1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 587 if (vma_iter_prealloc(&vmi, NULL)) { 588 pr_warn("Allocation of vma tree for process %d failed\n", 589 current->pid); 590 return -ENOMEM; 591 } 592 cleanup_vma_from_mm(vma); 593 594 /* remove from the MM's tree and list */ 595 vma_iter_clear(&vmi); 596 return 0; 597 } 598 /* 599 * destroy a VMA record 600 */ 601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 602 { 603 vma_close(vma); 604 if (vma->vm_file) 605 fput(vma->vm_file); 606 put_nommu_region(vma->vm_region); 607 vm_area_free(vma); 608 } 609 610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 611 unsigned long start_addr, 612 unsigned long end_addr) 613 { 614 unsigned long index = start_addr; 615 616 mmap_assert_locked(mm); 617 return mt_find(&mm->mm_mt, &index, end_addr - 1); 618 } 619 EXPORT_SYMBOL(find_vma_intersection); 620 621 /* 622 * look up the first VMA in which addr resides, NULL if none 623 * - should be called with mm->mmap_lock at least held readlocked 624 */ 625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 626 { 627 VMA_ITERATOR(vmi, mm, addr); 628 629 return vma_iter_load(&vmi); 630 } 631 EXPORT_SYMBOL(find_vma); 632 633 /* 634 * At least xtensa ends up having protection faults even with no 635 * MMU.. No stack expansion, at least. 636 */ 637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 638 unsigned long addr, struct pt_regs *regs) 639 { 640 struct vm_area_struct *vma; 641 642 mmap_read_lock(mm); 643 vma = vma_lookup(mm, addr); 644 if (!vma) 645 mmap_read_unlock(mm); 646 return vma; 647 } 648 649 /* 650 * expand a stack to a given address 651 * - not supported under NOMMU conditions 652 */ 653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 654 { 655 return -ENOMEM; 656 } 657 658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 659 { 660 mmap_read_unlock(mm); 661 return NULL; 662 } 663 664 /* 665 * look up the first VMA exactly that exactly matches addr 666 * - should be called with mm->mmap_lock at least held readlocked 667 */ 668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 669 unsigned long addr, 670 unsigned long len) 671 { 672 struct vm_area_struct *vma; 673 unsigned long end = addr + len; 674 VMA_ITERATOR(vmi, mm, addr); 675 676 vma = vma_iter_load(&vmi); 677 if (!vma) 678 return NULL; 679 if (vma->vm_start != addr) 680 return NULL; 681 if (vma->vm_end != end) 682 return NULL; 683 684 return vma; 685 } 686 687 /* 688 * determine whether a mapping should be permitted and, if so, what sort of 689 * mapping we're capable of supporting 690 */ 691 static int validate_mmap_request(struct file *file, 692 unsigned long addr, 693 unsigned long len, 694 unsigned long prot, 695 unsigned long flags, 696 unsigned long pgoff, 697 unsigned long *_capabilities) 698 { 699 unsigned long capabilities, rlen; 700 int ret; 701 702 /* do the simple checks first */ 703 if (flags & MAP_FIXED) 704 return -EINVAL; 705 706 if ((flags & MAP_TYPE) != MAP_PRIVATE && 707 (flags & MAP_TYPE) != MAP_SHARED) 708 return -EINVAL; 709 710 if (!len) 711 return -EINVAL; 712 713 /* Careful about overflows.. */ 714 rlen = PAGE_ALIGN(len); 715 if (!rlen || rlen > TASK_SIZE) 716 return -ENOMEM; 717 718 /* offset overflow? */ 719 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 720 return -EOVERFLOW; 721 722 if (file) { 723 /* files must support mmap */ 724 if (!file->f_op->mmap) 725 return -ENODEV; 726 727 /* work out if what we've got could possibly be shared 728 * - we support chardevs that provide their own "memory" 729 * - we support files/blockdevs that are memory backed 730 */ 731 if (file->f_op->mmap_capabilities) { 732 capabilities = file->f_op->mmap_capabilities(file); 733 } else { 734 /* no explicit capabilities set, so assume some 735 * defaults */ 736 switch (file_inode(file)->i_mode & S_IFMT) { 737 case S_IFREG: 738 case S_IFBLK: 739 capabilities = NOMMU_MAP_COPY; 740 break; 741 742 case S_IFCHR: 743 capabilities = 744 NOMMU_MAP_DIRECT | 745 NOMMU_MAP_READ | 746 NOMMU_MAP_WRITE; 747 break; 748 749 default: 750 return -EINVAL; 751 } 752 } 753 754 /* eliminate any capabilities that we can't support on this 755 * device */ 756 if (!file->f_op->get_unmapped_area) 757 capabilities &= ~NOMMU_MAP_DIRECT; 758 if (!