1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vma->vm_flags |= VM_USERMAP; 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread(char *buf, char *addr, unsigned long count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) buf + count < count) 206 count = -(unsigned long) buf; 207 208 memcpy(buf, addr, count); 209 return count; 210 } 211 212 /* 213 * vmalloc - allocate virtually contiguous memory 214 * 215 * @size: allocation size 216 * 217 * Allocate enough pages to cover @size from the page level 218 * allocator and map them into contiguous kernel virtual space. 219 * 220 * For tight control over page level allocator and protection flags 221 * use __vmalloc() instead. 222 */ 223 void *vmalloc(unsigned long size) 224 { 225 return __vmalloc(size, GFP_KERNEL); 226 } 227 EXPORT_SYMBOL(vmalloc); 228 229 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 230 231 /* 232 * vzalloc - allocate virtually contiguous memory with zero fill 233 * 234 * @size: allocation size 235 * 236 * Allocate enough pages to cover @size from the page level 237 * allocator and map them into contiguous kernel virtual space. 238 * The memory allocated is set to zero. 239 * 240 * For tight control over page level allocator and protection flags 241 * use __vmalloc() instead. 242 */ 243 void *vzalloc(unsigned long size) 244 { 245 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 246 } 247 EXPORT_SYMBOL(vzalloc); 248 249 /** 250 * vmalloc_node - allocate memory on a specific node 251 * @size: allocation size 252 * @node: numa node 253 * 254 * Allocate enough pages to cover @size from the page level 255 * allocator and map them into contiguous kernel virtual space. 256 * 257 * For tight control over page level allocator and protection flags 258 * use __vmalloc() instead. 259 */ 260 void *vmalloc_node(unsigned long size, int node) 261 { 262 return vmalloc(size); 263 } 264 EXPORT_SYMBOL(vmalloc_node); 265 266 /** 267 * vzalloc_node - allocate memory on a specific node with zero fill 268 * @size: allocation size 269 * @node: numa node 270 * 271 * Allocate enough pages to cover @size from the page level 272 * allocator and map them into contiguous kernel virtual space. 273 * The memory allocated is set to zero. 274 * 275 * For tight control over page level allocator and protection flags 276 * use __vmalloc() instead. 277 */ 278 void *vzalloc_node(unsigned long size, int node) 279 { 280 return vzalloc(size); 281 } 282 EXPORT_SYMBOL(vzalloc_node); 283 284 /** 285 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 286 * @size: allocation size 287 * 288 * Allocate enough 32bit PA addressable pages to cover @size from the 289 * page level allocator and map them into contiguous kernel virtual space. 290 */ 291 void *vmalloc_32(unsigned long size) 292 { 293 return __vmalloc(size, GFP_KERNEL); 294 } 295 EXPORT_SYMBOL(vmalloc_32); 296 297 /** 298 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 299 * @size: allocation size 300 * 301 * The resulting memory area is 32bit addressable and zeroed so it can be 302 * mapped to userspace without leaking data. 303 * 304 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 305 * remap_vmalloc_range() are permissible. 306 */ 307 void *vmalloc_32_user(unsigned long size) 308 { 309 /* 310 * We'll have to sort out the ZONE_DMA bits for 64-bit, 311 * but for now this can simply use vmalloc_user() directly. 312 */ 313 return vmalloc_user(size); 314 } 315 EXPORT_SYMBOL(vmalloc_32_user); 316 317 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 318 { 319 BUG(); 320 return NULL; 321 } 322 EXPORT_SYMBOL(vmap); 323 324 void vunmap(const void *addr) 325 { 326 BUG(); 327 } 328 EXPORT_SYMBOL(vunmap); 329 330 void *vm_map_ram(struct page **pages, unsigned int count, int node) 331 { 332 BUG(); 333 return NULL; 334 } 335 EXPORT_SYMBOL(vm_map_ram); 336 337 void vm_unmap_ram(const void *mem, unsigned int count) 338 { 339 BUG(); 340 } 341 EXPORT_SYMBOL(vm_unmap_ram); 342 343 void vm_unmap_aliases(void) 344 { 345 } 346 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 347 348 void free_vm_area(struct vm_struct *area) 349 { 350 BUG(); 351 } 352 EXPORT_SYMBOL_GPL(free_vm_area); 353 354 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 355 struct page *page) 356 { 357 return -EINVAL; 358 } 359 EXPORT_SYMBOL(vm_insert_page); 360 361 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 362 unsigned long num) 363 { 364 return -EINVAL; 365 } 366 EXPORT_SYMBOL(vm_map_pages); 367 368 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 369 unsigned long num) 370 { 371 return -EINVAL; 372 } 373 EXPORT_SYMBOL(vm_map_pages_zero); 374 375 /* 376 * sys_brk() for the most part doesn't need the global kernel 377 * lock, except when an application is doing something nasty 378 * like trying to un-brk an area that has already been mapped 379 * to a regular file. in this case, the unmapping will need 380 * to invoke file system routines that need the global lock. 381 */ 382 SYSCALL_DEFINE1(brk, unsigned long, brk) 383 { 384 struct mm_struct *mm = current->mm; 385 386 if (brk < mm->start_brk || brk > mm->context.end_brk) 387 return mm->brk; 388 389 if (mm->brk == brk) 390 return mm->brk; 391 392 /* 393 * Always allow shrinking brk 394 */ 395 if (brk <= mm->brk) { 396 mm->brk = brk; 397 return brk; 398 } 399 400 /* 401 * Ok, looks good - let it rip. 402 */ 403 flush_icache_user_range(mm->brk, brk); 404 return mm->brk = brk; 405 } 406 407 /* 408 * initialise the percpu counter for VM and region