xref: /openbmc/linux/mm/nommu.c (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 	return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157 
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160 	void *ret;
161 
162 	ret = __vmalloc(size, flags, PAGE_KERNEL);
163 	if (ret) {
164 		struct vm_area_struct *vma;
165 
166 		down_write(&current->mm->mmap_sem);
167 		vma = find_vma(current->mm, (unsigned long)ret);
168 		if (vma)
169 			vma->vm_flags |= VM_USERMAP;
170 		up_write(&current->mm->mmap_sem);
171 	}
172 
173 	return ret;
174 }
175 
176 void *vmalloc_user(unsigned long size)
177 {
178 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181 
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184 	return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187 
188 struct page *vmalloc_to_page(const void *addr)
189 {
190 	return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193 
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196 	return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199 
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202 	/* Don't allow overflow */
203 	if ((unsigned long) buf + count < count)
204 		count = -(unsigned long) buf;
205 
206 	memcpy(buf, addr, count);
207 	return count;
208 }
209 
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212 	/* Don't allow overflow */
213 	if ((unsigned long) addr + count < count)
214 		count = -(unsigned long) addr;
215 
216 	memcpy(addr, buf, count);
217 	return count;
218 }
219 
220 /*
221  *	vmalloc  -  allocate virtually contiguous memory
222  *
223  *	@size:		allocation size
224  *
225  *	Allocate enough pages to cover @size from the page level
226  *	allocator and map them into contiguous kernel virtual space.
227  *
228  *	For tight control over page level allocator and protection flags
229  *	use __vmalloc() instead.
230  */
231 void *vmalloc(unsigned long size)
232 {
233        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236 
237 /*
238  *	vzalloc - allocate virtually contiguous memory with zero fill
239  *
240  *	@size:		allocation size
241  *
242  *	Allocate enough pages to cover @size from the page level
243  *	allocator and map them into contiguous kernel virtual space.
244  *	The memory allocated is set to zero.
245  *
246  *	For tight control over page level allocator and protection flags
247  *	use __vmalloc() instead.
248  */
249 void *vzalloc(unsigned long size)
250 {
251 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 			PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255 
256 /**
257  * vmalloc_node - allocate memory on a specific node
258  * @size:	allocation size
259  * @node:	numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  *
264  * For tight control over page level allocator and protection flags
265  * use __vmalloc() instead.
266  */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269 	return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272 
273 /**
274  * vzalloc_node - allocate memory on a specific node with zero fill
275  * @size:	allocation size
276  * @node:	numa node
277  *
278  * Allocate enough pages to cover @size from the page level
279  * allocator and map them into contiguous kernel virtual space.
280  * The memory allocated is set to zero.
281  *
282  * For tight control over page level allocator and protection flags
283  * use __vmalloc() instead.
284  */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287 	return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290 
291 /**
292  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
293  *	@size:		allocation size
294  *
295  *	Kernel-internal function to allocate enough pages to cover @size
296  *	the page level allocator and map them into contiguous and
297  *	executable kernel virtual space.
298  *
299  *	For tight control over page level allocator and protection flags
300  *	use __vmalloc() instead.
301  */
302 
303 void *vmalloc_exec(unsigned long size)
304 {
305 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307 
308 /**
309  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
310  *	@size:		allocation size
311  *
312  *	Allocate enough 32bit PA addressable pages to cover @size from the
313  *	page level allocator and map them into contiguous kernel virtual space.
314  */
315 void *vmalloc_32(unsigned long size)
316 {
317 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320 
321 /**
322  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323  *	@size:		allocation size
324  *
325  * The resulting memory area is 32bit addressable and zeroed so it can be
326  * mapped to userspace without leaking data.
327  *
328  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329  * remap_vmalloc_range() are permissible.
330  */
331 void *vmalloc_32_user(unsigned long size)
332 {
333 	/*
334 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
335 	 * but for now this can simply use vmalloc_user() directly.
336 	 */
337 	return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340 
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343 	BUG();
344 	return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347 
348 void vunmap(const void *addr)
349 {
350 	BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353 
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
355 {
356 	BUG();
357 	return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360 
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363 	BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366 
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371 
372 /*
373  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
374  * have one.
375  */
376 void __weak vmalloc_sync_all(void)
377 {
378 }
379 
380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
381 {
382 	BUG();
383 	return NULL;
384 }
385 EXPORT_SYMBOL_GPL(alloc_vm_area);
386 
387 void free_vm_area(struct vm_struct *area)
388 {
389 	BUG();
390 }
391 EXPORT_SYMBOL_GPL(free_vm_area);
392 
393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
394 		   struct page *page)
395 {
396 	return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_insert_page);
399 
400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
401 			unsigned long num)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages);
406 
407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
408 				unsigned long num)
409 {
410 	return -EINVAL;
411 }
412 EXPORT_SYMBOL(vm_map_pages_zero);
413 
414 /*
415  *  sys_brk() for the most part doesn't need the global kernel
416  *  lock, except when an application is doing something nasty
417  *  like trying to un-brk an area that has already been mapped
418  *  to a regular file.  in this case, the unmapping will need
419  *  to invoke file system routines that need the global lock.
420  */
421 SYSCALL_DEFINE1(brk, unsigned long, brk)
422 {
423 	struct mm_struct *mm = current->mm;
424 
425 	if (brk < mm->start_brk || brk > mm->context.end_brk)
426 		return mm->brk;
427 
428 	if (mm->brk == brk)
429 		return mm->brk;
430 
431 	/*
432 	 * Always allow shrinking brk
433 	 */
434 	if (brk <= mm->brk) {
435 		mm->brk = brk;
436 		return brk;
437 	}
438 
439 	/*
440 	 * Ok, looks good - let it rip.
