xref: /openbmc/linux/mm/nommu.c (revision f6d73b12ca9fd3b1c29a6a725cd751b972c740cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
kobjsize(const void * objp)72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return page_size(page);
111 }
112 
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 	unsigned long *pfn)
125 {
126 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 		return -EINVAL;
128 
129 	*pfn = address >> PAGE_SHIFT;
130 	return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133 
134 LIST_HEAD(vmap_area_list);
135 
vfree(const void * addr)136 void vfree(const void *addr)
137 {
138 	kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141 
__vmalloc(unsigned long size,gfp_t gfp_mask)142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 	/*
145 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 	 * returns only a logical address.
147 	 */
148 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151 
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 		unsigned long start, unsigned long end, gfp_t gfp_mask,
154 		pgprot_t prot, unsigned long vm_flags, int node,
155 		const void *caller)
156 {
157 	return __vmalloc(size, gfp_mask);
158 }
159 
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 		int node, const void *caller)
162 {
163 	return __vmalloc(size, gfp_mask);
164 }
165 
__vmalloc_user_flags(unsigned long size,gfp_t flags)166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 	void *ret;
169 
170 	ret = __vmalloc(size, flags);
171 	if (ret) {
172 		struct vm_area_struct *vma;
173 
174 		mmap_write_lock(current->mm);
175 		vma = find_vma(current->mm, (unsigned long)ret);
176 		if (vma)
177 			vm_flags_set(vma, VM_USERMAP);
178 		mmap_write_unlock(current->mm);
179 	}
180 
181 	return ret;
182 }
183 
vmalloc_user(unsigned long size)184 void *vmalloc_user(unsigned long size)
185 {
186 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189 
vmalloc_to_page(const void * addr)190 struct page *vmalloc_to_page(const void *addr)
191 {
192 	return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195 
vmalloc_to_pfn(const void * addr)196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 	return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201 
vread_iter(struct iov_iter * iter,const char * addr,size_t count)202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204 	/* Don't allow overflow */
205 	if ((unsigned long) addr + count < count)
206 		count = -(unsigned long) addr;
207 
208 	return copy_to_iter(addr, count, iter);
209 }
210 
211 /*
212  *	vmalloc  -  allocate virtually contiguous memory
213  *
214  *	@size:		allocation size
215  *
216  *	Allocate enough pages to cover @size from the page level
217  *	allocator and map them into contiguous kernel virtual space.
218  *
219  *	For tight control over page level allocator and protection flags
220  *	use __vmalloc() instead.
221  */
vmalloc(unsigned long size)222 void *vmalloc(unsigned long size)
223 {
224 	return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227 
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
vzalloc(unsigned long size)242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
vmalloc_node(unsigned long size,int node)259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
vzalloc_node(unsigned long size,int node)277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
vmalloc_32(unsigned long size)290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
vmalloc_32_user(unsigned long size)306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
vunmap(const void * addr)323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
vm_map_ram(struct page ** pages,unsigned int count,int node)329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
vm_unmap_ram(const void * mem,unsigned int count)336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
vm_unmap_aliases(void)342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
free_vm_area(struct vm_struct * area)347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
SYSCALL_DEFINE1(brk,unsigned long,brk)381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
mmap_init(void)409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
validate_nommu_regions(void)448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
add_nommu_region(struct vm_region * region)456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
delete_nommu_region(struct vm_region * region)487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
free_page_series(unsigned long from,unsigned long to)499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page((void *)from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
__put_nommu_region(struct vm_region * region)515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
put_nommu_region(struct vm_region * region)541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 	vma->vm_mm = mm;
550 
551 	/* add the VMA to the mapping */
552 	if (vma->vm_file) {
553 		struct address_space *mapping = vma->vm_file->f_mapping;
554 
555 		i_mmap_lock_write(mapping);
556 		flush_dcache_mmap_lock(mapping);
557 		vma_interval_tree_insert(vma, &mapping->i_mmap);
558 		flush_dcache_mmap_unlock(mapping);
559 		i_mmap_unlock_write(mapping);
560 	}
561 }
562 
cleanup_vma_from_mm(struct vm_area_struct * vma)563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 	vma->vm_mm->map_count--;
566 	/* remove the VMA from the mapping */
567 	if (vma->vm_file) {
568 		struct address_space *mapping;
569 		mapping = vma->vm_file->f_mapping;
570 
571 		i_mmap_lock_write(mapping);
572 		flush_dcache_mmap_lock(mapping);
573 		vma_interval_tree_remove(vma, &mapping->i_mmap);
574 		flush_dcache_mmap_unlock(mapping);
575 		i_mmap_unlock_write(mapping);
576 	}
577 }
578 
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
delete_vma_from_mm(struct vm_area_struct * vma)582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585 
586 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587 	if (vma_iter_prealloc(&vmi, NULL)) {
588 		pr_warn("Allocation of vma tree for process %d failed\n",
589 		       current->pid);
590 		return -ENOMEM;
591 	}
592 	cleanup_vma_from_mm(vma);
593 
594 	/* remove from the MM's tree and list */
595 	vma_iter_clear(&vmi);
596 	return 0;
597 }
598 /*
599  * destroy a VMA record
600  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602 {
603 	vma_close(vma);
604 	if (vma->vm_file)
605 		fput(vma->vm_file);
606 	put_nommu_region(vma->vm_region);
607 	vm_area_free(vma);
608 }
609 
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611 					     unsigned long start_addr,
612 					     unsigned long end_addr)
613 {
614 	unsigned long index = start_addr;
615 
616 	mmap_assert_locked(mm);
617 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620 
621 /*
622  * look up the first VMA in which addr resides, NULL if none
623  * - should be called with mm->mmap_lock at least held readlocked
624  */
find_vma(struct mm_struct * mm,unsigned long addr)625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627 	VMA_ITERATOR(vmi, mm, addr);
628 
629 	return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632 
633 /*
634  * At least xtensa ends up having protection faults even with no
635  * MMU.. No stack expansion, at least.
