xref: /openbmc/linux/io_uring/io_uring.c (revision d37cf9b63113f13d742713881ce691fc615d8b3b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Shared application/kernel submission and completion ring pairs, for
4   * supporting fast/efficient IO.
5   *
6   * A note on the read/write ordering memory barriers that are matched between
7   * the application and kernel side.
8   *
9   * After the application reads the CQ ring tail, it must use an
10   * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11   * before writing the tail (using smp_load_acquire to read the tail will
12   * do). It also needs a smp_mb() before updating CQ head (ordering the
13   * entry load(s) with the head store), pairing with an implicit barrier
14   * through a control-dependency in io_get_cqe (smp_store_release to
15   * store head will do). Failure to do so could lead to reading invalid
16   * CQ entries.
17   *
18   * Likewise, the application must use an appropriate smp_wmb() before
19   * writing the SQ tail (ordering SQ entry stores with the tail store),
20   * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21   * to store the tail will do). And it needs a barrier ordering the SQ
22   * head load before writing new SQ entries (smp_load_acquire to read
23   * head will do).
24   *
25   * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26   * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27   * updating the SQ tail; a full memory barrier smp_mb() is needed
28   * between.
29   *
30   * Also see the examples in the liburing library:
31   *
32   *	git://git.kernel.dk/liburing
33   *
34   * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35   * from data shared between the kernel and application. This is done both
36   * for ordering purposes, but also to ensure that once a value is loaded from
37   * data that the application could potentially modify, it remains stable.
38   *
39   * Copyright (C) 2018-2019 Jens Axboe
40   * Copyright (c) 2018-2019 Christoph Hellwig
41   */
42  #include <linux/kernel.h>
43  #include <linux/init.h>
44  #include <linux/errno.h>
45  #include <linux/syscalls.h>
46  #include <net/compat.h>
47  #include <linux/refcount.h>
48  #include <linux/uio.h>
49  #include <linux/bits.h>
50  
51  #include <linux/sched/signal.h>
52  #include <linux/fs.h>
53  #include <linux/file.h>
54  #include <linux/fdtable.h>
55  #include <linux/mm.h>
56  #include <linux/mman.h>
57  #include <linux/percpu.h>
58  #include <linux/slab.h>
59  #include <linux/bvec.h>
60  #include <linux/net.h>
61  #include <net/sock.h>
62  #include <net/af_unix.h>
63  #include <linux/anon_inodes.h>
64  #include <linux/sched/mm.h>
65  #include <linux/uaccess.h>
66  #include <linux/nospec.h>
67  #include <linux/highmem.h>
68  #include <linux/fsnotify.h>
69  #include <linux/fadvise.h>
70  #include <linux/task_work.h>
71  #include <linux/io_uring.h>
72  #include <linux/audit.h>
73  #include <linux/security.h>
74  #include <asm/shmparam.h>
75  
76  #define CREATE_TRACE_POINTS
77  #include <trace/events/io_uring.h>
78  
79  #include <uapi/linux/io_uring.h>
80  
81  #include "io-wq.h"
82  
83  #include "io_uring.h"
84  #include "opdef.h"
85  #include "refs.h"
86  #include "tctx.h"
87  #include "sqpoll.h"
88  #include "fdinfo.h"
89  #include "kbuf.h"
90  #include "rsrc.h"
91  #include "cancel.h"
92  #include "net.h"
93  #include "notif.h"
94  
95  #include "timeout.h"
96  #include "poll.h"
97  #include "rw.h"