441 	 */
442 	flush_icache_range(mm->brk, brk);
443 	return mm->brk = brk;
444 }
445 
446 /*
447  * initialise the percpu counter for VM and region record slabs
448  */
449 void __init mmap_init(void)
450 {
451 	int ret;
452 
453 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
454 	VM_BUG_ON(ret);
455 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
456 }
457 
458 /*
459  * validate the region tree
460  * - the caller must hold the region lock
461  */
462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
463 static noinline void validate_nommu_regions(void)
464 {
465 	struct vm_region *region, *last;
466 	struct rb_node *p, *lastp;
467 
468 	lastp = rb_first(&nommu_region_tree);
469 	if (!lastp)
470 		return;
471 
472 	last = rb_entry(lastp, struct vm_region, vm_rb);
473 	BUG_ON(last->vm_end <= last->vm_start);
474 	BUG_ON(last->vm_top < last->vm_end);
475 
476 	while ((p = rb_next(lastp))) {
477 		region = rb_entry(p, struct vm_region, vm_rb);
478 		last = rb_entry(lastp, struct vm_region, vm_rb);
479 
480 		BUG_ON(region->vm_end <= region->vm_start);
481 		BUG_ON(region->vm_top < region->vm_end);
482 		BUG_ON(region->vm_start < last->vm_top);
483 
484 		lastp = p;
485 	}
486 }
487 #else
488 static void validate_nommu_regions(void)
489 {
490 }
491 #endif
492 
493 /*
494  * add a region into the global tree
495  */
496 static void add_nommu_region(struct vm_region *region)
497 {
498 	struct vm_region *pregion;
499 	struct rb_node **p, *parent;
500 
501 	validate_nommu_regions();
502 
503 	parent = NULL;
504 	p = &nommu_region_tree.rb_node;
505 	while (*p) {
506 		parent = *p;
507 		pregion = rb_entry(parent, struct vm_region, vm_rb);
508 		if (region->vm_start < pregion->vm_start)
509 			p = &(*p)->rb_left;
510 		else if (region->vm_start > pregion->vm_start)
511 			p = &(*p)->rb_right;
512 		else if (pregion == region)
513 			return;
514 		else
515 			BUG();
516 	}
517 
518 	rb_link_node(&region->vm_rb, parent, p);
519 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
520 
521 	validate_nommu_regions();
522 }
523 
524 /*
525  * delete a region from the global tree
526  */
527 static void delete_nommu_region(struct vm_region *region)
528 {
529 	BUG_ON(!nommu_region_tree.rb_node);
530 
531 	validate_nommu_regions();
532 	rb_erase(&region->vm_rb, &nommu_region_tree);
533 	validate_nommu_regions();
534 }
535 
536 /*
537  * free a contiguous series of pages
538  */
539 static void free_page_series(unsigned long from, unsigned long to)
540 {
541 	for (; from < to; from += PAGE_SIZE) {
542 		struct page *page = virt_to_page(from);
543 
544 		atomic_long_dec(&mmap_pages_allocated);
545 		put_page(page);
546 	}
547 }
548 
549 /*
550  * release a reference to a region
551  * - the caller must hold the region semaphore for writing, which this releases
552  * - the region may not have been added to the tree yet, in which case vm_top
553  *   will equal vm_start
554  */
555 static void __put_nommu_region(struct vm_region *region)
556 	__releases(nommu_region_sem)
557 {
558 	BUG_ON(!nommu_region_tree.rb_node);
559 
560 	if (--region->vm_usage == 0) {
561 		if (region->vm_top > region->vm_start)
562 			delete_nommu_region(region);
563 		up_write(&nommu_region_sem);
564 
565 		if (region->vm_file)
566 			fput(region->vm_file);
567 
568 		/* IO memory and memory shared directly out of the pagecache
569 		 * from ramfs/tmpfs mustn't be released here */
570 		if (region->vm_flags & VM_MAPPED_COPY)
571 			free_page_series(region->vm_start, region->vm_top);
572 		kmem_cache_free(vm_region_jar, region);
573 	} else {
574 		up_write(&nommu_region_sem);
575 	}
576 }
577 
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583 	down_write(&nommu_region_sem);
584 	__put_nommu_region(region);
585 }
586 
587 /*
588  * add a VMA into a process's mm_struct in the appropriate place in the list
589  * and tree and add to the address space's page tree also if not an anonymous
590  * page
591  * - should be called with mm->mmap_sem held writelocked
592  */
593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
594 {
595 	struct vm_area_struct *pvma, *prev;
596 	struct address_space *mapping;
597 	struct rb_node **p, *parent, *rb_prev;
598 
599 	BUG_ON(!vma->vm_region);
600 
601 	mm->map_count++;
602 	vma->vm_mm = mm;
603 
604 	/* add the VMA to the mapping */
605 	if (vma->vm_file) {
606 		mapping = vma->vm_file->f_mapping;
607 
608 		i_mmap_lock_write(mapping);
609 		flush_dcache_mmap_lock(mapping);
610 		vma_interval_tree_insert(vma, &mapping->i_mmap);
611 		flush_dcache_mmap_unlock(mapping);
612 		i_mmap_unlock_write(mapping);
613 	}
614 
615 	/* add the VMA to the tree */
616 	parent = rb_prev = NULL;
617 	p = &mm->mm_rb.rb_node;
618 	while (*p) {
619 		parent = *p;
620 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
621 
622 		/* sort by: start addr, end addr, VMA struct addr in that order
623 		 * (the latter is necessary as we may get identical VMAs) */
624 		if (vma->vm_start < pvma->vm_start)
625 			p = &(*p)->rb_left;
626 		else if (vma->vm_start > pvma->vm_start) {
627 			rb_prev = parent;
628 			p = &(*p)->rb_right;
629 		} else if (vma->vm_end < pvma->vm_end)
630 			p = &(*p)->rb_left;
631 		else if (vma->vm_end > pvma->vm_end) {
632 			rb_prev = parent;
633 			p = &(*p)->rb_right;
634 		} else if (vma < pvma)
635 			p = &(*p)->rb_left;
636 		else if (vma > pvma) {
637 			rb_prev = parent;
638 			p = &(*p)->rb_right;
639 		} else
640 			BUG();
641 	}
642 
643 	rb_link_node(&vma->vm_rb, parent, p);
644 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
645 
646 	/* add VMA to the VMA list also */
647 	prev = NULL;
648 	if (rb_prev)
649 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
650 
651 	__vma_link_list(mm, vma, prev);
652 }
653 
654 /*
655  * delete a VMA from its owning mm_struct and address space
656  */
657 static void delete_vma_from_mm(struct vm_area_struct *vma)
658 {
659 	int i;
660 	struct address_space *mapping;