record slabs 409 */ 410 void __init mmap_init(void) 411 { 412 int ret; 413 414 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 415 VM_BUG_ON(ret); 416 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 417 } 418 419 /* 420 * validate the region tree 421 * - the caller must hold the region lock 422 */ 423 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 424 static noinline void validate_nommu_regions(void) 425 { 426 struct vm_region *region, *last; 427 struct rb_node *p, *lastp; 428 429 lastp = rb_first(&nommu_region_tree); 430 if (!lastp) 431 return; 432 433 last = rb_entry(lastp, struct vm_region, vm_rb); 434 BUG_ON(last->vm_end <= last->vm_start); 435 BUG_ON(last->vm_top < last->vm_end); 436 437 while ((p = rb_next(lastp))) { 438 region = rb_entry(p, struct vm_region, vm_rb); 439 last = rb_entry(lastp, struct vm_region, vm_rb); 440 441 BUG_ON(region->vm_end <= region->vm_start); 442 BUG_ON(region->vm_top < region->vm_end); 443 BUG_ON(region->vm_start < last->vm_top); 444 445 lastp = p; 446 } 447 } 448 #else 449 static void validate_nommu_regions(void) 450 { 451 } 452 #endif 453 454 /* 455 * add a region into the global tree 456 */ 457 static void add_nommu_region(struct vm_region *region) 458 { 459 struct vm_region *pregion; 460 struct rb_node **p, *parent; 461 462 validate_nommu_regions(); 463 464 parent = NULL; 465 p = &nommu_region_tree.rb_node; 466 while (*p) { 467 parent = *p; 468 pregion = rb_entry(parent, struct vm_region, vm_rb); 469 if (region->vm_start < pregion->vm_start) 470 p = &(*p)->rb_left; 471 else if (region->vm_start > pregion->vm_start) 472 p = &(*p)->rb_right; 473 else if (pregion == region) 474 return; 475 else 476 BUG(); 477 } 478 479 rb_link_node(®ion->vm_rb, parent, p); 480 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 481 482 validate_nommu_regions(); 483 } 484 485 /* 486 * delete a region from the global tree 487 */ 488 static void delete_nommu_region(struct vm_region *region) 489 { 490 BUG_ON(!nommu_region_tree.rb_node); 491 492 validate_nommu_regions(); 493 rb_erase(®ion->vm_rb, &nommu_region_tree); 494 validate_nommu_regions(); 495 } 496 497 /* 498 * free a contiguous series of pages 499 */ 500 static void free_page_series(unsigned long from, unsigned long to) 501 { 502 for (; from < to; from += PAGE_SIZE) { 503 struct page *page = virt_to_page((void *)from); 504 505 atomic_long_dec(&mmap_pages_allocated); 506 put_page(page); 507 } 508 } 509 510 /* 511 * release a reference to a region 512 * - the caller must hold the region semaphore for writing, which this releases 513 * - the region may not have been added to the tree yet, in which case vm_top 514 * will equal vm_start 515 */ 516 static void __put_nommu_region(struct vm_region *region) 517 __releases(nommu_region_sem) 518 { 519 BUG_ON(!nommu_region_tree.rb_node); 520 521 if (--region->vm_usage == 0) { 522 if (region->vm_top > region->vm_start) 523 delete_nommu_region(region); 524 up_write(&nommu_region_sem); 525 526 if (region->vm_file) 527 fput(region->vm_file); 528 529 /* IO memory and memory shared directly out of the pagecache 530 * from ramfs/tmpfs mustn't be released here */ 531 if (region->vm_flags & VM_MAPPED_COPY) 532 free_page_series(region->vm_start, region->vm_top); 533 kmem_cache_free(vm_region_jar, region); 534 } else { 535 up_write(&nommu_region_sem); 536 } 537 } 538 539 /* 540 * release a reference to a region 541 */ 542 static void put_nommu_region(struct vm_region *region) 543 { 544 down_write(&nommu_region_sem); 545 __put_nommu_region(region); 546 } 547 548 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas) 549 { 550 mas_set_range(mas, vma->vm_start, vma->vm_end - 1); 551 mas_store_prealloc(mas, vma); 552 } 553 554 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas) 555 { 556 mas->index = vma->vm_start; 557 mas->last = vma->vm_end - 1; 558 mas_store_prealloc(mas, NULL); 559 } 560 561 /* 562 * add a VMA into a process's mm_struct in the appropriate place in the list 563 * and tree and add to the address space's page tree also if not an anonymous 564 * page 565 * - should be called with mm->mmap_lock held writelocked 566 */ 567 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 568 { 569 struct address_space *mapping; 570 struct vm_area_struct *prev; 571 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end); 572 573 BUG_ON(!vma->vm_region); 574 575 mm->map_count++; 576 vma->vm_mm = mm; 577 578 /* add the VMA to the mapping */ 579 if (vma->vm_file) { 580 mapping = vma->vm_file->f_mapping; 581 582 i_mmap_lock_write(mapping); 583 flush_dcache_mmap_lock(mapping); 584 vma_interval_tree_insert(vma, &mapping->i_mmap); 585 flush_dcache_mmap_unlock(mapping); 586 i_mmap_unlock_write(mapping); 587 } 588 589 prev = mas_prev(&mas, 0); 590 mas_reset(&mas); 591 /* add the VMA to the tree */ 592 vma_mas_store(vma, &mas); 593 __vma_link_list(mm, vma, prev); 594 } 595 596 /* 597 * delete a VMA from its owning mm_struct and address space 598 */ 599 static void delete_vma_from_mm(struct vm_area_struct *vma) 600 { 601 int i; 602 struct address_space *mapping; 603 struct mm_struct *mm = vma->vm_mm; 604 struct task_struct *curr = current; 605 MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0); 606 607 mm->map_count--; 608 for (i = 0; i < VMACACHE_SIZE; i++) { 609 /* if the vma is cached, invalidate the entire cache */ 610 if (curr->vmacache.vmas[i] == vma) { 611 vmacache_invalidate(mm); 612 break; 613 } 614 } 615 616 /* remove the VMA from the mapping */ 617 if (vma->vm_file) { 618 mapping = vma->vm_file->f_mapping; 619 620 i_mmap_lock_write(mapping); 621 flush_dcache_mmap_lock(mapping); 622 vma_interval_tree_remove(vma, &mapping->i_mmap); 623 flush_dcache_mmap_unlock(mapping); 624 i_mmap_unlock_write(mapping); 625 } 626 627 /* remove from the MM's tree and list */ 628 vma_mas_remove(vma, &mas); 629 __vma_unlink_list(mm, vma); 630 } 631 632 /* 633 * destroy a VMA record 634 */ 635 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 636 { 637 if (vma->vm_ops && vma->vm_ops->close) 638 vma->vm_ops->close(vma); 639 if (vma->vm_file) 640 fput(vma->vm_file); 641 put_nommu_region(vma->vm_region); 642 vm_area_free(vma); 643 } 644 645 /* 646 * look up the first VMA in which addr resides, NULL if none 647 * - should be called with mm->mmap_lock at least held readlocked 648 */ 649 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 650 { 651 struct vm_area_struct *vma; 652 MA_STATE(mas, &mm->mm_mt, addr, addr); 653 654 /* check the cache first */ 655 vma = vmacache_find(mm, addr); 656 if (likely(vma)) 657 return vma; 658 659 vma = mas_walk(&mas); 660 661 if (vma) 662 vmacache_update(addr, vma); 663 664 return vma; 665 } 666 EXPORT_SYMBOL(find_vma); 667 668 /* 669 * find a VMA 670 * - we don't extend stack VMAs under NOMMU conditions 671 */ 672 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 673 { 674 return find_vma(mm, addr); 675 } 676 677 /* 678 * expand a stack to a given address 679 * - not supported under NOMMU conditions 680 */ 681 int expand_stack(struct vm_area_struct *vma, unsigned long address) 682 { 683 return -ENOMEM; 684 } 685 686 /* 687 * look up the first VMA exactly that exactly matches addr 688 * - should be called with mm->mmap_lock at least held readlocked 689 */ 690 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 691 unsigned long addr, 692 unsigned long len) 693 { 694 struct vm_area_struct *vma; 695 unsigned long end = addr + len; 696 MA_STATE(mas, &mm->mm_mt, addr, addr); 697 698 /* check the cache first */ 699 vma = vmacache_find_exact(mm, addr, end); 700 if (vma) 701 return vma; 702 703 vma = mas_walk(&mas); 704 if (!vma) 705 return NULL; 706 if (vma->vm_start != addr) 707 return NULL; 708 if (vma->vm_end != end) 709 return NULL; 710 711 vmacache_update(addr, vma); 712 return vma; 713 } 714 715 /* 716 * determine whether a mapping should be permitted and, if so, what sort of 717 * mapping we're capable of supporting 718 */ 719 static int validate_mmap_request(struct file *file, 720 unsigned long addr, 721 unsigned long len, 722 unsigned long prot, 723 unsigned long flags, 724 unsigned long pgoff, 725 unsigned long *_capabilities) 726 { 727 unsigned long capabilities, rlen; 728 int ret; 729 730 /* do the simple checks first */ 731 if (flags & MAP_FIXED) 732 return -EINVAL; 733 734 if ((flags & MAP_TYPE) != MAP_PRIVATE && 735 (flags & MAP_TYPE) != MAP_SHARED) 736 return -EINVAL; 737 738 if (!len) 739 return -EINVAL; 740 741 /* Careful about overflows.. */ 742 rlen = PAGE_ALIGN(len); 743 if (!rlen || rlen > TASK_SIZE) 744 return -ENOMEM; 745 746 /* offset overflow? */ 747 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 748 return -EOVERFLOW; 749 750 if (file) { 751 /* files must support mmap */ 752 if (!file->f_op->mmap) 753 return -ENODEV; 754 755 /* work out if what we've got could possibly be shared 756 * - we support chardevs that provide their own "memory" 757 * - we support files/blockdevs that are memory backed 758 */ 759 if (file->f_op->mmap_capabilities) { 760 capabilities = file->f_op->mmap_capabilities(file); 761 } else { 762 /* no explicit capabilities set, so assume some 763 * defaults */ 764 switch (file_inode(file)->i_mode & S_IFMT) { 765 case S_IFREG: 766 case S_IFBLK: 767 capabilities = NOMMU_MAP_COPY; 768 break; 769 770 case S_IFCHR: 771 capabilities = 772 NOMMU_MAP_DIRECT | 773 NOMMU_MAP_READ | 774 NOMMU_MAP_WRITE; 775 break; 776 777 default: 778 return -EINVAL; 779 } 780 } 781 782 /* eliminate any capabilities that we can't support on this 783 * device */ 784 if (!file->f_op->get_unmapped_area) 785 capabilities &= ~NOMMU_MAP_DIRECT; 786 if (!(file->f_mode & FMODE_CAN_READ)) 787 capabilities &= ~NOMMU_MAP_COPY; 788 789 /* The file shall have been opened with read permission. */ 790 if (!(file->f_mode & FMODE_READ)) 791 return -EACCES; 792 793 if (flags & MAP_SHARED) { 794 /* do checks for writing, appending and locking */ 795 if ((prot & PROT_WRITE) && 796 !(file->f_mode & FMODE_WRITE)) 797 return -EACCES; 798 799 if (IS_APPEND(file_inode(file)) && 800 (file->f_mode & FMODE_WRITE)) 801 return -EACCES; 802 803 if (!(capabilities & NOMMU_MAP_DIRECT)) 804 return -ENODEV; 805 806 /* we mustn't privatise shared mappings */ 807 capabilities &= ~NOMMU_MAP_COPY; 808 } else { 809 /* we're going to read the file into private memory we 810 * allocate */ 811 if (!(capabilities & NOMMU_MAP_COPY)) 812 return -ENODEV; 813 814 /* we don't permit a private writable mapping to be 815 * shared with the backing device */ 816 if (prot & PROT_WRITE) 817 capabilities &= ~NOMMU_MAP_DIRECT; 818 } 819 820 if (capabilities & NOMMU_MAP_DIRECT) { 821 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 822 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 823 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 824 ) { 825 capabilities &= ~NOMMU_MAP_DIRECT; 826 if (flags & MAP_SHARED) { 827 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 828 return -EINVAL; 829 } 830 } 831 } 832 833 /* handle executable mappings and implied executable 834 * mappings */ 835 if (path_noexec(&file->f_path)) { 836 if (prot & PROT_EXEC) 837 return -EPERM; 838 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 839 /* handle implication of PROT_EXEC by PROT_READ */ 840 if (current->personality & READ_IMPLIES_EXEC) { 841 if (capabilities & NOMMU_MAP_EXEC) 842 prot |= PROT_EXEC; 843 } 844 } else if ((prot & PROT_READ) && 845 (prot & PROT_EXEC) && 846 !