 1293 struct mmap_arg_struct a; 1294 1295 if (copy_from_user(&a, arg, sizeof(a))) 1296 return -EFAULT; 1297 if (offset_in_page(a.offset)) 1298 return -EINVAL; 1299 1300 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1301 a.offset >> PAGE_SHIFT); 1302 } 1303 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1304 1305 /* 1306 * split a vma into two pieces at address 'addr', a new vma is allocated either 1307 * for the first part or the tail. 1308 */ 1309 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1310 unsigned long addr, int new_below) 1311 { 1312 struct vm_area_struct *new; 1313 struct vm_region *region; 1314 unsigned long npages; 1315 struct mm_struct *mm; 1316 1317 /* we're only permitted to split anonymous regions (these should have 1318 * only a single usage on the region) */ 1319 if (vma->vm_file) 1320 return -ENOMEM; 1321 1322 mm = vma->vm_mm; 1323 if (mm->map_count >= sysctl_max_map_count) 1324 return -ENOMEM; 1325 1326 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1327 if (!region) 1328 return -ENOMEM; 1329 1330 new = vm_area_dup(vma); 1331 if (!new) 1332 goto err_vma_dup; 1333 1334 if (vma_iter_prealloc(vmi)) { 1335 pr_warn("Allocation of vma tree for process %d failed\n", 1336 current->pid); 1337 goto err_vmi_preallocate; 1338 } 1339 1340 /* most fields are the same, copy all, and then fixup */ 1341 *region = *vma->vm_region; 1342 new->vm_region = region; 1343 1344 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1345 1346 if (new_below) { 1347 region->vm_top = region->vm_end = new->vm_end = addr; 1348 } else { 1349 region->vm_start = new->vm_start = addr; 1350 region->vm_pgoff = new->vm_pgoff += npages; 1351 } 1352 1353 if (new->vm_ops && new->vm_ops->open) 1354 new->vm_ops->open(new); 1355 1356 down_write(&nommu_region_sem); 1357 delete_nommu_region(vma->vm_region); 1358 if (new_below) { 1359 vma->vm_region->vm_start = vma->vm_start = addr; 1360 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1361 } else { 1362 vma->vm_region->vm_end = vma->vm_end = addr; 1363 vma->vm_region->vm_top = addr; 1364 } 1365 add_nommu_region(vma->vm_region); 1366 add_nommu_region(new->vm_region); 1367 up_write(&nommu_region_sem); 1368 1369 setup_vma_to_mm(vma, mm); 1370 setup_vma_to_mm(new, mm); 1371 vma_iter_store(vmi, new); 1372 mm->map_count++; 1373 return 0; 1374 1375 err_vmi_preallocate: 1376 vm_area_free(new); 1377 err_vma_dup: 1378 kmem_cache_free(vm_region_jar, region); 1379 return -ENOMEM; 1380 } 1381 1382 /* 1383 * shrink a VMA by removing the specified chunk from either the beginning or 1384 * the end 1385 */ 1386 static int vmi_shrink_vma(struct vma_iterator *vmi, 1387 struct vm_area_struct *vma, 1388 unsigned long from, unsigned long to) 1389 { 1390 struct vm_region *region; 1391 1392 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1393 * and list */ 1394 if (vma_iter_prealloc(vmi)) { 1395 pr_warn("Allocation of vma tree for process %d failed\n", 1396 current->pid); 1397 return -ENOMEM; 1398 } 1399 1400 if (from > vma->vm_start) { 1401 vma_iter_clear(vmi, from, vma->vm_end); 1402 vma->vm_end = from; 1403 } else { 1404 vma_iter_clear(vmi, vma->vm_start, to); 1405 vma->vm_start = to; 1406 } 1407 1408 /* cut the backing region down to size */ 1409 region = vma->vm_region; 1410 BUG_ON(region->vm_usage != 1); 1411 1412 down_write(&nommu_region_sem); 1413 delete_nommu_region(region); 1414 if (from > region->vm_start) { 1415 to = region->vm_top; 1416 region->vm_top = region->vm_end = from; 1417 } else { 1418 region->vm_start = to; 1419 } 1420 add_nommu_region(region); 1421 up_write(&nommu_region_sem); 1422 1423 free_page_series(from, to); 1424 return 0; 1425 } 1426 1427 /* 1428 * release a mapping 1429 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1430 * VMA, though it need not cover the whole VMA 1431 */ 1432 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1433 { 1434 VMA_ITERATOR(vmi, mm, start); 1435 struct vm_area_struct *vma; 1436 unsigned long end; 1437 int ret = 0; 1438 1439 len = PAGE_ALIGN(len); 1440 if (len == 0) 1441 return -EINVAL; 1442 1443 end = start + len; 1444 1445 /* find the first potentially overlapping VMA */ 1446 vma = vma_find(&vmi, end); 1447 if (!vma) { 1448 static int limit; 1449 if (limit < 5) { 1450 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1451 current->pid, current->comm, 1452 start, start + len - 1); 1453 limit++; 1454 } 1455 return -EINVAL; 1456 } 1457 1458 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1459 if (vma->vm_file) { 1460 do { 1461 if (start > vma->vm_start) 1462 return -EINVAL; 1463 if (end == vma->vm_end) 1464 goto erase_whole_vma; 1465 vma = vma_find(&vmi, end); 1466 } while (vma); 1467 return -EINVAL; 1468 } else { 1469 /* the chunk must be a subset of the VMA found */ 1470 if (start == vma->vm_start && end == vma->vm_end) 1471 goto erase_whole_vma; 1472 if (start < vma->vm_start || end > vma->vm_end) 1473 return -EINVAL; 1474 if (offset_in_page(start)) 1475 return -EINVAL; 1476 if (end != vma->vm_end && offset_in_page(end)) 1477 return -EINVAL; 1478 if (start != vma->vm_start && end != vma->vm_end) { 1479 ret = split_vma(&vmi, vma, start, 1); 1480 if (ret < 0) 1481 return ret; 1482 } 1483 return vmi_shrink_vma(&vmi, vma, start, end); 1484 } 1485 1486 erase_whole_vma: 1487 if (delete_vma_from_mm(vma)) 1488 ret = -ENOMEM; 1489 else 1490 delete_vma(mm, vma); 1491 return ret; 1492 } 1493 1494 int vm_munmap(unsigned long addr, size_t len) 1495 { 1496 struct mm_struct *mm = current->mm; 1497 int ret; 1498 1499 mmap_write_lock(mm); 1500 ret = do_munmap(mm, addr, len, NULL); 1501 mmap_write_unlock(mm); 1502 return ret; 1503 } 1504 EXPORT_SYMBOL(vm_munmap); 1505 1506 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1507 { 1508 return vm_munmap(addr, len); 1509 } 1510 1511 /* 1512 * release all the mappings made in a process's VM space 1513 */ 1514 void exit_mmap(struct mm_struct *mm) 1515 { 1516 VMA_ITERATOR(vmi, mm, 0); 1517 struct vm_area_struct *vma; 1518 1519 if (!mm) 1520 return; 1521 1522 mm->total_vm = 0; 1523 1524 /* 1525 * Lock the mm to avoid assert complaining even though this is the only 1526 * user of the mm 1527 */ 1528 mmap_write_lock(mm); 1529 for_each_vma(vmi, vma) { 1530 cleanup_vma_from_mm(vma); 1531 delete_vma(mm, vma); 1532 cond_resched(); 1533 } 1534 __mt_destroy(&mm->mm_mt); 1535 mmap_write_unlock(mm); 1536 } 1537 1538 int vm_brk(unsigned long addr, unsigned long len) 1539 { 1540 return -ENOMEM; 1541 } 1542 1543 /* 1544 * expand (or shrink) an existing mapping, potentially moving it at the same 1545 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1546 * 1547 * under NOMMU conditions, we only permit changing a mapping's size, and only 1548 * as long as it stays within the region allocated by do_mmap_private() and the 1549 * block is not shareable 1550 * 1551 * MREMAP_FIXED is not supported under NOMMU conditions 1552 */ 1553 static unsigned long do_mremap(unsigned long addr, 1554 unsigned long old_len, unsigned long new_len, 1555 unsigned long flags, unsigned long new_addr) 1556 { 1557 struct vm_area_struct *vma; 1558 1559 /* insanity checks first */ 1560 old_len = PAGE_ALIGN(old_len); 1561 new_len = PAGE_ALIGN(new_len); 1562 if (old_len == 0 || new_len == 0) 1563 return (unsigned long) -EINVAL; 1564 1565 if (offset_in_page(addr)) 1566 return -EINVAL; 1567 1568 if (flags & MREMAP_FIXED && new_addr != addr) 1569 return (unsigned long) -EINVAL; 1570 1571 vma = find_vma_exact(current->mm, addr, old_len); 1572 if (!vma) 1573 