661 	struct mm_struct *mm = vma->vm_mm;
662 	struct task_struct *curr = current;
663 
664 	mm->map_count--;
665 	for (i = 0; i < VMACACHE_SIZE; i++) {
666 		/* if the vma is cached, invalidate the entire cache */
667 		if (curr->vmacache.vmas[i] == vma) {
668 			vmacache_invalidate(mm);
669 			break;
670 		}
671 	}
672 
673 	/* remove the VMA from the mapping */
674 	if (vma->vm_file) {
675 		mapping = vma->vm_file->f_mapping;
676 
677 		i_mmap_lock_write(mapping);
678 		flush_dcache_mmap_lock(mapping);
679 		vma_interval_tree_remove(vma, &mapping->i_mmap);
680 		flush_dcache_mmap_unlock(mapping);
681 		i_mmap_unlock_write(mapping);
682 	}
683 
684 	/* remove from the MM's tree and list */
685 	rb_erase(&vma->vm_rb, &mm->mm_rb);
686 
687 	__vma_unlink_list(mm, vma);
688 }
689 
690 /*
691  * destroy a VMA record
692  */
693 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695 	if (vma->vm_ops && vma->vm_ops->close)
696 		vma->vm_ops->close(vma);
697 	if (vma->vm_file)
698 		fput(vma->vm_file);
699 	put_nommu_region(vma->vm_region);
700 	vm_area_free(vma);
701 }
702 
703 /*
704  * look up the first VMA in which addr resides, NULL if none
705  * - should be called with mm->mmap_sem at least held readlocked
706  */
707 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
708 {
709 	struct vm_area_struct *vma;
710 
711 	/* check the cache first */
712 	vma = vmacache_find(mm, addr);
713 	if (likely(vma))
714 		return vma;
715 
716 	/* trawl the list (there may be multiple mappings in which addr
717 	 * resides) */
718 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
719 		if (vma->vm_start > addr)
720 			return NULL;
721 		if (vma->vm_end > addr) {
722 			vmacache_update(addr, vma);
723 			return vma;
724 		}
725 	}
726 
727 	return NULL;
728 }
729 EXPORT_SYMBOL(find_vma);
730 
731 /*
732  * find a VMA
733  * - we don't extend stack VMAs under NOMMU conditions
734  */
735 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
736 {
737 	return find_vma(mm, addr);
738 }
739 
740 /*
741  * expand a stack to a given address
742  * - not supported under NOMMU conditions
743  */
744 int expand_stack(struct vm_area_struct *vma, unsigned long address)
745 {
746 	return -ENOMEM;
747 }
748 
749 /*
750  * look up the first VMA exactly that exactly matches addr
751  * - should be called with mm->mmap_sem at least held readlocked
752  */
753 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
754 					     unsigned long addr,
755 					     unsigned long len)
756 {
757 	struct vm_area_struct *vma;
758 	unsigned long end = addr + len;
759 
760 	/* check the cache first */
761 	vma = vmacache_find_exact(mm, addr, end);
762 	if (vma)
763 		return vma;
764 
765 	/* trawl the list (there may be multiple mappings in which addr
766 	 * resides) */
767 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
768 		if (vma->vm_start < addr)
769 			continue;
770 		if (vma->vm_start > addr)
771 			return NULL;
772 		if (vma->vm_end == end) {
773 			vmacache_update(addr, vma);
774 			return vma;
775 		}
776 	}
777 
778 	return NULL;
779 }
780 
781 /*
782  * determine whether a mapping should be permitted and, if so, what sort of
783  * mapping we're capable of supporting
784  */
785 static int validate_mmap_request(struct file *file,
786 				 unsigned long addr,
787 				 unsigned long len,
788 				 unsigned long prot,
789 				 unsigned long flags,
790 				 unsigned long pgoff,
791 				 unsigned long *_capabilities)
792 {
793 	unsigned long capabilities, rlen;
794 	int ret;
795 
796 	/* do the simple checks first */
797 	if (flags & MAP_FIXED)
798 		return -EINVAL;
799 
800 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
801 	    (flags & MAP_TYPE) != MAP_SHARED)
802 		return -EINVAL;
803 
804 	if (!len)
805 		return -EINVAL;
806 
807 	/* Careful about overflows.. */
808 	rlen = PAGE_ALIGN(len);
809 	if (!rlen || rlen > TASK_SIZE)
810 		return -ENOMEM;
811 
812 	/* offset overflow? */
813 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
814 		return -EOVERFLOW;
815 
816 	if (file) {
817 		/* files must support mmap */
818 		if (!file->f_op->mmap)
819 			return -ENODEV;
820 
821 		/* work out if what we've got could possibly be shared
822 		 * - we support chardevs that provide their own "memory"
823 		 * - we support files/blockdevs that are memory backed
824 		 */
825 		if (file->f_op->mmap_capabilities) {
826 			capabilities = file->f_op->mmap_capabilities(file);
827 		} else {
828 			/* no explicit capabilities set, so assume some
829 			 * defaults */
830 			switch (file_inode(file)->i_mode & S_IFMT) {
831 			case S_IFREG:
832 			case S_IFBLK:
833 				capabilities = NOMMU_MAP_COPY;
834 				break;
835 
836 			case S_IFCHR:
837 				capabilities =
838 					NOMMU_MAP_DIRECT |
839 					NOMMU_MAP_READ |
840 					NOMMU_MAP_WRITE;
841 				break;
842 
843 			default:
844 				return -EINVAL;
845 			}
846 		}
847 
848 		/* eliminate any capabilities that we can't support on this
849 		 * device */
850 		if (!file->f_op->get_unmapped_area)
851 			capabilities &= ~NOMMU_MAP_DIRECT;
852 		if (!(file->f_mode & FMODE_CAN_READ))
853 			capabilities &= ~NOMMU_MAP_COPY;
854 
855 		/* The file shall have been opened with read permission. */
856 		if (!(file->f_mode & FMODE_READ))
857 			return -EACCES;
858 
859 		if (flags & MAP_SHARED) {
860 			/* do checks for writing, appending and locking */
861 			if ((prot & PROT_WRITE) &&
862 			    !(file->f_mode & FMODE_WRITE))
863 				return -EACCES;
864 
865 			if (IS_APPEND(file_inode(file)) &&
866 			    (file->f_mode & FMODE_WRITE))
867 				return -EACCES;
868 
869 			if (locks_verify_locked(file))
870 				return -EAGAIN;
871 
872 			if (!(capabilities & NOMMU_MAP_DIRECT))
873 				return -ENODEV;
874 
875 			/* we mustn't privatise shared mappings */
876 			capabilities &= ~NOMMU_MAP_COPY;
877 		} else {
878 			/* we're going to read the file into private memory we
879 			 * allocate */
880 			if (!(capabilities & NOMMU_MAP_COPY))
881 				return -ENODEV;
