1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
kobjsize(const void * objp)72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return page_size(page);
111 }
112
113 /**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 unsigned long *pfn)
125 {
126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 return -EINVAL;
128
129 *pfn = address >> PAGE_SHIFT;
130 return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 LIST_HEAD(vmap_area_list);
135
vfree(const void * addr)136 void vfree(const void *addr)
137 {
138 kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141
__vmalloc(unsigned long size,gfp_t gfp_mask)142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 /*
145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 * returns only a logical address.
147 */
148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 unsigned long start, unsigned long end, gfp_t gfp_mask,
154 pgprot_t prot, unsigned long vm_flags, int node,
155 const void *caller)
156 {
157 return __vmalloc(size, gfp_mask);
158 }
159
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 int node, const void *caller)
162 {
163 return __vmalloc(size, gfp_mask);
164 }
165
__vmalloc_user_flags(unsigned long size,gfp_t flags)166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 void *ret;
169
170 ret = __vmalloc(size, flags);
171 if (ret) {
172 struct vm_area_struct *vma;
173
174 mmap_write_lock(current->mm);
175 vma = find_vma(current->mm, (unsigned long)ret);
176 if (vma)
177 vm_flags_set(vma, VM_USERMAP);
178 mmap_write_unlock(current->mm);
179 }
180
181 return ret;
182 }
183
vmalloc_user(unsigned long size)184 void *vmalloc_user(unsigned long size)
185 {
186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189
vmalloc_to_page(const void * addr)190 struct page *vmalloc_to_page(const void *addr)
191 {
192 return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195
vmalloc_to_pfn(const void * addr)196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201
vread_iter(struct iov_iter * iter,const char * addr,size_t count)202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204 /* Don't allow overflow */
205 if ((unsigned long) addr + count < count)
206 count = -(unsigned long) addr;
207
208 return copy_to_iter(addr, count, iter);
209 }
210
211 /*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
vmalloc(unsigned long size)222 void *vmalloc(unsigned long size)
223 {
224 return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230 /*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
vzalloc(unsigned long size)242 void *vzalloc(unsigned long size)
243 {
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
vmalloc_node(unsigned long size,int node)259 void *vmalloc_node(unsigned long size, int node)
260 {
261 return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
vzalloc_node(unsigned long size,int node)277 void *vzalloc_node(unsigned long size, int node)
278 {
279 return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
vmalloc_32(unsigned long size)290 void *vmalloc_32(unsigned long size)
291 {
292 return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
vmalloc_32_user(unsigned long size)306 void *vmalloc_32_user(unsigned long size)
307 {
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 BUG();
319 return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
vunmap(const void * addr)323 void vunmap(const void *addr)
324 {
325 BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
vm_map_ram(struct page ** pages,unsigned int count,int node)329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 BUG();
332 return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
vm_unmap_ram(const void * mem,unsigned int count)336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
vm_unmap_aliases(void)342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
free_vm_area(struct vm_struct * area)347 void free_vm_area(struct vm_struct *area)
348 {
349 BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355 {
356 return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362 {
363 return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369 {
370 return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
SYSCALL_DEFINE1(brk,unsigned long,brk)381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404 }
405
406 /*
407 * initialise the percpu counter for VM and region record slabs
408 */
mmap_init(void)409 void __init mmap_init(void)
410 {
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)423 static noinline void validate_nommu_regions(void)
424 {
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446 }
447 #else
validate_nommu_regions(void)448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454 * add a region into the global tree
455 */
add_nommu_region(struct vm_region * region)456 static void add_nommu_region(struct vm_region *region)
457 {
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482 }
483
484 /*
485 * delete a region from the global tree
486 */
delete_nommu_region(struct vm_region * region)487 static void delete_nommu_region(struct vm_region *region)
488 {
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494 }
495
496 /*
497 * free a contiguous series of pages
498 */
free_page_series(unsigned long from,unsigned long to)499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507 }
508
509 /*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
__put_nommu_region(struct vm_region * region)515 static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 */
put_nommu_region(struct vm_region * region)541 static void put_nommu_region(struct vm_region *region)
542 {
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545 }
546
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 vma->vm_mm = mm;
550
551 /* add the VMA to the mapping */
552 if (vma->vm_file) {
553 struct address_space *mapping = vma->vm_file->f_mapping;
554
555 i_mmap_lock_write(mapping);
556 flush_dcache_mmap_lock(mapping);
557 vma_interval_tree_insert(vma, &mapping->i_mmap);
558 flush_dcache_mmap_unlock(mapping);
559 i_mmap_unlock_write(mapping);
560 }
561 }
562
cleanup_vma_from_mm(struct vm_area_struct * vma)563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 vma->vm_mm->map_count--;
566 /* remove the VMA from the mapping */
567 if (vma->vm_file) {
568 struct address_space *mapping;
569 mapping = vma->vm_file->f_mapping;
570
571 i_mmap_lock_write(mapping);
572 flush_dcache_mmap_lock(mapping);
573 vma_interval_tree_remove(vma, &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577 }
578
579 /*
580 * delete a VMA from its owning mm_struct and address space
581 */
delete_vma_from_mm(struct vm_area_struct * vma)582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587 if (vma_iter_prealloc(&vmi, NULL)) {
588 pr_warn("Allocation of vma tree for process %d failed\n",
589 current->pid);
590 return -ENOMEM;
591 }
592 cleanup_vma_from_mm(vma);
593
594 /* remove from the MM's tree and list */
595 vma_iter_clear(&vmi);
596 return 0;
597 }
598 /*
599 * destroy a VMA record
600 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602 {
603 vma_close(vma);
604 if (vma->vm_file)
605 fput(vma->vm_file);
606 put_nommu_region(vma->vm_region);
607 vm_area_free(vma);
608 }
609
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611 unsigned long start_addr,
612 unsigned long end_addr)
613 {
614 unsigned long index = start_addr;
615
616 mmap_assert_locked(mm);
617 return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620
621 /*
622 * look up the first VMA in which addr resides, NULL if none
623 * - should be called with mm->mmap_lock at least held readlocked
624 */
find_vma(struct mm_struct * mm,unsigned long addr)625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627 VMA_ITERATOR(vmi, mm, addr);
628
629 return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632
633 /*
634 * At least xtensa ends up having protection faults even with no
635 * MMU.. No stack expansion, at least.
