1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmacache.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return PAGE_SIZE << compound_order(page); 111 } 112 113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 114 unsigned long start, unsigned long nr_pages, 115 unsigned int foll_flags, struct page **pages, 116 struct vm_area_struct **vmas, int *nonblocking) 117 { 118 struct vm_area_struct *vma; 119 unsigned long vm_flags; 120 int i; 121 122 /* calculate required read or write permissions. 123 * If FOLL_FORCE is set, we only require the "MAY" flags. 124 */ 125 vm_flags = (foll_flags & FOLL_WRITE) ? 126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 127 vm_flags &= (foll_flags & FOLL_FORCE) ? 128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 129 130 for (i = 0; i < nr_pages; i++) { 131 vma = find_vma(mm, start); 132 if (!vma) 133 goto finish_or_fault; 134 135 /* protect what we can, including chardevs */ 136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 137 !(vm_flags & vma->vm_flags)) 138 goto finish_or_fault; 139 140 if (pages) { 141 pages[i] = virt_to_page(start); 142 if (pages[i]) 143 get_page(pages[i]); 144 } 145 if (vmas) 146 vmas[i] = vma; 147 start = (start + PAGE_SIZE) & PAGE_MASK; 148 } 149 150 return i; 151 152 finish_or_fault: 153 return i ? : -EFAULT; 154 } 155 156 /* 157 * get a list of pages in an address range belonging to the specified process 158 * and indicate the VMA that covers each page 159 * - this is potentially dodgy as we may end incrementing the page count of a 160 * slab page or a secondary page from a compound page 161 * - don't permit access to VMAs that don't support it, such as I/O mappings 162 */ 163 long get_user_pages(unsigned long start, unsigned long nr_pages, 164 unsigned int gup_flags, struct page **pages, 165 struct vm_area_struct **vmas) 166 { 167 return __get_user_pages(current, current->mm, start, nr_pages, 168 gup_flags, pages, vmas, NULL); 169 } 170 EXPORT_SYMBOL(get_user_pages); 171 172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 173 unsigned int gup_flags, struct page **pages, 174 int *locked) 175 { 176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages_locked); 179 180 static long __get_user_pages_unlocked(struct task_struct *tsk, 181 struct mm_struct *mm, unsigned long start, 182 unsigned long nr_pages, struct page **pages, 183 unsigned int gup_flags) 184 { 185 long ret; 186 down_read(&mm->mmap_sem); 187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 188 NULL, NULL); 189 up_read(&mm->mmap_sem); 190 return ret; 191 } 192 193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 194 struct page **pages, unsigned int gup_flags) 195 { 196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 197 pages, gup_flags); 198 } 199 EXPORT_SYMBOL(get_user_pages_unlocked); 200 201 /** 202 * follow_pfn - look up PFN at a user virtual address 203 * @vma: memory mapping 204 * @address: user virtual address 205 * @pfn: location to store found PFN 206 * 207 * Only IO mappings and raw PFN mappings are allowed. 208 * 209 * Returns zero and the pfn at @pfn on success, -ve otherwise. 210 */ 211 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 212 unsigned long *pfn) 213 { 214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 215 return -EINVAL; 216 217 *pfn = address >> PAGE_SHIFT; 218 return 0; 219 } 220 EXPORT_SYMBOL(follow_pfn); 221 222 LIST_HEAD(vmap_area_list); 223 224 void vfree(const void *addr) 225 { 226 kfree(addr); 227 } 228 EXPORT_SYMBOL(vfree); 229 230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 231 { 232 /* 233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 234 * returns only a logical address. 235 */ 236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(__vmalloc); 239 240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 241 { 242 return __vmalloc(size, flags, PAGE_KERNEL); 243 } 244 245 void *vmalloc_user(unsigned long size) 246 { 247 void *ret; 248 249 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 250 PAGE_KERNEL); 251 if (ret) { 252 struct vm_area_struct *vma; 253 254 down_write(¤t->mm->mmap_sem); 255 vma = find_vma(current->mm, (unsigned long)ret); 256 if (vma) 257 vma->vm_flags |= VM_USERMAP; 258 up_write(¤t->mm->mmap_sem); 259 } 260 261 return ret; 262 } 263 EXPORT_SYMBOL(vmalloc_user); 264 265 struct page *vmalloc_to_page(const void *addr) 266 { 267 return virt_to_page(addr); 268 } 269 EXPORT_SYMBOL(vmalloc_to_page); 270 271 unsigned long vmalloc_to_pfn(const void *addr) 272 { 273 return page_to_pfn(virt_to_page(addr)); 274 } 275 EXPORT_SYMBOL(vmalloc_to_pfn); 276 277 long vread(char *buf, char *addr, unsigned long count) 278 { 279 /* Don't allow overflow */ 280 if ((unsigned long) buf + count < count) 281 count = -(unsigned long) buf; 282 283 memcpy(buf, addr, count); 284 return count; 285 } 286 287 long vwrite(char *buf, char *addr, unsigned long count) 288 { 289 /* Don't allow overflow */ 290 if ((unsigned long) addr + count < count) 291 count = -(unsigned long) addr; 292 293 memcpy(addr, buf, count); 294 return count; 295 } 296 297 /* 298 * vmalloc - allocate virtually contiguous memory 299 * 300 * @size: allocation size 301 * 302 * Allocate enough pages to cover @size from the page level 303 * allocator and map them into contiguous kernel virtual space. 304 * 305 * For tight control over page level allocator and protection flags 306 * use __vmalloc() instead. 307 */ 308 void *vmalloc(unsigned long size) 309 { 310 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 311 } 312 EXPORT_SYMBOL(vmalloc); 313 314 /* 315 * vzalloc - allocate virtually contiguous memory with zero fill 316 * 317 * @size: allocation size 318 * 319 * Allocate enough pages to cover @size from the page level 320 * allocator and map them into contiguous kernel virtual space. 321 * The memory allocated is set to zero. 322 * 323 * For tight control over page level allocator and protection flags 324 * use __vmalloc() instead. 325 */ 326 void *vzalloc(unsigned long size) 327 { 328 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 329 PAGE_KERNEL); 330 } 331 EXPORT_SYMBOL(vzalloc); 332 333 /** 334 * vmalloc_node - allocate memory on a specific node 335 * @size: allocation size 336 * @node: numa node 337 * 338 * Allocate enough pages to cover @size from the page level 339 * allocator and map them into contiguous kernel virtual space. 340 * 341 * For tight control over page level allocator and protection flags 342 * use __vmalloc() instead. 