882 
883 			/* we don't permit a private writable mapping to be
884 			 * shared with the backing device */
885 			if (prot & PROT_WRITE)
886 				capabilities &= ~NOMMU_MAP_DIRECT;
887 		}
888 
889 		if (capabilities & NOMMU_MAP_DIRECT) {
890 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
891 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
892 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
893 			    ) {
894 				capabilities &= ~NOMMU_MAP_DIRECT;
895 				if (flags & MAP_SHARED) {
896 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
897 					return -EINVAL;
898 				}
899 			}
900 		}
901 
902 		/* handle executable mappings and implied executable
903 		 * mappings */
904 		if (path_noexec(&file->f_path)) {
905 			if (prot & PROT_EXEC)
906 				return -EPERM;
907 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
908 			/* handle implication of PROT_EXEC by PROT_READ */
909 			if (current->personality & READ_IMPLIES_EXEC) {
910 				if (capabilities & NOMMU_MAP_EXEC)
911 					prot |= PROT_EXEC;
912 			}
913 		} else if ((prot & PROT_READ) &&
914 			 (prot & PROT_EXEC) &&
915 			 !(capabilities & NOMMU_MAP_EXEC)
916 			 ) {
917 			/* backing file is not executable, try to copy */
918 			capabilities &= ~NOMMU_MAP_DIRECT;
919 		}
920 	} else {
921 		/* anonymous mappings are always memory backed and can be
922 		 * privately mapped
923 		 */
924 		capabilities = NOMMU_MAP_COPY;
925 
926 		/* handle PROT_EXEC implication by PROT_READ */
927 		if ((prot & PROT_READ) &&
928 		    (current->personality & READ_IMPLIES_EXEC))
929 			prot |= PROT_EXEC;
930 	}
931 
932 	/* allow the security API to have its say */
933 	ret = security_mmap_addr(addr);
934 	if (ret < 0)
935 		return ret;
936 
937 	/* looks okay */
938 	*_capabilities = capabilities;
939 	return 0;
940 }
941 
942 /*
943  * we've determined that we can make the mapping, now translate what we
944  * now know into VMA flags
945  */
946 static unsigned long determine_vm_flags(struct file *file,
947 					unsigned long prot,
948 					unsigned long flags,
949 					unsigned long capabilities)
950 {
951 	unsigned long vm_flags;
952 
953 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
954 	/* vm_flags |= mm->def_flags; */
955 
956 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
957 		/* attempt to share read-only copies of mapped file chunks */
958 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
959 		if (file && !(prot & PROT_WRITE))
960 			vm_flags |= VM_MAYSHARE;
961 	} else {
962 		/* overlay a shareable mapping on the backing device or inode
963 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
964 		 * romfs/cramfs */
965 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
966 		if (flags & MAP_SHARED)
967 			vm_flags |= VM_SHARED;
968 	}
969 
970 	/* refuse to let anyone share private mappings with this process if
971 	 * it's being traced - otherwise breakpoints set in it may interfere
972 	 * with another untraced process
973 	 */
974 	if ((flags & MAP_PRIVATE) && current->ptrace)
975 		vm_flags &= ~VM_MAYSHARE;
976 
977 	return vm_flags;
978 }
979 
980 /*
981  * set up a shared mapping on a file (the driver or filesystem provides and
982  * pins the storage)
983  */
984 static int do_mmap_shared_file(struct vm_area_struct *vma)
985 {
986 	int ret;
987 
988 	ret = call_mmap(vma->vm_file, vma);
989 	if (ret == 0) {
990 		vma->vm_region->vm_top = vma->vm_region->vm_end;
991 		return 0;
992 	}
993 	if (ret != -ENOSYS)
994 		return ret;
995 
996 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
997 	 * opposed to tried but failed) so we can only give a suitable error as
998 	 * it's not possible to make a private copy if MAP_SHARED was given */
999 	return -ENODEV;
1000 }
1001 
1002 /*
1003  * set up a private mapping or an anonymous shared mapping
1004  */
1005 static int do_mmap_private(struct vm_area_struct *vma,
1006 			   struct vm_region *region,
1007 			   unsigned long len,
1008 			   unsigned long capabilities)
1009 {
1010 	unsigned long total, point;
1011 	void *base;
1012 	int ret, order;
1013 
1014 	/* invoke the file's mapping function so that it can keep track of
1015 	 * shared mappings on devices or memory
1016 	 * - VM_MAYSHARE will be set if it may attempt to share
1017 	 */
1018 	if (capabilities & NOMMU_MAP_DIRECT) {
1019 		ret = call_mmap(vma->vm_file, vma);
1020 		if (ret == 0) {
1021 			/* shouldn't return success if we're not sharing */
1022 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1023 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1024 			return 0;
1025 		}
1026 		if (ret != -ENOSYS)
1027 			return ret;
1028 
1029 		/* getting an ENOSYS error indicates that direct mmap isn't
1030 		 * possible (as opposed to tried but failed) so we'll try to
1031 		 * make a private copy of the data and map that instead */
1032 	}
1033 
1034 
1035 	/* allocate some memory to hold the mapping
1036 	 * - note that this may not return a page-aligned address if the object
1037 	 *   we're allocating is smaller than a page
1038 	 */
1039 	order = get_order(len);
1040 	total = 1 << order;
1041 	point = len >> PAGE_SHIFT;
1042 
1043 	/* we don't want to allocate a power-of-2 sized page set */
1044 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1045 		total = point;
1046 
1047 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1048 	if (!base)
1049 		goto enomem;
1050 
1051 	atomic_long_add(total, &mmap_pages_allocated);
1052 
1053 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1054 	region->vm_start = (unsigned long) base;
1055 	region->vm_end   = region->vm_start + len;
1056 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1057 
1058 	vma->vm_start = region->vm_start;
1059 	vma->vm_end   = region->vm_start + len;
1060 
1061 	if (vma->vm_file) {
1062 		/* read the contents of a file into the copy */
1063 		loff_t fpos;
1064 
1065 		fpos = vma->vm_pgoff;
1066 		fpos <<= PAGE_SHIFT;
1067 