98  #include "alloc_cache.h"
99  
100  #define IORING_MAX_ENTRIES	32768
101  #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102  
103  #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104  				 IORING_REGISTER_LAST + IORING_OP_LAST)
105  
106  #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107  			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108  
109  #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110  			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111  
112  #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113  				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114  				REQ_F_ASYNC_DATA)
115  
116  #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117  				 IO_REQ_CLEAN_FLAGS)
118  
119  #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120  
121  #define IO_COMPL_BATCH			32
122  #define IO_REQ_ALLOC_BATCH		8
123  
124  enum {
125  	IO_CHECK_CQ_OVERFLOW_BIT,
126  	IO_CHECK_CQ_DROPPED_BIT,
127  };
128  
129  enum {
130  	IO_EVENTFD_OP_SIGNAL_BIT,
131  	IO_EVENTFD_OP_FREE_BIT,
132  };
133  
134  struct io_defer_entry {
135  	struct list_head	list;
136  	struct io_kiocb		*req;
137  	u32			seq;
138  };
139  
140  /* requests with any of those set should undergo io_disarm_next() */
141  #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142  #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143  
144  static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145  					 struct task_struct *task,
146  					 bool cancel_all);
147  
148  static void io_queue_sqe(struct io_kiocb *req);
149  
150  struct kmem_cache *req_cachep;
151  static struct workqueue_struct *iou_wq __ro_after_init;
152  
153  static int __read_mostly sysctl_io_uring_disabled;
154  static int __read_mostly sysctl_io_uring_group = -1;
155  
156  #ifdef CONFIG_SYSCTL
157  static struct ctl_table kernel_io_uring_disabled_table[] = {
158  	{
159  		.procname	= "io_uring_disabled",
160  		.data		= &sysctl_io_uring_disabled,
161  		.maxlen		= sizeof(sysctl_io_uring_disabled),
162  		.mode		= 0644,
163  		.proc_handler	= proc_dointvec_minmax,
164  		.extra1		= SYSCTL_ZERO,
165  		.extra2		= SYSCTL_TWO,
166  	},
167  	{
168  		.procname	= "io_uring_group",
169  		.data		= &sysctl_io_uring_group,
170  		.maxlen		= sizeof(gid_t),
171  		.mode		= 0644,
172  		.proc_handler	= proc_dointvec,
173  	},
174  	{},
175  };
176  #endif
177  
io_submit_flush_completions(struct io_ring_ctx * ctx)178  static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179  {
180  	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181  	    ctx->submit_state.cqes_count)
182  		__io_submit_flush_completions(ctx);
183  }
184  
__io_cqring_events(struct io_ring_ctx * ctx)185  static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186  {
187  	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188  }
189  
__io_cqring_events_user(struct io_ring_ctx * ctx)190  static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191  {
192  	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193  }
194  
io_match_linked(struct io_kiocb * head)195  static bool io_match_linked(struct io_kiocb *head)
196  {
197  	struct io_kiocb *req;
198  
199  	io_for_each_link(req, head) {
200  		if (req->flags & REQ_F_INFLIGHT)
201  			return true;
202  	}
203  	return false;
204  }
205  
206  /*
207   * As io_match_task() but protected against racing with linked timeouts.
208   * User must not hold timeout_lock.
