1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include "internal.h" 37 38 static inline __attribute__((format(printf, 1, 2))) 39 void no_printk(const char *fmt, ...) 40 { 41 } 42 43 #if 0 44 #define kenter(FMT, ...) \ 45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 46 #define kleave(FMT, ...) \ 47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 48 #define kdebug(FMT, ...) \ 49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 50 #else 51 #define kenter(FMT, ...) \ 52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 53 #define kleave(FMT, ...) \ 54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 55 #define kdebug(FMT, ...) \ 56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 57 #endif 58 59 #include "internal.h" 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long num_physpages; 65 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0); 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = 1; /* page trimming behaviour */ 70 int heap_stack_gap = 0; 71 72 atomic_t mmap_pages_allocated; 73 74 EXPORT_SYMBOL(mem_map); 75 EXPORT_SYMBOL(num_physpages); 76 77 /* list of mapped, potentially shareable regions */ 78 static struct kmem_cache *vm_region_jar; 79 struct rb_root nommu_region_tree = RB_ROOT; 80 DECLARE_RWSEM(nommu_region_sem); 81 82 struct vm_operations_struct generic_file_vm_ops = { 83 }; 84 85 /* 86 * Handle all mappings that got truncated by a "truncate()" 87 * system call. 88 * 89 * NOTE! We have to be ready to update the memory sharing 90 * between the file and the memory map for a potential last 91 * incomplete page. Ugly, but necessary. 92 */ 93 int vmtruncate(struct inode *inode, loff_t offset) 94 { 95 struct address_space *mapping = inode->i_mapping; 96 unsigned long limit; 97 98 if (inode->i_size < offset) 99 goto do_expand; 100 i_size_write(inode, offset); 101 102 truncate_inode_pages(mapping, offset); 103 goto out_truncate; 104 105 do_expand: 106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 107 if (limit != RLIM_INFINITY && offset > limit) 108 goto out_sig; 109 if (offset > inode->i_sb->s_maxbytes) 110 goto out; 111 i_size_write(inode, offset); 112 113 out_truncate: 114 if (inode->i_op->truncate) 115 inode->i_op->truncate(inode); 116 return 0; 117 out_sig: 118 send_sig(SIGXFSZ, current, 0); 119 out: 120 return -EFBIG; 121 } 122 123 EXPORT_SYMBOL(vmtruncate); 124 125 /* 126 * Return the total memory allocated for this pointer, not 127 * just what the caller asked for. 128 * 129 * Doesn't have to be accurate, i.e. may have races. 130 */ 131 unsigned int kobjsize(const void *objp) 132 { 133 struct page *page; 134 135 /* 136 * If the object we have should not have ksize performed on it, 137 * return size of 0 138 */ 139 if (!objp || !virt_addr_valid(objp)) 140 return 0; 141 142 page = virt_to_head_page(objp); 143 144 /* 145 * If the allocator sets PageSlab, we know the pointer came from 146 * kmalloc(). 147 */ 148 if (PageSlab(page)) 149 return ksize(objp); 150 151 /* 152 * If it's not a compound page, see if we have a matching VMA 153 * region. This test is intentionally done in reverse order, 154 * so if there's no VMA, we still fall through and hand back 155 * PAGE_SIZE for 0-order pages. 156 */ 157 if (!PageCompound(page)) { 158 struct vm_area_struct *vma; 159 160 vma = find_vma(current->mm, (unsigned long)objp); 161 if (vma) 162 return vma->vm_end - vma->vm_start; 163 } 164 165 /* 166 * The ksize() function is only guaranteed to work for pointers 167 * returned by kmalloc(). So handle arbitrary pointers here. 168 */ 169 return PAGE_SIZE << compound_order(page); 170 } 171 172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 173 unsigned long start, int len, int flags, 174 struct page **pages, struct vm_area_struct **vmas) 175 { 176 struct vm_area_struct *vma; 177 unsigned long vm_flags; 178 int i; 179 int write = !!(flags & GUP_FLAGS_WRITE); 180 int force = !!(flags & GUP_FLAGS_FORCE); 181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 182 183 /* calculate required read or write permissions. 184 * - if 'force' is set, we only require the "MAY" flags. 185 */ 186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 188 189 for (i = 0; i < len; i++) { 190 vma = find_vma(mm, start); 191 if (!vma) 192 goto finish_or_fault; 193 194 /* protect what we can, including chardevs */ 195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) || 196 (!ignore && !(vm_flags & vma->vm_flags))) 197 goto finish_or_fault; 198 199 if (pages) { 200 pages[i] = virt_to_page(start); 201 if (pages[i]) 202 page_cache_get(pages[i]); 203 } 204 if (vmas) 205 vmas[i] = vma; 206 start += PAGE_SIZE; 207 } 208 209 return i; 210 211 finish_or_fault: 212 return i ? : -EFAULT; 213 } 214 215 216 /* 217 * get a list of pages in an address range belonging to the specified process 218 * and indicate the VMA that covers each page 219 * - this is potentially dodgy as we may end incrementing the page count of a 220 * slab page or a secondary page from a compound page 221 * - don't permit access to VMAs that don't support it, such as I/O mappings 222 */ 223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 224 unsigned long start, int len, int write, int force, 225 struct page **pages, struct vm_area_struct **vmas) 226 { 227 int flags = 0; 228 229 if (write) 230 flags |= GUP_FLAGS_WRITE; 231 if (force) 232 flags |= GUP_FLAGS_FORCE; 233 234 return __get_user_pages(tsk, mm, 235 start, len, flags, 236 pages, vmas); 237 } 238 EXPORT_SYMBOL(get_user_pages); 239 240 DEFINE_RWLOCK(vmlist_lock); 241 struct vm_struct *vmlist; 242 243 void vfree(const void *addr) 244 { 245 kfree(addr); 246 } 247 EXPORT_SYMBOL(vfree); 248 249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 250 { 251 /* 252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 253 * returns only a logical address. 