636 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
638 unsigned long addr, struct pt_regs *regs)
639 {
640 struct vm_area_struct *vma;
641
642 mmap_read_lock(mm);
643 vma = vma_lookup(mm, addr);
644 if (!vma)
645 mmap_read_unlock(mm);
646 return vma;
647 }
648
649 /*
650 * expand a stack to a given address
651 * - not supported under NOMMU conditions
652 */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
654 {
655 return -ENOMEM;
656 }
657
expand_stack(struct mm_struct * mm,unsigned long addr)658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
659 {
660 mmap_read_unlock(mm);
661 return NULL;
662 }
663
664 /*
665 * look up the first VMA exactly that exactly matches addr
666 * - should be called with mm->mmap_lock at least held readlocked
667 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
669 unsigned long addr,
670 unsigned long len)
671 {
672 struct vm_area_struct *vma;
673 unsigned long end = addr + len;
674 VMA_ITERATOR(vmi, mm, addr);
675
676 vma = vma_iter_load(&vmi);
677 if (!vma)
678 return NULL;
679 if (vma->vm_start != addr)
680 return NULL;
681 if (vma->vm_end != end)
682 return NULL;
683
684 return vma;
685 }
686
687 /*
688 * determine whether a mapping should be permitted and, if so, what sort of
689 * mapping we're capable of supporting
690 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)691 static int validate_mmap_request(struct file *file,
692 unsigned long addr,
693 unsigned long len,
694 unsigned long prot,
695 unsigned long flags,
696 unsigned long pgoff,
697 unsigned long *_capabilities)
698 {
699 unsigned long capabilities, rlen;
700 int ret;
701
702 /* do the simple checks first */
703 if (flags & MAP_FIXED)
704 return -EINVAL;
705
706 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
707 (flags & MAP_TYPE) != MAP_SHARED)
708 return -EINVAL;
709
710 if (!len)
711 return -EINVAL;
712
713 /* Careful about overflows.. */
714 rlen = PAGE_ALIGN(len);
715 if (!rlen || rlen > TASK_SIZE)
716 return -ENOMEM;
717
718 /* offset overflow? */
719 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
720 return -EOVERFLOW;
721
722 if (file) {
723 /* files must support mmap */
724 if (!file->f_op->mmap)
725 return -ENODEV;
726
727 /* work out if what we've got could possibly be shared
728 * - we support chardevs that provide their own "memory"
729 * - we support files/blockdevs that are memory backed
730 */
731 if (file->f_op->mmap_capabilities) {
732 capabilities = file->f_op->mmap_capabilities(file);
733 } else {
734 /* no explicit capabilities set, so assume some
735 * defaults */
736 switch (file_inode(file)->i_mode & S_IFMT) {
737 case S_IFREG:
738 case S_IFBLK:
739 capabilities = NOMMU_MAP_COPY;
740 break;
741
742 case S_IFCHR:
743 capabilities =
744 NOMMU_MAP_DIRECT |
745 NOMMU_MAP_READ |
746 NOMMU_MAP_WRITE;
747 break;
748
749 default:
750 return -EINVAL;
751 }
752 }
753
754 /* eliminate any capabilities that we can't support on this
755 * device */
756 if (!file->f_op->get_unmapped_area)
757 capabilities &= ~NOMMU_MAP_DIRECT;
758 if (!(file->f_mode & FMODE_CAN_READ))
759 capabilities &= ~NOMMU_MAP_COPY;
760
761 /* The file shall have been opened with read permission. */
762 if (!(file->f_mode & FMODE_READ))
763 return -EACCES;
764
765 if (flags & MAP_SHARED) {
766 /* do checks for writing, appending and locking */
767 if ((prot & PROT_WRITE) &&
768 !(file->f_mode & FMODE_WRITE))
769 return -EACCES;
770
771 if (IS_APPEND(file_inode(file)) &&
772 (file->f_mode & FMODE_WRITE))
773 return -EACCES;
774
775 if (!(capabilities & NOMMU_MAP_DIRECT))
776 return -ENODEV;
777
778 /* we mustn't privatise shared mappings */
779 capabilities &= ~NOMMU_MAP_COPY;
780 } else {
781 /* we're going to read the file into private memory we
782 * allocate */
783 if (!(capabilities & NOMMU_MAP_COPY))
784 return -ENODEV;
785
786 /* we don't permit a private writable mapping to be
787 * shared with the backing device */
788 if (prot & PROT_WRITE)
789 capabilities &= ~NOMMU_MAP_DIRECT;
790 }
791
792 if (capabilities & NOMMU_MAP_DIRECT) {
793 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