343 */ 344 void *vmalloc_node(unsigned long size, int node) 345 { 346 return vmalloc(size); 347 } 348 EXPORT_SYMBOL(vmalloc_node); 349 350 /** 351 * vzalloc_node - allocate memory on a specific node with zero fill 352 * @size: allocation size 353 * @node: numa node 354 * 355 * Allocate enough pages to cover @size from the page level 356 * allocator and map them into contiguous kernel virtual space. 357 * The memory allocated is set to zero. 358 * 359 * For tight control over page level allocator and protection flags 360 * use __vmalloc() instead. 361 */ 362 void *vzalloc_node(unsigned long size, int node) 363 { 364 return vzalloc(size); 365 } 366 EXPORT_SYMBOL(vzalloc_node); 367 368 #ifndef PAGE_KERNEL_EXEC 369 # define PAGE_KERNEL_EXEC PAGE_KERNEL 370 #endif 371 372 /** 373 * vmalloc_exec - allocate virtually contiguous, executable memory 374 * @size: allocation size 375 * 376 * Kernel-internal function to allocate enough pages to cover @size 377 * the page level allocator and map them into contiguous and 378 * executable kernel virtual space. 379 * 380 * For tight control over page level allocator and protection flags 381 * use __vmalloc() instead. 382 */ 383 384 void *vmalloc_exec(unsigned long size) 385 { 386 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 387 } 388 389 /** 390 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 391 * @size: allocation size 392 * 393 * Allocate enough 32bit PA addressable pages to cover @size from the 394 * page level allocator and map them into contiguous kernel virtual space. 395 */ 396 void *vmalloc_32(unsigned long size) 397 { 398 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 399 } 400 EXPORT_SYMBOL(vmalloc_32); 401 402 /** 403 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 404 * @size: allocation size 405 * 406 * The resulting memory area is 32bit addressable and zeroed so it can be 407 * mapped to userspace without leaking data. 408 * 409 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 410 * remap_vmalloc_range() are permissible. 411 */ 412 void *vmalloc_32_user(unsigned long size) 413 { 414 /* 415 * We'll have to sort out the ZONE_DMA bits for 64-bit, 416 * but for now this can simply use vmalloc_user() directly. 417 */ 418 return vmalloc_user(size); 419 } 420 EXPORT_SYMBOL(vmalloc_32_user); 421 422 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 423 { 424 BUG(); 425 return NULL; 426 } 427 EXPORT_SYMBOL(vmap); 428 429 void vunmap(const void *addr) 430 { 431 BUG(); 432 } 433 EXPORT_SYMBOL(vunmap); 434 435 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 436 { 437 BUG(); 438 return NULL; 439 } 440 EXPORT_SYMBOL(vm_map_ram); 441 442 void vm_unmap_ram(const void *mem, unsigned int count) 443 { 444 BUG(); 445 } 446 EXPORT_SYMBOL(vm_unmap_ram); 447 448 void vm_unmap_aliases(void) 449 { 450 } 451 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 452 453 /* 454 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 455 * have one. 456 */ 457 void __weak vmalloc_sync_all(void) 458 { 459 } 460 461 /** 462 * alloc_vm_area - allocate a range of kernel address space 463 * @size: size of the area 464 * 465 * Returns: NULL on failure, vm_struct on success 466 * 467 * This function reserves a range of kernel address space, and 468 * allocates pagetables to map that range. No actual mappings 469 * are created. If the kernel address space is not shared 470 * between processes, it syncs the pagetable across all 471 * processes. 472 */ 473 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 474 { 475 BUG(); 476 return NULL; 477 } 478 EXPORT_SYMBOL_GPL(alloc_vm_area); 479 480 void free_vm_area(struct vm_struct *area) 481 { 482 BUG(); 483 } 484 EXPORT_SYMBOL_GPL(free_vm_area); 485 486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 487 struct page *page) 488 { 489 return -EINVAL; 490 } 491 EXPORT_SYMBOL(vm_insert_page); 492 493 /* 494 * sys_brk() for the most part doesn't need the global kernel 495 * lock, except when an application is doing something nasty 496 * like trying to un-brk an area that has already been mapped 497 * to a regular file. in this case, the unmapping will need 498 * to invoke file system routines that need the global lock. 499 */ 500 SYSCALL_DEFINE1(brk, unsigned long, brk) 501 { 502 struct mm_struct *mm = current->mm; 503 504 if (brk < mm->start_brk || brk > mm->context.end_brk) 505 return mm->brk; 506 507 if (mm->brk == brk) 508 return mm->brk; 509 510 /* 511 * Always allow shrinking brk 512 */ 513 if (brk <= mm->brk) { 514 mm->brk = brk; 515 return brk; 516 } 517 518 /* 519 * Ok, looks good - let it rip. 520 */ 521 flush_icache_range(mm->brk, brk); 522 return mm->brk = brk; 523 } 524 525 /* 526 * initialise the percpu counter for VM and region record slabs 527 */ 528 void __init mmap_init(void) 529 { 530 int ret; 531 532 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 533 VM_BUG_ON(ret); 534 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 535 } 536 537 /* 538 * validate the region tree 539 * - the caller must hold the region lock 540 */ 541 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 542 static noinline void validate_nommu_regions(void) 543 { 544 struct vm_region *region, *last; 545 struct rb_node *p, *lastp; 546 547 lastp = rb_first(&nommu_region_tree); 548 if (!lastp) 549 return; 550 551 last = rb_entry(lastp, struct vm_region, vm_rb); 552 BUG_ON(last->vm_end <= last->vm_start); 553 BUG_ON(last->vm_top < last->vm_end); 554 555 while ((p = rb_next(lastp))) { 556 region = rb_entry(p, struct vm_region, vm_rb); 557 last = rb_entry(lastp, struct vm_region, vm_rb); 558 559 BUG_ON(region->vm_end <= region->vm_start); 560 BUG_ON(region->vm_top < region->vm_end); 561 BUG_ON(region->vm_start < last->vm_top); 562 563 lastp = p; 564 } 565 } 566 #else 567 static void validate_nommu_regions(void) 568 { 569 } 570 #endif 571 572 /* 573 * add a region into the global tree 574 */ 575 static void add_nommu_region(struct vm_region *region) 576 { 577 struct vm_region *pregion; 578 struct rb_node **p, *parent; 579 580 validate_nommu_regions(); 581 582 parent = NULL; 583 p = &nommu_region_tree.rb_node; 584 while (*p) { 585 parent = *p; 586 pregion = rb_entry(parent, struct vm_region, vm_rb); 587 if (region->vm_start < pregion->vm_start) 588 p = &(*p)->rb_left; 589 else if (region->vm_start > pregion->vm_start) 590 p = &(*p)->rb_right; 591 else if (pregion == region) 592 return; 593 else 594 BUG(); 595 } 596 597 rb_link_node(®ion->vm_rb, parent, p); 598 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 599 600 validate_nommu_regions(); 601 } 602 603 /* 604 * delete a region from the global tree 605 */ 606 static void delete_nommu_region(struct vm_region *region) 607 { 608 BUG_ON(!nommu_region_tree.rb_node); 609 610 validate_nommu_regions(); 611 rb_erase(®ion->vm_rb, &nommu_region_tree); 612 validate_nommu_regions(); 613 } 614 615 /* 616 * free a contiguous series of pages 617 */ 618 static void free_page_series(unsigned long from, unsigned long to) 619 { 620 for (; from < to; from += PAGE_SIZE) { 621 struct page *page = virt_to_page(from); 622 623 atomic_long_dec(&mmap_pages_allocated); 624 put_page(page); 625 } 626 } 627 628 /* 629 * release a reference to a region 630 * - the caller must hold the region semaphore for writing, which this releases 631 * - the region may not have been added to the tree yet, in which case vm_top 632 * will equal vm_start 633 */ 634 static void __put_nommu_region(struct vm_region *region) 635 __releases(nommu_region_sem) 636 { 637 BUG_ON(!nommu_region_tree.rb_node); 638 639 if (--region->vm_usage == 0) { 640 if (region->vm_top > region->vm_start) 641 delete_nommu_region(region); 642 up_write(&nommu_region_sem); 643 644 if (region->vm_file) 645 fput(region->vm_file); 646 647 /* IO memory and memory shared directly out of the pagecache 648 * from ramfs/tmpfs mustn't be released here */ 649 if (region->vm_flags & VM_MAPPED_COPY) 650 free_page_series(region->vm_start, region->vm_top); 651 kmem_cache_free(vm_region_jar, region); 652 } else { 653 up_write(&nommu_region_sem); 654 } 655 } 656 657 /* 658 * release a reference to a region 659 */ 660 static void put_nommu_region(struct vm_region *region) 661 { 662 down_write(&nommu_region_sem); 663 __put_nommu_region(region); 664 } 665 666 /* 667 * update protection on a vma 668 */ 669 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 670 { 671 #ifdef CONFIG_MPU 672 struct mm_struct *mm = vma->vm_mm; 673 long start = vma->vm_start & PAGE_MASK; 674 while (start < vma->vm_end) { 675 protect_page(mm, start, flags); 676 start += PAGE_SIZE; 677 } 678 update_protections(mm); 679 #endif 680 } 681 682 /* 683 * add a VMA into a process's mm_struct in the appropriate place in the list 684 * and tree and add to the address space's page tree also if not an anonymous 685 * page 686 * - should be called with mm->mmap_sem held writelocked 687 */ 688 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 689 { 690 struct vm_area_struct *pvma, *prev; 691 struct address_space *mapping; 692 struct rb_node **p, *parent, *rb_prev; 693 694 BUG_ON(!vma->vm_region); 695 696 mm->map_count++; 697 vma->vm_mm = mm; 698 699 protect_vma(vma, vma->vm_flags); 700 701 /* add the VMA to the mapping */ 702 if (vma->vm_file) { 703 mapping = vma->vm_file->f_mapping; 704 705 i_mmap_lock_write(mapping); 706 flush_dcache_mmap_lock(mapping); 707 vma_interval_tree_insert(vma, &mapping->i_mmap); 708 flush_dcache_mmap_unlock(mapping); 709 i_mmap_unlock_write(mapping); 710 } 711 712 /* add the VMA to the tree */ 713 parent = rb_prev = NULL; 714 p = &mm->mm_rb.rb_node; 715 while (*p) { 716 parent = *p; 717 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 718 719 /* sort by: start addr, end addr, VMA struct addr in that order 720 * (the latter is necessary as we may get identical VMAs) */ 721 if (vma->vm_start < pvma->vm_start) 722 p = &(*p)->rb_left; 723 else if (vma->vm_start > pvma->vm_start) { 724 rb_prev = parent; 725 p = &(*p)->rb_right; 726 } else if (vma->vm_end < pvma->vm_end) 727 p = &(*p)->rb_left; 728 else if (vma->vm_end > pvma->vm_end) { 729 rb_prev = parent; 730 p = &(*p)->rb_right; 731 } else if (vma < pvma) 732 p = &(*p)->rb_left; 733 else if (vma > pvma) { 734 rb_prev = parent; 735 p = &(*p)->rb_right; 736 } else 737 BUG(); 738 } 739 740 rb_link_node(&vma->vm_rb, parent, p); 741 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 742 743 /* add VMA to the VMA list also */ 744 prev = NULL; 745 if (rb_prev) 746 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 747 748 __vma_link_list(mm, vma, prev, parent); 749 } 750 751 /* 752 * delete a VMA from its owning mm_struct and address space 753 */ 754 static void delete_vma_from_mm(struct vm_area_struct *vma) 755 { 756 int i; 757 struct address_space *mapping; 758 struct mm_struct *mm = vma->vm_mm; 759 struct task_struct *curr = current; 760 761 protect_vma(vma, 0); 762 763 mm->map_count--; 764 for (i = 0; i < VMACACHE_SIZE; i++) { 765 /* if the vma is cached, invalidate the entire cache */ 766 if (curr->vmacache.vmas[i] == vma) { 767 vmacache_invalidate(mm); 768 break; 769 } 770 } 771 772 /* remove the VMA from the mapping */ 773 if (vma->vm_file) { 774 mapping = vma->vm_file->f_mapping; 775 776 i_mmap_lock_write(mapping); 777 flush_dcache_mmap_lock(mapping); 778 vma_interval_tree_remove(vma, &mapping->i_mmap); 779 flush_dcache_mmap_unlock(mapping); 780 i_mmap_unlock_write(mapping); 781 } 782 783 /* remove from the MM's tree and list */ 784 rb_erase(&vma->vm_rb, &mm->mm_rb); 785 786 if (vma->vm_prev) 787 vma->vm_prev->vm_next = vma->vm_next; 788 else 789 mm->mmap = vma->vm_next; 790 791 if (vma->vm_next) 792 vma->vm_next->vm_prev = vma->vm_prev; 793 } 794 795 /* 796 * destroy a VMA record 797 */ 798 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 799 { 800 if (vma->vm_ops && vma->vm_ops->close) 801 vma->vm_ops->close(vma); 802 if (vma->vm_file) 803 fput(vma->vm_file); 804 put_nommu_region(vma->vm_region); 805 kmem_cache_free(vm_area_cachep, vma); 806 } 807 808 /* 809 * look up the first VMA in which addr resides, NULL if none 810 * - should be called with mm->mmap_sem at least held readlocked 811 */ 812 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 813 { 814 struct vm_area_struct *vma; 815 816 /* check the cache first */ 817 vma = vmacache_find(mm, addr); 818 if (likely(vma)) 819 return vma; 820 821 /* trawl the list (there may be multiple mappings in which addr 822 * resides) */ 823 for (vma = mm->mmap; vma; vma = vma->vm_next) { 824 if (vma->vm_start > addr) 825 return NULL; 826 if (vma->vm_end > addr) { 827 vmacache_update(addr, vma); 828 return vma; 829 } 830 } 831 832 return NULL; 833 } 834 EXPORT_SYMBOL(find_vma); 835 836 /* 837 * find a VMA 838 * - we don't extend stack VMAs under NOMMU conditions 839 */ 840 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 841 { 842 return find_vma(mm, addr); 