xref: /openbmc/linux/io_uring/io_uring.h (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/*
20 	 * A hint to not wake right away but delay until there are enough of
21 	 * tw's queued to match the number of CQEs the task is waiting for.
22 	 *
23 	 * Must not be used wirh requests generating more than one CQE.
24 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 	 */
26 	IOU_F_TWQ_LAZY_WAKE			= 1,
27 };
28 
29 enum {
30 	IOU_OK			= 0,
31 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
32 
33 	/*
34 	 * Requeue the task_work to restart operations on this request. The
35 	 * actual value isn't important, should just be not an otherwise
36 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
37 	 */
38 	IOU_REQUEUE		= -3072,
39 
40 	/*
41 	 * Intended only when both IO_URING_F_MULTISHOT is passed
42 	 * to indicate to the poll runner that multishot should be
43 	 * removed and the result is set on req->cqe.res.
44 	 */
45 	IOU_STOP_MULTISHOT	= -ECANCELED,
46 };
47 
48 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
49 void io_req_cqe_overflow(struct io_kiocb *req);
50 int io_run_task_work_sig(struct io_ring_ctx *ctx);
51 void io_req_defer_failed(struct io_kiocb *req, s32 res);
52 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
53 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
54 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
55 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
56 
57 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
58 
59 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
60 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
61 			       unsigned issue_flags);
62 
63 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
64 bool io_alloc_async_data(struct io_kiocb *req);
65 void io_req_task_queue(struct io_kiocb *req);
66 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
67 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
68 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
69 void tctx_task_work(struct callback_head *cb);
70 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
71 int io_uring_alloc_task_context(struct task_struct *task,
72 				struct io_ring_ctx *ctx);
73 
74 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
75 				     int start, int end);
76 
77 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
78 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
79 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
80 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
81 int io_req_prep_async(struct io_kiocb *req);
82 
83 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
84 void io_wq_submit_work(struct io_wq_work *work);
85 
86 void io_free_req(struct io_kiocb *req);
87 void io_queue_next(struct io_kiocb *req);
88 void io_task_refs_refill(struct io_uring_task *tctx);
89 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
90 
91 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
92 			bool cancel_all);
93 
94 void *io_mem_alloc(size_t size);
95 void io_mem_free(void *ptr);
96 
97 #if defined(CONFIG_PROVE_LOCKING)
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)98 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
99 {
100 	lockdep_assert(in_task());
101 
102 	if (ctx->flags & IORING_SETUP_IOPOLL) {
103 		lockdep_assert_held(&ctx->uring_lock);
104 	} else if (!ctx->task_complete) {
105 		lockdep_assert_held(&ctx->completion_lock);
106 	} else if (ctx->submitter_task) {
107 		/*
108 		 * ->submitter_task may be NULL and we can still post a CQE,
109 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
110 		 * Not from an SQE, as those cannot be submitted, but via
111 		 * updating tagged resources.
112 		 */
113 		if (ctx->submitter_task->flags & PF_EXITING)
114 			lockdep_assert(current_work());
115 		else
116 			lockdep_assert(current == ctx->submitter_task);
117 	}
118 }
119 #else
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)120 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
121 {
122 }
123 #endif
124 
io_req_task_work_add(struct io_kiocb * req)125 static inline void io_req_task_work_add(struct io_kiocb *req)
126 {
127 	__io_req_task_work_add(req, 0);
128 }
129 
130 #define io_for_each_link(pos, head) \
131 	for (pos = (head); pos; pos = pos->link)
132 
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)133 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
134 					struct io_uring_cqe **ret,
135 					bool overflow)
136 {
137 	io_lockdep_assert_cq_locked(ctx);
138 
139 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
140 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
141 			return false;
142 	}
143 	*ret = ctx->cqe_cached;
144 	ctx->cached_cq_tail++;
145 	ctx->cqe_cached++;
146 	if (ctx->flags & IORING_SETUP_CQE32)
147 		ctx->cqe_cached++;
148 	return true;
149 }
150 
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)151 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
152 {
153 	return io_get_cqe_overflow(ctx, ret, false);
154 }
155 
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)156 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
157 					    struct io_kiocb *req)
158 {
159 	struct io_uring_cqe *cqe;
160 
161 	/*
162 	 * If we can't get a cq entry, userspace overflowed the
163 	 * submission (by quite a lot). Increment the overflow count in
164 	 * the ring.