return (unsigned long) -EINVAL; 1574 1575 if (vma->vm_end != vma->vm_start + old_len) 1576 return (unsigned long) -EFAULT; 1577 1578 if (is_nommu_shared_mapping(vma->vm_flags)) 1579 return (unsigned long) -EPERM; 1580 1581 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1582 return (unsigned long) -ENOMEM; 1583 1584 /* all checks complete - do it */ 1585 vma->vm_end = vma->vm_start + new_len; 1586 return vma->vm_start; 1587 } 1588 1589 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1590 unsigned long, new_len, unsigned long, flags, 1591 unsigned long, new_addr) 1592 { 1593 unsigned long ret; 1594 1595 mmap_write_lock(current->mm); 1596 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1597 mmap_write_unlock(current->mm); 1598 return ret; 1599 } 1600 1601 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1602 unsigned int foll_flags) 1603 { 1604 return NULL; 1605 } 1606 1607 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1608 unsigned long pfn, unsigned long size, pgprot_t prot) 1609 { 1610 if (addr != (pfn << PAGE_SHIFT)) 1611 return -EINVAL; 1612 1613 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1614 return 0; 1615 } 1616 EXPORT_SYMBOL(remap_pfn_range); 1617 1618 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1619 { 1620 unsigned long pfn = start >> PAGE_SHIFT; 1621 unsigned long vm_len = vma->vm_end - vma->vm_start; 1622 1623 pfn += vma->vm_pgoff; 1624 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1625 } 1626 EXPORT_SYMBOL(vm_iomap_memory); 1627 1628 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1629 unsigned long pgoff) 1630 { 1631 unsigned int size = vma->vm_end - vma->vm_start; 1632 1633 if (!(vma->vm_flags & VM_USERMAP)) 1634 return -EINVAL; 1635 1636 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1637 vma->vm_end = vma->vm_start + size; 1638 1639 return 0; 1640 } 1641 EXPORT_SYMBOL(remap_vmalloc_range); 1642 1643 vm_fault_t filemap_fault(struct vm_fault *vmf) 1644 { 1645 BUG(); 1646 return 0; 1647 } 1648 EXPORT_SYMBOL(filemap_fault); 1649 1650 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1651 pgoff_t start_pgoff, pgoff_t end_pgoff) 1652 { 1653 BUG(); 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(filemap_map_pages); 1657 1658 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1659 int len, unsigned int gup_flags) 1660 { 1661 struct vm_area_struct *vma; 1662 int write = gup_flags & FOLL_WRITE; 1663 1664 if (mmap_read_lock_killable(mm)) 1665 return 0; 1666 1667 /* the access must start within one of the target process's mappings */ 1668 vma = find_vma(mm, addr); 1669 if (vma) { 1670 /* don't overrun this mapping */ 1671 if (addr + len >= vma->vm_end) 1672 len = vma->vm_end - addr; 1673 1674 /* only read or write mappings where it is permitted */ 1675 if (write && vma->vm_flags & VM_MAYWRITE) 1676 copy_to_user_page(vma, NULL, addr, 1677 (void *) addr, buf, len); 1678 else if (!write && vma->vm_flags & VM_MAYREAD) 1679 copy_from_user_page(vma, NULL, addr, 1680 buf, (void *) addr, len); 1681 else 1682 len = 0; 1683 } else { 1684 len = 0; 1685 } 1686 1687 mmap_read_unlock(mm); 1688 1689 return len; 1690 } 1691 1692 /** 1693 * access_remote_vm - access another process' address space 1694 * @mm: the mm_struct of the target address space 1695 * @addr: start address to access 1696 * @buf: source or destination buffer 1697 * @len: number of bytes to transfer 1698 * @gup_flags: flags modifying lookup behaviour 1699 * 1700 * The caller must hold a reference on @mm. 1701 */ 1702 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1703 void *buf, int len, unsigned int gup_flags) 1704 { 1705 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1706 } 1707 1708 /* 1709 * Access another process' address space. 