843 } 844 845 /* 846 * expand a stack to a given address 847 * - not supported under NOMMU conditions 848 */ 849 int expand_stack(struct vm_area_struct *vma, unsigned long address) 850 { 851 return -ENOMEM; 852 } 853 854 /* 855 * look up the first VMA exactly that exactly matches addr 856 * - should be called with mm->mmap_sem at least held readlocked 857 */ 858 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 859 unsigned long addr, 860 unsigned long len) 861 { 862 struct vm_area_struct *vma; 863 unsigned long end = addr + len; 864 865 /* check the cache first */ 866 vma = vmacache_find_exact(mm, addr, end); 867 if (vma) 868 return vma; 869 870 /* trawl the list (there may be multiple mappings in which addr 871 * resides) */ 872 for (vma = mm->mmap; vma; vma = vma->vm_next) { 873 if (vma->vm_start < addr) 874 continue; 875 if (vma->vm_start > addr) 876 return NULL; 877 if (vma->vm_end == end) { 878 vmacache_update(addr, vma); 879 return vma; 880 } 881 } 882 883 return NULL; 884 } 885 886 /* 887 * determine whether a mapping should be permitted and, if so, what sort of 888 * mapping we're capable of supporting 889 */ 890 static int validate_mmap_request(struct file *file, 891 unsigned long addr, 892 unsigned long len, 893 unsigned long prot, 894 unsigned long flags, 895 unsigned long pgoff, 896 unsigned long *_capabilities) 897 { 898 unsigned long capabilities, rlen; 899 int ret; 900 901 /* do the simple checks first */ 902 if (flags & MAP_FIXED) 903 return -EINVAL; 904 905 if ((flags & MAP_TYPE) != MAP_PRIVATE && 906 (flags & MAP_TYPE) != MAP_SHARED) 907 return -EINVAL; 908 909 if (!len) 910 return -EINVAL; 911 912 /* Careful about overflows.. */ 913 rlen = PAGE_ALIGN(len); 914 if (!rlen || rlen > TASK_SIZE) 915 return -ENOMEM; 916 917 /* offset overflow? */ 918 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 919 return -EOVERFLOW; 920 921 if (file) { 922 /* files must support mmap */ 923 if (!file->f_op->mmap) 924 return -ENODEV; 925 926 /* work out if what we've got could possibly be shared 927 * - we support chardevs that provide their own "memory" 928 * - we support files/blockdevs that are memory backed 929 */ 930 if (file->f_op->mmap_capabilities) { 931 capabilities = file->f_op->mmap_capabilities(file); 932 } else { 933 /* no explicit capabilities set, so assume some 934 * defaults */ 935 switch (file_inode(file)->i_mode & S_IFMT) { 936 case S_IFREG: 937 case S_IFBLK: 938 capabilities = NOMMU_MAP_COPY; 939 break; 940 941 case S_IFCHR: 942 capabilities = 943 NOMMU_MAP_DIRECT | 944 NOMMU_MAP_READ | 945 NOMMU_MAP_WRITE; 946 break; 947 948 default: 949 return -EINVAL; 950 } 951 } 952 953 /* eliminate any capabilities that we can't support on this 954 * device */ 955 if (!file->f_op->get_unmapped_area) 956 capabilities &= ~NOMMU_MAP_DIRECT; 957 if (!(file->f_mode & FMODE_CAN_READ)) 958 capabilities &= ~NOMMU_MAP_COPY; 959 960 /* The file shall have been opened with read permission. */ 961 if (!(file->f_mode & FMODE_READ)) 962 return -EACCES; 963 964 if (flags & MAP_SHARED) { 965 /* do checks for writing, appending and locking */ 966 if ((prot & PROT_WRITE) && 967 !(file->f_mode & FMODE_WRITE)) 968 return -EACCES; 969 970 if (IS_APPEND(file_inode(file)) && 971 (file->f_mode & FMODE_WRITE)) 972 return -EACCES; 973 974 if (locks_verify_locked(file)) 975 return -EAGAIN; 976 977 if (!(capabilities & NOMMU_MAP_DIRECT)) 978 return -ENODEV; 979 980 /* we mustn't privatise shared mappings */ 981 capabilities &= ~NOMMU_MAP_COPY; 982 } else { 983 /* we're going to read the file into private memory we 984 * allocate */ 985 if (!(capabilities & NOMMU_MAP_COPY)) 986 return -ENODEV; 987 988 /* we don't permit a private writable mapping to be 989 * shared with the backing device */ 990 if (prot & PROT_WRITE) 991 capabilities &= ~NOMMU_MAP_DIRECT; 992 } 993 994 if (capabilities & NOMMU_MAP_DIRECT) { 995 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 996 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 997 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 998 ) { 999 capabilities &= ~NOMMU_MAP_DIRECT; 1000 if (flags & MAP_SHARED) { 1001 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 1002 return -EINVAL; 1003 } 1004 } 1005 } 1006 1007 /* handle executable mappings and implied executable 1008 * mappings */ 1009 if (path_noexec(&file->f_path)) { 1010 if (prot & PROT_EXEC) 1011 return -EPERM; 1012 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1013 /* handle implication of PROT_EXEC by PROT_READ */ 1014 if (current->personality & READ_IMPLIES_EXEC) { 1015 if (capabilities & NOMMU_MAP_EXEC) 1016 prot |= PROT_EXEC; 1017 } 1018 } else if ((prot & PROT_READ) && 1019 (prot & PROT_EXEC) && 1020 !(capabilities & NOMMU_MAP_EXEC) 1021 ) { 1022 /* backing file is not executable, try to copy */ 1023 capabilities &= ~NOMMU_MAP_DIRECT; 1024 } 1025 } else { 1026 /* anonymous mappings are always memory backed and can be 1027 * privately mapped 1028 */ 1029 capabilities = NOMMU_MAP_COPY; 1030 1031 /* handle PROT_EXEC implication by PROT_READ */ 1032 if ((prot & PROT_READ) && 1033 (current->personality & READ_IMPLIES_EXEC)) 1034 prot |= PROT_EXEC; 1035 } 1036 1037 /* allow the security API to have its say */ 1038 ret = security_mmap_addr(addr); 1039 if (ret < 0) 1040 return ret; 1041 1042 /* looks okay */ 1043 *_capabilities = capabilities; 1044 return 0; 1045 } 1046 1047 /* 1048 * we've determined that we can make the mapping, now translate what we 1049 * now know into VMA flags 1050 */ 1051 static unsigned long determine_vm_flags(struct file *file, 1052 unsigned long prot, 1053 unsigned long flags, 1054 unsigned long capabilities) 1055 { 1056 unsigned long vm_flags; 1057 1058 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1059 /* vm_flags |= mm->def_flags; */ 1060 1061 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1062 /* attempt to share read-only copies of mapped file chunks */ 1063 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1064 if (file && !