254 */ 255 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 256 } 257 EXPORT_SYMBOL(__vmalloc); 258 259 void *vmalloc_user(unsigned long size) 260 { 261 void *ret; 262 263 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 264 PAGE_KERNEL); 265 if (ret) { 266 struct vm_area_struct *vma; 267 268 down_write(¤t->mm->mmap_sem); 269 vma = find_vma(current->mm, (unsigned long)ret); 270 if (vma) 271 vma->vm_flags |= VM_USERMAP; 272 up_write(¤t->mm->mmap_sem); 273 } 274 275 return ret; 276 } 277 EXPORT_SYMBOL(vmalloc_user); 278 279 struct page *vmalloc_to_page(const void *addr) 280 { 281 return virt_to_page(addr); 282 } 283 EXPORT_SYMBOL(vmalloc_to_page); 284 285 unsigned long vmalloc_to_pfn(const void *addr) 286 { 287 return page_to_pfn(virt_to_page(addr)); 288 } 289 EXPORT_SYMBOL(vmalloc_to_pfn); 290 291 long vread(char *buf, char *addr, unsigned long count) 292 { 293 memcpy(buf, addr, count); 294 return count; 295 } 296 297 long vwrite(char *buf, char *addr, unsigned long count) 298 { 299 /* Don't allow overflow */ 300 if ((unsigned long) addr + count < count) 301 count = -(unsigned long) addr; 302 303 memcpy(addr, buf, count); 304 return(count); 305 } 306 307 /* 308 * vmalloc - allocate virtually continguos memory 309 * 310 * @size: allocation size 311 * 312 * Allocate enough pages to cover @size from the page level 313 * allocator and map them into continguos kernel virtual space. 314 * 315 * For tight control over page level allocator and protection flags 316 * use __vmalloc() instead. 317 */ 318 void *vmalloc(unsigned long size) 319 { 320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 321 } 322 EXPORT_SYMBOL(vmalloc); 323 324 void *vmalloc_node(unsigned long size, int node) 325 { 326 return vmalloc(size); 327 } 328 EXPORT_SYMBOL(vmalloc_node); 329 330 #ifndef PAGE_KERNEL_EXEC 331 # define PAGE_KERNEL_EXEC PAGE_KERNEL 332 #endif 333 334 /** 335 * vmalloc_exec - allocate virtually contiguous, executable memory 336 * @size: allocation size 337 * 338 * Kernel-internal function to allocate enough pages to cover @size 339 * the page level allocator and map them into contiguous and 340 * executable kernel virtual space. 341 * 342 * For tight control over page level allocator and protection flags 343 * use __vmalloc() instead. 344 */ 345 346 void *vmalloc_exec(unsigned long size) 347 { 348 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 349 } 350 351 /** 352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 353 * @size: allocation size 354 * 355 * Allocate enough 32bit PA addressable pages to cover @size from the 356 * page level allocator and map them into continguos kernel virtual space. 357 */ 358 void *vmalloc_32(unsigned long size) 359 { 360 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 361 } 362 EXPORT_SYMBOL(vmalloc_32); 363 364 /** 365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 366 * @size: allocation size 367 * 368 * The resulting memory area is 32bit addressable and zeroed so it can be 369 * mapped to userspace without leaking data. 370 * 371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 372 * remap_vmalloc_range() are permissible. 373 */ 374 void *vmalloc_32_user(unsigned long size) 375 { 376 /* 377 * We'll have to sort out the ZONE_DMA bits for 64-bit, 378 * but for now this can simply use vmalloc_user() directly. 379 */ 380 return vmalloc_user(size); 381 } 382 EXPORT_SYMBOL(vmalloc_32_user); 383 384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 385 { 386 BUG(); 387 return NULL; 388 } 389 EXPORT_SYMBOL(vmap); 390 391 void vunmap(const void *addr) 392 { 393 BUG(); 394 } 395 EXPORT_SYMBOL(vunmap); 396 397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 398 { 399 BUG(); 400 return NULL; 401 } 402 EXPORT_SYMBOL(vm_map_ram); 403 404 void vm_unmap_ram(const void *mem, unsigned int count) 405 { 406 BUG(); 407 } 408 EXPORT_SYMBOL(vm_unmap_ram); 409 410 void vm_unmap_aliases(void) 411 { 412 } 413 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 414 415 /* 416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 417 * have one. 418 */ 419 void __attribute__((weak)) vmalloc_sync_all(void) 420 { 421 } 422 423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 424 struct page *page) 425 { 426 return -EINVAL; 427 } 428 EXPORT_SYMBOL(vm_insert_page); 429 430 /* 431 * sys_brk() for the most part doesn't need the global kernel 432 * lock, except when an application is doing something nasty 433 * like trying to un-brk an area that has already been mapped 434 * to a regular file. in this case, the unmapping will need 435 * to invoke file system routines that need the global lock. 436 */ 437 SYSCALL_DEFINE1(brk, unsigned long, brk) 438 { 439 struct mm_struct *mm = current->mm; 440 441 if (brk < mm->start_brk || brk > mm->context.end_brk) 442 return mm->brk; 443 444 if (mm->brk == brk) 445 return mm->brk; 446 447 /* 448 * Always allow shrinking brk 449 */ 450 if (brk <= mm->brk) { 451 mm->brk = brk; 452 return brk; 453 } 454 455 /* 456 * Ok, looks good - let it rip. 457 */ 458 return mm->brk = brk; 459 } 460 461 /* 462 * initialise the VMA and region record slabs 463 */ 464 void __init mmap_init(void) 465 { 466 vm_region_jar = kmem_cache_create("vm_region_jar", 467 sizeof(struct vm_region), 0, 468 SLAB_PANIC, NULL); 469 vm_area_cachep = kmem_cache_create("vm_area_struct", 470 sizeof(struct vm_area_struct), 0, 471 SLAB_PANIC, NULL); 472 } 473 474 /* 475 * validate the region tree 476 * - the caller must hold the region lock 477 */ 478 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 479 static noinline void validate_nommu_regions(void) 480 { 481 struct vm_region *region, *last; 482 struct rb_node *p, *lastp; 483 484 lastp = rb_first(&nommu_region_tree); 485 if (!lastp) 486 return; 487 488 last = rb_entry(lastp, struct vm_region, vm_rb); 489 if (unlikely(last->vm_end <= last->vm_start)) 490 BUG(); 491 if (unlikely(last->vm_top < last->vm_end)) 492 BUG(); 493 494 while ((p = rb_next(lastp))) { 495 region = rb_entry(p, struct vm_region, vm_rb); 496 last = rb_entry(lastp, struct vm_region, vm_rb); 497 498 if (unlikely(region->vm_end <= region->vm_start)) 499 BUG(); 500 if (unlikely(region->vm_top < region->vm_end)) 501 BUG(); 502 if (unlikely(region->vm_start < last->vm_top)) 503 BUG(); 504 505 lastp = p; 506 } 507 } 508 #else 509 #define validate_nommu_regions() do {} while(0) 510 #endif 511 512 /* 513 * add a region into the global tree 514 */ 515 static void add_nommu_region(struct vm_region *region) 516 { 517 struct vm_region *pregion; 518 struct rb_node **p, *parent; 519 520 validate_nommu_regions(); 521 522 BUG_ON(region->vm_start & ~PAGE_MASK); 523 524 parent = NULL; 525 p = &nommu_region_tree.rb_node; 526 while (*p) { 527 parent = *p; 528 pregion = rb_entry(parent, struct vm_region, vm_rb); 529 if (region->vm_start < pregion->vm_start) 530 p = &(*p)->rb_left; 531 else if (region->vm_start > pregion->vm_start) 532 p = &(*p)->rb_right; 533 else if (pregion == region) 534 return; 535 else 536 BUG(); 537 } 538 539 rb_link_node(®ion->vm_rb, parent, p); 540 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 541 542 validate_nommu_regions(); 543 } 544 545 /* 546 * delete a region from the global tree 547 */ 548 static void delete_nommu_region(struct vm_region *region) 549 { 550 BUG_ON(!nommu_region_tree.rb_node); 551 552 validate_nommu_regions(); 553 rb_erase(®ion->vm_rb, &nommu_region_tree); 554 validate_nommu_regions(); 555 } 556 557 /* 558 * free a contiguous series of pages 559 */ 560 static void free_page_series(unsigned long from, unsigned long to) 561 { 562 for (; from < to; from += PAGE_SIZE) { 563 struct page *page = virt_to_page(from); 564 565 kdebug("- free %lx", from); 566 atomic_dec(&mmap_pages_allocated); 567 if (page_count(page) != 1) 568 kdebug("free page %p [%d]", page, page_count(page)); 569 put_page(page); 570 } 571 } 572 573 /* 574 * release a reference to a region 575 * - the caller must hold the region semaphore, which this releases 576 * - the region may not have been added to the tree yet, in which case vm_top 577 * will equal vm_start 578 */ 579 static void __put_nommu_region(struct vm_region *region) 580 __releases(nommu_region_sem) 581 { 582 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 583 584 BUG_ON(!nommu_region_tree.rb_node); 585 586 if (atomic_dec_and_test(®ion->vm_usage)) { 587 if (region->vm_top > region->vm_start) 588 delete_nommu_region(region); 589 up_write(&nommu_region_sem); 590 591 if (region->vm_file) 592 fput(region->vm_file); 593 594 /* IO memory and memory shared directly out of the pagecache 595 * from ramfs/tmpfs mustn't be released here */ 596 if (region->vm_flags & VM_MAPPED_COPY) { 597 kdebug("free series"); 598 free_page_series(region->vm_start, region->vm_top); 599 } 600 kmem_cache_free(vm_region_jar, region); 601 } else { 602 up_write(&nommu_region_sem); 603 } 604 } 605 606 /* 607 * release a reference to a region 608 */ 609 static void put_nommu_region(struct vm_region *region) 610 { 611 down_write(&nommu_region_sem); 612 __put_nommu_region(region); 613 } 614 615 /* 616 * add a VMA into a process's mm_struct in the appropriate place in the list 617 * and tree and add to the address space's page tree also if not an anonymous 618 * page 619 * - should be called with mm->mmap_sem held writelocked 620 */ 621 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 622 { 623 struct vm_area_struct *pvma, **pp; 624 struct address_space *mapping; 625 struct rb_node **p, *parent; 626 627 kenter(",%p", vma); 628 629 BUG_ON(!vma->vm_region); 630 631 mm->map_count++; 632 vma->vm_mm = mm; 633 634 /* add the VMA to the mapping */ 635 if (vma->vm_file) { 636 mapping = vma->vm_file->f_mapping; 637 638 flush_dcache_mmap_lock(mapping); 639 vma_prio_tree_insert(vma, &mapping->i_mmap); 640 flush_dcache_mmap_unlock(mapping); 641 } 642 643 /* add the VMA to the tree */ 644 parent = NULL; 645 p = &mm->mm_rb.rb_node; 646 while (*p) { 647 parent = *p; 648 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 649 650 /* sort by: start addr, end addr, VMA struct addr in that order 651 * (the latter is necessary as we may get identical VMAs) */ 652 if (vma->vm_start < pvma->vm_start) 653 p = &(*p)->rb_left; 654 else if (vma->vm_start > pvma->vm_start) 655 p = &(*p)->rb_right; 656 else if (vma->vm_end < pvma->vm_end) 657 p = &(*p)->rb_left; 658 else if (vma->vm_end > pvma->vm_end) 659 p = &(*p)->rb_right; 660 else if (vma < pvma) 661 p = &(*p)->rb_left; 662 else if (vma > pvma) 663 p = &(*p)->rb_right; 664 else 665 BUG(); 666 } 667 668 rb_link_node(&vma->vm_rb, parent, p); 669 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 670 671 /* add VMA to the VMA list also */ 672 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 673 if (pvma->vm_start > vma->vm_start) 674 break; 675 if (pvma->vm_start < vma->vm_start) 676 continue; 677 if (pvma->vm_end < vma->vm_end) 678 break; 679 } 680 681 vma->vm_next = *pp; 682 *pp = vma; 683 } 684 685 /* 686 * delete a VMA from its owning mm_struct and address space 687 */ 688 static void delete_vma_from_mm(struct vm_area_struct *vma) 689 { 690 struct vm_area_struct **pp; 691 struct address_space *mapping; 692 struct mm_struct *mm = vma->vm_mm; 693 694 kenter("%p", vma); 695 696 mm->map_count--; 697 if (mm->mmap_cache == vma) 698 mm->mmap_cache = NULL; 699 700 /* remove the VMA from the mapping */ 701 if (vma->vm_file) { 702 mapping = vma->vm_file->f_mapping; 703 704 flush_dcache_mmap_lock(mapping); 705 vma_prio_tree_remove(vma, &mapping->i_mmap); 706 flush_dcache_mmap_unlock(mapping); 707 } 708 709 /* remove from the MM's tree and list */ 710 rb_erase(&vma->vm_rb, &mm->mm_rb); 711 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 712 if (*pp == vma) { 713 *pp = vma->vm_next; 714 break; 715 } 716 } 717 718 vma->vm_mm = NULL; 719 } 720 721 /* 722 * destroy a VMA record 723 */ 724 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 725 { 726 kenter("%p", vma); 727 if (vma->vm_ops && vma->vm_ops->close) 728 vma->vm_ops->close(vma); 729 if (vma->vm_file) { 730 fput(vma->vm_file); 731 if (vma->vm_flags & VM_EXECUTABLE) 732 removed_exe_file_vma(mm); 733 } 734 put_nommu_region(vma->vm_region); 735 kmem_cache_free(vm_area_cachep, vma); 736 } 737 738 /* 739 * look up the first VMA in which addr resides, NULL if none 740 * - should be called with mm->mmap_sem at least held readlocked 741 */ 742 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 743 { 744 struct vm_area_struct *vma; 745 struct rb_node *n = mm->mm_rb.rb_node; 746 747 /* check the cache first */ 748 vma = mm->mmap_cache; 749 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 750 return vma; 751 752 /* trawl the tree (there may be multiple mappings in which addr 753 * resides) */ 754 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 755 vma = rb_entry(n, struct vm_area_struct, vm_rb); 756 if (vma->vm_start > addr) 757 return NULL; 758 if (vma->vm_end > addr) { 759 mm->mmap_cache = vma; 760 return vma; 761 } 762 } 763 764 return NULL; 765 } 766 EXPORT_SYMBOL(find_vma); 767 768 /* 769 * find a VMA 770 * - we don't extend stack VMAs under NOMMU conditions 771 */ 772 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 773 { 774 return find_vma(mm, addr); 775 } 776 777 /* 778 * expand a stack to a given address 779 * - not supported under NOMMU conditions 780 */ 781 int expand_stack(struct vm_area_struct *vma, unsigned long address) 782 { 783 return -ENOMEM; 784 } 785 786 /* 787 * look up the first VMA exactly that exactly matches addr 788 * - should be called with mm->mmap_sem at least held readlocked 789 */ 790 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 791 unsigned long addr, 792 unsigned long len) 793 { 794 struct vm_area_struct *vma; 795 struct rb_node *n = mm->mm_rb.rb_node; 796 unsigned long end = addr + len; 797 798 /* check the cache first */ 799 vma = mm->mmap_cache; 800 if (vma && vma->vm_start == addr && vma->vm_end == end) 801 return vma; 802 803 /* trawl the tree (there may be multiple mappings in which addr 804 * resides) */ 805 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 806 vma = rb_entry(n, struct vm_area_struct, vm_rb); 807 if (vma->vm_start < addr) 808 continue; 809 if (vma->vm_start > addr) 810 return NULL; 811 if (vma->vm_end == end) { 812 mm->mmap_cache = vma; 813 return vma; 814 } 815 } 816 817 return NULL; 818 } 819 820 /* 821 * determine whether a mapping should be permitted and, if so, what sort of 822 * mapping we're capable of supporting 823 */ 824 static int validate_mmap_request(struct file *file, 825 unsigned long addr, 826 unsigned long len, 827 unsigned long prot, 828 unsigned long flags, 829 unsigned long pgoff, 830 unsigned long *_capabilities) 831 { 832 unsigned long capabilities, rlen; 833 unsigned long reqprot = prot; 834 int ret; 835 836 /* do the simple checks first */ 837 if (flags & MAP_FIXED || addr) { 838 printk(KERN_DEBUG 839 "%d: Can't do fixed-address/overlay mmap of RAM\n", 840 current->pid); 841 return -EINVAL; 842 } 843 844 if ((flags & MAP_TYPE) != MAP_PRIVATE && 845 (flags & MAP_TYPE) != MAP_SHARED) 846 return -EINVAL; 847 848 if (!len) 849 return -EINVAL; 850 851 /* Careful about overflows.. */ 852 rlen = PAGE_ALIGN(len); 853 if (!rlen || rlen > TASK_SIZE) 854 return -ENOMEM; 855 856 /* offset overflow? */ 857 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 858 return -EOVERFLOW; 859 860 if (file) { 861 /* validate file mapping requests */ 862 struct address_space *mapping; 863 864 /* files must support mmap */ 865 if (!file->f_op || !file->f_op->mmap) 866 return -ENODEV; 867 868 /* work out if what we've got could possibly be shared 869 * - we support chardevs that provide their own "memory" 870 * - we support files/blockdevs that are memory backed 871 */ 872 mapping = file->f_mapping; 873 if (!mapping) 874 mapping = file->f_path.dentry->d_inode->i_mapping; 875 876 capabilities = 0; 877 if (mapping && mapping->backing_dev_info) 878 capabilities = mapping->backing_dev_info->capabilities; 879 880 if (!capabilities) { 881 /* no explicit capabilities set, so assume some 882 * defaults */ 883 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 884 case S_IFREG: 885 case S_IFBLK: 886 capabilities = BDI_CAP_MAP_COPY; 887 break; 888 889 case S_IFCHR: 890 capabilities = 891 BDI_CAP_MAP_DIRECT | 892 BDI_CAP_READ_MAP | 893 BDI_CAP_WRITE_MAP; 894 break; 895 896 default: 897 return -EINVAL; 898 } 899 } 900 901 /* eliminate any capabilities that we can't support on this 902 * device */ 903 if (!file->f_op->get_unmapped_area) 904 capabilities &= ~BDI_CAP_MAP_DIRECT; 905 if (!file->f_op->read) 906 capabilities &= ~BDI_CAP_MAP_COPY; 907 908 if (flags & MAP_SHARED) { 909 /* do checks for writing, appending and locking */ 910 if ((prot & PROT_WRITE) && 911 !(file->f_mode & FMODE_WRITE)) 912 return -EACCES; 913 914 if (IS_APPEND(file->f_path.dentry->d_inode) && 915 (file->f_mode & FMODE_WRITE)) 916 return -EACCES; 917 918 if (locks_verify_locked(file->f_path.dentry->d_inode)) 919 return -EAGAIN; 920 921 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 922 return -ENODEV; 923 924 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 925 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 926 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 927 ) { 928 printk("MAP_SHARED not completely supported on !MMU\n"); 929 return -EINVAL; 930 } 931 932 /* we mustn't privatise shared mappings */ 933 capabilities &= ~BDI_CAP_MAP_COPY; 934 } 935 else { 936 /* we're going to read the file into private memory we 937 * allocate */ 938 if (!(capabilities & BDI_CAP_MAP_COPY)) 939 return -ENODEV; 940 941 /* we don't permit a private writable mapping to be 942 * shared with the backing device */ 943 if (prot & PROT_WRITE) 944 capabilities &= ~BDI_CAP_MAP_DIRECT; 945 } 946 947 /* handle executable mappings and implied executable 948 * mappings */ 949 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 950 if (prot & PROT_EXEC) 951 return -EPERM; 952 } 953 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 954 /* handle implication of PROT_EXEC by PROT_READ */ 955 if (current->personality & READ_IMPLIES_EXEC) { 956 if (capabilities & BDI_CAP_EXEC_MAP) 957 prot |= PROT_EXEC; 958 } 959 } 960 else if ((prot & PROT_READ) && 961 (prot & PROT_EXEC) && 962 !(capabilities & BDI_CAP_EXEC_MAP) 963 ) { 964 /* backing file is not executable, try to copy */ 965 capabilities &= ~BDI_CAP_MAP_DIRECT; 966 } 967 } 968 else { 969 /* anonymous mappings are always memory backed and can be 970 * privately mapped 971 */ 972 capabilities = BDI_CAP_MAP_COPY; 973 974 /* handle PROT_EXEC implication by PROT_READ */ 975 if ((prot & PROT_READ) && 976 (current->personality & READ_IMPLIES_EXEC)) 977 prot |= PROT_EXEC; 978 } 979 980 /* allow the security API to have its say */ 981 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 982 if (ret < 0) 983 return ret; 984 985 /* looks okay */ 986 *_capabilities = capabilities; 987 return 0; 988 } 989 990 /* 991 * we've determined that we can make the mapping, now translate what we 992 * now know into VMA flags 993 */ 994 static unsigned long determine_vm_flags(struct file *file, 995 unsigned long prot, 996 unsigned long flags, 997 unsigned long capabilities) 998 { 999 unsigned long vm_flags; 1000 1001 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1002 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1003 /* vm_flags |= mm->def_flags; */ 1004 1005 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1006 /* attempt to share read-only copies of mapped file chunks */ 1007 if (file && !