1068 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1069 		if (ret < 0)
1070 			goto error_free;
1071 
1072 		/* clear the last little bit */
1073 		if (ret < len)
1074 			memset(base + ret, 0, len - ret);
1075 
1076 	} else {
1077 		vma_set_anonymous(vma);
1078 	}
1079 
1080 	return 0;
1081 
1082 error_free:
1083 	free_page_series(region->vm_start, region->vm_top);
1084 	region->vm_start = vma->vm_start = 0;
1085 	region->vm_end   = vma->vm_end = 0;
1086 	region->vm_top   = 0;
1087 	return ret;
1088 
1089 enomem:
1090 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1091 	       len, current->pid, current->comm);
1092 	show_free_areas(0, NULL);
1093 	return -ENOMEM;
1094 }
1095 
1096 /*
1097  * handle mapping creation for uClinux
1098  */
1099 unsigned long do_mmap(struct file *file,
1100 			unsigned long addr,
1101 			unsigned long len,
1102 			unsigned long prot,
1103 			unsigned long flags,
1104 			vm_flags_t vm_flags,
1105 			unsigned long pgoff,
1106 			unsigned long *populate,
1107 			struct list_head *uf)
1108 {
1109 	struct vm_area_struct *vma;
1110 	struct vm_region *region;
1111 	struct rb_node *rb;
1112 	unsigned long capabilities, result;
1113 	int ret;
1114 
1115 	*populate = 0;
1116 
1117 	/* decide whether we should attempt the mapping, and if so what sort of
1118 	 * mapping */
1119 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1120 				    &capabilities);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	/* we ignore the address hint */
1125 	addr = 0;
1126 	len = PAGE_ALIGN(len);
1127 
1128 	/* we've determined that we can make the mapping, now translate what we
1129 	 * now know into VMA flags */
1130 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1131 
1132 	/* we're going to need to record the mapping */
1133 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1134 	if (!region)
1135 		goto error_getting_region;
1136 
1137 	vma = vm_area_alloc(current->mm);
1138 	if (!vma)
1139 		goto error_getting_vma;
1140 
1141 	region->vm_usage = 1;
1142 	region->vm_flags = vm_flags;
1143 	region->vm_pgoff = pgoff;
1144 
1145 	vma->vm_flags = vm_flags;
1146 	vma->vm_pgoff = pgoff;
1147 
1148 	if (file) {
1149 		region->vm_file = get_file(file);
1150 		vma->vm_file = get_file(file);
1151 	}
1152 
1153 	down_write(&nommu_region_sem);
1154 
1155 	/* if we want to share, we need to check for regions created by other
1156 	 * mmap() calls that overlap with our proposed mapping
1157 	 * - we can only share with a superset match on most regular files
1158 	 * - shared mappings on character devices and memory backed files are
1159 	 *   permitted to overlap inexactly as far as we are concerned for in
1160 	 *   these cases, sharing is handled in the driver or filesystem rather
1161 	 *   than here
1162 	 */
1163 	if (vm_flags & VM_MAYSHARE) {
1164 		struct vm_region *pregion;
1165 		unsigned long pglen, rpglen, pgend, rpgend, start;
1166 
1167 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168 		pgend = pgoff + pglen;
1169 
1170 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1171 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1172 
1173 			if (!(pregion->vm_flags & VM_MAYSHARE))
1174 				continue;
1175 
1176 			/* search for overlapping mappings on the same file */
1177 			if (file_inode(pregion->vm_file) !=
1178 			    file_inode(file))
1179 				continue;
1180 
1181 			if (pregion->vm_pgoff >= pgend)
1182 				continue;
1183 
1184 			rpglen = pregion->vm_end - pregion->vm_start;
1185 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186 			rpgend = pregion->vm_pgoff + rpglen;
1187 			if (pgoff >= rpgend)
1188 				continue;
1189 
1190 			/* handle inexactly overlapping matches between
1191 			 * mappings */
1192 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1193 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1194 				/* new mapping is not a subset of the region */
1195 				if (!(capabilities & NOMMU_MAP_DIRECT))
1196 					goto sharing_violation;
1197 				continue;
1198 			}
1199 
1200 			/* we've found a region we can share */
1201 			pregion->vm_usage++;
1202 			vma->vm_region = pregion;
1203 			start = pregion->vm_start;
1204 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1205 			vma->vm_start = start;
1206 			vma->vm_end = start + len;
1207 
1208 			if (pregion->vm_flags & VM_MAPPED_COPY)
1209 				vma->vm_flags |= VM_MAPPED_COPY;
1210 			else {
1211 				ret = do_mmap_shared_file(vma);
1212 				if (ret < 0) {
1213 					vma->vm_region = NULL;
1214 					vma->vm_start = 0;
1215 					vma->vm_end = 0;
1216 					pregion->vm_usage--;
1217 					pregion = NULL;
1218 					goto error_just_free;
1219 				}
1220 			}
1221 			fput(region->vm_file);
1222 			kmem_cache_free(vm_region_jar, region);
1223 			region = pregion;
1224 			result = start;
1225 			goto share;
1226 		}
1227 
1228 		/* obtain the address at which to make a shared mapping
1229 		 * - this is the hook for quasi-memory character devices to
1230 		 *   tell us the location of a shared mapping
1231 		 */
1232 		if (capabilities & NOMMU_MAP_DIRECT) {
1233 			addr = file->f_op->get_unmapped_area(file, addr, len,
1234 							     pgoff, flags);
1235 			if (IS_ERR_VALUE(addr)) {
1236 				ret = addr;
1237 				if (ret != -ENOSYS)
1238 					goto error_just_free;
1239 
1240 				/* the driver refused to tell us where to site
1241 				 * the mapping so we'll have to attempt to copy
1242 				 * it */
1243 				ret = -ENODEV;
1244 				if (!(capabilities & NOMMU_MAP_COPY))
1245 					goto error_just_free;
1246 
1247 				capabilities &= ~NOMMU_MAP_DIRECT;
1248 			} else {
1249 				vma->vm_start = region->vm_start = addr;
1250 				vma->vm_end = region->vm_end = addr + len;
1251 			}
1252 		}
1253 	}
1254 
1255 	vma->vm_region = region;
1256 
1257 	/* set up the mapping
1258 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1259 	 */
1260 	if (file && vma->vm_flags & VM_SHARED)
1261 		ret = do_mmap_shared_file(vma);
1262 	else
1263 		ret = do_mmap_private(vma, region, len, capabilities);