(file->f_mode & FMODE_CAN_READ)) 759 capabilities &= ~NOMMU_MAP_COPY; 760 761 /* The file shall have been opened with read permission. */ 762 if (!(file->f_mode & FMODE_READ)) 763 return -EACCES; 764 765 if (flags & MAP_SHARED) { 766 /* do checks for writing, appending and locking */ 767 if ((prot & PROT_WRITE) && 768 !(file->f_mode & FMODE_WRITE)) 769 return -EACCES; 770 771 if (IS_APPEND(file_inode(file)) && 772 (file->f_mode & FMODE_WRITE)) 773 return -EACCES; 774 775 if (!(capabilities & NOMMU_MAP_DIRECT)) 776 return -ENODEV; 777 778 /* we mustn't privatise shared mappings */ 779 capabilities &= ~NOMMU_MAP_COPY; 780 } else { 781 /* we're going to read the file into private memory we 782 * allocate */ 783 if (!(capabilities & NOMMU_MAP_COPY)) 784 return -ENODEV; 785 786 /* we don't permit a private writable mapping to be 787 * shared with the backing device */ 788 if (prot & PROT_WRITE) 789 capabilities &= ~NOMMU_MAP_DIRECT; 790 } 791 792 if (capabilities & NOMMU_MAP_DIRECT) { 793 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 794 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 795 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 796 ) { 797 capabilities &= ~NOMMU_MAP_DIRECT; 798 if (flags & MAP_SHARED) { 799 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 800 return -EINVAL; 801 } 802 } 803 } 804 805 /* handle executable mappings and implied executable 806 * mappings */ 807 if (path_noexec(&file->f_path)) { 808 if (prot & PROT_EXEC) 809 return -EPERM; 810 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 811 /* handle implication of PROT_EXEC by PROT_READ */ 812 if (current->personality & READ_IMPLIES_EXEC) { 813 if (capabilities & NOMMU_MAP_EXEC) 814 prot |= PROT_EXEC; 815 } 816 } else if ((prot & PROT_READ) && 817 (prot & PROT_EXEC) && 818 !(capabilities & NOMMU_MAP_EXEC) 819 ) { 820 /* backing file is not executable, try to copy */ 821 capabilities &= ~NOMMU_MAP_DIRECT; 822 } 823 } else { 824 /* anonymous mappings are always memory backed and can be 825 * privately mapped 826 */ 827 capabilities = NOMMU_MAP_COPY; 828 829 /* handle PROT_EXEC implication by PROT_READ */ 830 if ((prot & PROT_READ) && 831 (current->personality & READ_IMPLIES_EXEC)) 832 prot |= PROT_EXEC; 833 } 834 835 /* allow the security API to have its say */ 836 ret = security_mmap_addr(addr); 837 if (ret < 0) 838 return ret; 839 840 /* looks okay */ 841 *_capabilities = capabilities; 842 return 0; 843 } 844 845 /* 846 * we've determined that we can make the mapping, now translate what we 847 * now know into VMA flags 848 */ 849 static unsigned long determine_vm_flags(struct file *file, 850 unsigned long prot, 851 unsigned long flags, 852 unsigned long capabilities) 853 { 854 unsigned long vm_flags; 855 856 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 857 858 if (!file) { 859 /* 860 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 861 * there is no fork(). 862 */ 863 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 864 } else if (flags & MAP_PRIVATE) { 865 /* MAP_PRIVATE file mapping */ 866 if (capabilities & NOMMU_MAP_DIRECT) 867 vm_flags |= (capabilities & NOMMU_VMFLAGS); 868 else 869 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 870 871 if (!(prot & PROT_WRITE) && !current->ptrace) 872 /* 873 * R/O private file mapping which cannot be used to 874 * modify memory, especially also not via active ptrace 875 * (e.g., set breakpoints) or later by upgrading 876 * permissions (no mprotect()). We can try overlaying 877 * the file mapping, which will work e.g., on chardevs, 878 * ramfs/tmpfs/shmfs and romfs/cramf. 879 */ 880 vm_flags |= VM_MAYOVERLAY; 881 } else { 882 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 883 vm_flags |= VM_SHARED | VM_MAYSHARE | 884 (capabilities & NOMMU_VMFLAGS); 885 } 886 887 return vm_flags; 888 } 889 890 /* 891 * set up a shared mapping on a file (the driver or filesystem provides and 892 * pins the storage) 893 */ 894 static int do_mmap_shared_file(struct vm_area_struct *vma) 895 { 896 int ret; 897 898 ret = mmap_file(vma->vm_file, vma); 899 if (ret == 0) { 900 vma->vm_region->vm_top = vma->vm_region->vm_end; 901 return 0; 902 } 903 if (ret != -ENOSYS) 904 return ret; 905 906 /* getting -ENOSYS indicates that direct mmap isn't possible (as 907 * opposed to tried but failed) so we can only give a suitable error as 908 * it's not possible to make a private copy if MAP_SHARED was given */ 909 return -ENODEV; 910 } 911 912 /* 913 * set up a private mapping or an anonymous shared mapping 914 */ 915 static int do_mmap_private(struct vm_area_struct *vma, 916 struct vm_region *region, 917 unsigned long len, 918 unsigned long capabilities) 919 { 920 unsigned long total, point; 921 void *base; 922 int ret, order; 923 924 /* 925 * Invoke the file's mapping function so that it can keep track of 926 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 927 * it may attempt to share, which will make is_nommu_shared_mapping() 928 * happy. 