636  */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
638 			unsigned long addr, struct pt_regs *regs)
639 {
640 	struct vm_area_struct *vma;
641 
642 	mmap_read_lock(mm);
643 	vma = vma_lookup(mm, addr);
644 	if (!vma)
645 		mmap_read_unlock(mm);
646 	return vma;
647 }
648 
649 /*
650  * expand a stack to a given address
651  * - not supported under NOMMU conditions
652  */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
654 {
655 	return -ENOMEM;
656 }
657 
expand_stack(struct mm_struct * mm,unsigned long addr)658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
659 {
660 	mmap_read_unlock(mm);
661 	return NULL;
662 }
663 
664 /*
665  * look up the first VMA exactly that exactly matches addr
666  * - should be called with mm->mmap_lock at least held readlocked
667  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
669 					     unsigned long addr,
670 					     unsigned long len)
671 {
672 	struct vm_area_struct *vma;
673 	unsigned long end = addr + len;
674 	VMA_ITERATOR(vmi, mm, addr);
675 
676 	vma = vma_iter_load(&vmi);
677 	if (!vma)
678 		return NULL;
679 	if (vma->vm_start != addr)
680 		return NULL;
681 	if (vma->vm_end != end)
682 		return NULL;
683 
684 	return vma;
685 }
686 
687 /*
688  * determine whether a mapping should be permitted and, if so, what sort of
689  * mapping we're capable of supporting
690  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)691 static int validate_mmap_request(struct file *file,
692 				 unsigned long addr,
693 				 unsigned long len,
694 				 unsigned long prot,
695 				 unsigned long flags,
696 				 unsigned long pgoff,
697 				 unsigned long *_capabilities)
698 {
699 	unsigned long capabilities, rlen;
700 	int ret;
701 
702 	/* do the simple checks first */
703 	if (flags & MAP_FIXED)
704 		return -EINVAL;
705 
706 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
707 	    (flags & MAP_TYPE) != MAP_SHARED)
708 		return -EINVAL;
709 
710 	if (!len)
711 		return -EINVAL;
712 
713 	/* Careful about overflows.. */
714 	rlen = PAGE_ALIGN(len);
715 	if (!rlen || rlen > TASK_SIZE)
716 		return -ENOMEM;
717 
718 	/* offset overflow? */
719 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
720 		return -EOVERFLOW;
721 
722 	if (file) {
723 		/* files must support mmap */
724 		if (!file->f_op->mmap)
725 			return -ENODEV;
726 
727 		/* work out if what we've got could possibly be shared
728 		 * - we support chardevs that provide their own "memory"
729 		 * - we support files/blockdevs that are memory backed
730 		 */
731 		if (file->f_op->mmap_capabilities) {
732 			capabilities = file->f_op->mmap_capabilities(file);
733 		} else {
734 			/* no explicit capabilities set, so assume some
735 			 * defaults */
736 			switch (file_inode(file)->i_mode & S_IFMT) {
737 			case S_IFREG:
738 			case S_IFBLK:
739 				capabilities = NOMMU_MAP_COPY;
740 				break;
741 
742 			case S_IFCHR:
743 				capabilities =
744 					NOMMU_MAP_DIRECT |
745 					NOMMU_MAP_READ |
746 					NOMMU_MAP_WRITE;
747 				break;
748 
749 			default:
750 				return -EINVAL;
751 			}
752 		}
753 
754 		/* eliminate any capabilities that we can't support on this
755 		 * device */
756 		if (!file->f_op->get_unmapped_area)
757 			capabilities &= ~NOMMU_MAP_DIRECT;
758 		if (!(file->f_mode & FMODE_CAN_READ))
759 			capabilities &= ~NOMMU_MAP_COPY;
760 
761 		/* The file shall have been opened with read permission. */
762 		if (!(file->f_mode & FMODE_READ))
763 			return -EACCES;
764 
765 		if (flags & MAP_SHARED) {
766 			/* do checks for writing, appending and locking */
767 			if ((prot & PROT_WRITE) &&
768 			    !(file->f_mode & FMODE_WRITE))
769 				return -EACCES;
770 
771 			if (IS_APPEND(file_inode(file)) &&
772 			    (file->f_mode & FMODE_WRITE))
773 				return -EACCES;
774 
775 			if (!(capabilities & NOMMU_MAP_DIRECT))
776 				return -ENODEV;
777 
778 			/* we mustn't privatise shared mappings */
779 			capabilities &= ~NOMMU_MAP_COPY;
780 		} else {
781 			/* we're going to read the file into private memory we
782 			 * allocate */
783 			if (!(capabilities & NOMMU_MAP_COPY))
784 				return -ENODEV;
785 
786 			/* we don't permit a private writable mapping to be
787 			 * shared with the backing device */
788 			if (prot & PROT_WRITE)
789 				capabilities &= ~NOMMU_MAP_DIRECT;
790 		}
791 
792 		if (capabilities & NOMMU_MAP_DIRECT) {