1264 	if (ret < 0)
1265 		goto error_just_free;
1266 	add_nommu_region(region);
1267 
1268 	/* clear anonymous mappings that don't ask for uninitialized data */
1269 	if (!vma->vm_file &&
1270 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1271 	     !(flags & MAP_UNINITIALIZED)))
1272 		memset((void *)region->vm_start, 0,
1273 		       region->vm_end - region->vm_start);
1274 
1275 	/* okay... we have a mapping; now we have to register it */
1276 	result = vma->vm_start;
1277 
1278 	current->mm->total_vm += len >> PAGE_SHIFT;
1279 
1280 share:
1281 	add_vma_to_mm(current->mm, vma);
1282 
1283 	/* we flush the region from the icache only when the first executable
1284 	 * mapping of it is made  */
1285 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1286 		flush_icache_range(region->vm_start, region->vm_end);
1287 		region->vm_icache_flushed = true;
1288 	}
1289 
1290 	up_write(&nommu_region_sem);
1291 
1292 	return result;
1293 
1294 error_just_free:
1295 	up_write(&nommu_region_sem);
1296 error:
1297 	if (region->vm_file)
1298 		fput(region->vm_file);
1299 	kmem_cache_free(vm_region_jar, region);
1300 	if (vma->vm_file)
1301 		fput(vma->vm_file);
1302 	vm_area_free(vma);
1303 	return ret;
1304 
1305 sharing_violation:
1306 	up_write(&nommu_region_sem);
1307 	pr_warn("Attempt to share mismatched mappings\n");
1308 	ret = -EINVAL;
1309 	goto error;
1310 
1311 error_getting_vma:
1312 	kmem_cache_free(vm_region_jar, region);
1313 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1314 			len, current->pid);
1315 	show_free_areas(0, NULL);
1316 	return -ENOMEM;
1317 
1318 error_getting_region:
1319 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1320 			len, current->pid);
1321 	show_free_areas(0, NULL);
1322 	return -ENOMEM;
1323 }
1324 
1325 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1326 			      unsigned long prot, unsigned long flags,
1327 			      unsigned long fd, unsigned long pgoff)
1328 {
1329 	struct file *file = NULL;
1330 	unsigned long retval = -EBADF;
1331 
1332 	audit_mmap_fd(fd, flags);
1333 	if (!(flags & MAP_ANONYMOUS)) {
1334 		file = fget(fd);
1335 		if (!file)
1336 			goto out;
1337 	}
1338 
1339 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1340 
1341 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1342 
1343 	if (file)
1344 		fput(file);
1345 out:
1346 	return retval;
1347 }
1348 
1349 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1350 		unsigned long, prot, unsigned long, flags,
1351 		unsigned long, fd, unsigned long, pgoff)
1352 {
1353 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1354 }
1355 
1356 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1357 struct mmap_arg_struct {
1358 	unsigned long addr;
1359 	unsigned long len;
1360 	unsigned long prot;
1361 	unsigned long flags;
1362 	unsigned long fd;
1363 	unsigned long offset;
1364 };
1365 
1366 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1367 {
1368 	struct mmap_arg_struct a;
1369 
1370 	if (copy_from_user(&a, arg, sizeof(a)))
1371 		return -EFAULT;
1372 	if (offset_in_page(a.offset))
1373 		return -EINVAL;
1374 
1375 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1376 			       a.offset >> PAGE_SHIFT);
1377 }
1378 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1379 
1380 /*
1381  * split a vma into two pieces at address 'addr', a new vma is allocated either
1382  * for the first part or the tail.
1383  */
1384 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1385 	      unsigned long addr, int new_below)
1386 {
1387 	struct vm_area_struct *new;
1388 	struct vm_region *region;
1389 	unsigned long npages;
1390 
1391 	/* we're only permitted to split anonymous regions (these should have
1392 	 * only a single usage on the region) */
1393 	if (vma->vm_file)
1394 		return -ENOMEM;
1395 
1396 	if (mm->map_count >= sysctl_max_map_count)
1397 		return -ENOMEM;
1398 
1399 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1400 	if (!region)
1401 		return -ENOMEM;
1402 
1403 	new = vm_area_dup(vma);
1404 	if (!new) {
1405 		kmem_cache_free(vm_region_jar, region);
1406 		return -ENOMEM;
1407 	}
1408 
1409 	/* most fields are the same, copy all, and then fixup */
1410 	*region = *vma->vm_region;
1411 	new->vm_region = region;
1412 
1413 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1414 
1415 	if (new_below) {
1416 		region->vm_top = region->vm_end = new->vm_end = addr;
1417 	} else {
1418 		region->vm_start = new->vm_start = addr;
1419 		region->vm_pgoff = new->vm_pgoff += npages;
1420 	}
1421 
1422 	if (new->vm_ops && new->vm_ops->open)
1423 		new->vm_ops->open(new);
1424 
1425 	delete_vma_from_mm(vma);
1426 	down_write(&nommu_region_sem);
1427 	delete_nommu_region(vma->vm_region);
1428 	if (new_below) {
1429 		vma->vm_region->vm_start = vma->vm_start = addr;
1430 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1431 	} else {
1432 		vma->vm_region->vm_end = vma->vm_end = addr;
1433 		vma->vm_region->vm_top = addr;
1434 	}
1435 	add_nommu_region(vma->vm_region);
1436 	add_nommu_region(new->vm_region);
1437 	up_write(&nommu_region_sem);
1438 	add_vma_to_mm(mm, vma);
1439 	add_vma_to_mm(mm, new);
1440 	return 0;
1441 }
1442 
1443 /*
1444  * shrink a VMA by removing the specified chunk from either the beginning or
1445  * the end
1446  */
1447 static int shrink_vma(struct mm_struct *mm,
1448 		      struct vm_area_struct *vma,
1449 		      unsigned long from, unsigned long to)
1450 {
1451 	struct vm_region *region;
1452 
1453 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1454 	 * and list */
1455 	delete_vma_from_mm(vma);
1456 	if (from > vma->vm_start)
1457 		vma->vm_end = from;
1458 	else
1459 		vma->vm_start = to;
1460 	add_vma_to_mm(mm, vma);
1461 
1462 	/* cut the backing region down to size */
1463 	region = vma->vm_region;
1464 	BUG_ON(region->vm_usage != 1);
1465 
1466 	down_write(&nommu_region_sem);
1467 	delete_nommu_region(region);
1468 	if (from > region->vm_start) {
1469 		to = region->vm_top;