(prot & PROT_WRITE)) 1008 vm_flags |= VM_MAYSHARE; 1009 } 1010 else { 1011 /* overlay a shareable mapping on the backing device or inode 1012 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1013 * romfs/cramfs */ 1014 if (flags & MAP_SHARED) 1015 vm_flags |= VM_MAYSHARE | VM_SHARED; 1016 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1017 vm_flags |= VM_MAYSHARE; 1018 } 1019 1020 /* refuse to let anyone share private mappings with this process if 1021 * it's being traced - otherwise breakpoints set in it may interfere 1022 * with another untraced process 1023 */ 1024 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1025 vm_flags &= ~VM_MAYSHARE; 1026 1027 return vm_flags; 1028 } 1029 1030 /* 1031 * set up a shared mapping on a file (the driver or filesystem provides and 1032 * pins the storage) 1033 */ 1034 static int do_mmap_shared_file(struct vm_area_struct *vma) 1035 { 1036 int ret; 1037 1038 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1039 if (ret == 0) { 1040 vma->vm_region->vm_top = vma->vm_region->vm_end; 1041 return ret; 1042 } 1043 if (ret != -ENOSYS) 1044 return ret; 1045 1046 /* getting an ENOSYS error indicates that direct mmap isn't 1047 * possible (as opposed to tried but failed) so we'll fall 1048 * through to making a private copy of the data and mapping 1049 * that if we can */ 1050 return -ENODEV; 1051 } 1052 1053 /* 1054 * set up a private mapping or an anonymous shared mapping 1055 */ 1056 static int do_mmap_private(struct vm_area_struct *vma, 1057 struct vm_region *region, 1058 unsigned long len) 1059 { 1060 struct page *pages; 1061 unsigned long total, point, n, rlen; 1062 void *base; 1063 int ret, order; 1064 1065 /* invoke the file's mapping function so that it can keep track of 1066 * shared mappings on devices or memory 1067 * - VM_MAYSHARE will be set if it may attempt to share 1068 */ 1069 if (vma->vm_file) { 1070 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1071 if (ret == 0) { 1072 /* shouldn't return success if we're not sharing */ 1073 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1074 vma->vm_region->vm_top = vma->vm_region->vm_end; 1075 return ret; 1076 } 1077 if (ret != -ENOSYS) 1078 return ret; 1079 1080 /* getting an ENOSYS error indicates that direct mmap isn't 1081 * possible (as opposed to tried but failed) so we'll try to 1082 * make a private copy of the data and map that instead */ 1083 } 1084 1085 rlen = PAGE_ALIGN(len); 1086 1087 /* allocate some memory to hold the mapping 1088 * - note that this may not return a page-aligned address if the object 1089 * we're allocating is smaller than a page 1090 */ 1091 order = get_order(rlen); 1092 kdebug("alloc order %d for %lx", order, len); 1093 1094 pages = alloc_pages(GFP_KERNEL, order); 1095 if (!pages) 1096 goto enomem; 1097 1098 total = 1 << order; 1099 atomic_add(total, &mmap_pages_allocated); 1100 1101 point = rlen >> PAGE_SHIFT; 1102 1103 /* we allocated a power-of-2 sized page set, so we may want to trim off 1104 * the excess */ 1105 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1106 while (total > point) { 1107 order = ilog2(total - point); 1108 n = 1 << order; 1109 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1110 atomic_sub(n, &mmap_pages_allocated); 1111 total -= n; 1112 set_page_refcounted(pages + total); 1113 __free_pages(pages + total, order); 1114 } 1115 } 1116 1117 for (point = 1; point < total; point++) 1118 set_page_refcounted(&pages[point]); 1119 1120 base = page_address(pages); 1121 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1122 region->vm_start = (unsigned long) base; 1123 region->vm_end = region->vm_start + rlen; 1124 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1125 1126 vma->vm_start = region->vm_start; 1127 vma->vm_end = region->vm_start + len; 1128 1129 if (vma->vm_file) { 1130 /* read the contents of a file into the copy */ 1131 mm_segment_t old_fs; 1132 loff_t fpos; 1133 1134 fpos = vma->vm_pgoff; 1135 fpos <<= PAGE_SHIFT; 1136 1137 old_fs = get_fs(); 1138 set_fs(KERNEL_DS); 1139 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1140 set_fs(old_fs); 1141 1142 if (ret < 0) 1143 goto error_free; 1144 1145 /* clear the last little bit */ 1146 if (ret < rlen) 1147 memset(base + ret, 0, rlen - ret); 1148 1149 } else { 1150 /* if it's an anonymous mapping, then just clear it */ 1151 memset(base, 0, rlen); 1152 } 1153 1154 return 0; 1155 1156 error_free: 1157 free_page_series(region->vm_start, region->vm_end); 1158 region->vm_start = vma->vm_start = 0; 1159 region->vm_end = vma->vm_end = 0; 1160 region->vm_top = 0; 1161 return ret; 1162 1163 enomem: 1164 printk("Allocation of length %lu from process %d (%s) failed\n", 1165 len, current->pid, current->comm); 1166 show_free_areas(); 1167 return -ENOMEM; 1168 } 1169 1170 /* 1171 * handle mapping creation for uClinux 1172 */ 1173 unsigned long do_mmap_pgoff(struct file *file, 1174 unsigned long addr, 1175 unsigned long len, 1176 unsigned long prot, 1177 unsigned long flags, 1178 unsigned long pgoff) 1179 { 1180 struct vm_area_struct *vma; 1181 struct vm_region *region; 1182 struct rb_node *rb; 1183 unsigned long capabilities, vm_flags, result; 1184 int ret; 1185 1186 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1187 1188 if (!