(capabilities & NOMMU_MAP_EXEC) 847 ) { 848 /* backing file is not executable, try to copy */ 849 capabilities &= ~NOMMU_MAP_DIRECT; 850 } 851 } else { 852 /* anonymous mappings are always memory backed and can be 853 * privately mapped 854 */ 855 capabilities = NOMMU_MAP_COPY; 856 857 /* handle PROT_EXEC implication by PROT_READ */ 858 if ((prot & PROT_READ) && 859 (current->personality & READ_IMPLIES_EXEC)) 860 prot |= PROT_EXEC; 861 } 862 863 /* allow the security API to have its say */ 864 ret = security_mmap_addr(addr); 865 if (ret < 0) 866 return ret; 867 868 /* looks okay */ 869 *_capabilities = capabilities; 870 return 0; 871 } 872 873 /* 874 * we've determined that we can make the mapping, now translate what we 875 * now know into VMA flags 876 */ 877 static unsigned long determine_vm_flags(struct file *file, 878 unsigned long prot, 879 unsigned long flags, 880 unsigned long capabilities) 881 { 882 unsigned long vm_flags; 883 884 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 885 /* vm_flags |= mm->def_flags; */ 886 887 if (!(capabilities & NOMMU_MAP_DIRECT)) { 888 /* attempt to share read-only copies of mapped file chunks */ 889 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 890 if (file && !(prot & PROT_WRITE)) 891 vm_flags |= VM_MAYSHARE; 892 } else { 893 /* overlay a shareable mapping on the backing device or inode 894 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 895 * romfs/cramfs */ 896 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 897 if (flags & MAP_SHARED) 898 vm_flags |= VM_SHARED; 899 } 900 901 /* refuse to let anyone share private mappings with this process if 902 * it's being traced - otherwise breakpoints set in it may interfere 903 * with another untraced process 904 */ 905 if ((flags & MAP_PRIVATE) && current->ptrace) 906 vm_flags &= ~VM_MAYSHARE; 907 908 return vm_flags; 909 } 910 911 /* 912 * set up a shared mapping on a file (the driver or filesystem provides and 913 * pins the storage) 914 */ 915 static int do_mmap_shared_file(struct vm_area_struct *vma) 916 { 917 int ret; 918 919 ret = call_mmap(vma->vm_file, vma); 920 if (ret == 0) { 921 vma->vm_region->vm_top = vma->vm_region->vm_end; 922 return 0; 923 } 924 if (ret != -ENOSYS) 925 return ret; 926 927 /* getting -ENOSYS indicates that direct mmap isn't possible (as 928 * opposed to tried but failed) so we can only give a suitable error as 929 * it's not possible to make a private copy if MAP_SHARED was given */ 930 return -ENODEV; 931 } 932 933 /* 934 * set up a private mapping or an anonymous shared mapping 935 */ 936 static int do_mmap_private(struct vm_area_struct *vma, 937 struct vm_region *region, 938 unsigned long len, 939 unsigned long capabilities) 940 { 941 unsigned long total, point; 942 void *base; 943 int ret, order; 944 945 /* invoke the file's mapping function so that it can keep track of 946 * shared mappings on devices or memory 947 * - VM_MAYSHARE will be set if it may attempt to share 948 */ 949 if (capabilities & NOMMU_MAP_DIRECT) { 950 ret = call_mmap(vma->vm_file, vma); 951 if (ret == 0) { 952 /* shouldn't return success if we're not sharing */ 953 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 954 vma->vm_region->vm_top = vma->vm_region->vm_end; 955 return 0; 956 } 957 if (ret != -ENOSYS) 958 return ret; 959 960 /* getting an ENOSYS error indicates that direct mmap isn't 961 * possible (as opposed to tried but failed) so we'll try to 962 * make a private copy of the data and map that instead */ 963 } 964 965 966 /* allocate some memory to hold the mapping 967 * - note that this may not return a page-aligned address if the object 968 * we're allocating is smaller than a page 969 */ 970 order = get_order(len); 971 total = 1 << order; 972 point = len >> PAGE_SHIFT; 973 974 /* we don't want to allocate a power-of-2 sized page set */ 975 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 976 total = point; 977 978 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 979 if (!base) 980 goto enomem; 981 982 atomic_long_add(total, &mmap_pages_allocated); 983 984 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 985 region->vm_start = (unsigned long) base; 986 region->vm_end = region->vm_start + len; 987 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 988 989 vma->vm_start = region->vm_start; 990 vma->vm_end = region->vm_start + len; 991 992 if (vma->vm_file) { 993 /* read the contents of a file into the copy */ 994 loff_t fpos; 995 996 fpos = vma->vm_pgoff; 997 fpos <<= PAGE_SHIFT; 998 999 ret = kernel_read(vma->vm_file, base, len, &fpos); 1000 if (ret < 0) 1001 goto error_free; 1002 1003 /* clear the last little bit */ 1004 if (ret < len) 1005 memset(base + ret, 0, len - ret); 1006 1007 } else { 1008 vma_set_anonymous(vma); 1009 } 1010 1011 return 0; 1012 1013 error_free: 1014 free_page_series(region->vm_start, region->vm_top); 1015 region->vm_start = vma->vm_start = 0; 1016 region->vm_end = vma->vm_end = 0; 1017 region->vm_top = 0; 1018 return ret; 1019 1020 enomem: 1021 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1022 