794 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
795 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
796 ) {
797 capabilities &= ~NOMMU_MAP_DIRECT;
798 if (flags & MAP_SHARED) {
799 pr_warn("MAP_SHARED not completely supported on !MMU\n");
800 return -EINVAL;
801 }
802 }
803 }
804
805 /* handle executable mappings and implied executable
806 * mappings */
807 if (path_noexec(&file->f_path)) {
808 if (prot & PROT_EXEC)
809 return -EPERM;
810 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
811 /* handle implication of PROT_EXEC by PROT_READ */
812 if (current->personality & READ_IMPLIES_EXEC) {
813 if (capabilities & NOMMU_MAP_EXEC)
814 prot |= PROT_EXEC;
815 }
816 } else if ((prot & PROT_READ) &&
817 (prot & PROT_EXEC) &&
818 !(capabilities & NOMMU_MAP_EXEC)
819 ) {
820 /* backing file is not executable, try to copy */
821 capabilities &= ~NOMMU_MAP_DIRECT;
822 }
823 } else {
824 /* anonymous mappings are always memory backed and can be
825 * privately mapped
826 */
827 capabilities = NOMMU_MAP_COPY;
828
829 /* handle PROT_EXEC implication by PROT_READ */
830 if ((prot & PROT_READ) &&
831 (current->personality & READ_IMPLIES_EXEC))
832 prot |= PROT_EXEC;
833 }
834
835 /* allow the security API to have its say */
836 ret = security_mmap_addr(addr);
837 if (ret < 0)
838 return ret;
839
840 /* looks okay */
841 *_capabilities = capabilities;
842 return 0;
843 }
844
845 /*
846 * we've determined that we can make the mapping, now translate what we
847 * now know into VMA flags
848 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)849 static unsigned long determine_vm_flags(struct file *file,
850 unsigned long prot,
851 unsigned long flags,
852 unsigned long capabilities)
853 {
854 unsigned long vm_flags;
855
856 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
857
858 if (!file) {
859 /*
860 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
861 * there is no fork().
862 */
863 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
864 } else if (flags & MAP_PRIVATE) {
865 /* MAP_PRIVATE file mapping */
866 if (capabilities & NOMMU_MAP_DIRECT)
867 vm_flags |= (capabilities & NOMMU_VMFLAGS);
868 else
869 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
870
871 if (!(prot & PROT_WRITE) && !current->ptrace)
872 /*
873 * R/O private file mapping which cannot be used to
874 * modify memory, especially also not via active ptrace
875 * (e.g., set breakpoints) or later by upgrading
876 * permissions (no mprotect()). We can try overlaying
877 * the file mapping, which will work e.g., on chardevs,
878 * ramfs/tmpfs/shmfs and romfs/cramf.
879 */
880 vm_flags |= VM_MAYOVERLAY;
881 } else {
882 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
883 vm_flags |= VM_SHARED | VM_MAYSHARE |
884 (capabilities & NOMMU_VMFLAGS);
885 }
886
887 return vm_flags;
888 }
889
890 /*
891 * set up a shared mapping on a file (the driver or filesystem provides and
892 * pins the storage)
893 */
do_mmap_shared_file(struct vm_area_struct * vma)894 static int do_mmap_shared_file(struct vm_area_struct *vma)
895 {
896 int ret;
897
898 ret = mmap_file(vma->vm_file, vma);
899 if (ret == 0) {
900 vma->vm_region->vm_top = vma->vm_region->vm_end;
901 return 0;
902 }
903 if (ret != -ENOSYS)
904 return ret;
905
906 /* getting -ENOSYS indicates that direct mmap isn't possible (as
907 * opposed to tried but failed) so we can only give a suitable error as
908 * it's not possible to make a private copy if MAP_SHARED was given */
909 return -ENODEV;
910 }
911
912 /*
913 * set up a private mapping or an anonymous shared mapping
914 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)915 static int do_mmap_private(struct vm_area_struct *vma,
916 struct vm_region *region,
917 unsigned long len,
918 unsigned long capabilities)
919 {
920 unsigned long total, point;
921 void *base;
922 int ret, order;
923
924 /*
925 * Invoke the file's mapping function so that it can keep track of
926 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
927 * it may attempt to share, which will make is_nommu_shared_mapping()
928 * happy.