209   */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210  bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211  			bool cancel_all)
212  {
213  	bool matched;
214  
215  	if (task && head->task != task)
216  		return false;
217  	if (cancel_all)
218  		return true;
219  
220  	if (head->flags & REQ_F_LINK_TIMEOUT) {
221  		struct io_ring_ctx *ctx = head->ctx;
222  
223  		/* protect against races with linked timeouts */
224  		spin_lock_irq(&ctx->timeout_lock);
225  		matched = io_match_linked(head);
226  		spin_unlock_irq(&ctx->timeout_lock);
227  	} else {
228  		matched = io_match_linked(head);
229  	}
230  	return matched;
231  }
232  
req_fail_link_node(struct io_kiocb * req,int res)233  static inline void req_fail_link_node(struct io_kiocb *req, int res)
234  {
235  	req_set_fail(req);
236  	io_req_set_res(req, res, 0);
237  }
238  
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239  static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240  {
241  	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242  }
243  
io_ring_ctx_ref_free(struct percpu_ref * ref)244  static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245  {
246  	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247  
248  	complete(&ctx->ref_comp);
249  }
250  
io_fallback_req_func(struct work_struct * work)251  static __cold void io_fallback_req_func(struct work_struct *work)
252  {
253  	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254  						fallback_work.work);
255  	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256  	struct io_kiocb *req, *tmp;
257  	struct io_tw_state ts = { .locked = true, };
258  
259  	percpu_ref_get(&ctx->refs);
260  	mutex_lock(&ctx->uring_lock);
261  	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262  		req->io_task_work.func(req, &ts);
263  	if (WARN_ON_ONCE(!ts.locked))
264  		return;
265  	io_submit_flush_completions(ctx);
266  	mutex_unlock(&ctx->uring_lock);
267  	percpu_ref_put(&ctx->refs);
268  }
269  
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270  static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271  {
272  	unsigned hash_buckets = 1U << bits;
273  	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274  
275  	table->hbs = kmalloc(hash_size, GFP_KERNEL);
276  	if (!table->hbs)
277  		return -ENOMEM;
278  
279  	table->hash_bits = bits;
280  	init_hash_table(table, hash_buckets);
281  	return 0;
282  }
283  
io_ring_ctx_alloc(struct io_uring_params * p)284  static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285  {
286  	struct io_ring_ctx *ctx;
287  	int hash_bits;
288  
289  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290  	if (!ctx)
291  		return NULL;
292  
293  	xa_init(&ctx->io_bl_xa);
294  
295  	/*
296  	 * Use 5 bits less than the max cq entries, that should give us around
297  	 * 32 entries per hash list if totally full and uniformly spread, but
298  	 * don't keep too many buckets to not overconsume memory.
299  	 */
300  	hash_bits = ilog2(p->cq_entries) - 5;
301  	hash_bits = clamp(hash_bits, 1, 8);
302  	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303  		goto err;
304  	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305  		goto err;
306  	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307  			    0, GFP_KERNEL))
308  		goto err;
309  
310  	ctx->flags = p->flags;
311  	init_waitqueue_head(&ctx->sqo_sq_wait);
312  	INIT_LIST_HEAD(&ctx->sqd_list);
313  	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314  	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315  	INIT_HLIST_HEAD(&ctx->io_buf_list);
316  	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317  			    sizeof(struct io_rsrc_node));
318  	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319  			    sizeof(struct async_poll));
320  	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321  			    sizeof(struct io_async_msghdr));
322  	init_completion(&ctx->ref_comp);
323  	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324  	mutex_init(&ctx->uring_lock);
325  	init_waitqueue_head(&ctx->cq_wait);
326  	init_waitqueue_head(&ctx->poll_wq);
327  	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328  	spin_lock_init(&ctx->completion_lock);