793 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
794 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
795 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
796 			    ) {
797 				capabilities &= ~NOMMU_MAP_DIRECT;
798 				if (flags & MAP_SHARED) {
799 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
800 					return -EINVAL;
801 				}
802 			}
803 		}
804 
805 		/* handle executable mappings and implied executable
806 		 * mappings */
807 		if (path_noexec(&file->f_path)) {
808 			if (prot & PROT_EXEC)
809 				return -EPERM;
810 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
811 			/* handle implication of PROT_EXEC by PROT_READ */
812 			if (current->personality & READ_IMPLIES_EXEC) {
813 				if (capabilities & NOMMU_MAP_EXEC)
814 					prot |= PROT_EXEC;
815 			}
816 		} else if ((prot & PROT_READ) &&
817 			 (prot & PROT_EXEC) &&
818 			 !(capabilities & NOMMU_MAP_EXEC)
819 			 ) {
820 			/* backing file is not executable, try to copy */
821 			capabilities &= ~NOMMU_MAP_DIRECT;
822 		}
823 	} else {
824 		/* anonymous mappings are always memory backed and can be
825 		 * privately mapped
826 		 */
827 		capabilities = NOMMU_MAP_COPY;
828 
829 		/* handle PROT_EXEC implication by PROT_READ */
830 		if ((prot & PROT_READ) &&
831 		    (current->personality & READ_IMPLIES_EXEC))
832 			prot |= PROT_EXEC;
833 	}
834 
835 	/* allow the security API to have its say */
836 	ret = security_mmap_addr(addr);
837 	if (ret < 0)
838 		return ret;
839 
840 	/* looks okay */
841 	*_capabilities = capabilities;
842 	return 0;
843 }
844 
845 /*
846  * we've determined that we can make the mapping, now translate what we
847  * now know into VMA flags
848  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)849 static unsigned long determine_vm_flags(struct file *file,
850 					unsigned long prot,
851 					unsigned long flags,
852 					unsigned long capabilities)
853 {
854 	unsigned long vm_flags;
855 
856 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
857 
858 	if (!file) {
859 		/*
860 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
861 		 * there is no fork().
862 		 */
863 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
864 	} else if (flags & MAP_PRIVATE) {
865 		/* MAP_PRIVATE file mapping */
866 		if (capabilities & NOMMU_MAP_DIRECT)
867 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
868 		else
869 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
870 
871 		if (!(prot & PROT_WRITE) && !current->ptrace)
872 			/*
873 			 * R/O private file mapping which cannot be used to
874 			 * modify memory, especially also not via active ptrace
875 			 * (e.g., set breakpoints) or later by upgrading
876 			 * permissions (no mprotect()). We can try overlaying
877 			 * the file mapping, which will work e.g., on chardevs,
878 			 * ramfs/tmpfs/shmfs and romfs/cramf.
879 			 */
880 			vm_flags |= VM_MAYOVERLAY;
881 	} else {
882 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
883 		vm_flags |= VM_SHARED | VM_MAYSHARE |
884 			    (capabilities & NOMMU_VMFLAGS);
885 	}
886 
887 	return vm_flags;
888 }
889 
890 /*
891  * set up a shared mapping on a file (the driver or filesystem provides and
892  * pins the storage)
893  */
do_mmap_shared_file(struct vm_area_struct * vma)894 static int do_mmap_shared_file(struct vm_area_struct *vma)
895 {
896 	int ret;
897 
898 	ret = mmap_file(vma->vm_file, vma);
899 	if (ret == 0) {
900 		vma->vm_region->vm_top = vma->vm_region->vm_end;
901 		return 0;
902 	}
903 	if (ret != -ENOSYS)
904 		return ret;
905 
906 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
907 	 * opposed to tried but failed) so we can only give a suitable error as
908 	 * it's not possible to make a private copy if MAP_SHARED was given */
909 	return -ENODEV;
910 }
911 
912 /*
913  * set up a private mapping or an anonymous shared mapping
914  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)915 static int do_mmap_private(struct vm_area_struct *vma,
916 			   struct vm_region *region,
917 			   unsigned long len,
918 			   unsigned long capabilities)
919 {
920 	unsigned long total, point;
921 	void *base;
922 	int ret, order;
923 
924 	/*
925 	 * Invoke the file's mapping function so that it can keep track of
926 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
927 	 * it may attempt to share, which will make is_nommu_shared_mapping()
928 	 * happy.