(flags & MAP_FIXED)) 1189 addr = round_hint_to_min(addr); 1190 1191 /* decide whether we should attempt the mapping, and if so what sort of 1192 * mapping */ 1193 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1194 &capabilities); 1195 if (ret < 0) { 1196 kleave(" = %d [val]", ret); 1197 return ret; 1198 } 1199 1200 /* we've determined that we can make the mapping, now translate what we 1201 * now know into VMA flags */ 1202 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1203 1204 /* we're going to need to record the mapping */ 1205 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1206 if (!region) 1207 goto error_getting_region; 1208 1209 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1210 if (!vma) 1211 goto error_getting_vma; 1212 1213 atomic_set(®ion->vm_usage, 1); 1214 region->vm_flags = vm_flags; 1215 region->vm_pgoff = pgoff; 1216 1217 INIT_LIST_HEAD(&vma->anon_vma_node); 1218 vma->vm_flags = vm_flags; 1219 vma->vm_pgoff = pgoff; 1220 1221 if (file) { 1222 region->vm_file = file; 1223 get_file(file); 1224 vma->vm_file = file; 1225 get_file(file); 1226 if (vm_flags & VM_EXECUTABLE) { 1227 added_exe_file_vma(current->mm); 1228 vma->vm_mm = current->mm; 1229 } 1230 } 1231 1232 down_write(&nommu_region_sem); 1233 1234 /* if we want to share, we need to check for regions created by other 1235 * mmap() calls that overlap with our proposed mapping 1236 * - we can only share with a superset match on most regular files 1237 * - shared mappings on character devices and memory backed files are 1238 * permitted to overlap inexactly as far as we are concerned for in 1239 * these cases, sharing is handled in the driver or filesystem rather 1240 * than here 1241 */ 1242 if (vm_flags & VM_MAYSHARE) { 1243 struct vm_region *pregion; 1244 unsigned long pglen, rpglen, pgend, rpgend, start; 1245 1246 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1247 pgend = pgoff + pglen; 1248 1249 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1250 pregion = rb_entry(rb, struct vm_region, vm_rb); 1251 1252 if (!(pregion->vm_flags & VM_MAYSHARE)) 1253 continue; 1254 1255 /* search for overlapping mappings on the same file */ 1256 if (pregion->vm_file->f_path.dentry->d_inode != 1257 file->f_path.dentry->d_inode) 1258 continue; 1259 1260 if (pregion->vm_pgoff >= pgend) 1261 continue; 1262 1263 rpglen = pregion->vm_end - pregion->vm_start; 1264 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1265 rpgend = pregion->vm_pgoff + rpglen; 1266 if (pgoff >= rpgend) 1267 continue; 1268 1269 /* handle inexactly overlapping matches between 1270 * mappings */ 1271 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1272 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1273 /* new mapping is not a subset of the region */ 1274 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1275 goto sharing_violation; 1276 continue; 1277 } 1278 1279 /* we've found a region we can share */ 1280 atomic_inc(&pregion->vm_usage); 1281 vma->vm_region = pregion; 1282 start = pregion->vm_start; 1283 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1284 vma->vm_start = start; 1285 vma->vm_end = start + len; 1286 1287 if (pregion->vm_flags & VM_MAPPED_COPY) { 1288 kdebug("share copy"); 1289 vma->vm_flags |= VM_MAPPED_COPY; 1290 } else { 1291 kdebug("share mmap"); 1292 ret = do_mmap_shared_file(vma); 1293 if (ret < 0) { 1294 vma->vm_region = NULL; 1295 vma->vm_start = 0; 1296 vma->vm_end = 0; 1297 atomic_dec(&pregion->vm_usage); 1298 pregion = NULL; 1299 goto error_just_free; 1300 } 1301 } 1302 fput(region->vm_file); 1303 kmem_cache_free(vm_region_jar, region); 1304 region = pregion; 1305 result = start; 1306 goto share; 1307 } 1308 1309 /* obtain the address at which to make a shared mapping 1310 * - this is the hook for quasi-memory character devices to 1311 * tell us the location of a shared mapping 1312 */ 1313 if (file && file->f_op->get_unmapped_area) { 1314 addr = file->f_op->get_unmapped_area(file, addr, len, 1315 pgoff, flags); 1316 if (IS_ERR((void *) addr)) { 1317 ret = addr; 1318 if (ret != (unsigned long) -ENOSYS) 1319 goto error_just_free; 1320 1321 /* the driver refused to tell us where to site 1322 * the mapping so we'll have to attempt to copy 1323 * it */ 1324 ret = (unsigned long) -ENODEV; 1325 if (!(capabilities & BDI_CAP_MAP_COPY)) 1326 goto error_just_free; 1327 1328 capabilities &= ~BDI_CAP_MAP_DIRECT; 1329 } else { 1330 vma->vm_start = region->vm_start = addr; 1331 vma->vm_end = region->vm_end = addr + len; 1332 } 1333 } 1334 } 1335 1336 vma->vm_region = region; 1337 1338 /* set up the mapping */ 1339 if (file && vma->vm_flags & VM_SHARED) 1340 ret = do_mmap_shared_file(vma); 1341 else 1342 ret = do_mmap_private(vma, region, len); 1343 if (ret < 0) 1344 goto error_put_region; 1345 1346 add_nommu_region(region); 1347 1348 /* okay... we have a mapping; now we have to register it */ 1349 result = vma->vm_start; 1350 1351 current->mm->total_vm += len >> PAGE_SHIFT; 1352 1353 share: 1354 add_vma_to_mm(current->mm, vma); 1355 1356 up_write(&nommu_region_sem); 1357 1358 if (prot & PROT_EXEC) 1359 flush_icache_range(result, result + len); 1360 1361 kleave(" = %lx", result); 1362 return result; 1363 1364 error_put_region: 1365 __put_nommu_region(region); 1366 if (vma) { 1367 if (vma->vm_file) { 1368 fput(vma->vm_file); 1369 if (vma->vm_flags & VM_EXECUTABLE) 1370 removed_exe_file_vma(vma->vm_mm); 1371 } 1372 kmem_cache_free(vm_area_cachep, vma); 1373 } 1374 kleave(" = %d [pr]", ret); 1375 return ret; 1376 1377 error_just_free: 1378 up_write(&nommu_region_sem); 1379 error: 1380 fput(region->vm_file); 1381 kmem_cache_free(vm_region_jar, region); 1382 fput(vma->vm_file); 1383 if (vma->vm_flags & VM_EXECUTABLE) 1384 removed_exe_file_vma(vma->vm_mm); 1385 kmem_cache_free(vm_area_cachep, vma); 1386 kleave(" = %d", ret); 1387 return ret; 1388 1389 sharing_violation: 1390 up_write(&nommu_region_sem); 1391 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1392 ret = -EINVAL; 1393 goto error; 1394 1395 error_getting_vma: 1396 kmem_cache_free(vm_region_jar, region); 1397 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1398 " from process %d failed\n", 1399 len, current->pid); 1400 show_free_areas(); 1401 return -ENOMEM; 1402 1403 error_getting_region: 1404 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1405 " from process %d failed\n", 1406 len, current->pid); 1407 show_free_areas(); 1408 return -ENOMEM; 1409 } 1410 EXPORT_SYMBOL(do_mmap_pgoff); 1411 1412 /* 1413 * split a vma into two pieces at address 'addr', a new vma is allocated either 1414 * for the first part or the tail. 1415 */ 1416 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1417 unsigned long addr, int new_below) 1418 { 1419 struct vm_area_struct *new; 1420 struct vm_region *region; 1421 unsigned long npages; 1422 1423 kenter(""); 1424 1425 /* we're only permitted to split anonymous regions that have a single 1426 * owner */ 1427 if (vma->vm_file || 1428 atomic_read(&vma->vm_region->vm_usage) != 1) 1429 return -ENOMEM; 1430 1431 if (mm->map_count >= sysctl_max_map_count) 1432 return -ENOMEM; 1433 1434 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1435 if (!region) 1436 return -ENOMEM; 1437 1438 