929 */ 930 if (capabilities & NOMMU_MAP_DIRECT) { 931 ret = mmap_file(vma->vm_file, vma); 932 /* shouldn't return success if we're not sharing */ 933 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 934 ret = -ENOSYS; 935 if (ret == 0) { 936 vma->vm_region->vm_top = vma->vm_region->vm_end; 937 return 0; 938 } 939 if (ret != -ENOSYS) 940 return ret; 941 942 /* getting an ENOSYS error indicates that direct mmap isn't 943 * possible (as opposed to tried but failed) so we'll try to 944 * make a private copy of the data and map that instead */ 945 } 946 947 948 /* allocate some memory to hold the mapping 949 * - note that this may not return a page-aligned address if the object 950 * we're allocating is smaller than a page 951 */ 952 order = get_order(len); 953 total = 1 << order; 954 point = len >> PAGE_SHIFT; 955 956 /* we don't want to allocate a power-of-2 sized page set */ 957 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 958 total = point; 959 960 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 961 if (!base) 962 goto enomem; 963 964 atomic_long_add(total, &mmap_pages_allocated); 965 966 vm_flags_set(vma, VM_MAPPED_COPY); 967 region->vm_flags = vma->vm_flags; 968 region->vm_start = (unsigned long) base; 969 region->vm_end = region->vm_start + len; 970 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 971 972 vma->vm_start = region->vm_start; 973 vma->vm_end = region->vm_start + len; 974 975 if (vma->vm_file) { 976 /* read the contents of a file into the copy */ 977 loff_t fpos; 978 979 fpos = vma->vm_pgoff; 980 fpos <<= PAGE_SHIFT; 981 982 ret = kernel_read(vma->vm_file, base, len, &fpos); 983 if (ret < 0) 984 goto error_free; 985 986 /* clear the last little bit */ 987 if (ret < len) 988 memset(base + ret, 0, len - ret); 989 990 } else { 991 vma_set_anonymous(vma); 992 } 993 994 return 0; 995 996 error_free: 997 free_page_series(region->vm_start, region->vm_top); 998 region->vm_start = vma->vm_start = 0; 999 region->vm_end = vma->vm_end = 0; 1000 region->vm_top = 0; 1001 return ret; 1002 1003 enomem: 1004 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1005 len, current->pid, current->comm); 1006 show_mem(); 1007 return -ENOMEM; 1008 } 1009 1010 /* 1011 * handle mapping creation for uClinux 1012 */ 1013 unsigned long do_mmap(struct file *file, 1014 unsigned long addr, 1015 unsigned long len, 1016 unsigned long prot, 1017 unsigned long flags, 1018 vm_flags_t vm_flags, 1019 unsigned long pgoff, 1020 unsigned long *populate, 1021 struct list_head *uf) 1022 { 1023 struct vm_area_struct *vma; 1024 struct vm_region *region; 1025 struct rb_node *rb; 1026 unsigned long capabilities, result; 1027 int ret; 1028 VMA_ITERATOR(vmi, current->mm, 0); 1029 1030 *populate = 0; 1031 1032 /* decide whether we should attempt the mapping, and if so what sort of 1033 * mapping */ 1034 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1035 &capabilities); 1036 if (ret < 0) 1037 return ret; 1038 1039 /* we ignore the address hint */ 1040 addr = 0; 1041 len = PAGE_ALIGN(len); 1042 1043 /* we've determined that we can make the mapping, now translate what we 1044 * now know into VMA flags */ 1045 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1046 1047 1048 /* we're going to need to record the mapping */ 1049 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1050 if (!region) 1051 goto error_getting_region; 1052 1053 vma = vm_area_alloc(current->mm); 1054 if (!vma) 1055 goto error_getting_vma; 1056 1057 region->vm_usage = 1; 1058 region->vm_flags = vm_flags; 1059 region->vm_pgoff = pgoff; 1060 1061 vm_flags_init(vma, vm_flags); 1062 vma->vm_pgoff = pgoff; 1063 1064 if (file) { 1065 region->vm_file = get_file(file); 