1470 		region->vm_top = region->vm_end = from;
1471 	} else {
1472 		region->vm_start = to;
1473 	}
1474 	add_nommu_region(region);
1475 	up_write(&nommu_region_sem);
1476 
1477 	free_page_series(from, to);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * release a mapping
1483  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1484  *   VMA, though it need not cover the whole VMA
1485  */
1486 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1487 {
1488 	struct vm_area_struct *vma;
1489 	unsigned long end;
1490 	int ret;
1491 
1492 	len = PAGE_ALIGN(len);
1493 	if (len == 0)
1494 		return -EINVAL;
1495 
1496 	end = start + len;
1497 
1498 	/* find the first potentially overlapping VMA */
1499 	vma = find_vma(mm, start);
1500 	if (!vma) {
1501 		static int limit;
1502 		if (limit < 5) {
1503 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1504 					current->pid, current->comm,
1505 					start, start + len - 1);
1506 			limit++;
1507 		}
1508 		return -EINVAL;
1509 	}
1510 
1511 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1512 	if (vma->vm_file) {
1513 		do {
1514 			if (start > vma->vm_start)
1515 				return -EINVAL;
1516 			if (end == vma->vm_end)
1517 				goto erase_whole_vma;
1518 			vma = vma->vm_next;
1519 		} while (vma);
1520 		return -EINVAL;
1521 	} else {
1522 		/* the chunk must be a subset of the VMA found */
1523 		if (start == vma->vm_start && end == vma->vm_end)
1524 			goto erase_whole_vma;
1525 		if (start < vma->vm_start || end > vma->vm_end)
1526 			return -EINVAL;
1527 		if (offset_in_page(start))
1528 			return -EINVAL;
1529 		if (end != vma->vm_end && offset_in_page(end))
1530 			return -EINVAL;
1531 		if (start != vma->vm_start && end != vma->vm_end) {
1532 			ret = split_vma(mm, vma, start, 1);
1533 			if (ret < 0)
1534 				return ret;
1535 		}
1536 		return shrink_vma(mm, vma, start, end);
1537 	}
1538 
1539 erase_whole_vma:
1540 	delete_vma_from_mm(vma);
1541 	delete_vma(mm, vma);
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(do_munmap);
1545 
1546 int vm_munmap(unsigned long addr, size_t len)
1547 {
1548 	struct mm_struct *mm = current->mm;
1549 	int ret;
1550 
1551 	down_write(&mm->mmap_sem);
1552 	ret = do_munmap(mm, addr, len, NULL);
1553 	up_write(&mm->mmap_sem);
1554 	return ret;
1555 }
1556 EXPORT_SYMBOL(vm_munmap);
1557 
1558 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1559 {
1560 	return vm_munmap(addr, len);
1561 }
1562 
1563 /*
1564  * release all the mappings made in a process's VM space
1565  */
1566 void exit_mmap(struct mm_struct *mm)
1567 {
1568 	struct vm_area_struct *vma;
1569 
1570 	if (!mm)
1571 		return;
1572 
1573 	mm->total_vm = 0;
1574 
1575 	while ((vma = mm->mmap)) {
1576 		mm->mmap = vma->vm_next;
1577 		delete_vma_from_mm(vma);
1578 		delete_vma(mm, vma);
1579 		cond_resched();
1580 	}
1581 }
1582 
1583 int vm_brk(unsigned long addr, unsigned long len)
1584 {
1585 	return -ENOMEM;
1586 }
1587 
1588 /*
1589  * expand (or shrink) an existing mapping, potentially moving it at the same
1590  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1591  *
1592  * under NOMMU conditions, we only permit changing a mapping's size, and only
1593  * as long as it stays within the region allocated by do_mmap_private() and the
1594  * block is not shareable
1595  *
1596  * MREMAP_FIXED is not supported under NOMMU conditions
1597  */
1598 static unsigned long do_mremap(unsigned long addr,
1599 			unsigned long old_len, unsigned long new_len,
1600 			unsigned long flags, unsigned long new_addr)
1601 {
1602 	struct vm_area_struct *vma;
1603 
1604 	/* insanity checks first */
1605 	old_len = PAGE_ALIGN(old_len);
1606 	new_len = PAGE_ALIGN(new_len);
1607 	if (old_len == 0 || new_len == 0)
1608 		return (unsigned long) -EINVAL;
1609 
1610 	if (offset_in_page(addr))
1611 		return -EINVAL;
1612 
1613 	if (flags & MREMAP_FIXED && new_addr != addr)
1614 		return (unsigned long) -EINVAL;
1615 
1616 	vma = find_vma_exact(current->mm, addr, old_len);
1617 	if (!vma)
1618 		return (unsigned long) -EINVAL;
1619 
1620 	if (vma->vm_end != vma->vm_start + old_len)
1621 		return (unsigned long) -EFAULT;
1622 
1623 	if (vma->vm_flags & VM_MAYSHARE)
1624 		return (unsigned long) -EPERM;
1625 
1626 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1627 		return (unsigned long) -ENOMEM;
1628 
1629 	/* all checks complete - do it */
1630 	vma->vm_end = vma->vm_start + new_len;
1631 	return vma->vm_start;
1632 }
1633 
1634 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1635 		unsigned long, new_len, unsigned long, flags,
1636 		unsigned long, new_addr)
1637 {
1638 	unsigned long ret;
1639 
1640 	down_write(&current->mm->mmap_sem);
1641 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1642 	up_write(&current->mm->mmap_sem);
1643 	return ret;
1644 }
1645 
1646 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1647 			 unsigned int foll_flags)
1648 {
1649 	return NULL;
1650 }
1651 
1652 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1653 		unsigned long pfn, unsigned long size, pgprot_t prot)
1654 {
1655 	if (addr != (pfn << PAGE_SHIFT))
1656 		return -EINVAL;
1657 
1658 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL(remap_pfn_range);
1662 
1663 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1664 {
1665 	unsigned long pfn = start >> PAGE_SHIFT;
1666 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1667 
1668 	pfn += vma->vm_pgoff;
1669 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1670 }
1671 EXPORT_SYMBOL(vm_iomap_memory);
1672 
1673 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1674 			unsigned long pgoff)
1675 {
1676 	unsigned int size = vma->vm_end - vma->vm_start;
1677 
1678 	if (!(vma->vm_flags & VM_USERMAP))
1679 		return -EINVAL;
1680 
1681 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1682 	vma->vm_end = vma->vm_start + size;
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL(remap_vmalloc_range);
1687 