len, current->pid, current->comm); 1023 show_free_areas(0, NULL); 1024 return -ENOMEM; 1025 } 1026 1027 /* 1028 * handle mapping creation for uClinux 1029 */ 1030 unsigned long do_mmap(struct file *file, 1031 unsigned long addr, 1032 unsigned long len, 1033 unsigned long prot, 1034 unsigned long flags, 1035 unsigned long pgoff, 1036 unsigned long *populate, 1037 struct list_head *uf) 1038 { 1039 struct vm_area_struct *vma; 1040 struct vm_region *region; 1041 struct rb_node *rb; 1042 vm_flags_t vm_flags; 1043 unsigned long capabilities, result; 1044 int ret; 1045 1046 *populate = 0; 1047 1048 /* decide whether we should attempt the mapping, and if so what sort of 1049 * mapping */ 1050 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1051 &capabilities); 1052 if (ret < 0) 1053 return ret; 1054 1055 /* we ignore the address hint */ 1056 addr = 0; 1057 len = PAGE_ALIGN(len); 1058 1059 /* we've determined that we can make the mapping, now translate what we 1060 * now know into VMA flags */ 1061 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1062 1063 /* we're going to need to record the mapping */ 1064 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1065 if (!region) 1066 goto error_getting_region; 1067 1068 vma = vm_area_alloc(current->mm); 1069 if (!vma) 1070 goto error_getting_vma; 1071 1072 region->vm_usage = 1; 1073 region->vm_flags = vm_flags; 1074 region->vm_pgoff = pgoff; 1075 1076 vma->vm_flags = vm_flags; 1077 vma->vm_pgoff = pgoff; 1078 1079 if (file) { 1080 region->vm_file = get_file(file); 1081 vma->vm_file = get_file(file); 1082 } 1083 1084 down_write(&nommu_region_sem); 1085 1086 /* if we want to share, we need to check for regions created by other 1087 * mmap() calls that overlap with our proposed mapping 1088 * - we can only share with a superset match on most regular files 1089 * - shared mappings on character devices and memory backed files are 1090 * permitted to overlap inexactly as far as we are concerned for in 1091 * these cases, sharing is handled in the driver or filesystem rather 1092 * than here 1093 */ 1094 if (vm_flags & VM_MAYSHARE) { 1095 struct vm_region *pregion; 1096 unsigned long pglen, rpglen, pgend, rpgend, start; 1097 1098 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1099 pgend = pgoff + pglen; 1100 1101 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1102 pregion = rb_entry(rb, struct vm_region, vm_rb); 1103 1104 if (!(pregion->vm_flags & VM_MAYSHARE)) 1105 continue; 1106 1107 /* search for overlapping mappings on the same file */ 1108 if (file_inode(pregion->vm_file) != 1109 file_inode(file)) 1110 continue; 1111 1112 if (pregion->vm_pgoff >= pgend) 1113 continue; 1114 1115 rpglen = pregion->vm_end - pregion->vm_start; 1116 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1117 rpgend = pregion->vm_pgoff + rpglen; 1118 if (pgoff >= rpgend) 1119 continue; 1120 1121 /* handle inexactly overlapping matches between 1122 * mappings */ 1123 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1124 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1125 /* new mapping is not a subset of the region */ 1126 if (!(capabilities & NOMMU_MAP_DIRECT)) 1127 goto sharing_violation; 1128 continue; 1129 } 1130 1131 /* we've found a region we can share */ 1132 pregion->vm_usage++; 1133 vma->vm_region = pregion; 1134 start = pregion->vm_start; 1135 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1136 vma->vm_start = start; 1137 vma->vm_end = start + len; 1138 1139 if (pregion->vm_flags & VM_MAPPED_COPY) 1140 vma->vm_flags |= VM_MAPPED_COPY; 1141 else { 1142 ret = do_mmap_shared_file(vma); 1143 if (ret < 0) { 1144 vma->vm_region = NULL; 1145 vma->vm_start = 0; 1146 vma->vm_end = 0; 1147 pregion->vm_usage--; 1148 pregion = NULL; 1149 goto error_just_free; 1150 } 1151 } 1152 fput(region->vm_file); 1153 kmem_cache_free(vm_region_jar, region); 1154 region = pregion; 1155 result = start; 1156 goto share; 1157 } 1158 1159 /* obtain the address at which to make a shared mapping 1160 * - this is the hook for quasi-memory character devices to 1161 * tell us the location of a shared mapping 1162 */ 1163 if (capabilities & NOMMU_MAP_DIRECT) { 1164 addr = file->f_op->get_unmapped_area(file, addr, len, 1165 pgoff, flags); 1166 if (IS_ERR_VALUE(addr)) { 1167 ret = addr; 1168 if (ret != -ENOSYS) 1169 goto error_just_free; 1170 1171 /* the driver refused to tell us where to site 1172 * the mapping so we'll have to attempt to copy 1173 * it */ 1174 ret = -ENODEV; 1175 if (!(capabilities & NOMMU_MAP_COPY)) 1176 goto error_just_free; 1177 1178 capabilities &= ~NOMMU_MAP_DIRECT; 1179 } else { 1180 vma->vm_start = region->vm_start = addr; 1181 vma->vm_end = region->vm_end = addr + len; 1182 } 1183 } 1184 } 1185 1186 vma->vm_region = region; 1187 1188 /* set up the mapping 1189 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1190 */ 1191 if (file && vma->vm_flags & VM_SHARED) 1192 ret = do_mmap_shared_file(vma); 1193 else 1194 ret = do_mmap_private(vma, region, len, capabilities); 1195 if (ret < 0) 1196 goto error_just_free; 1197 add_nommu_region(region); 1198 1199 /* clear anonymous mappings that don't ask for uninitialized data */ 1200 if (!vma->vm_file && 1201 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1202 !