929 */
930 if (capabilities & NOMMU_MAP_DIRECT) {
931 ret = mmap_file(vma->vm_file, vma);
932 /* shouldn't return success if we're not sharing */
933 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
934 ret = -ENOSYS;
935 if (ret == 0) {
936 vma->vm_region->vm_top = vma->vm_region->vm_end;
937 return 0;
938 }
939 if (ret != -ENOSYS)
940 return ret;
941
942 /* getting an ENOSYS error indicates that direct mmap isn't
943 * possible (as opposed to tried but failed) so we'll try to
944 * make a private copy of the data and map that instead */
945 }
946
947
948 /* allocate some memory to hold the mapping
949 * - note that this may not return a page-aligned address if the object
950 * we're allocating is smaller than a page
951 */
952 order = get_order(len);
953 total = 1 << order;
954 point = len >> PAGE_SHIFT;
955
956 /* we don't want to allocate a power-of-2 sized page set */
957 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
958 total = point;
959
960 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
961 if (!base)
962 goto enomem;
963
964 atomic_long_add(total, &mmap_pages_allocated);
965
966 vm_flags_set(vma, VM_MAPPED_COPY);
967 region->vm_flags = vma->vm_flags;
968 region->vm_start = (unsigned long) base;
969 region->vm_end = region->vm_start + len;
970 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
971
972 vma->vm_start = region->vm_start;
973 vma->vm_end = region->vm_start + len;
974
975 if (vma->vm_file) {
976 /* read the contents of a file into the copy */
977 loff_t fpos;
978
979 fpos = vma->vm_pgoff;
980 fpos <<= PAGE_SHIFT;
981
982 ret = kernel_read(vma->vm_file, base, len, &fpos);
983 if (ret < 0)
984 goto error_free;
985
986 /* clear the last little bit */
987 if (ret < len)
988 memset(base + ret, 0, len - ret);
989
990 } else {
991 vma_set_anonymous(vma);
992 }
993
994 return 0;
995
996 error_free:
997 free_page_series(region->vm_start, region->vm_top);
998 region->vm_start = vma->vm_start = 0;
999 region->vm_end = vma->vm_end = 0;
1000 region->vm_top = 0;
1001 return ret;
1002
1003 enomem:
1004 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1005 len, current->pid, current->comm);
1006 show_mem();
1007 return -ENOMEM;
1008 }
1009
1010 /*
1011 * handle mapping creation for uClinux
1012 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1013 unsigned long do_mmap(struct file *file,
1014 unsigned long addr,
1015 unsigned long len,
1016 unsigned long prot,
1017 unsigned long flags,
1018 vm_flags_t vm_flags,
1019 unsigned long pgoff,
1020 unsigned long *populate,
1021 struct list_head *uf)
1022 {
1023 struct vm_area_struct *vma;
1024 struct vm_region *region;
1025 struct rb_node *rb;
1026 unsigned long capabilities, result;
1027 int ret;
1028 VMA_ITERATOR(vmi, current->mm, 0);
1029
1030 *populate = 0;
1031
1032 /* decide whether we should attempt the mapping, and if so what sort of
1033 * mapping */
1034 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1035 &capabilities);
1036 if (ret < 0)
1037 return ret;
1038
1039 /* we ignore the address hint */
1040 addr = 0;
1041 len = PAGE_ALIGN(len);
1042
1043 /* we've determined that we can make the mapping, now translate what we
1044 * now know into VMA flags */
1045 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1046
1047
1048 /* we're going to need to record the mapping */
1049 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1050 if (!region)
1051 goto error_getting_region;
1052
1053 vma = vm_area_alloc(current->mm);
1054 if (!vma)
1055 goto error_getting_vma;
1056
1057 region->vm_usage = 1;
1058 region->vm_flags = vm_flags;
1059 region->vm_pgoff = pgoff;
1060
1061 vm_flags_init(vma, vm_flags);
1062 vma->vm_pgoff = pgoff;
1063
1064 if (file) {
1065 region->vm_file = get_file(file);
1066 vma->vm_file = get_file(file);
1067 }
1068
1069 down_write(&nommu_region_sem);
1070
1071 /* if we want to share, we need to check for regions created by other
1072 * mmap() calls that overlap with our proposed mapping
1073 * - we can only share with a superset match on most regular files
1074 * - shared mappings on character devices and memory backed files are
1075 * permitted to overlap inexactly as far as we are concerned for in
1076 * these cases, sharing is handled in the driver or filesystem rather
1077 * than here
1078 */
1079 if (is_nommu_shared_mapping(vm_flags)) {
1080 struct vm_region *pregion;
1081 unsigned long pglen, rpglen, pgend, rpgend, start;
1082
1083 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 pgend = pgoff + pglen;
1085
1086 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1087 pregion = rb_entry(rb, struct vm_region, vm_rb);
1088
1089 if (!is_nommu_shared_mapping(pregion->vm_flags))
1090 continue;
1091
1092 /* search for overlapping mappings on the same file */
1093 if (file_inode(pregion->vm_file) !=
1094 file_inode(file))
1095 continue;
1096
1097 if (pregion->vm_pgoff >= pgend)
1098 continue;
1099
1100 rpglen = pregion->vm_end - pregion->vm_start;
1101 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 rpgend = pregion->vm_pgoff + rpglen;
1103 if (pgoff >= rpgend)
1104 continue;
1105
1106 /* handle inexactly overlapping matches between
1107 * mappings */
1108 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1109 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1110 /* new mapping is not a subset of the region */
1111 if (!(capabilities & NOMMU_MAP_DIRECT))
1112 goto sharing_violation;
1113 continue;