929 	 */
930 	if (capabilities & NOMMU_MAP_DIRECT) {
931 		ret = mmap_file(vma->vm_file, vma);
932 		/* shouldn't return success if we're not sharing */
933 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
934 			ret = -ENOSYS;
935 		if (ret == 0) {
936 			vma->vm_region->vm_top = vma->vm_region->vm_end;
937 			return 0;
938 		}
939 		if (ret != -ENOSYS)
940 			return ret;
941 
942 		/* getting an ENOSYS error indicates that direct mmap isn't
943 		 * possible (as opposed to tried but failed) so we'll try to
944 		 * make a private copy of the data and map that instead */
945 	}
946 
947 
948 	/* allocate some memory to hold the mapping
949 	 * - note that this may not return a page-aligned address if the object
950 	 *   we're allocating is smaller than a page
951 	 */
952 	order = get_order(len);
953 	total = 1 << order;
954 	point = len >> PAGE_SHIFT;
955 
956 	/* we don't want to allocate a power-of-2 sized page set */
957 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
958 		total = point;
959 
960 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
961 	if (!base)
962 		goto enomem;
963 
964 	atomic_long_add(total, &mmap_pages_allocated);
965 
966 	vm_flags_set(vma, VM_MAPPED_COPY);
967 	region->vm_flags = vma->vm_flags;
968 	region->vm_start = (unsigned long) base;
969 	region->vm_end   = region->vm_start + len;
970 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
971 
972 	vma->vm_start = region->vm_start;
973 	vma->vm_end   = region->vm_start + len;
974 
975 	if (vma->vm_file) {
976 		/* read the contents of a file into the copy */
977 		loff_t fpos;
978 
979 		fpos = vma->vm_pgoff;
980 		fpos <<= PAGE_SHIFT;
981 
982 		ret = kernel_read(vma->vm_file, base, len, &fpos);
983 		if (ret < 0)
984 			goto error_free;
985 
986 		/* clear the last little bit */
987 		if (ret < len)
988 			memset(base + ret, 0, len - ret);
989 
990 	} else {
991 		vma_set_anonymous(vma);
992 	}
993 
994 	return 0;
995 
996 error_free:
997 	free_page_series(region->vm_start, region->vm_top);
998 	region->vm_start = vma->vm_start = 0;
999 	region->vm_end   = vma->vm_end = 0;
1000 	region->vm_top   = 0;
1001 	return ret;
1002 
1003 enomem:
1004 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1005 	       len, current->pid, current->comm);
1006 	show_mem();
1007 	return -ENOMEM;
1008 }
1009 
1010 /*
1011  * handle mapping creation for uClinux
1012  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1013 unsigned long do_mmap(struct file *file,
1014 			unsigned long addr,
1015 			unsigned long len,
1016 			unsigned long prot,
1017 			unsigned long flags,
1018 			vm_flags_t vm_flags,
1019 			unsigned long pgoff,
1020 			unsigned long *populate,
1021 			struct list_head *uf)
1022 {
1023 	struct vm_area_struct *vma;
1024 	struct vm_region *region;
1025 	struct rb_node *rb;
1026 	unsigned long capabilities, result;
1027 	int ret;
1028 	VMA_ITERATOR(vmi, current->mm, 0);
1029 
1030 	*populate = 0;
1031 
1032 	/* decide whether we should attempt the mapping, and if so what sort of
1033 	 * mapping */
1034 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1035 				    &capabilities);
1036 	if (ret < 0)
1037 		return ret;
1038 
1039 	/* we ignore the address hint */
1040 	addr = 0;
1041 	len = PAGE_ALIGN(len);
1042 
1043 	/* we've determined that we can make the mapping, now translate what we
1044 	 * now know into VMA flags */
1045 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1046 
1047 
1048 	/* we're going to need to record the mapping */
1049 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1050 	if (!region)
1051 		goto error_getting_region;
1052 
1053 	vma = vm_area_alloc(current->mm);
1054 	if (!vma)
1055 		goto error_getting_vma;
1056 
1057 	region->vm_usage = 1;
1058 	region->vm_flags = vm_flags;
1059 	region->vm_pgoff = pgoff;
1060 
1061 	vm_flags_init(vma, vm_flags);
1062 	vma->vm_pgoff = pgoff;
1063 
1064 	if (file) {
1065 		region->vm_file = get_file(file);
1066 		vma->vm_file = get_file(file);
1067 	}
1068 
1069 	down_write(&nommu_region_sem);
1070 
1071 	/* if we want to share, we need to check for regions created by other
1072 	 * mmap() calls that overlap with our proposed mapping
1073 	 * - we can only share with a superset match on most regular files
1074 	 * - shared mappings on character devices and memory backed files are
1075 	 *   permitted to overlap inexactly as far as we are concerned for in
1076 	 *   these cases, sharing is handled in the driver or filesystem rather
1077 	 *   than here
1078 	 */
1079 	if (is_nommu_shared_mapping(vm_flags)) {
1080 		struct vm_region *pregion;
1081 		unsigned long pglen, rpglen, pgend, rpgend, start;
1082 
1083 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 		pgend = pgoff + pglen;
1085 
1086 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1087 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1088 
1089 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1090 				continue;
1091 
1092 			/* search for overlapping mappings on the same file */
1093 			if (file_inode(pregion->vm_file) !=
1094 			    file_inode(file))
1095 				continue;
1096 
1097 			if (pregion->vm_pgoff >= pgend)
1098 				continue;
1099 
1100 			rpglen = pregion->vm_end - pregion->vm_start;
1101 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 			rpgend = pregion->vm_pgoff + rpglen;
1103 			if (pgoff >= rpgend)
1104 				continue;
1105 
1106 			/* handle inexactly overlapping matches between
1107 			 * mappings */
1108 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1109 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1110 				/* new mapping is not a subset of the region */
1111 				if (!(capabilities & NOMMU_MAP_DIRECT))
1112 					goto sharing_violation;
1113 				continue;
1114 			}
1115 