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1439 if (!new) { 1440 kmem_cache_free(vm_region_jar, region); 1441 return -ENOMEM; 1442 } 1443 1444 /* most fields are the same, copy all, and then fixup */ 1445 *new = *vma; 1446 *region = *vma->vm_region; 1447 new->vm_region = region; 1448 1449 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1450 1451 if (new_below) { 1452 region->vm_top = region->vm_end = new->vm_end = addr; 1453 } else { 1454 region->vm_start = new->vm_start = addr; 1455 region->vm_pgoff = new->vm_pgoff += npages; 1456 } 1457 1458 if (new->vm_ops && new->vm_ops->open) 1459 new->vm_ops->open(new); 1460 1461 delete_vma_from_mm(vma); 1462 down_write(&nommu_region_sem); 1463 delete_nommu_region(vma->vm_region); 1464 if (new_below) { 1465 vma->vm_region->vm_start = vma->vm_start = addr; 1466 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1467 } else { 1468 vma->vm_region->vm_end = vma->vm_end = addr; 1469 vma->vm_region->vm_top = addr; 1470 } 1471 add_nommu_region(vma->vm_region); 1472 add_nommu_region(new->vm_region); 1473 up_write(&nommu_region_sem); 1474 add_vma_to_mm(mm, vma); 1475 add_vma_to_mm(mm, new); 1476 return 0; 1477 } 1478 1479 /* 1480 * shrink a VMA by removing the specified chunk from either the beginning or 1481 * the end 1482 */ 1483 static int shrink_vma(struct mm_struct *mm, 1484 struct vm_area_struct *vma, 1485 unsigned long from, unsigned long to) 1486 { 1487 struct vm_region *region; 1488 1489 kenter(""); 1490 1491 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1492 * and list */ 1493 delete_vma_from_mm(vma); 1494 if (from > vma->vm_start) 1495 vma->vm_end = from; 1496 else 1497 vma->vm_start = to; 1498 add_vma_to_mm(mm, vma); 1499 1500 /* cut the backing region down to size */ 1501 region = vma->vm_region; 1502 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1503 1504 down_write(&nommu_region_sem); 1505 delete_nommu_region(region); 1506 if (from > region->vm_start) { 1507 to = region->vm_top; 1508 region->vm_top = region->vm_end = from; 1509 } else { 1510 region->vm_start = to; 1511 } 1512 add_nommu_region(region); 1513 up_write(&nommu_region_sem); 1514 1515 free_page_series(from, to); 1516 return 0; 1517 } 1518 1519 /* 1520 * release a mapping 1521 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1522 * VMA, though it need not cover the whole VMA 1523 */ 1524 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1525 { 1526 struct vm_area_struct *vma; 1527 struct rb_node *rb; 1528 unsigned long end = start + len; 1529 int ret; 1530 1531 kenter(",%lx,%zx", start, len); 1532 1533 if (len == 0) 1534 return -EINVAL; 1535 1536 /* find the first potentially overlapping VMA */ 1537 vma = find_vma(mm, start); 1538 if (!vma) { 1539 printk(KERN_WARNING 1540 "munmap of memory not mmapped by process %d (%s):" 1541 " 0x%lx-0x%lx\n", 1542 current->pid, current->comm, start, start + len - 1); 1543 return -EINVAL; 1544 } 1545 1546 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1547 if (vma->vm_file) { 1548 do { 1549 if (start > vma->vm_start) { 1550 kleave(" = -EINVAL [miss]"); 1551 return -EINVAL; 1552 } 1553 if (end == vma->vm_end) 1554 goto erase_whole_vma; 1555 rb = rb_next(&vma->vm_rb); 1556 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1557 } while (rb); 1558 kleave(" = -EINVAL [split file]"); 1559 return -EINVAL; 1560 } else { 1561 /* the chunk must be a subset of the VMA found */ 1562 if (start == vma->vm_start && end == vma->vm_end) 1563 goto erase_whole_vma; 1564 if (start < vma->vm_start || end > vma->vm_end) { 1565 kleave(" = -EINVAL [superset]"); 1566 return -EINVAL; 1567 } 1568 if (start & ~PAGE_MASK) { 1569 kleave(" = -EINVAL [unaligned start]"); 1570 return -EINVAL; 1571 } 1572 if (end != vma->vm_end && end & ~PAGE_MASK) { 1573 kleave(" = -EINVAL [unaligned split]"); 1574 return -EINVAL; 1575 } 1576 if (start != vma->vm_start && end != vma->vm_end) { 1577 ret = split_vma(mm, vma, start, 1); 1578 if (ret < 0) { 1579 kleave(" = %d [split]", ret); 1580 return ret; 1581 } 1582 } 1583 return shrink_vma(mm, vma, start, end); 1584 } 1585 1586 erase_whole_vma: 1587 delete_vma_from_mm(vma); 1588 delete_vma(mm, vma); 1589 kleave(" = 0"); 1590 return 0; 1591 } 1592 EXPORT_SYMBOL(do_munmap); 1593 1594 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1595 { 1596 int ret; 1597 struct mm_struct *mm = current->mm; 1598 1599 down_write(&mm->mmap_sem); 1600 ret = do_munmap(mm, addr, len); 1601 up_write(&mm->mmap_sem); 1602 return ret; 1603 } 1604 1605 /* 1606 * release all the mappings made in a process's VM space 1607 */ 1608 void exit_mmap(struct mm_struct *mm) 1609 { 1610 struct vm_area_struct *vma; 1611 1612 if (!mm) 1613 return; 1614 1615 kenter(""); 1616 1617 mm->total_vm = 0; 1618 1619 while ((vma = mm->mmap)) { 1620 mm->mmap = vma->vm_next; 1621 delete_vma_from_mm(vma); 1622 delete_vma(mm, vma); 1623 } 1624 1625 kleave(""); 1626 } 1627 1628 unsigned long do_brk(unsigned long addr, unsigned long len) 1629 { 1630 return -ENOMEM; 1631 } 1632 1633 /* 1634 * expand (or shrink) an existing mapping, potentially moving it at the same 1635 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1636 * 1637 * under NOMMU conditions, we only permit changing a mapping's size, and only 1638 * as long as it stays within the region allocated by do_mmap_private() and the 1639 * block is not shareable 1640 * 1641 * MREMAP_FIXED is not supported under NOMMU conditions 1642 */ 1643 unsigned long do_mremap(unsigned long addr, 1644 unsigned long old_len, unsigned long new_len, 1645 unsigned long flags, unsigned long new_addr) 1646 { 1647 struct vm_area_struct *vma; 1648 1649 /* insanity checks first */ 1650 if (old_len == 0 || new_len == 0) 1651 return (unsigned long) -EINVAL; 1652 1653 if (addr & ~PAGE_MASK) 1654 return -EINVAL; 1655 1656 if (flags & MREMAP_FIXED && new_addr != addr) 1657 return (unsigned long) -EINVAL; 1658 1659 vma = find_vma_exact(current->mm, addr, old_len); 1660 if (!vma) 1661 return (unsigned long) -EINVAL; 1662 1663 if (vma->vm_end != vma->vm_start + old_len) 1664 return (unsigned long) -EFAULT; 1665 1666 if (vma->vm_flags & VM_MAYSHARE) 1667 return (unsigned long) -EPERM; 1668 1669 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1670 return (unsigned long) -ENOMEM; 1671 1672 /* all checks complete - do it */ 1673 