1114 }
1115
1116 /* we've found a region we can share */
1117 pregion->vm_usage++;
1118 vma->vm_region = pregion;
1119 start = pregion->vm_start;
1120 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1121 vma->vm_start = start;
1122 vma->vm_end = start + len;
1123
1124 if (pregion->vm_flags & VM_MAPPED_COPY)
1125 vm_flags_set(vma, VM_MAPPED_COPY);
1126 else {
1127 ret = do_mmap_shared_file(vma);
1128 if (ret < 0) {
1129 vma->vm_region = NULL;
1130 vma->vm_start = 0;
1131 vma->vm_end = 0;
1132 pregion->vm_usage--;
1133 pregion = NULL;
1134 goto error_just_free;
1135 }
1136 }
1137 fput(region->vm_file);
1138 kmem_cache_free(vm_region_jar, region);
1139 region = pregion;
1140 result = start;
1141 goto share;
1142 }
1143
1144 /* obtain the address at which to make a shared mapping
1145 * - this is the hook for quasi-memory character devices to
1146 * tell us the location of a shared mapping
1147 */
1148 if (capabilities & NOMMU_MAP_DIRECT) {
1149 addr = file->f_op->get_unmapped_area(file, addr, len,
1150 pgoff, flags);
1151 if (IS_ERR_VALUE(addr)) {
1152 ret = addr;
1153 if (ret != -ENOSYS)
1154 goto error_just_free;
1155
1156 /* the driver refused to tell us where to site
1157 * the mapping so we'll have to attempt to copy
1158 * it */
1159 ret = -ENODEV;
1160 if (!(capabilities & NOMMU_MAP_COPY))
1161 goto error_just_free;
1162
1163 capabilities &= ~NOMMU_MAP_DIRECT;
1164 } else {
1165 vma->vm_start = region->vm_start = addr;
1166 vma->vm_end = region->vm_end = addr + len;
1167 }
1168 }
1169 }
1170
1171 vma->vm_region = region;
1172
1173 /* set up the mapping
1174 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1175 */
1176 if (file && vma->vm_flags & VM_SHARED)
1177 ret = do_mmap_shared_file(vma);
1178 else
1179 ret = do_mmap_private(vma, region, len, capabilities);
1180 if (ret < 0)
1181 goto error_just_free;
1182 add_nommu_region(region);
1183
1184 /* clear anonymous mappings that don't ask for uninitialized data */
1185 if (!vma->vm_file &&
1186 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1187 !(flags & MAP_UNINITIALIZED)))
1188 memset((void *)region->vm_start, 0,
1189 region->vm_end - region->vm_start);
1190
1191 /* okay... we have a mapping; now we have to register it */
1192 result = vma->vm_start;
1193
1194 current->mm->total_vm += len >> PAGE_SHIFT;
1195
1196 share:
1197 BUG_ON(!vma->vm_region);
1198 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1199 if (vma_iter_prealloc(&vmi, vma))
1200 goto error_just_free;
1201
1202 setup_vma_to_mm(vma, current->mm);
1203 current->mm->map_count++;
1204 /* add the VMA to the tree */
1205 vma_iter_store(&vmi, vma);
1206
1207 /* we flush the region from the icache only when the first executable
1208 * mapping of it is made */
1209 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1210 flush_icache_user_range(region->vm_start, region->vm_end);
1211 region->vm_icache_flushed = true;
1212 }
1213
1214 up_write(&nommu_region_sem);
1215
1216 return result;
1217
1218 error_just_free:
1219 up_write(&nommu_region_sem);
1220 error:
1221 vma_iter_free(&vmi);
1222 if (region->vm_file)
1223 fput(region->vm_file);
1224 kmem_cache_free(vm_region_jar, region);
1225 if (vma->vm_file)
1226 fput(vma->vm_file);
1227 vm_area_free(vma);
1228 return ret;
1229
1230 sharing_violation:
1231 up_write(&nommu_region_sem);
1232 pr_warn("Attempt to share mismatched mappings\n");
1233 ret = -EINVAL;
1234 goto error;
1235
1236 error_getting_vma:
1237 kmem_cache_free(vm_region_jar, region);
1238 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1239 len, current->pid);
1240 show_mem();
1241 return -ENOMEM;
1242
1243 error_getting_region:
1244 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1245 len, current->pid);
1246 show_mem();
1247 return -ENOMEM;
1248 }
1249
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1250 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1251 unsigned long prot, unsigned long flags,
1252 unsigned long fd, unsigned long pgoff)
1253 {
1254 struct file *file = NULL;
1255 unsigned long retval = -EBADF;
1256
1257 audit_mmap_fd(fd, flags);
1258 if (!(flags & MAP_ANONYMOUS)) {
1259 file = fget(fd);
1260 if (!file)
1261 goto out;
1262 }
1263
1264 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1265
1266 if (file)
1267 fput(file);
1268 out:
1269 return retval;
1270 }
1271
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1272 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1273 unsigned long, prot, unsigned long, flags,
1274 unsigned long, fd, unsigned long, pgoff)
1275 {
1276 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1277 }
1278
1279 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1280 struct mmap_arg_struct {
1281 unsigned long addr;
1282 unsigned long len;
1283 unsigned long prot;
1284 unsigned long flags;
1285 unsigned long fd;
1286 unsigned long offset;
1287 };
1288
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1289 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1290 {
1291 struct mmap_arg_struct a;
1292
1293 if (copy_from_user(&a, arg, sizeof(a)))
1294 return -EFAULT;
1295 if (offset_in_page(a.offset))
1296 return -EINVAL;
1297
1298 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1299 a.offset >> PAGE_SHIFT);
1300 }
1301 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1302
1303 /*
1304 * split a vma into two pieces at address 'addr', a new vma is allocated either
1305 * for the first part or the tail.