329  	spin_lock_init(&ctx->timeout_lock);
330  	INIT_WQ_LIST(&ctx->iopoll_list);
331  	INIT_LIST_HEAD(&ctx->io_buffers_pages);
332  	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333  	INIT_LIST_HEAD(&ctx->defer_list);
334  	INIT_LIST_HEAD(&ctx->timeout_list);
335  	INIT_LIST_HEAD(&ctx->ltimeout_list);
336  	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337  	init_llist_head(&ctx->work_llist);
338  	INIT_LIST_HEAD(&ctx->tctx_list);
339  	ctx->submit_state.free_list.next = NULL;
340  	INIT_WQ_LIST(&ctx->locked_free_list);
341  	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342  	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343  	return ctx;
344  err:
345  	kfree(ctx->cancel_table.hbs);
346  	kfree(ctx->cancel_table_locked.hbs);
347  	xa_destroy(&ctx->io_bl_xa);
348  	kfree(ctx);
349  	return NULL;
350  }
351  
io_account_cq_overflow(struct io_ring_ctx * ctx)352  static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353  {
354  	struct io_rings *r = ctx->rings;
355  
356  	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357  	ctx->cq_extra--;
358  }
359  
req_need_defer(struct io_kiocb * req,u32 seq)360  static bool req_need_defer(struct io_kiocb *req, u32 seq)
361  {
362  	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363  		struct io_ring_ctx *ctx = req->ctx;
364  
365  		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366  	}
367  
368  	return false;
369  }
370  
io_clean_op(struct io_kiocb * req)371  static void io_clean_op(struct io_kiocb *req)
372  {
373  	if (req->flags & REQ_F_BUFFER_SELECTED) {
374  		spin_lock(&req->ctx->completion_lock);
375  		io_put_kbuf_comp(req);
376  		spin_unlock(&req->ctx->completion_lock);
377  	}
378  
379  	if (req->flags & REQ_F_NEED_CLEANUP) {
380  		const struct io_cold_def *def = &io_cold_defs[req->opcode];
381  
382  		if (def->cleanup)
383  			def->cleanup(req);
384  	}
385  	if ((req->flags & REQ_F_POLLED) && req->apoll) {
386  		kfree(req->apoll->double_poll);
387  		kfree(req->apoll);
388  		req->apoll = NULL;
389  	}
390  	if (req->flags & REQ_F_INFLIGHT) {
391  		struct io_uring_task *tctx = req->task->io_uring;
392  
393  		atomic_dec(&tctx->inflight_tracked);
394  	}
395  	if (req->flags & REQ_F_CREDS)
396  		put_cred(req->creds);
397  	if (req->flags & REQ_F_ASYNC_DATA) {
398  		kfree(req->async_data);
399  		req->async_data = NULL;
400  	}
401  	req->flags &= ~IO_REQ_CLEAN_FLAGS;
402  }
403  
io_req_track_inflight(struct io_kiocb * req)404  static inline void io_req_track_inflight(struct io_kiocb *req)
405  {
406  	if (!(req->flags & REQ_F_INFLIGHT)) {
407  		req->flags |= REQ_F_INFLIGHT;
408  		atomic_inc(&req->task->io_uring->inflight_tracked);
409  	}
410  }
411  
__io_prep_linked_timeout(struct io_kiocb * req)412  static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413  {
414  	if (WARN_ON_ONCE(!req->link))
415  		return NULL;
416  
417  	req->flags &= ~REQ_F_ARM_LTIMEOUT;
418  	req->flags |= REQ_F_LINK_TIMEOUT;
419  
420  	/* linked timeouts should have two refs once prep'ed */
421  	io_req_set_refcount(req);
422  	__io_req_set_refcount(req->link, 2);
423  	return req->link;
424  }
425  
io_prep_linked_timeout(struct io_kiocb * req)426  static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427  {
428  	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429  		return NULL;
430  	return __io_prep_linked_timeout(req);
431  }
432  
__io_arm_ltimeout(struct io_kiocb * req)433  static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434  {
435  	io_queue_linked_timeout(__io_prep_linked_timeout(req));
436  }
437  
io_arm_ltimeout(struct io_kiocb * req)438  static inline void io_arm_ltimeout(struct io_kiocb *req)
439  {
440  	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441  		__io_arm_ltimeout(req);
442  }
443  
io_prep_async_work(struct io_kiocb * req)444  static void io_prep_async_work(struct io_kiocb *req)
445  {
446  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
447  	struct io_ring_ctx *ctx = req->ctx;
448  
449  	if (!(req->flags & REQ_F_CREDS)) {
450  		req->flags |= REQ_F_CREDS;
451  		req->creds = get_current_cred();
452  	}
453  
454  	req->work.list.next = NULL;
455  	req->work.flags = 0;