(prot & PROT_WRITE)) 1065 vm_flags |= VM_MAYSHARE; 1066 } else { 1067 /* overlay a shareable mapping on the backing device or inode 1068 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1069 * romfs/cramfs */ 1070 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1071 if (flags & MAP_SHARED) 1072 vm_flags |= VM_SHARED; 1073 } 1074 1075 /* refuse to let anyone share private mappings with this process if 1076 * it's being traced - otherwise breakpoints set in it may interfere 1077 * with another untraced process 1078 */ 1079 if ((flags & MAP_PRIVATE) && current->ptrace) 1080 vm_flags &= ~VM_MAYSHARE; 1081 1082 return vm_flags; 1083 } 1084 1085 /* 1086 * set up a shared mapping on a file (the driver or filesystem provides and 1087 * pins the storage) 1088 */ 1089 static int do_mmap_shared_file(struct vm_area_struct *vma) 1090 { 1091 int ret; 1092 1093 ret = call_mmap(vma->vm_file, vma); 1094 if (ret == 0) { 1095 vma->vm_region->vm_top = vma->vm_region->vm_end; 1096 return 0; 1097 } 1098 if (ret != -ENOSYS) 1099 return ret; 1100 1101 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1102 * opposed to tried but failed) so we can only give a suitable error as 1103 * it's not possible to make a private copy if MAP_SHARED was given */ 1104 return -ENODEV; 1105 } 1106 1107 /* 1108 * set up a private mapping or an anonymous shared mapping 1109 */ 1110 static int do_mmap_private(struct vm_area_struct *vma, 1111 struct vm_region *region, 1112 unsigned long len, 1113 unsigned long capabilities) 1114 { 1115 unsigned long total, point; 1116 void *base; 1117 int ret, order; 1118 1119 /* invoke the file's mapping function so that it can keep track of 1120 * shared mappings on devices or memory 1121 * - VM_MAYSHARE will be set if it may attempt to share 1122 */ 1123 if (capabilities & NOMMU_MAP_DIRECT) { 1124 ret = call_mmap(vma->vm_file, vma); 1125 if (ret == 0) { 1126 /* shouldn't return success if we're not sharing */ 1127 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1128 vma->vm_region->vm_top = vma->vm_region->vm_end; 1129 return 0; 1130 } 1131 if (ret != -ENOSYS) 1132 return ret; 1133 1134 /* getting an ENOSYS error indicates that direct mmap isn't 1135 * possible (as opposed to tried but failed) so we'll try to 1136 * make a private copy of the data and map that instead */ 1137 } 1138 1139 1140 /* allocate some memory to hold the mapping 1141 * - note that this may not return a page-aligned address if the object 1142 * we're allocating is smaller than a page 1143 */ 1144 order = get_order(len); 1145 total = 1 << order; 1146 point = len >> PAGE_SHIFT; 1147 1148 /* we don't want to allocate a power-of-2 sized page set */ 1149 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1150 total = point; 1151 1152 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1153 if (!base) 1154 goto enomem; 1155 1156 atomic_long_add(total, &mmap_pages_allocated); 1157 1158 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1159 region->vm_start = (unsigned long) base; 1160 region->vm_end = region->vm_start + len; 1161 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1162 1163 vma->vm_start = region->vm_start; 1164 vma->vm_end = region->vm_start + len; 1165 1166 if (vma->vm_file) { 1167 /* read the contents of a file into the copy */ 1168 mm_segment_t old_fs; 1169 loff_t fpos; 1170 1171 fpos = vma->vm_pgoff; 1172 fpos <<= PAGE_SHIFT; 1173 1174 old_fs = get_fs(); 1175 set_fs(KERNEL_DS); 1176 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1177 set_fs(old_fs); 1178 1179 if (ret < 0) 1180 goto error_free; 1181 1182 /* clear the last little bit */ 1183 if (ret < len) 1184 memset(base + ret, 0, len - ret); 1185 1186 } 1187 1188 return 0; 1189 1190 error_free: 1191 free_page_series(region->vm_start, region->vm_top); 1192 region->vm_start = vma->vm_start = 0; 1193 region->vm_end = vma->vm_end = 0; 1194 region->vm_top = 0; 1195 return ret; 1196 1197 enomem: 1198 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1199 len, current->pid, current->comm); 1200 show_free_areas(0, NULL); 1201 return -ENOMEM; 1202 } 1203 1204 /* 1205 * handle mapping creation for uClinux 1206 */ 1207 unsigned long do_mmap(struct file *file, 1208 unsigned long addr, 1209 unsigned long len, 1210 unsigned long prot, 1211 unsigned long flags, 1212 vm_flags_t vm_flags, 1213 unsigned long pgoff, 1214 unsigned long *populate, 1215 struct list_head *uf) 1216 { 1217 struct vm_area_struct *vma; 1218 struct vm_region *region; 1219 struct rb_node *rb; 1220 unsigned long capabilities, result; 1221 int ret; 1222 1223 *populate = 0; 1224 1225 /* decide whether we should attempt the mapping, and if so what sort of 1226 * mapping */ 1227 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1228 &capabilities); 1229 if (ret < 0) 1230 return ret; 1231 1232 /* we ignore the address hint */ 1233 addr = 0; 1234 len = PAGE_ALIGN(len); 1235 1236 /* we've determined that we can make the mapping, now translate what we 1237 * now know into VMA flags */ 1238 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1239 1240 /* we're going to need to record the mapping */ 1241 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1242 if (!region) 1243 goto error_getting_region; 1244 1245 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1246 if (!vma) 1247 goto error_getting_vma; 1248 1249 region->vm_usage = 1; 1250 region->vm_flags = vm_flags; 1251 region->vm_pgoff = pgoff; 1252 1253 INIT_LIST_HEAD(&vma->anon_vma_chain); 1254 vma->vm_flags = vm_flags; 1255 vma->vm_pgoff = pgoff; 1256 1257 if (file) { 1258 region->vm_file = get_file(file); 1259 vma->vm_file = get_file(file); 1260 } 1261 1262 down_write(&nommu_region_sem); 1263 1264 /* if we want to share, we need to check for regions created by other 1265 * mmap() calls that overlap with our proposed mapping 1266 * - we can only share with a superset match on most regular files 1267 * - shared mappings on character devices and memory backed files are 1268 * permitted to overlap inexactly as far as we are concerned for in 1269 * these cases, sharing is handled in the driver or filesystem rather 1270 * than here 1271 */ 1272 if (vm_flags & VM_MAYSHARE) { 1273 struct vm_region *pregion; 1274 unsigned long pglen, rpglen, pgend, rpgend, start; 1275 1276 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1277 pgend = pgoff + pglen; 1278 1279 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1280 pregion = rb_entry(rb, struct vm_region, vm_rb); 1281 1282 if (!(pregion->vm_flags & VM_MAYSHARE)) 1283 continue; 1284 1285 /* search for overlapping mappings on the same file */ 1286 if (file_inode(pregion->vm_file) != 1287 file_inode(file)) 1288 continue; 1289 1290 if (pregion->vm_pgoff >= pgend) 1291 continue; 1292 1293 rpglen = pregion->vm_end - pregion->vm_start; 1294 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1295 rpgend = pregion->vm_pgoff + rpglen; 1296 if (pgoff >= rpgend) 1297 continue; 1298 1299 /* handle inexactly overlapping matches between 1300 * mappings */ 1301 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1302 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1303 /* new mapping is not a subset of the region */ 1304 if (!