1306 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1307 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1308 unsigned long addr, int new_below)
1309 {
1310 struct vm_area_struct *new;
1311 struct vm_region *region;
1312 unsigned long npages;
1313 struct mm_struct *mm;
1314
1315 /* we're only permitted to split anonymous regions (these should have
1316 * only a single usage on the region) */
1317 if (vma->vm_file)
1318 return -ENOMEM;
1319
1320 mm = vma->vm_mm;
1321 if (mm->map_count >= sysctl_max_map_count)
1322 return -ENOMEM;
1323
1324 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1325 if (!region)
1326 return -ENOMEM;
1327
1328 new = vm_area_dup(vma);
1329 if (!new)
1330 goto err_vma_dup;
1331
1332 /* most fields are the same, copy all, and then fixup */
1333 *region = *vma->vm_region;
1334 new->vm_region = region;
1335
1336 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1337
1338 if (new_below) {
1339 region->vm_top = region->vm_end = new->vm_end = addr;
1340 } else {
1341 region->vm_start = new->vm_start = addr;
1342 region->vm_pgoff = new->vm_pgoff += npages;
1343 }
1344
1345 vma_iter_config(vmi, new->vm_start, new->vm_end);
1346 if (vma_iter_prealloc(vmi, vma)) {
1347 pr_warn("Allocation of vma tree for process %d failed\n",
1348 current->pid);
1349 goto err_vmi_preallocate;
1350 }
1351
1352 if (new->vm_ops && new->vm_ops->open)
1353 new->vm_ops->open(new);
1354
1355 down_write(&nommu_region_sem);
1356 delete_nommu_region(vma->vm_region);
1357 if (new_below) {
1358 vma->vm_region->vm_start = vma->vm_start = addr;
1359 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1360 } else {
1361 vma->vm_region->vm_end = vma->vm_end = addr;
1362 vma->vm_region->vm_top = addr;
1363 }
1364 add_nommu_region(vma->vm_region);
1365 add_nommu_region(new->vm_region);
1366 up_write(&nommu_region_sem);
1367
1368 setup_vma_to_mm(vma, mm);
1369 setup_vma_to_mm(new, mm);
1370 vma_iter_store(vmi, new);
1371 mm->map_count++;
1372 return 0;
1373
1374 err_vmi_preallocate:
1375 vm_area_free(new);
1376 err_vma_dup:
1377 kmem_cache_free(vm_region_jar, region);
1378 return -ENOMEM;
1379 }
1380
1381 /*
1382 * shrink a VMA by removing the specified chunk from either the beginning or
1383 * the end
1384 */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1385 static int vmi_shrink_vma(struct vma_iterator *vmi,
1386 struct vm_area_struct *vma,
1387 unsigned long from, unsigned long to)
1388 {
1389 struct vm_region *region;
1390
1391 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1392 * and list */
1393 if (from > vma->vm_start) {
1394 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1395 return -ENOMEM;
1396 vma->vm_end = from;
1397 } else {
1398 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1399 return -ENOMEM;
1400 vma->vm_start = to;
1401 }
1402
1403 /* cut the backing region down to size */
1404 region = vma->vm_region;
1405 BUG_ON(region->vm_usage != 1);
1406
1407 down_write(&nommu_region_sem);
1408 delete_nommu_region(region);
1409 if (from > region->vm_start) {
1410 to = region->vm_top;
1411 region->vm_top = region->vm_end = from;
1412 } else {
1413 region->vm_start = to;
1414 }
1415 add_nommu_region(region);
1416 up_write(&nommu_region_sem);
1417
1418 free_page_series(from, to);
1419 return 0;
1420 }
1421
1422 /*
1423 * release a mapping
1424 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1425 * VMA, though it need not cover the whole VMA
1426 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1427 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1428 {
1429 VMA_ITERATOR(vmi, mm, start);
1430 struct vm_area_struct *vma;
1431 unsigned long end;
1432 int ret = 0;
1433
1434 len = PAGE_ALIGN(len);
1435 if (len == 0)
1436 return -EINVAL;
1437
1438 end = start + len;
1439
1440 /* find the first potentially overlapping VMA */
1441 vma = vma_find(&vmi, end);
1442 if (!vma) {
1443 static int limit;
1444 if (limit < 5) {
1445 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1446 current->pid, current->comm,
1447 start, start + len - 1);
1448 limit++;
1449 }
1450 return -EINVAL;
1451 }
1452
1453 /* we're allowed to split an anonymous VMA but not a file-backed one */
1454 if (vma->vm_file) {
1455 do {
1456 if (start > vma->vm_start)
1457 return -EINVAL;
1458 if (end == vma->vm_end)
1459 goto erase_whole_vma;
1460 vma = vma_find(&vmi, end);
1461 } while (vma);
1462 return -EINVAL;
1463 } else {
1464 /* the chunk must be a subset of the VMA found */
1465 if (start == vma->vm_start && end == vma->vm_end)
1466 goto erase_whole_vma;
1467 if (start < vma->vm_start || end > vma->vm_end)
1468 return -EINVAL;
1469 if (offset_in_page(start))
1470 return -EINVAL;
1471 if (end != vma->vm_end && offset_in_page(end))
1472 return -EINVAL;
1473 if (start != vma->vm_start && end != vma->vm_end) {
1474 ret = split_vma(&vmi, vma, start, 1);
1475 if (ret < 0)
1476 return ret;
1477 }
1478 return vmi_shrink_vma(&vmi, vma, start, end);
1479 }
1480
1481 erase_whole_vma:
1482 if (delete_vma_from_mm(vma))
1483 ret = -ENOMEM;
1484 else
1485 delete_vma(mm, vma);
1486 return ret;
1487 }
1488
vm_munmap(unsigned long addr,size_t len)1489 int vm_munmap(unsigned long addr, size_t len)