456  	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457  	if (req->flags & REQ_F_FORCE_ASYNC)
458  		req->work.flags |= IO_WQ_WORK_CONCURRENT;
459  
460  	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461  		req->flags |= io_file_get_flags(req->file);
462  
463  	if (req->file && (req->flags & REQ_F_ISREG)) {
464  		bool should_hash = def->hash_reg_file;
465  
466  		/* don't serialize this request if the fs doesn't need it */
467  		if (should_hash && (req->file->f_flags & O_DIRECT) &&
468  		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469  			should_hash = false;
470  		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471  			io_wq_hash_work(&req->work, file_inode(req->file));
472  	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473  		if (def->unbound_nonreg_file)
474  			req->work.flags |= IO_WQ_WORK_UNBOUND;
475  	}
476  }
477  
io_prep_async_link(struct io_kiocb * req)478  static void io_prep_async_link(struct io_kiocb *req)
479  {
480  	struct io_kiocb *cur;
481  
482  	if (req->flags & REQ_F_LINK_TIMEOUT) {
483  		struct io_ring_ctx *ctx = req->ctx;
484  
485  		spin_lock_irq(&ctx->timeout_lock);
486  		io_for_each_link(cur, req)
487  			io_prep_async_work(cur);
488  		spin_unlock_irq(&ctx->timeout_lock);
489  	} else {
490  		io_for_each_link(cur, req)
491  			io_prep_async_work(cur);
492  	}
493  }
494  
io_queue_iowq(struct io_kiocb * req)495  static void io_queue_iowq(struct io_kiocb *req)
496  {
497  	struct io_kiocb *link = io_prep_linked_timeout(req);
498  	struct io_uring_task *tctx = req->task->io_uring;
499  
500  	BUG_ON(!tctx);
501  
502  	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
503  		io_req_task_queue_fail(req, -ECANCELED);
504  		return;
505  	}
506  
507  	/* init ->work of the whole link before punting */
508  	io_prep_async_link(req);
509  
510  	/*
511  	 * Not expected to happen, but if we do have a bug where this _can_
512  	 * happen, catch it here and ensure the request is marked as
513  	 * canceled. That will make io-wq go through the usual work cancel
514  	 * procedure rather than attempt to run this request (or create a new
515  	 * worker for it).
516  	 */
517  	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
518  		req->work.flags |= IO_WQ_WORK_CANCEL;
519  
520  	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
521  	io_wq_enqueue(tctx->io_wq, &req->work);
522  	if (link)
523  		io_queue_linked_timeout(link);
524  }
525  
io_queue_deferred(struct io_ring_ctx * ctx)526  static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
527  {
528  	while (!list_empty(&ctx->defer_list)) {
529  		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
530  						struct io_defer_entry, list);
531  
532  		if (req_need_defer(de->req, de->seq))
533  			break;
534  		list_del_init(&de->list);
535  		io_req_task_queue(de->req);
536  		kfree(de);
537  	}
538  }
539  
io_eventfd_free(struct rcu_head * rcu)540  static void io_eventfd_free(struct rcu_head *rcu)
541  {
542  	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
543  
544  	eventfd_ctx_put(ev_fd->cq_ev_fd);
545  	kfree(ev_fd);
546  }
547  
io_eventfd_ops(struct rcu_head * rcu)548  static void io_eventfd_ops(struct rcu_head *rcu)
549  {
550  	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551  	int ops = atomic_xchg(&ev_fd->ops, 0);
552  
553  	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554  		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555  
556  	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557  	 * ordering in a race but if references are 0 we know we have to free
558  	 * it regardless.
559  	 */
560  	if (atomic_dec_and_test(&ev_fd->refs))
561  		call_rcu(&ev_fd->rcu, io_eventfd_free);
562  }
563  
io_eventfd_signal(struct io_ring_ctx * ctx)564  static void io_eventfd_signal(struct io_ring_ctx *ctx)
565  {
566  	struct io_ev_fd *ev_fd = NULL;
567  
568  	rcu_read_lock();
569  	/*
570  	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
571  	 * and eventfd_signal
572  	 */
573  	ev_fd = rcu_dereference(ctx->io_ev_fd);
574  
575  	/*
576  	 * Check again if ev_fd exists incase an io_eventfd_unregister call
577  	 * completed between the NULL check of ctx->io_ev_fd at the start of
578  	 * the function and rcu_read_lock.