1688 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1689 	unsigned long len, unsigned long pgoff, unsigned long flags)
1690 {
1691 	return -ENOMEM;
1692 }
1693 
1694 vm_fault_t filemap_fault(struct vm_fault *vmf)
1695 {
1696 	BUG();
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL(filemap_fault);
1700 
1701 void filemap_map_pages(struct vm_fault *vmf,
1702 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1703 {
1704 	BUG();
1705 }
1706 EXPORT_SYMBOL(filemap_map_pages);
1707 
1708 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1709 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1710 {
1711 	struct vm_area_struct *vma;
1712 	int write = gup_flags & FOLL_WRITE;
1713 
1714 	if (down_read_killable(&mm->mmap_sem))
1715 		return 0;
1716 
1717 	/* the access must start within one of the target process's mappings */
1718 	vma = find_vma(mm, addr);
1719 	if (vma) {
1720 		/* don't overrun this mapping */
1721 		if (addr + len >= vma->vm_end)
1722 			len = vma->vm_end - addr;
1723 
1724 		/* only read or write mappings where it is permitted */
1725 		if (write && vma->vm_flags & VM_MAYWRITE)
1726 			copy_to_user_page(vma, NULL, addr,
1727 					 (void *) addr, buf, len);
1728 		else if (!write && vma->vm_flags & VM_MAYREAD)
1729 			copy_from_user_page(vma, NULL, addr,
1730 					    buf, (void *) addr, len);
1731 		else
1732 			len = 0;
1733 	} else {
1734 		len = 0;
1735 	}
1736 
1737 	up_read(&mm->mmap_sem);
1738 
1739 	return len;
1740 }
1741 
1742 /**
1743  * access_remote_vm - access another process' address space
1744  * @mm:		the mm_struct of the target address space
1745  * @addr:	start address to access
1746  * @buf:	source or destination buffer
1747  * @len:	number of bytes to transfer
1748  * @gup_flags:	flags modifying lookup behaviour
1749  *
1750  * The caller must hold a reference on @mm.
1751  */
1752 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1753 		void *buf, int len, unsigned int gup_flags)
1754 {
1755 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1756 }
1757 
1758 /*
1759  * Access another process' address space.
1760  * - source/target buffer must be kernel space
1761  */
1762 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1763 		unsigned int gup_flags)
1764 {
1765 	struct mm_struct *mm;
1766 
1767 	if (addr + len < addr)
1768 		return 0;
1769 
1770 	mm = get_task_mm(tsk);
1771 	if (!mm)
1772 		return 0;
1773 
1774 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1775 
1776 	mmput(mm);
1777 	return len;
1778 }
1779 EXPORT_SYMBOL_GPL(access_process_vm);
1780 
1781 /**
1782  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1783  * @inode: The inode to check
1784  * @size: The current filesize of the inode
1785  * @newsize: The proposed filesize of the inode
1786  *
1787  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1788  * make sure that that any outstanding VMAs aren't broken and then shrink the
1789  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1790  * automatically grant mappings that are too large.
1791  */
1792 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1793 				size_t newsize)
1794 {
1795 	struct vm_area_struct *vma;
1796 	struct vm_region *region;
1797 	pgoff_t low, high;
1798 	size_t r_size, r_top;
1799 
1800 	low = newsize >> PAGE_SHIFT;
1801 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1802 
1803 	down_write(&nommu_region_sem);
1804 	i_mmap_lock_read(inode->i_mapping);
1805 
1806 	/* search for VMAs that fall within the dead zone */
1807 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1808 		/* found one - only interested if it's shared out of the page
1809 		 * cache */
1810 		if (vma->vm_flags & VM_SHARED) {
1811 			i_mmap_unlock_read(inode->i_mapping);
1812 			up_write(&nommu_region_sem);
1813 			return -ETXTBSY; /* not quite true, but near enough */
1814 		}
1815 	}
1816 
1817 	/* reduce any regions that overlap the dead zone - if in existence,
1818 	 * these will be pointed to by VMAs that don't overlap the dead zone
1819 	 *
1820 	 * we don't check for any regions that start beyond the EOF as there
1821 	 * shouldn't be any
1822 	 */
1823 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1824 		if (!(vma->vm_flags & VM_SHARED))
1825 			continue;
1826 
1827 		region = vma->vm_region;
1828 		r_size = region->vm_top - region->vm_start;
1829 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1830 
1831 		if (r_top > newsize) {
1832 			region->vm_top -= r_top - newsize;
1833 			if (region->vm_end > region->vm_top)
1834 				region->vm_end = region->vm_top;
1835 		}
1836 	}
1837 
1838 	i_mmap_unlock_read(inode->i_mapping);
1839 	up_write(&nommu_region_sem);
1840 	return 0;
1841 }
1842 
1843 /*
1844  * Initialise sysctl_user_reserve_kbytes.
1845  *
1846  * This is intended to prevent a user from starting a single memory hogging
1847  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1848  * mode.
1849  *
1850  * The default value is min(3% of free memory, 128MB)
1851  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1852  */
1853 static int __meminit init_user_reserve(void)
1854 {
1855 	unsigned long free_kbytes;
1856 
1857 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1858 
1859 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1860 	return 0;
1861 }
1862 subsys_initcall(init_user_reserve);
1863 
1864 /*
1865  * Initialise sysctl_admin_reserve_kbytes.
1866  *
1867  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1868  * to log in and kill a memory hogging process.
1869  *
1870  * Systems with more than 256MB will reserve 8MB, enough to recover
1871  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1872  * only reserve 3% of free pages by default.
1873  */
1874 static int __meminit init_admin_reserve(void)
1875 {
1876 	unsigned long free_kbytes;
1877 
1878 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1879 
1880 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1881 	return 0;
1882 }
1883 subsys_initcall(init_admin_reserve);
1884