1490 {
1491 struct mm_struct *mm = current->mm;
1492 int ret;
1493
1494 mmap_write_lock(mm);
1495 ret = do_munmap(mm, addr, len, NULL);
1496 mmap_write_unlock(mm);
1497 return ret;
1498 }
1499 EXPORT_SYMBOL(vm_munmap);
1500
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1501 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1502 {
1503 return vm_munmap(addr, len);
1504 }
1505
1506 /*
1507 * release all the mappings made in a process's VM space
1508 */
exit_mmap(struct mm_struct * mm)1509 void exit_mmap(struct mm_struct *mm)
1510 {
1511 VMA_ITERATOR(vmi, mm, 0);
1512 struct vm_area_struct *vma;
1513
1514 if (!mm)
1515 return;
1516
1517 mm->total_vm = 0;
1518
1519 /*
1520 * Lock the mm to avoid assert complaining even though this is the only
1521 * user of the mm
1522 */
1523 mmap_write_lock(mm);
1524 for_each_vma(vmi, vma) {
1525 cleanup_vma_from_mm(vma);
1526 delete_vma(mm, vma);
1527 cond_resched();
1528 }
1529 __mt_destroy(&mm->mm_mt);
1530 mmap_write_unlock(mm);
1531 }
1532
vm_brk(unsigned long addr,unsigned long len)1533 int vm_brk(unsigned long addr, unsigned long len)
1534 {
1535 return -ENOMEM;
1536 }
1537
1538 /*
1539 * expand (or shrink) an existing mapping, potentially moving it at the same
1540 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1541 *
1542 * under NOMMU conditions, we only permit changing a mapping's size, and only
1543 * as long as it stays within the region allocated by do_mmap_private() and the
1544 * block is not shareable
1545 *
1546 * MREMAP_FIXED is not supported under NOMMU conditions
1547 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1548 static unsigned long do_mremap(unsigned long addr,
1549 unsigned long old_len, unsigned long new_len,
1550 unsigned long flags, unsigned long new_addr)
1551 {
1552 struct vm_area_struct *vma;
1553
1554 /* insanity checks first */
1555 old_len = PAGE_ALIGN(old_len);
1556 new_len = PAGE_ALIGN(new_len);
1557 if (old_len == 0 || new_len == 0)
1558 return (unsigned long) -EINVAL;
1559
1560 if (offset_in_page(addr))
1561 return -EINVAL;
1562
1563 if (flags & MREMAP_FIXED && new_addr != addr)
1564 return (unsigned long) -EINVAL;
1565
1566 vma = find_vma_exact(current->mm, addr, old_len);
1567 if (!vma)
1568 return (unsigned long) -EINVAL;
1569
1570 if (vma->vm_end != vma->vm_start + old_len)
1571 return (unsigned long) -EFAULT;
1572
1573 if (is_nommu_shared_mapping(vma->vm_flags))
1574 return (unsigned long) -EPERM;
1575
1576 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1577 return (unsigned long) -ENOMEM;
1578
1579 /* all checks complete - do it */
1580 vma->vm_end = vma->vm_start + new_len;
1581 return vma->vm_start;
1582 }
1583
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1584 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1585 unsigned long, new_len, unsigned long, flags,
1586 unsigned long, new_addr)
1587 {
1588 unsigned long ret;
1589
1590 mmap_write_lock(current->mm);
1591 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1592 mmap_write_unlock(current->mm);
1593 return ret;
1594 }
1595
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1596 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1597 unsigned int foll_flags)
1598 {
1599 return NULL;
1600 }
1601
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1602 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1603 unsigned long pfn, unsigned long size, pgprot_t prot)
1604 {
1605 if (addr != (pfn << PAGE_SHIFT))
1606 return -EINVAL;
1607
1608 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1609 return 0;
1610 }
1611 EXPORT_SYMBOL(remap_pfn_range);
1612
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1613 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1614 {
1615 unsigned long pfn = start >> PAGE_SHIFT;
1616 unsigned long vm_len = vma->vm_end - vma->vm_start;
1617
1618 pfn += vma->vm_pgoff;
1619 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1620 }
1621 EXPORT_SYMBOL(vm_iomap_memory);
1622
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1623 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1624 unsigned long pgoff)
1625 {
1626 unsigned int size = vma->vm_end - vma->vm_start;
1627
1628 if (!(vma->vm_flags & VM_USERMAP))
1629 return -EINVAL;
1630
1631 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1632 vma->vm_end = vma->vm_start + size;
1633
1634 return 0;
1635 }
1636 EXPORT_SYMBOL(remap_vmalloc_range);
1637
filemap_fault(struct vm_fault * vmf)1638 vm_fault_t filemap_fault(struct vm_fault *vmf)
1639 {
1640 BUG();
1641 return 0;
1642 }
1643 EXPORT_SYMBOL(filemap_fault);
1644
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1645 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1646 pgoff_t start_pgoff, pgoff_t end_pgoff)
1647 {
1648 BUG();
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(filemap_map_pages);
1652
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1653 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1654 int len, unsigned int gup_flags)
1655 {
1656 struct vm_area_struct *vma;
1657 int write = gup_flags & FOLL_WRITE;
1658
1659 if (mmap_read_lock_killable(mm))
1660 return 0;
1661
1662 /* the access must start within one of the target process's mappings */