1066 vma->vm_file = get_file(file); 1067 } 1068 1069 down_write(&nommu_region_sem); 1070 1071 /* if we want to share, we need to check for regions created by other 1072 * mmap() calls that overlap with our proposed mapping 1073 * - we can only share with a superset match on most regular files 1074 * - shared mappings on character devices and memory backed files are 1075 * permitted to overlap inexactly as far as we are concerned for in 1076 * these cases, sharing is handled in the driver or filesystem rather 1077 * than here 1078 */ 1079 if (is_nommu_shared_mapping(vm_flags)) { 1080 struct vm_region *pregion; 1081 unsigned long pglen, rpglen, pgend, rpgend, start; 1082 1083 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1084 pgend = pgoff + pglen; 1085 1086 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1087 pregion = rb_entry(rb, struct vm_region, vm_rb); 1088 1089 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1090 continue; 1091 1092 /* search for overlapping mappings on the same file */ 1093 if (file_inode(pregion->vm_file) != 1094 file_inode(file)) 1095 continue; 1096 1097 if (pregion->vm_pgoff >= pgend) 1098 continue; 1099 1100 rpglen = pregion->vm_end - pregion->vm_start; 1101 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1102 rpgend = pregion->vm_pgoff + rpglen; 1103 if (pgoff >= rpgend) 1104 continue; 1105 1106 /* handle inexactly overlapping matches between 1107 * mappings */ 1108 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1109 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1110 /* new mapping is not a subset of the region */ 1111 if (!(capabilities & NOMMU_MAP_DIRECT)) 1112 goto sharing_violation; 1113 continue; 1114 } 1115 1116 /* we've found a region we can share */ 1117 pregion->vm_usage++; 1118 vma->vm_region = pregion; 1119 start = pregion->vm_start; 1120 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1121 vma->vm_start = start; 1122 vma->vm_end = start + len; 1123 1124 if (pregion->vm_flags & VM_MAPPED_COPY) 1125 vm_flags_set(vma, VM_MAPPED_COPY); 1126 else { 1127 ret = do_mmap_shared_file(vma); 1128 if (ret < 0) { 1129 vma->vm_region = NULL; 1130 vma->vm_start = 0; 1131 vma->vm_end = 0; 1132 pregion->vm_usage--; 1133 pregion = NULL; 1134 goto error_just_free; 1135 } 1136 } 1137 fput(region->vm_file); 1138 kmem_cache_free(vm_region_jar, region); 1139 region = pregion; 1140 result = start; 1141 goto share; 1142 } 1143 1144 /* obtain the address at which to make a shared mapping 1145 * - this is the hook for quasi-memory character devices to 1146 * tell us the location of a shared mapping 1147 */ 1148 if (capabilities & NOMMU_MAP_DIRECT) { 1149 addr = file->f_op->get_unmapped_area(file, addr, len, 1150 pgoff, flags); 1151 if (IS_ERR_VALUE(addr)) { 1152 ret = addr; 1153 if (ret != -ENOSYS) 1154 goto error_just_free; 1155 1156 /* the driver refused to tell us where to site 1157 * the mapping so we'll have to attempt to copy 1158 * it */ 1159 ret = -ENODEV; 1160 if (!(capabilities & NOMMU_MAP_COPY)) 1161 goto error_just_free; 1162 1163 capabilities &= ~NOMMU_MAP_DIRECT; 1164 } else { 1165 vma->vm_start = region->vm_start = addr; 1166 vma->vm_end = region->vm_end = addr + len; 1167 } 1168 } 1169 } 1170 1171 vma->vm_region = region; 1172 1173 /* set up the mapping 1174 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1175 */ 1176 if (file && vma->vm_flags & VM_SHARED) 1177 ret = do_mmap_shared_file(vma); 1178 else 1179 ret = do_mmap_private(vma, region, len, capabilities); 1180 if (ret < 0) 1181 goto error_just_free; 1182 add_nommu_region(region); 1183 1184 /* clear anonymous mappings that don't ask for uninitialized data */ 1185 if (!vma->vm_file && 1186 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1187 !