(capabilities & NOMMU_MAP_DIRECT)) 1305 goto sharing_violation; 1306 continue; 1307 } 1308 1309 /* we've found a region we can share */ 1310 pregion->vm_usage++; 1311 vma->vm_region = pregion; 1312 start = pregion->vm_start; 1313 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1314 vma->vm_start = start; 1315 vma->vm_end = start + len; 1316 1317 if (pregion->vm_flags & VM_MAPPED_COPY) 1318 vma->vm_flags |= VM_MAPPED_COPY; 1319 else { 1320 ret = do_mmap_shared_file(vma); 1321 if (ret < 0) { 1322 vma->vm_region = NULL; 1323 vma->vm_start = 0; 1324 vma->vm_end = 0; 1325 pregion->vm_usage--; 1326 pregion = NULL; 1327 goto error_just_free; 1328 } 1329 } 1330 fput(region->vm_file); 1331 kmem_cache_free(vm_region_jar, region); 1332 region = pregion; 1333 result = start; 1334 goto share; 1335 } 1336 1337 /* obtain the address at which to make a shared mapping 1338 * - this is the hook for quasi-memory character devices to 1339 * tell us the location of a shared mapping 1340 */ 1341 if (capabilities & NOMMU_MAP_DIRECT) { 1342 addr = file->f_op->get_unmapped_area(file, addr, len, 1343 pgoff, flags); 1344 if (IS_ERR_VALUE(addr)) { 1345 ret = addr; 1346 if (ret != -ENOSYS) 1347 goto error_just_free; 1348 1349 /* the driver refused to tell us where to site 1350 * the mapping so we'll have to attempt to copy 1351 * it */ 1352 ret = -ENODEV; 1353 if (!(capabilities & NOMMU_MAP_COPY)) 1354 goto error_just_free; 1355 1356 capabilities &= ~NOMMU_MAP_DIRECT; 1357 } else { 1358 vma->vm_start = region->vm_start = addr; 1359 vma->vm_end = region->vm_end = addr + len; 1360 } 1361 } 1362 } 1363 1364 vma->vm_region = region; 1365 1366 /* set up the mapping 1367 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1368 */ 1369 if (file && vma->vm_flags & VM_SHARED) 1370 ret = do_mmap_shared_file(vma); 1371 else 1372 ret = do_mmap_private(vma, region, len, capabilities); 1373 if (ret < 0) 1374 goto error_just_free; 1375 add_nommu_region(region); 1376 1377 /* clear anonymous mappings that don't ask for uninitialized data */ 1378 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1379 memset((void *)region->vm_start, 0, 1380 region->vm_end - region->vm_start); 1381 1382 /* okay... we have a mapping; now we have to register it */ 1383 result = vma->vm_start; 1384 1385 current->mm->total_vm += len >> PAGE_SHIFT; 1386 1387 share: 1388 add_vma_to_mm(current->mm, vma); 1389 1390 /* we flush the region from the icache only when the first executable 1391 * mapping of it is made */ 1392 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1393 flush_icache_range(region->vm_start, region->vm_end); 1394 region->vm_icache_flushed = true; 1395 } 1396 1397 up_write(&nommu_region_sem); 1398 1399 return result; 1400 1401 error_just_free: 1402 up_write(&nommu_region_sem); 1403 error: 1404 if (region->vm_file) 1405 fput(region->vm_file); 1406 kmem_cache_free(vm_region_jar, region); 1407 if (vma->vm_file) 1408 fput(vma->vm_file); 1409 kmem_cache_free(vm_area_cachep, vma); 1410 return ret; 1411 1412 sharing_violation: 1413 up_write(&nommu_region_sem); 1414 pr_warn("Attempt to share mismatched mappings\n"); 1415 ret = -EINVAL; 1416 goto error; 1417 1418 error_getting_vma: 1419 kmem_cache_free(vm_region_jar, region); 1420 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1421 len, current->pid); 1422 show_free_areas(0, NULL); 1423 return -ENOMEM; 1424 1425 error_getting_region: 1426 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1427 len, current->pid); 1428 show_free_areas(0, NULL); 1429 return -ENOMEM; 1430 } 1431 1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1433 unsigned long, prot, unsigned long, flags, 1434 unsigned long, fd, unsigned long, pgoff) 1435 { 1436 struct file *file = NULL; 1437 unsigned long retval = -EBADF; 1438 1439 audit_mmap_fd(fd, flags); 1440 if (!(flags & MAP_ANONYMOUS)) { 1441 file = fget(fd); 1442 if (!file) 1443 goto out; 1444 } 1445 1446 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1447 1448 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1449 1450 if (file) 1451 fput(file); 1452 out: 1453 return retval; 1454 } 1455 1456 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1457 struct mmap_arg_struct { 1458 unsigned long addr; 1459 unsigned long len; 1460 unsigned long prot; 1461 unsigned long flags; 1462 unsigned long fd; 1463 unsigned long offset; 1464 }; 1465 1466 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1467 { 1468 struct mmap_arg_struct a; 1469 1470 if (copy_from_user(&a, arg, sizeof(a))) 1471 return -EFAULT; 1472 if (offset_in_page(a.offset)) 1473 return -EINVAL; 1474 1475 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1476 a.offset >> PAGE_SHIFT); 1477 } 1478 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1479 1480 /* 1481 * split a vma into two pieces at address 'addr', a new vma is allocated either 1482 * for the first part or the tail. 1483 */ 1484 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1485 unsigned long addr, int new_below) 1486 { 1487 struct vm_area_struct *new; 1488 struct vm_region *region; 1489 unsigned long npages; 1490 1491 /* we're only permitted to split anonymous regions (these should have 1492 * only a single usage on the region) */ 1493 if (vma->vm_file) 1494 return -ENOMEM; 1495 1496 if (mm->map_count >= sysctl_max_map_count) 1497 return -ENOMEM; 1498 1499 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1500 if (!region) 1501 return -ENOMEM; 1502 1503 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1504 if (!new) { 1505 kmem_cache_free(vm_region_jar, region); 1506 return -ENOMEM; 1507 } 1508 1509 /* most fields are the same, copy all, and then fixup */ 1510 *new = *vma; 1511 *region = *vma->vm_region; 1512 new->vm_region = region; 1513 1514 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1515 1516 if (new_below) { 1517 region->vm_top = region->vm_end = new->vm_end = addr; 1518 } else { 1519 region->vm_start = new->vm_start = addr; 1520 region->vm_pgoff = new->vm_pgoff += npages; 1521 } 1522 1523 if (new->vm_ops && new->vm_ops->open) 1524 new->vm_ops->open(new); 1525 1526 delete_vma_from_mm(vma); 1527 down_write(&nommu_region_sem); 1528 delete_nommu_region(vma->vm_region); 