165 	 */
166 	if (unlikely(!io_get_cqe(ctx, &cqe)))
167 		return false;
168 
169 	if (trace_io_uring_complete_enabled())
170 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
171 					req->cqe.res, req->cqe.flags,
172 					req->big_cqe.extra1, req->big_cqe.extra2);
173 
174 	memcpy(cqe, &req->cqe, sizeof(*cqe));
175 	if (ctx->flags & IORING_SETUP_CQE32) {
176 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
177 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
178 	}
179 	return true;
180 }
181 
req_set_fail(struct io_kiocb * req)182 static inline void req_set_fail(struct io_kiocb *req)
183 {
184 	req->flags |= REQ_F_FAIL;
185 	if (req->flags & REQ_F_CQE_SKIP) {
186 		req->flags &= ~REQ_F_CQE_SKIP;
187 		req->flags |= REQ_F_SKIP_LINK_CQES;
188 	}
189 }
190 
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)191 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
192 {
193 	req->cqe.res = res;
194 	req->cqe.flags = cflags;
195 }
196 
req_has_async_data(struct io_kiocb * req)197 static inline bool req_has_async_data(struct io_kiocb *req)
198 {
199 	return req->flags & REQ_F_ASYNC_DATA;
200 }
201 
io_put_file(struct io_kiocb * req)202 static inline void io_put_file(struct io_kiocb *req)
203 {
204 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
205 		fput(req->file);
206 }
207 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)208 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
209 					 unsigned issue_flags)
210 {
211 	lockdep_assert_held(&ctx->uring_lock);
212 	if (issue_flags & IO_URING_F_UNLOCKED)
213 		mutex_unlock(&ctx->uring_lock);
214 }
215 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)216 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
217 				       unsigned issue_flags)
218 {
219 	/*
220 	 * "Normal" inline submissions always hold the uring_lock, since we
221 	 * grab it from the system call. Same is true for the SQPOLL offload.
222 	 * The only exception is when we've detached the request and issue it
223 	 * from an async worker thread, grab the lock for that case.
224 	 */
225 	if (issue_flags & IO_URING_F_UNLOCKED)
226 		mutex_lock(&ctx->uring_lock);
227 	lockdep_assert_held(&ctx->uring_lock);
228 }
229 
io_commit_cqring(struct io_ring_ctx * ctx)230 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
231 {
232 	/* order cqe stores with ring update */
233 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
234 }
235 
io_poll_wq_wake(struct io_ring_ctx * ctx)236 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
237 {
238 	if (wq_has_sleeper(&ctx->poll_wq))
239 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
240 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
241 }
242 
io_cqring_wake(struct io_ring_ctx * ctx)243 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
244 {
245 	/*
246 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
247 	 * won't necessarily wake up all the tasks, io_should_wake() will make
248 	 * that decision.
249 	 *
250 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
251 	 * set in the mask so that if we recurse back into our own poll
252 	 * waitqueue handlers, we know we have a dependency between eventfd or
253 	 * epoll and should terminate multishot poll at that point.
254 	 */
255 	if (wq_has_sleeper(&ctx->cq_wait))
256 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
257 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
258 }
259 
io_sqring_full(struct io_ring_ctx * ctx)260 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
261 {
262 	struct io_rings *r = ctx->rings;
263 
264 	/*
265 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
266 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
267 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
268 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
269 	 * just read the actual sqring head unconditionally.