(flags & MAP_UNINITIALIZED))) 1188 memset((void *)region->vm_start, 0, 1189 region->vm_end - region->vm_start); 1190 1191 /* okay... we have a mapping; now we have to register it */ 1192 result = vma->vm_start; 1193 1194 current->mm->total_vm += len >> PAGE_SHIFT; 1195 1196 share: 1197 BUG_ON(!vma->vm_region); 1198 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1199 if (vma_iter_prealloc(&vmi, vma)) 1200 goto error_just_free; 1201 1202 setup_vma_to_mm(vma, current->mm); 1203 current->mm->map_count++; 1204 /* add the VMA to the tree */ 1205 vma_iter_store(&vmi, vma); 1206 1207 /* we flush the region from the icache only when the first executable 1208 * mapping of it is made */ 1209 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1210 flush_icache_user_range(region->vm_start, region->vm_end); 1211 region->vm_icache_flushed = true; 1212 } 1213 1214 up_write(&nommu_region_sem); 1215 1216 return result; 1217 1218 error_just_free: 1219 up_write(&nommu_region_sem); 1220 error: 1221 vma_iter_free(&vmi); 1222 if (region->vm_file) 1223 fput(region->vm_file); 1224 kmem_cache_free(vm_region_jar, region); 1225 if (vma->vm_file) 1226 fput(vma->vm_file); 1227 vm_area_free(vma); 1228 return ret; 1229 1230 sharing_violation: 1231 up_write(&nommu_region_sem); 1232 pr_warn("Attempt to share mismatched mappings\n"); 1233 ret = -EINVAL; 1234 goto error; 1235 1236 error_getting_vma: 1237 kmem_cache_free(vm_region_jar, region); 1238 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1239 len, current->pid); 1240 show_mem(); 1241 return -ENOMEM; 1242 1243 error_getting_region: 1244 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1245 len, current->pid); 1246 show_mem(); 1247 return -ENOMEM; 1248 } 1249 1250 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1251 unsigned long prot, unsigned long flags, 1252 unsigned long fd, unsigned long pgoff) 1253 { 1254 struct file *file = NULL; 1255 unsigned long retval = -EBADF; 1256 1257 audit_mmap_fd(fd, flags); 1258 if (!(flags & MAP_ANONYMOUS)) { 1259 file = fget(fd); 1260 if (!file) 1261 goto out; 1262 } 1263 1264 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1265 1266 if (file) 1267 fput(file); 1268 out: 1269 return retval; 1270 } 1271 1272 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1273 unsigned long, prot, unsigned long, flags, 1274 unsigned long, fd, unsigned long, pgoff) 1275 { 1276 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1277 } 1278 1279 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1280 struct mmap_arg_struct { 1281 unsigned long addr; 1282 unsigned long len; 1283 unsigned long prot; 1284 unsigned long flags; 1285 unsigned long fd; 1286 unsigned long offset; 1287 }; 1288 1289 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1290 { 1291 struct mmap_arg_struct a; 1292 1293 if (copy_from_user(&a, arg, sizeof(a))) 1294 return -EFAULT; 1295 if (offset_in_page(a.offset)) 1296 return -EINVAL; 1297 1298 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1299 a.offset >> PAGE_SHIFT); 1300 } 1301 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1302 1303 /* 1304 * split a vma into two pieces at address 'addr', a new vma is allocated either 1305 * for the first part or the tail. 1306 */ 1307 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1308 unsigned long addr, int new_below) 1309 { 1310 struct vm_area_struct *new; 1311 struct vm_region *region; 1312 unsigned long npages; 1313 struct mm_struct *mm; 1314 1315 /* we're only permitted to split anonymous regions (these should have 1316 * only a single usage on the region) */ 1317 if (vma->vm_file) 1318 return -ENOMEM; 1319 1320 mm = vma->vm_mm; 1321 if (mm->map_count >= sysctl_max_map_count) 1322 return -ENOMEM; 1323 1324 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1325 if (!region) 1326 return -ENOMEM; 1327 1328 new = vm_area_dup(vma); 1329 if (!new) 1330 goto err_vma_dup; 1331 1332 /* most fields are the same, copy all, and then fixup */ 1333 *region = *vma->vm_region; 1334 new->vm_region = region; 1335 1336 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1337 1338 if (new_below) { 1339 region->vm_top = region->vm_end = new->vm_end = addr; 1340 } else { 1341 region->vm_start = new->vm_start = addr; 1342 region->vm_pgoff = new->vm_pgoff += npages; 1343 } 1344 1345 vma_iter_config(vmi, new->vm_start, new->vm_end); 1346 if (vma_iter_prealloc(vmi, vma)) { 1347 pr_warn("Allocation of vma tree for process %d failed\n", 1348 current->pid); 1349 goto err_vmi_preallocate; 1350 } 1351 1352 if (new->vm_ops && new->vm_ops->open) 1353 new->vm_ops->open(new); 1354 1355 down_write(&nommu_region_sem); 1356 delete_nommu_region(vma->vm_region); 1357 if (new_below) { 1358 vma->vm_region->vm_start = vma->vm_start = addr; 1359 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1360 } else { 1361 vma->vm_region->vm_end = vma->vm_end = addr; 1362 vma->vm_region->vm_top = addr; 1363 } 1364 add_nommu_region(vma->vm_region); 1365 add_nommu_region(new->vm_region); 1366 up_write(&nommu_region_sem); 1367 1368 setup_vma_to_mm(vma, mm); 1369 setup_vma_to_mm(new, mm); 1370 vma_iter_store(vmi, new); 1371 mm->map_count++; 1372 return 0; 1373 1374 err_vmi_preallocate: 1375 vm_area_free(new); 1376 err_vma_dup: 1377 kmem_cache_free(vm_region_jar, region); 1378 return -ENOMEM; 1379 } 1380 1381 /* 1382 * shrink a VMA by removing the specified chunk from either the beginning or 1383 * the end 1384 */ 1385 static int vmi_shrink_vma(struct vma_iterator *vmi, 1386 struct vm_area_struct *vma, 1387 unsigned long from, unsigned long to) 1388 { 1389 struct vm_region *region; 1390 1391 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1392 * and list */ 1393 if (from > vma->vm_start) { 1394 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL)) 1395 return -ENOMEM; 1396 vma->vm_end = from; 1397 } else { 1398 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL)) 1399 return -ENOMEM; 1400 vma->vm_start = to; 1401 } 1402 1403 /* cut the backing region down to size */ 1404 region = vma->vm_region; 1405 BUG_ON(region->vm_usage != 1); 1406 1407 down_write(&nommu_region_sem); 1408 delete_nommu_region(region); 1409 if (from > region->vm_start) { 1410 to = region->vm_top; 1411 region->vm_top = region->vm_end = from; 1412 } else { 1413 region->vm_start = to; 1414 } 1415 add_nommu_region(region); 1416 up_write(&nommu_region_sem); 1417 1418 free_page_series(from, to); 1419 return 0; 1420 } 1421 1422 /* 1423 * release a mapping 1424 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1425 * VMA, though it need not cover the whole VMA 1426 */ 1427 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1428 { 1429 VMA_ITERATOR(vmi, mm, start); 1430 struct vm_area_struct *vma; 1431 unsigned long end; 1432 int ret = 0; 1433 1434 len = PAGE_ALIGN(len); 1435 if (len == 0) 1436 return -EINVAL; 1437 1438 end = start + len; 1439 1440 /* find the first potentially overlapping VMA */ 1441 vma = vma_find(&vmi, end); 1442 if (!vma) { 1443 static int limit; 1444 if (limit < 5) { 1445 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1446 current->pid, current->comm, 1447 start, start + len - 1); 1448 limit++; 1449 } 1450 return -EINVAL; 1451 } 1452 1453 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1454 if (vma->vm_file) { 1455 do { 1456 if (start > vma->vm_start) 1457 return -EINVAL; 1458 if (end == vma->vm_end) 1459 goto erase_whole_vma; 1460 vma = vma_find(&vmi, end); 1461 } while (vma); 1462 return -EINVAL; 1463 } else { 1464 /* the chunk must be a subset of the VMA found */ 1465 if (start == vma->vm_start && end == vma->vm_end) 1466 goto erase_whole_vma; 1467 if (start < vma->vm_start || end > vma->vm_end) 1468 return -EINVAL; 1469 if (offset_in_page(start)) 1470 return -EINVAL; 1471 if (end != vma->vm_end && offset_in_page(end)) 1472 return -EINVAL; 1473 if (start != vma->vm_start && end != vma->vm_end) { 1474 ret = split_vma(&vmi, vma, start, 1); 1475 if (ret < 0) 1476 return ret; 1477 } 1478 return vmi_shrink_vma(&vmi, vma, start, end); 1479 } 1480 1481 erase_whole_vma: 1482 if (delete_vma_from_mm(vma)) 1483 ret = -ENOMEM; 1484 else 1485 delete_vma(mm, vma); 1486 return ret; 1487 } 1488 1489 int vm_munmap(unsigned long addr, size_t len) 1490 { 1491 struct mm_struct *mm = current->mm; 1492 int ret; 1493 1494 mmap_write_lock(mm); 1495 ret = do_munmap(mm, addr, len, NULL); 1496 mmap_write_unlock(mm); 1497 return ret; 1498 } 1499 EXPORT_SYMBOL(vm_munmap); 1500 1501 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1502 { 1503 return vm_munmap(addr, len); 1504 } 1505 1506 /* 1507 * release all the mappings made in a process's VM space 1508 */ 1509 void exit_mmap(struct mm_struct *mm) 1510 { 1511 VMA_ITERATOR(vmi, mm, 0); 1512 struct vm_area_struct *vma; 1513 1514 if (!mm) 1515 return; 1516 1517 mm->total_vm = 0; 1518 1519 /* 1520 * Lock the mm to avoid assert complaining even though this is the only 1521 * user of the mm 1522 */ 1523 mmap_write_lock(mm); 1524 for_each_vma(vmi, vma) { 1525 cleanup_vma_from_mm(vma); 1526 delete_vma(mm, vma); 1527 cond_resched(); 1528 } 1529 __mt_destroy(&mm->mm_mt); 1530 mmap_write_unlock(mm); 1531 } 1532 1533 int vm_brk(unsigned long addr, unsigned