vma->vm_end = vma->vm_start + new_len; 1674 return vma->vm_start; 1675 } 1676 EXPORT_SYMBOL(do_mremap); 1677 1678 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1679 unsigned long, new_len, unsigned long, flags, 1680 unsigned long, new_addr) 1681 { 1682 unsigned long ret; 1683 1684 down_write(¤t->mm->mmap_sem); 1685 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1686 up_write(¤t->mm->mmap_sem); 1687 return ret; 1688 } 1689 1690 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1691 unsigned int foll_flags) 1692 { 1693 return NULL; 1694 } 1695 1696 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1697 unsigned long to, unsigned long size, pgprot_t prot) 1698 { 1699 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1700 return 0; 1701 } 1702 EXPORT_SYMBOL(remap_pfn_range); 1703 1704 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1705 unsigned long pgoff) 1706 { 1707 unsigned int size = vma->vm_end - vma->vm_start; 1708 1709 if (!(vma->vm_flags & VM_USERMAP)) 1710 return -EINVAL; 1711 1712 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1713 vma->vm_end = vma->vm_start + size; 1714 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(remap_vmalloc_range); 1718 1719 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1720 { 1721 } 1722 1723 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1724 unsigned long len, unsigned long pgoff, unsigned long flags) 1725 { 1726 return -ENOMEM; 1727 } 1728 1729 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1730 { 1731 } 1732 1733 void unmap_mapping_range(struct address_space *mapping, 1734 loff_t const holebegin, loff_t const holelen, 1735 int even_cows) 1736 { 1737 } 1738 EXPORT_SYMBOL(unmap_mapping_range); 1739 1740 /* 1741 * ask for an unmapped area at which to create a mapping on a file 1742 */ 1743 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1744 unsigned long len, unsigned long pgoff, 1745 unsigned long flags) 1746 { 1747 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1748 unsigned long, unsigned long); 1749 1750 get_area = current->mm->get_unmapped_area; 1751 if (file && file->f_op && file->f_op->get_unmapped_area) 1752 get_area = file->f_op->get_unmapped_area; 1753 1754 if (!get_area) 1755 return -ENOSYS; 1756 1757 return get_area(file, addr, len, pgoff, flags); 1758 } 1759 EXPORT_SYMBOL(get_unmapped_area); 1760 1761 /* 1762 * Check that a process has enough memory to allocate a new virtual 1763 * mapping. 0 means there is enough memory for the allocation to 1764 * succeed and -ENOMEM implies there is not. 1765 * 1766 * We currently support three overcommit policies, which are set via the 1767 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1768 * 1769 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1770 * Additional code 2002 Jul 20 by Robert Love. 1771 * 1772 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1773 * 1774 * Note this is a helper function intended to be used by LSMs which 1775 * wish to use this logic. 1776 */ 1777 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1778 { 1779 unsigned long free, allowed; 1780 1781 vm_acct_memory(pages); 1782 1783 /* 1784 * Sometimes we want to use more memory than we have 1785 */ 1786 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1787 return 0; 1788 1789 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1790 unsigned long n; 1791 1792 free = global_page_state(NR_FILE_PAGES); 1793 free += nr_swap_pages; 1794 1795 /* 1796 * Any slabs which are created with the 1797 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1798 * which are reclaimable, under pressure. The dentry 1799 * cache and most inode caches should fall into this 1800 */ 1801 free += global_page_state(NR_SLAB_RECLAIMABLE); 1802 1803 /* 1804 * Leave the last 3% for root 1805 */ 1806 if (!cap_sys_admin) 1807 free -= free / 32; 1808 1809 if (free > pages) 1810 return 0; 1811 1812 /* 1813 * nr_free_pages() is very expensive on large systems, 1814 * only call if we're about to fail. 1815 */ 1816 n = nr_free_pages(); 1817 1818 /* 1819 * Leave reserved pages. The pages are not for anonymous pages. 1820 */ 1821 if (n <= totalreserve_pages) 1822 goto error; 1823 else 1824 n -= totalreserve_pages; 1825 1826 /* 1827 * Leave the last 3% for root 1828 */ 1829 if (!cap_sys_admin) 1830 n -= n / 32; 1831 free += n; 1832 1833 if (free > pages) 1834 return 0; 1835 1836 goto error; 1837 } 1838 1839 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1840 /* 1841 * Leave the last 3% for root 1842 */ 1843 if (!cap_sys_admin) 1844 allowed -= allowed / 32; 1845 allowed += total_swap_pages; 1846 1847 /* Don't let a single process grow too big: 1848 leave 3% of the size of this process for other processes */ 1849 if (mm) 1850 allowed -= mm->total_vm / 32; 1851 1852 /* 1853 * cast `allowed' as a signed long because vm_committed_space 1854 * sometimes has a negative value 1855 */ 1856 if (atomic_long_read(&vm_committed_space) < (long)allowed) 1857 return 0; 1858 error: 1859 vm_unacct_memory(pages); 1860 1861 return -ENOMEM; 1862 } 1863 1864 int in_gate_area_no_task(unsigned long addr) 1865 { 1866 return 0; 1867 } 1868 1869 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1870 { 1871 BUG(); 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(filemap_fault); 1875 1876 /* 1877 * Access another process' address space. 1878 * - source/target buffer must be kernel space 1879 */ 1880 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1881 { 1882 struct vm_area_struct *vma; 1883 struct mm_struct *mm; 1884 1885 if (addr + len < addr) 1886 return 0; 1887 1888 mm = get_task_mm(tsk); 1889 if (!mm) 1890 return 0; 1891 1892 down_read(&mm->mmap_sem); 1893 1894 /* the access must start within one of the target process's mappings */ 1895 vma = find_vma(mm, addr); 1896 if (vma) { 1897 /* don't overrun this mapping */ 1898 if (addr + len >= vma->vm_end) 1899 len = vma->vm_end - addr; 1900 1901 /* only read or write mappings where it is permitted */ 1902 if (write && vma->vm_flags & VM_MAYWRITE) 1903 len -= copy_to_user((void *) addr, buf, len); 1904 else if (!write && vma->vm_flags & VM_MAYREAD) 1905 len -= copy_from_user(buf, (void *) addr, len); 1906 else 1907 len = 0; 1908 } else { 1909 len = 0; 1910 } 1911 1912 up_read(&mm->mmap_sem); 1913 mmput(mm); 1914 return len; 1915 } 1916