(flags & MAP_UNINITIALIZED))) 1203 memset((void *)region->vm_start, 0, 1204 region->vm_end - region->vm_start); 1205 1206 /* okay... we have a mapping; now we have to register it */ 1207 result = vma->vm_start; 1208 1209 current->mm->total_vm += len >> PAGE_SHIFT; 1210 1211 share: 1212 add_vma_to_mm(current->mm, vma); 1213 1214 /* we flush the region from the icache only when the first executable 1215 * mapping of it is made */ 1216 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1217 flush_icache_user_range(region->vm_start, region->vm_end); 1218 region->vm_icache_flushed = true; 1219 } 1220 1221 up_write(&nommu_region_sem); 1222 1223 return result; 1224 1225 error_just_free: 1226 up_write(&nommu_region_sem); 1227 error: 1228 if (region->vm_file) 1229 fput(region->vm_file); 1230 kmem_cache_free(vm_region_jar, region); 1231 if (vma->vm_file) 1232 fput(vma->vm_file); 1233 vm_area_free(vma); 1234 return ret; 1235 1236 sharing_violation: 1237 up_write(&nommu_region_sem); 1238 pr_warn("Attempt to share mismatched mappings\n"); 1239 ret = -EINVAL; 1240 goto error; 1241 1242 error_getting_vma: 1243 kmem_cache_free(vm_region_jar, region); 1244 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1245 len, current->pid); 1246 show_free_areas(0, NULL); 1247 return -ENOMEM; 1248 1249 error_getting_region: 1250 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1251 len, current->pid); 1252 show_free_areas(0, NULL); 1253 return -ENOMEM; 1254 } 1255 1256 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1257 unsigned long prot, unsigned long flags, 1258 unsigned long fd, unsigned long pgoff) 1259 { 1260 struct file *file = NULL; 1261 unsigned long retval = -EBADF; 1262 1263 audit_mmap_fd(fd, flags); 1264 if (!(flags & MAP_ANONYMOUS)) { 1265 file = fget(fd); 1266 if (!file) 1267 goto out; 1268 } 1269 1270 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1271 1272 if (file) 1273 fput(file); 1274 out: 1275 return retval; 1276 } 1277 1278 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1279 unsigned long, prot, unsigned long, flags, 1280 unsigned long, fd, unsigned long, pgoff) 1281 { 1282 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1283 } 1284 1285 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1286 struct mmap_arg_struct { 1287 unsigned long addr; 1288 unsigned long len; 1289 unsigned long prot; 1290 unsigned long flags; 1291 unsigned long fd; 1292 unsigned long offset; 1293 }; 1294 1295 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1296 { 1297 struct mmap_arg_struct a; 1298 1299 if (copy_from_user(&a, arg, sizeof(a))) 1300 return -EFAULT; 1301 if (offset_in_page(a.offset)) 1302 return -EINVAL; 1303 1304 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1305 a.offset >> PAGE_SHIFT); 1306 } 1307 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1308 1309 /* 1310 * split a vma into two pieces at address 'addr', a new vma is allocated either 1311 * for the first part or the tail. 1312 */ 1313 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1314 unsigned long addr, int new_below) 1315 { 1316 struct vm_area_struct *new; 1317 struct vm_region *region; 1318 unsigned long npages; 1319 1320 /* we're only permitted to split anonymous regions (these should have 1321 * only a single usage on the region) */ 1322 if (vma->vm_file) 1323 return -ENOMEM; 1324 1325 if (mm->map_count >= sysctl_max_map_count) 1326 return -ENOMEM; 1327 1328 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1329 if (!region) 1330 return -ENOMEM; 1331 1332 new = vm_area_dup(vma); 1333 if (!new) { 1334 kmem_cache_free(vm_region_jar, region); 1335 return -ENOMEM; 1336 } 1337 1338 /* most fields are the same, copy all, and then fixup */ 1339 *region = *vma->vm_region; 1340 new->vm_region = region; 1341 1342 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1343 1344 if (new_below) { 1345 region->vm_top = region->vm_end = new->vm_end = addr; 1346 } else { 1347 region->vm_start = new->vm_start = addr; 1348 region->vm_pgoff = new->vm_pgoff += npages; 1349 } 1350 1351 if (new->vm_ops && new->vm_ops->open) 1352 new->vm_ops->open(new); 1353 1354 delete_vma_from_mm(vma); 1355 down_write(&nommu_region_sem); 1356 delete_nommu_region(vma->vm_region); 1357 if (new_below) { 1358 vma->vm_region->vm_start = vma->vm_start = addr; 1359 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1360 } else { 1361 vma->vm_region->vm_end = vma->vm_end = addr; 1362 vma->vm_region->vm_top = addr; 1363 } 1364 add_nommu_region(vma->vm_region); 1365 add_nommu_region(new->vm_region); 1366 up_write(&nommu_region_sem); 1367 add_vma_to_mm(mm, vma); 1368 add_vma_to_mm(mm, new); 1369 return 0; 1370 } 1371 1372 /* 1373 * shrink a VMA by removing the specified chunk from either the beginning or 1374 * the end 1375 */ 1376 static int shrink_vma(struct mm_struct *mm, 1377 struct vm_area_struct *vma, 1378 unsigned long from, unsigned long to) 1379 { 1380 struct vm_region *region; 1381 1382 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1383 * and list */ 1384 delete_vma_from_mm(vma); 1385 if (from > vma->vm_start) 1386 vma->vm_end = from; 1387 else 1388 vma->vm_start = to; 1389 add_vma_to_mm(mm, vma); 1390 1391 /* cut the backing region down to size */ 1392 region = vma->vm_region; 1393 BUG_ON(region->vm_usage != 1); 1394 1395 down_write(&nommu_region_sem); 1396 delete_nommu_region(region); 1397 if (from > region->vm_start) { 1398 to = region->vm_top; 1399 region->vm_top = region->vm_end = from; 1400 } else { 1401 region->vm_start = to; 1402 } 1403 add_nommu_region(region); 1404 up_write(&nommu_region_sem); 1405 1406 free_page_series(from, to); 1407 return 0; 1408 } 1409 1410 /* 1411 * release a mapping 1412 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1413 * VMA, though it need not cover the whole VMA 1414 */ 1415 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1416 { 1417 struct vm_area_struct *vma; 1418 unsigned long end; 1419 int ret; 1420 1421 len = PAGE_ALIGN(len); 1422 if (len == 0) 1423 return -EINVAL; 1424 1425 end = start + len; 1426 1427 /* find the first potentially overlapping VMA */ 1428 vma = find_vma(mm, start); 1429 if (!vma) { 1430 static int limit; 1431 if (limit < 5) { 1432 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1433 current->pid, current->comm, 1434 start, start + len - 1); 1435 limit++; 1436 } 1437 return -EINVAL; 1438 } 1439 1440 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1441 if (vma->vm_file) { 1442 do { 1443 if (start > vma->vm_start) 1444 return -EINVAL; 1445 if (end == vma->vm_end) 1446 goto erase_whole_vma; 1447 vma = vma->vm_next; 1448 } while (vma); 1449 return -EINVAL; 1450 } else { 1451 /* the chunk must be a subset of the VMA found */ 1452 if (start == vma->vm_start && end == vma->vm_end) 1453 goto erase_whole_vma; 1454 if (start < vma->vm_start || end > vma->vm_end) 1455 return -EINVAL; 1456 if (offset_in_page(start)) 1457 return -EINVAL; 1458 if (end != vma->vm_end && offset_in_page(end)) 1459 return -EINVAL; 1460 if (start != vma->vm_start && end != vma->vm_end) { 1461 ret = split_vma(mm, vma, start, 1); 1462 if (ret < 0) 1463 return ret; 1464 } 1465 return shrink_vma(mm, vma, start, end); 1466 } 1467 1468 erase_whole_vma: 1469 delete_vma_from_mm(vma); 1470 delete_vma(mm, vma); 1471 return 0; 1472 } 1473 1474 int vm_munmap(unsigned long addr, size_t len) 1475 { 1476 struct mm_struct *mm = current->mm; 1477 int ret; 1478 1479 mmap_write_lock(mm); 1480 ret = do_munmap(mm, addr, len, NULL); 1481 mmap_write_unlock(mm); 1482 return ret; 1483 } 1484 EXPORT_SYMBOL(vm_munmap); 1485 1486 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1487 { 1488 return vm_munmap(addr, len); 1489 } 1490 1491 /* 1492 * release all the mappings made in a process's VM space 1493 */ 1494 void exit_mmap(struct mm_struct *mm) 1495 { 1496 struct vm_area_struct *vma; 1497 1498 if (!mm) 1499 return; 1500 1501 mm->total_vm = 0; 1502 1503 while ((vma = mm->mmap)) { 1504 mm->mmap = vma->vm_next; 1505 delete_vma_from_mm(vma); 1506 delete_vma(mm, vma); 1507 cond_resched(); 1508 } 1509 __mt_destroy(&mm->mm_mt); 1510 } 1511 1512 int vm_brk(unsigned long addr, unsigned long len) 1513 { 1514 return -ENOMEM; 1515 } 1516 1517 /* 1518 * expand (or shrink) an existing mapping, potentially moving it at the same 1519 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1520 * 1521 * under NOMMU conditions, we only permit changing a mapping's size, and only 1522 * as long as it stays within the region allocated by do_mmap_private() and the 1523 * block is not shareable 1524 * 1525 * MREMAP_FIXED is not supported under NOMMU conditions 1526 */ 1527 static unsigned long do_mremap(unsigned long addr, 1528 unsigned long old_len, unsigned long new_len, 1529 unsigned long flags, unsigned long new_addr) 1530 { 1531 struct vm_area_struct *vma; 1532 1533 /* insanity checks first */ 1534 old_len = PAGE_ALIGN(old_len); 1535 new_len = PAGE_ALIGN(new_len); 1536 if (old_len == 0 || new_len == 0) 1537 return (unsigned long) -EINVAL; 1538 1539 if (offset_in_page(addr)) 1540 return -EINVAL; 1541 1542 if (flags & MREMAP_FIXED && new_addr != addr) 1543 return (unsigned long) -EINVAL; 1544 1545 vma = find_vma_exact(current->mm, addr, old_len); 1546 if (!vma) 1547 return (unsigned long) -EINVAL; 1548 1549 if (vma->vm_end != vma->vm_start + old_len) 1550 return (unsigned long) -EFAULT; 1551 1552 if (vma->vm_flags & VM_MAYSHARE) 1553 return (unsigned long) -EPERM; 1554 1555 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1556 return (unsigned long) -ENOMEM; 1557 1558 /* all checks complete - do it */ 1559 vma->vm_end = vma->vm_start + new_len; 1560 return vma->vm_start; 1561 } 1562 1563 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1564 unsigned long, new_len, unsigned long, flags, 1565 unsigned long, new_addr) 1566 { 1567 unsigned long ret; 1568 1569 mmap_write_lock(current->mm); 1570 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1571 mmap_write_unlock(current->mm); 1572 return ret; 1573 } 1574 1575 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1576 unsigned int foll_flags) 1577 { 1578 return NULL; 1579 } 1580 1581 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1582 unsigned long pfn, unsigned long size, pgprot_t prot) 1583 { 1584 if (addr != (pfn << PAGE_SHIFT)) 1585 return -EINVAL; 1586 1587 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1588 return 0; 1589 } 1590 EXPORT_SYMBOL(remap_pfn_range); 1591 1592 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1593 { 1594 unsigned long pfn = start >> PAGE_SHIFT; 1595 unsigned long vm_len = vma->vm_end - vma->vm_start; 1596 1597 pfn += vma->vm_pgoff; 1598 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1599 } 1600 EXPORT_SYMBOL(vm_iomap_memory); 1601 1602 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1603 unsigned long pgoff) 1604 { 1605 unsigned int size = vma->vm_end - vma->vm_start; 1606 1607 if (!