long len) 1534 { 1535 return -ENOMEM; 1536 } 1537 1538 /* 1539 * expand (or shrink) an existing mapping, potentially moving it at the same 1540 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1541 * 1542 * under NOMMU conditions, we only permit changing a mapping's size, and only 1543 * as long as it stays within the region allocated by do_mmap_private() and the 1544 * block is not shareable 1545 * 1546 * MREMAP_FIXED is not supported under NOMMU conditions 1547 */ 1548 static unsigned long do_mremap(unsigned long addr, 1549 unsigned long old_len, unsigned long new_len, 1550 unsigned long flags, unsigned long new_addr) 1551 { 1552 struct vm_area_struct *vma; 1553 1554 /* insanity checks first */ 1555 old_len = PAGE_ALIGN(old_len); 1556 new_len = PAGE_ALIGN(new_len); 1557 if (old_len == 0 || new_len == 0) 1558 return (unsigned long) -EINVAL; 1559 1560 if (offset_in_page(addr)) 1561 return -EINVAL; 1562 1563 if (flags & MREMAP_FIXED && new_addr != addr) 1564 return (unsigned long) -EINVAL; 1565 1566 vma = find_vma_exact(current->mm, addr, old_len); 1567 if (!vma) 1568 return (unsigned long) -EINVAL; 1569 1570 if (vma->vm_end != vma->vm_start + old_len) 1571 return (unsigned long) -EFAULT; 1572 1573 if (is_nommu_shared_mapping(vma->vm_flags)) 1574 return (unsigned long) -EPERM; 1575 1576 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1577 return (unsigned long) -ENOMEM; 1578 1579 /* all checks complete - do it */ 1580 vma->vm_end = vma->vm_start + new_len; 1581 return vma->vm_start; 1582 } 1583 1584 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1585 unsigned long, new_len, unsigned long, flags, 1586 unsigned long, new_addr) 1587 { 1588 unsigned long ret; 1589 1590 mmap_write_lock(current->mm); 1591 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1592 mmap_write_unlock(current->mm); 1593 return ret; 1594 } 1595 1596 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1597 unsigned int foll_flags) 1598 { 1599 return NULL; 1600 } 1601 1602 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1603 unsigned long pfn, unsigned long size, pgprot_t prot) 1604 { 1605 if (addr != (pfn << PAGE_SHIFT)) 1606 return -EINVAL; 1607 1608 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1609 return 0; 1610 } 1611 EXPORT_SYMBOL(remap_pfn_range); 1612 1613 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1614 { 1615 unsigned long pfn = start >> PAGE_SHIFT; 1616 unsigned long vm_len = vma->vm_end - vma->vm_start; 1617 1618 pfn += vma->vm_pgoff; 1619 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1620 } 1621 EXPORT_SYMBOL(vm_iomap_memory); 1622 1623 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1624 unsigned long pgoff) 1625 { 1626 unsigned int size = vma->vm_end - vma->vm_start; 1627 1628 if (!(vma->vm_flags & VM_USERMAP)) 1629 return -EINVAL; 1630 1631 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1632 vma->vm_end = vma->vm_start + size; 1633 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(remap_vmalloc_range); 1637 1638 vm_fault_t filemap_fault(struct vm_fault *vmf) 1639 { 1640 BUG(); 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(filemap_fault); 1644 1645 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1646 pgoff_t start_pgoff, pgoff_t end_pgoff) 1647 { 1648 BUG(); 1649 return 0; 1650 } 1651 EXPORT_SYMBOL(filemap_map_pages); 1652 1653 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1654 int len, unsigned int gup_flags) 1655 { 1656 struct vm_area_struct *vma; 1657 int write = gup_flags & FOLL_WRITE; 1658 1659 if (mmap_read_lock_killable(mm)) 1660 return 0; 1661 1662 /* the access must start within one of the target process's mappings */ 1663 vma = find_vma(mm, addr); 1664 if (vma) { 1665 /* don't overrun this mapping */ 1666 if (addr + len >= vma->vm_end) 1667 len = vma->vm_end - addr; 1668 1669 /* only read or write mappings where it is permitted */ 1670 if (write && vma->vm_flags & VM_MAYWRITE) 1671 copy_to_user_page(vma, NULL, addr, 1672 (void *) addr, buf, len); 1673 else if (!write && vma->vm_flags & VM_MAYREAD) 1674 copy_from_user_page(vma, NULL, addr, 1675 buf, (void *) addr, len); 1676 else 1677 len = 0; 1678 } else { 1679 len = 0; 1680 } 1681 1682 mmap_read_unlock(mm); 1683 1684 return len; 1685 } 1686 1687 /** 1688 * access_remote_vm - access another process' address space 1689 * @mm: the mm_struct of the target address space 1690 * @addr: start address to access 1691 * @buf: source or destination buffer 1692 * @len: number of bytes to transfer 1693 * @gup_flags: flags modifying lookup behaviour 1694 * 1695 * The caller must hold a reference on @mm. 1696 */ 1697 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1698 void *buf, int len, unsigned int gup_flags) 1699 { 1700 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1701 } 1702 1703 /* 1704 * Access another process' address space. 