1116 			/* we've found a region we can share */
1117 			pregion->vm_usage++;
1118 			vma->vm_region = pregion;
1119 			start = pregion->vm_start;
1120 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1121 			vma->vm_start = start;
1122 			vma->vm_end = start + len;
1123 
1124 			if (pregion->vm_flags & VM_MAPPED_COPY)
1125 				vm_flags_set(vma, VM_MAPPED_COPY);
1126 			else {
1127 				ret = do_mmap_shared_file(vma);
1128 				if (ret < 0) {
1129 					vma->vm_region = NULL;
1130 					vma->vm_start = 0;
1131 					vma->vm_end = 0;
1132 					pregion->vm_usage--;
1133 					pregion = NULL;
1134 					goto error_just_free;
1135 				}
1136 			}
1137 			fput(region->vm_file);
1138 			kmem_cache_free(vm_region_jar, region);
1139 			region = pregion;
1140 			result = start;
1141 			goto share;
1142 		}
1143 
1144 		/* obtain the address at which to make a shared mapping
1145 		 * - this is the hook for quasi-memory character devices to
1146 		 *   tell us the location of a shared mapping
1147 		 */
1148 		if (capabilities & NOMMU_MAP_DIRECT) {
1149 			addr = file->f_op->get_unmapped_area(file, addr, len,
1150 							     pgoff, flags);
1151 			if (IS_ERR_VALUE(addr)) {
1152 				ret = addr;
1153 				if (ret != -ENOSYS)
1154 					goto error_just_free;
1155 
1156 				/* the driver refused to tell us where to site
1157 				 * the mapping so we'll have to attempt to copy
1158 				 * it */
1159 				ret = -ENODEV;
1160 				if (!(capabilities & NOMMU_MAP_COPY))
1161 					goto error_just_free;
1162 
1163 				capabilities &= ~NOMMU_MAP_DIRECT;
1164 			} else {
1165 				vma->vm_start = region->vm_start = addr;
1166 				vma->vm_end = region->vm_end = addr + len;
1167 			}
1168 		}
1169 	}
1170 
1171 	vma->vm_region = region;
1172 
1173 	/* set up the mapping
1174 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1175 	 */
1176 	if (file && vma->vm_flags & VM_SHARED)
1177 		ret = do_mmap_shared_file(vma);
1178 	else
1179 		ret = do_mmap_private(vma, region, len, capabilities);
1180 	if (ret < 0)
1181 		goto error_just_free;
1182 	add_nommu_region(region);
1183 
1184 	/* clear anonymous mappings that don't ask for uninitialized data */
1185 	if (!vma->vm_file &&
1186 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1187 	     !(flags & MAP_UNINITIALIZED)))
1188 		memset((void *)region->vm_start, 0,
1189 		       region->vm_end - region->vm_start);
1190 
1191 	/* okay... we have a mapping; now we have to register it */
1192 	result = vma->vm_start;
1193 
1194 	current->mm->total_vm += len >> PAGE_SHIFT;
1195 
1196 share:
1197 	BUG_ON(!vma->vm_region);
1198 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1199 	if (vma_iter_prealloc(&vmi, vma))
1200 		goto error_just_free;
1201 
1202 	setup_vma_to_mm(vma, current->mm);
1203 	current->mm->map_count++;
1204 	/* add the VMA to the tree */
1205 	vma_iter_store(&vmi, vma);
1206 
1207 	/* we flush the region from the icache only when the first executable
1208 	 * mapping of it is made  */
1209 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1210 		flush_icache_user_range(region->vm_start, region->vm_end);
1211 		region->vm_icache_flushed = true;
1212 	}
1213 
1214 	up_write(&nommu_region_sem);
1215 
1216 	return result;
1217 
1218 error_just_free:
1219 	up_write(&nommu_region_sem);
1220 error:
1221 	vma_iter_free(&vmi);
1222 	if (region->vm_file)
1223 		fput(region->vm_file);
1224 	kmem_cache_free(vm_region_jar, region);
1225 	if (vma->vm_file)
1226 		fput(vma->vm_file);
1227 	vm_area_free(vma);
1228 	return ret;
1229 
1230 sharing_violation:
1231 	up_write(&nommu_region_sem);
1232 	pr_warn("Attempt to share mismatched mappings\n");
1233 	ret = -EINVAL;
1234 	goto error;
1235 
1236 error_getting_vma:
1237 	kmem_cache_free(vm_region_jar, region);
1238 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1239 			len, current->pid);
1240 	show_mem();
1241 	return -ENOMEM;
1242 
1243 error_getting_region:
1244 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1245 			len, current->pid);
1246 	show_mem();
1247 	return -ENOMEM;
1248 }
1249 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1250 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1251 			      unsigned long prot, unsigned long flags,
1252 			      unsigned long fd, unsigned long pgoff)
1253 {
1254 	struct file *file = NULL;
1255 	unsigned long retval = -EBADF;
1256 
1257 	audit_mmap_fd(fd, flags);
1258 	if (!(flags & MAP_ANONYMOUS)) {
1259 		file = fget(fd);
1260 		if (!file)
1261 			goto out;
1262 	}
1263 
1264 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1265 
1266 	if (file)
1267 		fput(file);
1268 out:
1269 	return retval;
1270 }
1271 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1272 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1273 		unsigned long, prot, unsigned long, flags,
1274 		unsigned long, fd, unsigned long, pgoff)
1275 {
1276 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1277 }
1278 
1279 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1280 struct mmap_arg_struct {
1281 	unsigned long addr;
1282 	unsigned long len;
1283 	unsigned long prot;
1284 	unsigned long flags;
1285 	unsigned long fd;
1286 	unsigned long offset;
1287 };
1288 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1289 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1290 {
1291 	struct mmap_arg_struct a;
1292 
1293 	if (copy_from_user(&a, arg, sizeof(a)))
1294 		return -EFAULT;
1295 	if (offset_in_page(a.offset))
1296 		return -EINVAL;
1297 
1298 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1299 			       a.offset >> PAGE_SHIFT);
1300 }
1301 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1302 
1303 /*
1304  * split a vma into two pieces at address 'addr', a new vma is allocated either
1305  * for the first part or the tail.