1529 if (new_below) { 1530 vma->vm_region->vm_start = vma->vm_start = addr; 1531 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1532 } else { 1533 vma->vm_region->vm_end = vma->vm_end = addr; 1534 vma->vm_region->vm_top = addr; 1535 } 1536 add_nommu_region(vma->vm_region); 1537 add_nommu_region(new->vm_region); 1538 up_write(&nommu_region_sem); 1539 add_vma_to_mm(mm, vma); 1540 add_vma_to_mm(mm, new); 1541 return 0; 1542 } 1543 1544 /* 1545 * shrink a VMA by removing the specified chunk from either the beginning or 1546 * the end 1547 */ 1548 static int shrink_vma(struct mm_struct *mm, 1549 struct vm_area_struct *vma, 1550 unsigned long from, unsigned long to) 1551 { 1552 struct vm_region *region; 1553 1554 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1555 * and list */ 1556 delete_vma_from_mm(vma); 1557 if (from > vma->vm_start) 1558 vma->vm_end = from; 1559 else 1560 vma->vm_start = to; 1561 add_vma_to_mm(mm, vma); 1562 1563 /* cut the backing region down to size */ 1564 region = vma->vm_region; 1565 BUG_ON(region->vm_usage != 1); 1566 1567 down_write(&nommu_region_sem); 1568 delete_nommu_region(region); 1569 if (from > region->vm_start) { 1570 to = region->vm_top; 1571 region->vm_top = region->vm_end = from; 1572 } else { 1573 region->vm_start = to; 1574 } 1575 add_nommu_region(region); 1576 up_write(&nommu_region_sem); 1577 1578 free_page_series(from, to); 1579 return 0; 1580 } 1581 1582 /* 1583 * release a mapping 1584 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1585 * VMA, though it need not cover the whole VMA 1586 */ 1587 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1588 { 1589 struct vm_area_struct *vma; 1590 unsigned long end; 1591 int ret; 1592 1593 len = PAGE_ALIGN(len); 1594 if (len == 0) 1595 return -EINVAL; 1596 1597 end = start + len; 1598 1599 /* find the first potentially overlapping VMA */ 1600 vma = find_vma(mm, start); 1601 if (!vma) { 1602 static int limit; 1603 if (limit < 5) { 1604 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1605 current->pid, current->comm, 1606 start, start + len - 1); 1607 limit++; 1608 } 1609 return -EINVAL; 1610 } 1611 1612 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1613 if (vma->vm_file) { 1614 do { 1615 if (start > vma->vm_start) 1616 return -EINVAL; 1617 if (end == vma->vm_end) 1618 goto erase_whole_vma; 1619 vma = vma->vm_next; 1620 } while (vma); 1621 return -EINVAL; 1622 } else { 1623 /* the chunk must be a subset of the VMA found */ 1624 if (start == vma->vm_start && end == vma->vm_end) 1625 goto erase_whole_vma; 1626 if (start < vma->vm_start || end > vma->vm_end) 1627 return -EINVAL; 1628 if (offset_in_page(start)) 1629 return -EINVAL; 1630 if (end != vma->vm_end && offset_in_page(end)) 1631 return -EINVAL; 1632 if (start != vma->vm_start && end != vma->vm_end) { 1633 ret = split_vma(mm, vma, start, 1); 1634 if (ret < 0) 1635 return ret; 1636 } 1637 return shrink_vma(mm, vma, start, end); 1638 } 1639 1640 erase_whole_vma: 1641 delete_vma_from_mm(vma); 1642 delete_vma(mm, vma); 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(do_munmap); 1646 1647 int vm_munmap(unsigned long addr, size_t len) 1648 { 1649 struct mm_struct *mm = current->mm; 1650 int ret; 1651 1652 down_write(&mm->mmap_sem); 1653 ret = do_munmap(mm, addr, len, NULL); 1654 up_write(&mm->mmap_sem); 1655 return ret; 1656 } 1657 EXPORT_SYMBOL(vm_munmap); 1658 1659 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1660 { 1661 return vm_munmap(addr, len); 1662 } 1663 1664 /* 1665 * release all the mappings made in a process's VM space 1666 */ 1667 void exit_mmap(struct mm_struct *mm) 1668 { 1669 struct vm_area_struct *vma; 1670 1671 if (!mm) 1672 return; 1673 1674 mm->total_vm = 0; 1675 1676 while ((vma = mm->mmap)) { 1677 mm->mmap = vma->vm_next; 1678 delete_vma_from_mm(vma); 1679 delete_vma(mm, vma); 1680 cond_resched(); 1681 } 1682 } 1683 1684 int vm_brk(unsigned long addr, unsigned long len) 1685 { 1686 return -ENOMEM; 1687 } 1688 1689 /* 1690 * expand (or shrink) an existing mapping, potentially moving it at the same 1691 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1692 * 1693 * under NOMMU conditions, we only permit changing a mapping's size, and only 1694 * as long as it stays within the region allocated by do_mmap_private() and the 1695 * block is not shareable 1696 * 1697 * MREMAP_FIXED is not supported under NOMMU conditions 1698 */ 1699 static unsigned long do_mremap(unsigned long addr, 1700 unsigned long old_len, unsigned long new_len, 1701 unsigned long flags, unsigned long new_addr) 1702 { 1703 struct vm_area_struct *vma; 1704 1705 /* insanity checks first */ 1706 old_len = PAGE_ALIGN(old_len); 1707 new_len = PAGE_ALIGN(new_len); 1708 if (old_len == 0 || new_len == 0) 1709 return (unsigned long) -EINVAL; 1710 1711 if (offset_in_page(addr)) 1712 return -EINVAL; 1713 1714 if (flags & MREMAP_FIXED && new_addr != addr) 1715 return (unsigned long) -EINVAL; 1716 1717 vma = find_vma_exact(current->mm, addr, old_len); 1718 if (!vma) 1719 return (unsigned long) -EINVAL; 1720 1721 if (vma->vm_end != vma->vm_start + old_len) 1722 return (unsigned long) -EFAULT; 1723 1724 if (vma->vm_flags & VM_MAYSHARE) 1725 return (unsigned long) -EPERM; 1726 1727 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1728 return (unsigned long) -ENOMEM; 1729 1730 /* all checks complete - do it */ 1731 vma->vm_end = vma->vm_start + new_len; 1732 return vma->vm_start; 1733 } 1734 1735 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1736 unsigned long, new_len, unsigned long, flags, 1737 unsigned long, new_addr) 1738 { 1739 unsigned long ret; 1740 1741 down_write(¤t->mm->mmap_sem); 1742 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1743 up_write(¤t->mm->mmap_sem); 1744 return ret; 1745 } 1746 1747 struct page *follow_page_mask(struct vm_area_struct *vma, 1748 unsigned long address, unsigned int flags, 1749 unsigned int *page_mask) 1750 { 1751 *page_mask = 0; 1752 return NULL; 1753 } 1754 1755 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1756 unsigned long pfn, unsigned long size, pgprot_t prot) 1757 { 1758 if (addr != (pfn << PAGE_SHIFT)) 1759 return -EINVAL; 1760 1761 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1762 return 0; 1763 } 1764 EXPORT_SYMBOL(remap_pfn_range); 1765 1766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1767 { 1768 unsigned long pfn = start >> PAGE_SHIFT; 1769 unsigned long vm_len = vma->vm_end - vma->vm_start; 1770 1771 pfn += vma->vm_pgoff; 1772 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1773 } 1774 EXPORT_SYMBOL(vm_iomap_memory); 1775 1776 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1777 unsigned long pgoff) 1778 { 1779 unsigned int size = vma->vm_end - vma->vm_start; 1780 1781 if (!