1710 * - source/target buffer must be kernel space 1711 */ 1712 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1713 unsigned int gup_flags) 1714 { 1715 struct mm_struct *mm; 1716 1717 if (addr + len < addr) 1718 return 0; 1719 1720 mm = get_task_mm(tsk); 1721 if (!mm) 1722 return 0; 1723 1724 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1725 1726 mmput(mm); 1727 return len; 1728 } 1729 EXPORT_SYMBOL_GPL(access_process_vm); 1730 1731 /** 1732 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1733 * @inode: The inode to check 1734 * @size: The current filesize of the inode 1735 * @newsize: The proposed filesize of the inode 1736 * 1737 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1738 * make sure that any outstanding VMAs aren't broken and then shrink the 1739 * vm_regions that extend beyond so that do_mmap() doesn't 1740 * automatically grant mappings that are too large. 1741 */ 1742 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1743 size_t newsize) 1744 { 1745 struct vm_area_struct *vma; 1746 struct vm_region *region; 1747 pgoff_t low, high; 1748 size_t r_size, r_top; 1749 1750 low = newsize >> PAGE_SHIFT; 1751 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1752 1753 down_write(&nommu_region_sem); 1754 i_mmap_lock_read(inode->i_mapping); 1755 1756 /* search for VMAs that fall within the dead zone */ 1757 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1758 /* found one - only interested if it's shared out of the page 1759 * cache */ 1760 if (vma->vm_flags & VM_SHARED) { 1761 i_mmap_unlock_read(inode->i_mapping); 1762 up_write(&nommu_region_sem); 1763 return -ETXTBSY; /* not quite true, but near enough */ 1764 } 1765 } 1766 1767 /* reduce any regions that overlap the dead zone - if in existence, 1768 * these will be pointed to by VMAs that don't overlap the dead zone 1769 * 1770 * we don't check for any regions that start beyond the EOF as there 1771 * shouldn't be any 1772 */ 1773 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1774 if (!(vma->vm_flags & VM_SHARED)) 1775 continue; 1776 1777 region = vma->vm_region; 1778 r_size = region->vm_top - region->vm_start; 1779 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1780 1781 if (r_top > newsize) { 1782 region->vm_top -= r_top - newsize; 1783 if (region->vm_end > region->vm_top) 1784 region->vm_end = region->vm_top; 1785 } 1786 } 1787 1788 i_mmap_unlock_read(inode->i_mapping); 1789 up_write(&nommu_region_sem); 1790 return 0; 1791 } 1792 1793 /* 1794 * Initialise sysctl_user_reserve_kbytes. 1795 * 1796 * This is intended to prevent a user from starting a single memory hogging 1797 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1798 * mode. 1799 * 1800 * The default value is min(3% of free memory, 128MB) 1801 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1802 */ 1803 static int __meminit init_user_reserve(void) 1804 { 1805 unsigned long free_kbytes; 1806 1807 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1808 1809 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1810 return 0; 1811 } 1812 subsys_initcall(init_user_reserve); 1813 1814 /* 1815 * Initialise sysctl_admin_reserve_kbytes. 1816 * 1817 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1818 * to log in and kill a memory hogging process. 1819 * 1820 * Systems with more than 256MB will reserve 8MB, enough to recover 1821 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1822 * only reserve 3% of free pages by default. 1823 */ 1824 static int __meminit init_admin_reserve(void) 1825 { 1826 unsigned long free_kbytes; 1827 1828 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1829 1830 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1831 return 0; 1832 } 1833 subsys_initcall(init_admin_reserve); 1834