(vma->vm_flags & VM_USERMAP)) 1608 return -EINVAL; 1609 1610 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1611 vma->vm_end = vma->vm_start + size; 1612 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(remap_vmalloc_range); 1616 1617 vm_fault_t filemap_fault(struct vm_fault *vmf) 1618 { 1619 BUG(); 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(filemap_fault); 1623 1624 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1625 pgoff_t start_pgoff, pgoff_t end_pgoff) 1626 { 1627 BUG(); 1628 return 0; 1629 } 1630 EXPORT_SYMBOL(filemap_map_pages); 1631 1632 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1633 int len, unsigned int gup_flags) 1634 { 1635 struct vm_area_struct *vma; 1636 int write = gup_flags & FOLL_WRITE; 1637 1638 if (mmap_read_lock_killable(mm)) 1639 return 0; 1640 1641 /* the access must start within one of the target process's mappings */ 1642 vma = find_vma(mm, addr); 1643 if (vma) { 1644 /* don't overrun this mapping */ 1645 if (addr + len >= vma->vm_end) 1646 len = vma->vm_end - addr; 1647 1648 /* only read or write mappings where it is permitted */ 1649 if (write && vma->vm_flags & VM_MAYWRITE) 1650 copy_to_user_page(vma, NULL, addr, 1651 (void *) addr, buf, len); 1652 else if (!write && vma->vm_flags & VM_MAYREAD) 1653 copy_from_user_page(vma, NULL, addr, 1654 buf, (void *) addr, len); 1655 else 1656 len = 0; 1657 } else { 1658 len = 0; 1659 } 1660 1661 mmap_read_unlock(mm); 1662 1663 return len; 1664 } 1665 1666 /** 1667 * access_remote_vm - access another process' address space 1668 * @mm: the mm_struct of the target address space 1669 * @addr: start address to access 1670 * @buf: source or destination buffer 1671 * @len: number of bytes to transfer 1672 * @gup_flags: flags modifying lookup behaviour 1673 * 1674 * The caller must hold a reference on @mm. 1675 */ 1676 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1677 void *buf, int len, unsigned int gup_flags) 1678 { 1679 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1680 } 1681 1682 /* 1683 * Access another process' address space. 1684 * - source/target buffer must be kernel space 1685 */ 1686 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1687 unsigned int gup_flags) 1688 { 1689 struct mm_struct *mm; 1690 1691 if (addr + len < addr) 1692 return 0; 1693 1694 mm = get_task_mm(tsk); 1695 if (!mm) 1696 return 0; 1697 1698 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1699 1700 mmput(mm); 1701 return len; 1702 } 1703 EXPORT_SYMBOL_GPL(access_process_vm); 1704 1705 /** 1706 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1707 * @inode: The inode to check 1708 * @size: The current filesize of the inode 1709 * @newsize: The proposed filesize of the inode 1710 * 1711 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1712 * make sure that any outstanding VMAs aren't broken and then shrink the 1713 * vm_regions that extend beyond so that do_mmap() doesn't 1714 * automatically grant mappings that are too large. 1715 */ 1716 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1717 size_t newsize) 1718 { 1719 struct vm_area_struct *vma; 1720 struct vm_region *region; 1721 pgoff_t low, high; 1722 size_t r_size, r_top; 1723 1724 low = newsize >> PAGE_SHIFT; 1725 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1726 1727 down_write(&nommu_region_sem); 1728 i_mmap_lock_read(inode->i_mapping); 1729 1730 /* search for VMAs that fall within the dead zone */ 1731 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1732 /* found one - only interested if it's shared out of the page 1733 * cache */ 1734 if (vma->vm_flags & VM_SHARED) { 1735 i_mmap_unlock_read(inode->i_mapping); 1736 up_write(&nommu_region_sem); 1737 return -ETXTBSY; /* not quite true, but near enough */ 1738 } 1739 } 1740 1741 /* reduce any regions that overlap the dead zone - if in existence, 1742 * these will be pointed to by VMAs that don't overlap the dead zone 1743 * 1744 * we don't check for any regions that start beyond the EOF as there 1745 * shouldn't be any 1746 */ 1747 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1748 if (!(vma->vm_flags & VM_SHARED)) 1749 continue; 1750 1751 region = vma->vm_region; 1752 r_size = region->vm_top - region->vm_start; 1753 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1754 1755 if (r_top > newsize) { 1756 region->vm_top -= r_top - newsize; 1757 if (region->vm_end > region->vm_top) 1758 region->vm_end = region->vm_top; 1759 } 1760 } 1761 1762 i_mmap_unlock_read(inode->i_mapping); 1763 up_write(&nommu_region_sem); 1764 return 0; 1765 } 1766 1767 /* 1768 * Initialise sysctl_user_reserve_kbytes. 1769 * 1770 * This is intended to prevent a user from starting a single memory hogging 1771 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1772 * mode. 1773 * 1774 * The default value is min(3% of free memory, 128MB) 1775 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1776 */ 1777 static int __meminit init_user_reserve(void) 1778 { 1779 unsigned long free_kbytes; 1780 1781 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1782 1783 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1784 return 0; 1785 } 1786 subsys_initcall(init_user_reserve); 1787 1788 /* 1789 * Initialise sysctl_admin_reserve_kbytes. 1790 * 1791 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1792 * to log in and kill a memory hogging process. 1793 * 1794 * Systems with more than 256MB will reserve 8MB, enough to recover 1795 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1796 * only reserve 3% of free pages by default. 1797 */ 1798 static int __meminit init_admin_reserve(void) 1799 { 1800 unsigned long free_kbytes; 1801 1802 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1803 1804 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1805 return 0; 1806 } 1807 subsys_initcall(init_admin_reserve); 1808