579  	 */
580  	if (unlikely(!ev_fd))
581  		goto out;
582  	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
583  		goto out;
584  	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
585  		goto out;
586  
587  	if (likely(eventfd_signal_allowed())) {
588  		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
589  	} else {
590  		atomic_inc(&ev_fd->refs);
591  		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
592  			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
593  		else
594  			atomic_dec(&ev_fd->refs);
595  	}
596  
597  out:
598  	rcu_read_unlock();
599  }
600  
io_eventfd_flush_signal(struct io_ring_ctx * ctx)601  static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
602  {
603  	bool skip;
604  
605  	spin_lock(&ctx->completion_lock);
606  
607  	/*
608  	 * Eventfd should only get triggered when at least one event has been
609  	 * posted. Some applications rely on the eventfd notification count
610  	 * only changing IFF a new CQE has been added to the CQ ring. There's
611  	 * no depedency on 1:1 relationship between how many times this
612  	 * function is called (and hence the eventfd count) and number of CQEs
613  	 * posted to the CQ ring.
614  	 */
615  	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
616  	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
617  	spin_unlock(&ctx->completion_lock);
618  	if (skip)
619  		return;
620  
621  	io_eventfd_signal(ctx);
622  }
623  
__io_commit_cqring_flush(struct io_ring_ctx * ctx)624  void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
625  {
626  	if (ctx->poll_activated)
627  		io_poll_wq_wake(ctx);
628  	if (ctx->off_timeout_used)
629  		io_flush_timeouts(ctx);
630  	if (ctx->drain_active) {
631  		spin_lock(&ctx->completion_lock);
632  		io_queue_deferred(ctx);
633  		spin_unlock(&ctx->completion_lock);
634  	}
635  	if (ctx->has_evfd)
636  		io_eventfd_flush_signal(ctx);
637  }
638  
__io_cq_lock(struct io_ring_ctx * ctx)639  static inline void __io_cq_lock(struct io_ring_ctx *ctx)
640  {
641  	if (!ctx->lockless_cq)
642  		spin_lock(&ctx->completion_lock);
643  }
644  
io_cq_lock(struct io_ring_ctx * ctx)645  static inline void io_cq_lock(struct io_ring_ctx *ctx)
646  	__acquires(ctx->completion_lock)
647  {
648  	spin_lock(&ctx->completion_lock);
649  }
650  
__io_cq_unlock_post(struct io_ring_ctx * ctx)651  static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
652  {
653  	io_commit_cqring(ctx);
654  	if (!ctx->task_complete) {
655  		if (!ctx->lockless_cq)
656  			spin_unlock(&ctx->completion_lock);
657  		/* IOPOLL rings only need to wake up if it's also SQPOLL */
658  		if (!ctx->syscall_iopoll)
659  			io_cqring_wake(ctx);
660  	}
661  	io_commit_cqring_flush(ctx);
662  }
663  
io_cq_unlock_post(struct io_ring_ctx * ctx)664  static void io_cq_unlock_post(struct io_ring_ctx *ctx)
665  	__releases(ctx->completion_lock)
666  {
667  	io_commit_cqring(ctx);
668  	spin_unlock(&ctx->completion_lock);
669  	io_cqring_wake(ctx);
670  	io_commit_cqring_flush(ctx);
671  }
672  
673  /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)674  static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
675  {
676  	struct io_overflow_cqe *ocqe;
677  	LIST_HEAD(list);
678  
679  	lockdep_assert_held(&ctx->uring_lock);
680  
681  	spin_lock(&ctx->completion_lock);
682  	list_splice_init(&ctx->cq_overflow_list, &list);
683  	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684  	spin_unlock(&ctx->completion_lock);
685  
686  	while (!list_empty(&list)) {
687  		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688  		list_del(&ocqe->list);
689  		kfree(ocqe);
690  	}
691  }
692  
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)693  static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694  {
695  	size_t cqe_size = sizeof(struct io_uring_cqe);
696  
697  	lockdep_assert_held(&ctx->uring_lock);
698  
699  	if (__io_cqring_events(ctx) == ctx->cq_entries)
700  		return;
701  
702  	if (ctx->flags & IORING_SETUP_CQE32)
703  		cqe_size <<= 1;
704  
705  	io_cq_lock(ctx);
706  	while (!list_empty(&ctx->cq_overflow_list)) {
707  		struct io_uring_cqe *cqe;
708  		struct io_overflow_cqe *ocqe;
709  
710  		if (!io_get_cqe_overflow(ctx, &cqe, true))
711  			break;
712  		ocqe = list_first_entry(&ctx->cq_overflow_list,
713  					struct io_overflow_cqe, list);
714  		memcpy(cqe, &ocqe->cqe, cqe_size);
715  		list_del(&ocqe->list);
716  		kfree(ocqe);
717  
718  		/*
719  		 * For silly syzbot cases that deliberately overflow by huge
720  		 * amounts, check if we need to resched and drop and
721  		 * reacquire the locks if so. Nothing real would ever hit this.