1306  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1307 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1308 	      unsigned long addr, int new_below)
1309 {
1310 	struct vm_area_struct *new;
1311 	struct vm_region *region;
1312 	unsigned long npages;
1313 	struct mm_struct *mm;
1314 
1315 	/* we're only permitted to split anonymous regions (these should have
1316 	 * only a single usage on the region) */
1317 	if (vma->vm_file)
1318 		return -ENOMEM;
1319 
1320 	mm = vma->vm_mm;
1321 	if (mm->map_count >= sysctl_max_map_count)
1322 		return -ENOMEM;
1323 
1324 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1325 	if (!region)
1326 		return -ENOMEM;
1327 
1328 	new = vm_area_dup(vma);
1329 	if (!new)
1330 		goto err_vma_dup;
1331 
1332 	/* most fields are the same, copy all, and then fixup */
1333 	*region = *vma->vm_region;
1334 	new->vm_region = region;
1335 
1336 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1337 
1338 	if (new_below) {
1339 		region->vm_top = region->vm_end = new->vm_end = addr;
1340 	} else {
1341 		region->vm_start = new->vm_start = addr;
1342 		region->vm_pgoff = new->vm_pgoff += npages;
1343 	}
1344 
1345 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1346 	if (vma_iter_prealloc(vmi, vma)) {
1347 		pr_warn("Allocation of vma tree for process %d failed\n",
1348 			current->pid);
1349 		goto err_vmi_preallocate;
1350 	}
1351 
1352 	if (new->vm_ops && new->vm_ops->open)
1353 		new->vm_ops->open(new);
1354 
1355 	down_write(&nommu_region_sem);
1356 	delete_nommu_region(vma->vm_region);
1357 	if (new_below) {
1358 		vma->vm_region->vm_start = vma->vm_start = addr;
1359 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1360 	} else {
1361 		vma->vm_region->vm_end = vma->vm_end = addr;
1362 		vma->vm_region->vm_top = addr;
1363 	}
1364 	add_nommu_region(vma->vm_region);
1365 	add_nommu_region(new->vm_region);
1366 	up_write(&nommu_region_sem);
1367 
1368 	setup_vma_to_mm(vma, mm);
1369 	setup_vma_to_mm(new, mm);
1370 	vma_iter_store(vmi, new);
1371 	mm->map_count++;
1372 	return 0;
1373 
1374 err_vmi_preallocate:
1375 	vm_area_free(new);
1376 err_vma_dup:
1377 	kmem_cache_free(vm_region_jar, region);
1378 	return -ENOMEM;
1379 }
1380 
1381 /*
1382  * shrink a VMA by removing the specified chunk from either the beginning or
1383  * the end
1384  */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1385 static int vmi_shrink_vma(struct vma_iterator *vmi,
1386 		      struct vm_area_struct *vma,
1387 		      unsigned long from, unsigned long to)
1388 {
1389 	struct vm_region *region;
1390 
1391 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1392 	 * and list */
1393 	if (from > vma->vm_start) {
1394 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1395 			return -ENOMEM;
1396 		vma->vm_end = from;
1397 	} else {
1398 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1399 			return -ENOMEM;
1400 		vma->vm_start = to;
1401 	}
1402 
1403 	/* cut the backing region down to size */
1404 	region = vma->vm_region;
1405 	BUG_ON(region->vm_usage != 1);
1406 
1407 	down_write(&nommu_region_sem);
1408 	delete_nommu_region(region);
1409 	if (from > region->vm_start) {
1410 		to = region->vm_top;
1411 		region->vm_top = region->vm_end = from;
1412 	} else {
1413 		region->vm_start = to;
1414 	}
1415 	add_nommu_region(region);
1416 	up_write(&nommu_region_sem);
1417 
1418 	free_page_series(from, to);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * release a mapping
1424  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1425  *   VMA, though it need not cover the whole VMA
1426  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1427 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1428 {
1429 	VMA_ITERATOR(vmi, mm, start);
1430 	struct vm_area_struct *vma;
1431 	unsigned long end;
1432 	int ret = 0;
1433 
1434 	len = PAGE_ALIGN(len);
1435 	if (len == 0)
1436 		return -EINVAL;
1437 
1438 	end = start + len;
1439 
1440 	/* find the first potentially overlapping VMA */
1441 	vma = vma_find(&vmi, end);
1442 	if (!vma) {
1443 		static int limit;
1444 		if (limit < 5) {
1445 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1446 					current->pid, current->comm,
1447 					start, start + len - 1);
1448 			limit++;
1449 		}
1450 		return -EINVAL;
1451 	}
1452 
1453 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1454 	if (vma->vm_file) {
1455 		do {
1456 			if (start > vma->vm_start)
1457 				return -EINVAL;
1458 			if (end == vma->vm_end)
1459 				goto erase_whole_vma;
1460 			vma = vma_find(&vmi, end);
1461 		} while (vma);
1462 		return -EINVAL;
1463 	} else {
1464 		/* the chunk must be a subset of the VMA found */
1465 		if (start == vma->vm_start && end == vma->vm_end)
1466 			goto erase_whole_vma;
1467 		if (start < vma->vm_start || end > vma->vm_end)
1468 			return -EINVAL;
1469 		if (offset_in_page(start))
1470 			return -EINVAL;
1471 		if (end != vma->vm_end && offset_in_page(end))
1472 			return -EINVAL;
1473 		if (start != vma->vm_start && end != vma->vm_end) {
1474 			ret = split_vma(&vmi, vma, start, 1);
1475 			if (ret < 0)
1476 				return ret;
1477 		}
1478 		return vmi_shrink_vma(&vmi, vma, start, end);
1479 	}
1480 
1481 erase_whole_vma:
1482 	if (delete_vma_from_mm(vma))
1483 		ret = -ENOMEM;
1484 	else
1485 		delete_vma(mm, vma);
1486 	return ret;
1487 }
1488 
vm_munmap(unsigned long addr,size_t len)1489 int vm_munmap(unsigned long addr, size_t len)
1490 {
1491 	struct mm_struct *mm = current->mm;
1492 	int ret;
1493 
1494 	mmap_write_lock(mm);
1495 	ret = do_munmap(mm, addr, len, NULL);
1496 	mmap_write_unlock(mm);
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL(vm_munmap);
1500 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1501 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1502 {
1503 	return vm_munmap(addr, len);
1504 }
1505 
1506 /*