1705 * - source/target buffer must be kernel space 1706 */ 1707 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1708 unsigned int gup_flags) 1709 { 1710 struct mm_struct *mm; 1711 1712 if (addr + len < addr) 1713 return 0; 1714 1715 mm = get_task_mm(tsk); 1716 if (!mm) 1717 return 0; 1718 1719 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1720 1721 mmput(mm); 1722 return len; 1723 } 1724 EXPORT_SYMBOL_GPL(access_process_vm); 1725 1726 /** 1727 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1728 * @inode: The inode to check 1729 * @size: The current filesize of the inode 1730 * @newsize: The proposed filesize of the inode 1731 * 1732 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1733 * make sure that any outstanding VMAs aren't broken and then shrink the 1734 * vm_regions that extend beyond so that do_mmap() doesn't 1735 * automatically grant mappings that are too large. 1736 */ 1737 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1738 size_t newsize) 1739 { 1740 struct vm_area_struct *vma; 1741 struct vm_region *region; 1742 pgoff_t low, high; 1743 size_t r_size, r_top; 1744 1745 low = newsize >> PAGE_SHIFT; 1746 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1747 1748 down_write(&nommu_region_sem); 1749 i_mmap_lock_read(inode->i_mapping); 1750 1751 /* search for VMAs that fall within the dead zone */ 1752 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1753 /* found one - only interested if it's shared out of the page 1754 * cache */ 1755 if (vma->vm_flags & VM_SHARED) { 1756 i_mmap_unlock_read(inode->i_mapping); 1757 up_write(&nommu_region_sem); 1758 return -ETXTBSY; /* not quite true, but near enough */ 1759 } 1760 } 1761 1762 /* reduce any regions that overlap the dead zone - if in existence, 1763 * these will be pointed to by VMAs that don't overlap the dead zone 1764 * 1765 * we don't check for any regions that start beyond the EOF as there 1766 * shouldn't be any 1767 */ 1768 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1769 if (!(vma->vm_flags & VM_SHARED)) 1770 continue; 1771 1772 region = vma->vm_region; 1773 r_size = region->vm_top - region->vm_start; 1774 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1775 1776 if (r_top > newsize) { 1777 region->vm_top -= r_top - newsize; 1778 if (region->vm_end > region->vm_top) 1779 region->vm_end = region->vm_top; 1780 } 1781 } 1782 1783 i_mmap_unlock_read(inode->i_mapping); 1784 up_write(&nommu_region_sem); 1785 return 0; 1786 } 1787 1788 /* 1789 * Initialise sysctl_user_reserve_kbytes. 1790 * 1791 * This is intended to prevent a user from starting a single memory hogging 1792 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1793 * mode. 1794 * 1795 * The default value is min(3% of free memory, 128MB) 1796 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1797 */ 1798 static int __meminit init_user_reserve(void) 1799 { 1800 unsigned long free_kbytes; 1801 1802 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1803 1804 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1805 return 0; 1806 } 1807 subsys_initcall(init_user_reserve); 1808 1809 /* 1810 * Initialise sysctl_admin_reserve_kbytes. 1811 * 1812 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1813 * to log in and kill a memory hogging process. 1814 * 1815 * Systems with more than 256MB will reserve 8MB, enough to recover 1816 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1817 * only reserve 3% of free pages by default. 1818 */ 1819 static int __meminit init_admin_reserve(void) 1820 { 1821 unsigned long free_kbytes; 1822 1823 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); 1824 1825 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1826 return 0; 1827 } 1828 subsys_initcall(init_admin_reserve); 1829