270 	 */
271 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
272 }
273 
io_sqring_entries(struct io_ring_ctx * ctx)274 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
275 {
276 	struct io_rings *rings = ctx->rings;
277 	unsigned int entries;
278 
279 	/* make sure SQ entry isn't read before tail */
280 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
281 	return min(entries, ctx->sq_entries);
282 }
283 
io_run_task_work(void)284 static inline int io_run_task_work(void)
285 {
286 	/*
287 	 * Always check-and-clear the task_work notification signal. With how
288 	 * signaling works for task_work, we can find it set with nothing to
289 	 * run. We need to clear it for that case, like get_signal() does.
290 	 */
291 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
292 		clear_notify_signal();
293 	/*
294 	 * PF_IO_WORKER never returns to userspace, so check here if we have
295 	 * notify work that needs processing.
296 	 */
297 	if (current->flags & PF_IO_WORKER &&
298 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
299 		__set_current_state(TASK_RUNNING);
300 		resume_user_mode_work(NULL);
301 	}
302 	if (task_work_pending(current)) {
303 		__set_current_state(TASK_RUNNING);
304 		task_work_run();
305 		return 1;
306 	}
307 
308 	return 0;
309 }
310 
io_task_work_pending(struct io_ring_ctx * ctx)311 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
312 {
313 	return task_work_pending(current) || !llist_empty(&ctx->work_llist);
314 }
315 
io_tw_lock(struct io_ring_ctx * ctx,struct io_tw_state * ts)316 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
317 {
318 	if (!ts->locked) {
319 		mutex_lock(&ctx->uring_lock);
320 		ts->locked = true;
321 	}
322 }
323 
324 /*
325  * Don't complete immediately but use deferred completion infrastructure.
326  * Protected by ->uring_lock and can only be used either with
327  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
328  */
io_req_complete_defer(struct io_kiocb * req)329 static inline void io_req_complete_defer(struct io_kiocb *req)
330 	__must_hold(&req->ctx->uring_lock)
331 {
332 	struct io_submit_state *state = &req->ctx->submit_state;
333 
334 	lockdep_assert_held(&req->ctx->uring_lock);
335 
336 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
337 }
338 
io_commit_cqring_flush(struct io_ring_ctx * ctx)339 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
340 {
341 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
342 		     ctx->has_evfd || ctx->poll_activated))
343 		__io_commit_cqring_flush(ctx);
344 }
345 
io_get_task_refs(int nr)346 static inline void io_get_task_refs(int nr)
347 {
348 	struct io_uring_task *tctx = current->io_uring;
349 
350 	tctx->cached_refs -= nr;
351 	if (unlikely(tctx->cached_refs < 0))
352 		io_task_refs_refill(tctx);
353 }
354 
io_req_cache_empty(struct io_ring_ctx * ctx)355 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
356 {
357 	return !ctx->submit_state.free_list.next;
358 }
359 
360 extern struct kmem_cache *req_cachep;
361 
io_extract_req(struct io_ring_ctx * ctx)362 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
363 {
364 	struct io_kiocb *req;
365 
366 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
367 	wq_stack_extract(&ctx->submit_state.free_list);
368 	return req;
369 }
370 
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)371 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
372 {
373 	if (unlikely(io_req_cache_empty(ctx))) {
374 		if (!__io_alloc_req_refill(ctx))
375 			return false;
376 	}
377 	*req = io_extract_req(ctx);
378 	return true;
379 }
380 
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)381 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
382 {
383 	return likely(ctx->submitter_task == current);
384 }
385 
io_allowed_run_tw(struct io_ring_ctx * ctx)386 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
387 {
388 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
389 		      ctx->submitter_task == current);
390 }
391 
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)392 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
393 {
394 	io_req_set_res(req, res, 0);
395 	req->io_task_work.func = io_req_task_complete;
396 	io_req_task_work_add(req);
397 }
398 
399 /*
400  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
401  * slot.
402  */
uring_sqe_size(struct io_ring_ctx * ctx)403 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
404 {
405 	if (ctx->flags & IORING_SETUP_SQE128)
406 		return 2 * sizeof(struct io_uring_sqe);
407 	return sizeof(struct io_uring_sqe);
408 }
409 #endif
410