1507  * release all the mappings made in a process's VM space
1508  */
exit_mmap(struct mm_struct * mm)1509 void exit_mmap(struct mm_struct *mm)
1510 {
1511 	VMA_ITERATOR(vmi, mm, 0);
1512 	struct vm_area_struct *vma;
1513 
1514 	if (!mm)
1515 		return;
1516 
1517 	mm->total_vm = 0;
1518 
1519 	/*
1520 	 * Lock the mm to avoid assert complaining even though this is the only
1521 	 * user of the mm
1522 	 */
1523 	mmap_write_lock(mm);
1524 	for_each_vma(vmi, vma) {
1525 		cleanup_vma_from_mm(vma);
1526 		delete_vma(mm, vma);
1527 		cond_resched();
1528 	}
1529 	__mt_destroy(&mm->mm_mt);
1530 	mmap_write_unlock(mm);
1531 }
1532 
vm_brk(unsigned long addr,unsigned long len)1533 int vm_brk(unsigned long addr, unsigned long len)
1534 {
1535 	return -ENOMEM;
1536 }
1537 
1538 /*
1539  * expand (or shrink) an existing mapping, potentially moving it at the same
1540  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1541  *
1542  * under NOMMU conditions, we only permit changing a mapping's size, and only
1543  * as long as it stays within the region allocated by do_mmap_private() and the
1544  * block is not shareable
1545  *
1546  * MREMAP_FIXED is not supported under NOMMU conditions
1547  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1548 static unsigned long do_mremap(unsigned long addr,
1549 			unsigned long old_len, unsigned long new_len,
1550 			unsigned long flags, unsigned long new_addr)
1551 {
1552 	struct vm_area_struct *vma;
1553 
1554 	/* insanity checks first */
1555 	old_len = PAGE_ALIGN(old_len);
1556 	new_len = PAGE_ALIGN(new_len);
1557 	if (old_len == 0 || new_len == 0)
1558 		return (unsigned long) -EINVAL;
1559 
1560 	if (offset_in_page(addr))
1561 		return -EINVAL;
1562 
1563 	if (flags & MREMAP_FIXED && new_addr != addr)
1564 		return (unsigned long) -EINVAL;
1565 
1566 	vma = find_vma_exact(current->mm, addr, old_len);
1567 	if (!vma)
1568 		return (unsigned long) -EINVAL;
1569 
1570 	if (vma->vm_end != vma->vm_start + old_len)
1571 		return (unsigned long) -EFAULT;
1572 
1573 	if (is_nommu_shared_mapping(vma->vm_flags))
1574 		return (unsigned long) -EPERM;
1575 
1576 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1577 		return (unsigned long) -ENOMEM;
1578 
1579 	/* all checks complete - do it */
1580 	vma->vm_end = vma->vm_start + new_len;
1581 	return vma->vm_start;
1582 }
1583 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1584 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1585 		unsigned long, new_len, unsigned long, flags,
1586 		unsigned long, new_addr)
1587 {
1588 	unsigned long ret;
1589 
1590 	mmap_write_lock(current->mm);
1591 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1592 	mmap_write_unlock(current->mm);
1593 	return ret;
1594 }
1595 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1596 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1597 			 unsigned int foll_flags)
1598 {
1599 	return NULL;
1600 }
1601 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1602 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1603 		unsigned long pfn, unsigned long size, pgprot_t prot)
1604 {
1605 	if (addr != (pfn << PAGE_SHIFT))
1606 		return -EINVAL;
1607 
1608 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(remap_pfn_range);
1612 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1613 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1614 {
1615 	unsigned long pfn = start >> PAGE_SHIFT;
1616 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1617 
1618 	pfn += vma->vm_pgoff;
1619 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1620 }
1621 EXPORT_SYMBOL(vm_iomap_memory);
1622 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1623 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1624 			unsigned long pgoff)
1625 {
1626 	unsigned int size = vma->vm_end - vma->vm_start;
1627 
1628 	if (!(vma->vm_flags & VM_USERMAP))
1629 		return -EINVAL;
1630 
1631 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1632 	vma->vm_end = vma->vm_start + size;
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(remap_vmalloc_range);
1637 
filemap_fault(struct vm_fault * vmf)1638 vm_fault_t filemap_fault(struct vm_fault *vmf)
1639 {
1640 	BUG();
1641 	return 0;
1642 }
1643 EXPORT_SYMBOL(filemap_fault);
1644 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1645 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1646 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1647 {
1648 	BUG();
1649 	return 0;
1650 }
1651 EXPORT_SYMBOL(filemap_map_pages);
1652 
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1653 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1654 		       int len, unsigned int gup_flags)
1655 {
1656 	struct vm_area_struct *vma;
1657 	int write = gup_flags & FOLL_WRITE;
1658 
1659 	if (mmap_read_lock_killable(mm))
1660 		return 0;
1661 
1662 	/* the access must start within one of the target process's mappings */
1663 	vma = find_vma(mm, addr);
1664 	if (vma) {
1665 		/* don't overrun this mapping */
1666 		if (addr + len >= vma->vm_end)
1667 			len = vma->vm_end - addr;
1668 
1669 		/* only read or write mappings where it is permitted */
1670 		if (write && vma->vm_flags & VM_MAYWRITE)
1671 			copy_to_user_page(vma, NULL, addr,
1672 					 (void *) addr, buf, len);
1673 		else if (!write && vma->vm_flags & VM_MAYREAD)
1674 			copy_from_user_page(vma, NULL, addr,
1675 					    buf, (void *) addr, len);
1676 		else
1677 			len = 0;
1678 	} else {
1679 		len = 0;
1680 	}
1681 
1682 	mmap_read_unlock(mm);
1683 
1684 	return len;
1685 }
1686 
1687 /**
1688  * access_remote_vm - access another process' address space
1689  * @mm:		the mm_struct of the target address space
1690  * @addr:	start address to access
1691  * @buf:	source or destination buffer
1692  * @len:	number of bytes to transfer
1693  * @gup_flags:	flags modifying lookup behaviour
1694  *
1695  * The caller must hold a reference on @mm.