(vma->vm_flags & VM_USERMAP)) 1782 return -EINVAL; 1783 1784 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1785 vma->vm_end = vma->vm_start + size; 1786 1787 return 0; 1788 } 1789 EXPORT_SYMBOL(remap_vmalloc_range); 1790 1791 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1792 unsigned long len, unsigned long pgoff, unsigned long flags) 1793 { 1794 return -ENOMEM; 1795 } 1796 1797 void unmap_mapping_range(struct address_space *mapping, 1798 loff_t const holebegin, loff_t const holelen, 1799 int even_cows) 1800 { 1801 } 1802 EXPORT_SYMBOL(unmap_mapping_range); 1803 1804 int filemap_fault(struct vm_fault *vmf) 1805 { 1806 BUG(); 1807 return 0; 1808 } 1809 EXPORT_SYMBOL(filemap_fault); 1810 1811 void filemap_map_pages(struct vm_fault *vmf, 1812 pgoff_t start_pgoff, pgoff_t end_pgoff) 1813 { 1814 BUG(); 1815 } 1816 EXPORT_SYMBOL(filemap_map_pages); 1817 1818 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1819 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1820 { 1821 struct vm_area_struct *vma; 1822 int write = gup_flags & FOLL_WRITE; 1823 1824 down_read(&mm->mmap_sem); 1825 1826 /* the access must start within one of the target process's mappings */ 1827 vma = find_vma(mm, addr); 1828 if (vma) { 1829 /* don't overrun this mapping */ 1830 if (addr + len >= vma->vm_end) 1831 len = vma->vm_end - addr; 1832 1833 /* only read or write mappings where it is permitted */ 1834 if (write && vma->vm_flags & VM_MAYWRITE) 1835 copy_to_user_page(vma, NULL, addr, 1836 (void *) addr, buf, len); 1837 else if (!write && vma->vm_flags & VM_MAYREAD) 1838 copy_from_user_page(vma, NULL, addr, 1839 buf, (void *) addr, len); 1840 else 1841 len = 0; 1842 } else { 1843 len = 0; 1844 } 1845 1846 up_read(&mm->mmap_sem); 1847 1848 return len; 1849 } 1850 1851 /** 1852 * @access_remote_vm - access another process' address space 1853 * @mm: the mm_struct of the target address space 1854 * @addr: start address to access 1855 * @buf: source or destination buffer 1856 * @len: number of bytes to transfer 1857 * @gup_flags: flags modifying lookup behaviour 1858 * 1859 * The caller must hold a reference on @mm. 1860 */ 1861 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1862 void *buf, int len, unsigned int gup_flags) 1863 { 1864 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1865 } 1866 1867 /* 1868 * Access another process' address space. 1869 * - source/target buffer must be kernel space 1870 */ 1871 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1872 unsigned int gup_flags) 1873 { 1874 struct mm_struct *mm; 1875 1876 if (addr + len < addr) 1877 return 0; 1878 1879 mm = get_task_mm(tsk); 1880 if (!mm) 1881 return 0; 1882 1883 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1884 1885 mmput(mm); 1886 return len; 1887 } 1888 EXPORT_SYMBOL_GPL(access_process_vm); 1889 1890 /** 1891 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1892 * @inode: The inode to check 1893 * @size: The current filesize of the inode 1894 * @newsize: The proposed filesize of the inode 1895 * 1896 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1897 * make sure that that any outstanding VMAs aren't broken and then shrink the 1898 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1899 * automatically grant mappings that are too large. 1900 */ 1901 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1902 size_t newsize) 1903 { 1904 struct vm_area_struct *vma; 1905 struct vm_region *region; 1906 pgoff_t low, high; 1907 size_t r_size, r_top; 1908 1909 low = newsize >> PAGE_SHIFT; 1910 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1911 1912 down_write(&nommu_region_sem); 1913 i_mmap_lock_read(inode->i_mapping); 1914 1915 /* search for VMAs that fall within the dead zone */ 1916 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1917 /* found one - only interested if it's shared out of the page 1918 * cache */ 1919 if (vma->vm_flags & VM_SHARED) { 1920 i_mmap_unlock_read(inode->i_mapping); 1921 up_write(&nommu_region_sem); 1922 return -ETXTBSY; /* not quite true, but near enough */ 1923 } 1924 } 1925 1926 /* reduce any regions that overlap the dead zone - if in existence, 1927 * these will be pointed to by VMAs that don't overlap the dead zone 1928 * 1929 * we don't check for any regions that start beyond the EOF as there 1930 * shouldn't be any 1931 */ 1932 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1933 if (!(vma->vm_flags & VM_SHARED)) 1934 continue; 1935 1936 region = vma->vm_region; 1937 r_size = region->vm_top - region->vm_start; 1938 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1939 1940 if (r_top > newsize) { 1941 region->vm_top -= r_top - newsize; 1942 if (region->vm_end > region->vm_top) 1943 region->vm_end = region->vm_top; 1944 } 1945 } 1946 1947 i_mmap_unlock_read(inode->i_mapping); 1948 up_write(&nommu_region_sem); 1949 return 0; 1950 } 1951 1952 /* 1953 * Initialise sysctl_user_reserve_kbytes. 1954 * 1955 * This is intended to prevent a user from starting a single memory hogging 1956 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1957 * mode. 1958 * 1959 * The default value is min(3% of free memory, 128MB) 1960 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1961 */ 1962 static int __meminit init_user_reserve(void) 1963 { 1964 unsigned long free_kbytes; 1965 1966 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1967 1968 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1969 return 0; 1970 } 1971 subsys_initcall(init_user_reserve); 1972 1973 /* 1974 * Initialise sysctl_admin_reserve_kbytes. 1975 * 1976 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1977 * to log in and kill a memory hogging process. 1978 * 1979 * Systems with more than 256MB will reserve 8MB, enough to recover 1980 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1981 * only reserve 3% of free pages by default. 1982 */ 1983 static int __meminit init_admin_reserve(void) 1984 { 1985 unsigned long free_kbytes; 1986 1987 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1988 1989 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1990 return 0; 1991 } 1992 subsys_initcall(init_admin_reserve); 1993