1663 vma = find_vma(mm, addr);
1664 if (vma) {
1665 /* don't overrun this mapping */
1666 if (addr + len >= vma->vm_end)
1667 len = vma->vm_end - addr;
1668
1669 /* only read or write mappings where it is permitted */
1670 if (write && vma->vm_flags & VM_MAYWRITE)
1671 copy_to_user_page(vma, NULL, addr,
1672 (void *) addr, buf, len);
1673 else if (!write && vma->vm_flags & VM_MAYREAD)
1674 copy_from_user_page(vma, NULL, addr,
1675 buf, (void *) addr, len);
1676 else
1677 len = 0;
1678 } else {
1679 len = 0;
1680 }
1681
1682 mmap_read_unlock(mm);
1683
1684 return len;
1685 }
1686
1687 /**
1688 * access_remote_vm - access another process' address space
1689 * @mm: the mm_struct of the target address space
1690 * @addr: start address to access
1691 * @buf: source or destination buffer
1692 * @len: number of bytes to transfer
1693 * @gup_flags: flags modifying lookup behaviour
1694 *
1695 * The caller must hold a reference on @mm.
1696 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1697 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1698 void *buf, int len, unsigned int gup_flags)
1699 {
1700 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1701 }
1702
1703 /*
1704 * Access another process' address space.
1705 * - source/target buffer must be kernel space
1706 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1707 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1708 unsigned int gup_flags)
1709 {
1710 struct mm_struct *mm;
1711
1712 if (addr + len < addr)
1713 return 0;
1714
1715 mm = get_task_mm(tsk);
1716 if (!mm)
1717 return 0;
1718
1719 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1720
1721 mmput(mm);
1722 return len;
1723 }
1724 EXPORT_SYMBOL_GPL(access_process_vm);
1725
1726 /**
1727 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1728 * @inode: The inode to check
1729 * @size: The current filesize of the inode
1730 * @newsize: The proposed filesize of the inode
1731 *
1732 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1733 * make sure that any outstanding VMAs aren't broken and then shrink the
1734 * vm_regions that extend beyond so that do_mmap() doesn't
1735 * automatically grant mappings that are too large.
1736 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1737 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1738 size_t newsize)
1739 {
1740 struct vm_area_struct *vma;
1741 struct vm_region *region;
1742 pgoff_t low, high;
1743 size_t r_size, r_top;
1744
1745 low = newsize >> PAGE_SHIFT;
1746 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1747
1748 down_write(&nommu_region_sem);
1749 i_mmap_lock_read(inode->i_mapping);
1750
1751 /* search for VMAs that fall within the dead zone */
1752 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1753 /* found one - only interested if it's shared out of the page
1754 * cache */
1755 if (vma->vm_flags & VM_SHARED) {
1756 i_mmap_unlock_read(inode->i_mapping);
1757 up_write(&nommu_region_sem);
1758 return -ETXTBSY; /* not quite true, but near enough */
1759 }
1760 }
1761
1762 /* reduce any regions that overlap the dead zone - if in existence,
1763 * these will be pointed to by VMAs that don't overlap the dead zone
1764 *
1765 * we don't check for any regions that start beyond the EOF as there
1766 * shouldn't be any
1767 */
1768 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1769 if (!(vma->vm_flags & VM_SHARED))
1770 continue;
1771
1772 region = vma->vm_region;
1773 r_size = region->vm_top - region->vm_start;
1774 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1775
1776 if (r_top > newsize) {
1777 region->vm_top -= r_top - newsize;
1778 if (region->vm_end > region->vm_top)
1779 region->vm_end = region->vm_top;
1780 }
1781 }
1782
1783 i_mmap_unlock_read(inode->i_mapping);
1784 up_write(&nommu_region_sem);
1785 return 0;
1786 }
1787
1788 /*
1789 * Initialise sysctl_user_reserve_kbytes.
1790 *
1791 * This is intended to prevent a user from starting a single memory hogging
1792 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1793 * mode.
1794 *
1795 * The default value is min(3% of free memory, 128MB)
1796 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1797 */
init_user_reserve(void)1798 static int __meminit init_user_reserve(void)
1799 {
1800 unsigned long free_kbytes;
1801
1802 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1803
1804 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1805 return 0;
1806 }
1807 subsys_initcall(init_user_reserve);
1808
1809 /*
1810 * Initialise sysctl_admin_reserve_kbytes.
1811 *
1812 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1813 * to log in and kill a memory hogging process.
1814 *
1815 * Systems with more than 256MB will reserve 8MB, enough to recover
1816 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1817 * only reserve 3% of free pages by default.
1818 */
init_admin_reserve(void)1819 static int __meminit init_admin_reserve(void)
1820 {
1821 unsigned long free_kbytes;
1822
1823 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1824
1825 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1826 return 0;
1827 }
1828 subsys_initcall(init_admin_reserve);
1829