1696  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1697 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1698 		void *buf, int len, unsigned int gup_flags)
1699 {
1700 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1701 }
1702 
1703 /*
1704  * Access another process' address space.
1705  * - source/target buffer must be kernel space
1706  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1707 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1708 		unsigned int gup_flags)
1709 {
1710 	struct mm_struct *mm;
1711 
1712 	if (addr + len < addr)
1713 		return 0;
1714 
1715 	mm = get_task_mm(tsk);
1716 	if (!mm)
1717 		return 0;
1718 
1719 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1720 
1721 	mmput(mm);
1722 	return len;
1723 }
1724 EXPORT_SYMBOL_GPL(access_process_vm);
1725 
1726 /**
1727  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1728  * @inode: The inode to check
1729  * @size: The current filesize of the inode
1730  * @newsize: The proposed filesize of the inode
1731  *
1732  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1733  * make sure that any outstanding VMAs aren't broken and then shrink the
1734  * vm_regions that extend beyond so that do_mmap() doesn't
1735  * automatically grant mappings that are too large.
1736  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1737 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1738 				size_t newsize)
1739 {
1740 	struct vm_area_struct *vma;
1741 	struct vm_region *region;
1742 	pgoff_t low, high;
1743 	size_t r_size, r_top;
1744 
1745 	low = newsize >> PAGE_SHIFT;
1746 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1747 
1748 	down_write(&nommu_region_sem);
1749 	i_mmap_lock_read(inode->i_mapping);
1750 
1751 	/* search for VMAs that fall within the dead zone */
1752 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1753 		/* found one - only interested if it's shared out of the page
1754 		 * cache */
1755 		if (vma->vm_flags & VM_SHARED) {
1756 			i_mmap_unlock_read(inode->i_mapping);
1757 			up_write(&nommu_region_sem);
1758 			return -ETXTBSY; /* not quite true, but near enough */
1759 		}
1760 	}
1761 
1762 	/* reduce any regions that overlap the dead zone - if in existence,
1763 	 * these will be pointed to by VMAs that don't overlap the dead zone
1764 	 *
1765 	 * we don't check for any regions that start beyond the EOF as there
1766 	 * shouldn't be any
1767 	 */
1768 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1769 		if (!(vma->vm_flags & VM_SHARED))
1770 			continue;
1771 
1772 		region = vma->vm_region;
1773 		r_size = region->vm_top - region->vm_start;
1774 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1775 
1776 		if (r_top > newsize) {
1777 			region->vm_top -= r_top - newsize;
1778 			if (region->vm_end > region->vm_top)
1779 				region->vm_end = region->vm_top;
1780 		}
1781 	}
1782 
1783 	i_mmap_unlock_read(inode->i_mapping);
1784 	up_write(&nommu_region_sem);
1785 	return 0;
1786 }
1787 
1788 /*
1789  * Initialise sysctl_user_reserve_kbytes.
1790  *
1791  * This is intended to prevent a user from starting a single memory hogging
1792  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1793  * mode.
1794  *
1795  * The default value is min(3% of free memory, 128MB)
1796  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1797  */
init_user_reserve(void)1798 static int __meminit init_user_reserve(void)
1799 {
1800 	unsigned long free_kbytes;
1801 
1802 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1803 
1804 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1805 	return 0;
1806 }
1807 subsys_initcall(init_user_reserve);
1808 
1809 /*
1810  * Initialise sysctl_admin_reserve_kbytes.
1811  *
1812  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1813  * to log in and kill a memory hogging process.
1814  *
1815  * Systems with more than 256MB will reserve 8MB, enough to recover
1816  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1817  * only reserve 3% of free pages by default.
1818  */
init_admin_reserve(void)1819 static int __meminit init_admin_reserve(void)
1820 {
1821 	unsigned long free_kbytes;
1822 
1823 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1824 
1825 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1826 	return 0;
1827 }
1828 subsys_initcall(init_admin_reserve);
1829