722  		 * Ideally we'd have a non-posting unlock for this, but hard
723  		 * to care for a non-real case.
724  		 */
725  		if (need_resched()) {
726  			io_cq_unlock_post(ctx);
727  			mutex_unlock(&ctx->uring_lock);
728  			cond_resched();
729  			mutex_lock(&ctx->uring_lock);
730  			io_cq_lock(ctx);
731  		}
732  	}
733  
734  	if (list_empty(&ctx->cq_overflow_list)) {
735  		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
736  		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
737  	}
738  	io_cq_unlock_post(ctx);
739  }
740  
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)741  static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
742  {
743  	mutex_lock(&ctx->uring_lock);
744  	__io_cqring_overflow_flush(ctx);
745  	mutex_unlock(&ctx->uring_lock);
746  }
747  
io_cqring_overflow_flush(struct io_ring_ctx * ctx)748  static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
749  {
750  	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
751  		io_cqring_do_overflow_flush(ctx);
752  }
753  
754  /* can be called by any task */
io_put_task_remote(struct task_struct * task)755  static void io_put_task_remote(struct task_struct *task)
756  {
757  	struct io_uring_task *tctx = task->io_uring;
758  
759  	percpu_counter_sub(&tctx->inflight, 1);
760  	if (unlikely(atomic_read(&tctx->in_cancel)))
761  		wake_up(&tctx->wait);
762  	put_task_struct(task);
763  }
764  
765  /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)766  static void io_put_task_local(struct task_struct *task)
767  {
768  	task->io_uring->cached_refs++;
769  }
770  
771  /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)772  static inline void io_put_task(struct task_struct *task)
773  {
774  	if (likely(task == current))
775  		io_put_task_local(task);
776  	else
777  		io_put_task_remote(task);
778  }
779  
io_task_refs_refill(struct io_uring_task * tctx)780  void io_task_refs_refill(struct io_uring_task *tctx)
781  {
782  	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
783  
784  	percpu_counter_add(&tctx->inflight, refill);
785  	refcount_add(refill, &current->usage);
786  	tctx->cached_refs += refill;
787  }
788  
io_uring_drop_tctx_refs(struct task_struct * task)789  static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
790  {
791  	struct io_uring_task *tctx = task->io_uring;
792  	unsigned int refs = tctx->cached_refs;
793  
794  	if (refs) {
795  		tctx->cached_refs = 0;
796  		percpu_counter_sub(&tctx->inflight, refs);
797  		put_task_struct_many(task, refs);
798  	}
799  }
800  
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)801  static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
802  				     s32 res, u32 cflags, u64 extra1, u64 extra2)
803  {
804  	struct io_overflow_cqe *ocqe;
805  	size_t ocq_size = sizeof(struct io_overflow_cqe);
806  	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
807  
808  	lockdep_assert_held(&ctx->completion_lock);
809  
810  	if (is_cqe32)
811  		ocq_size += sizeof(struct io_uring_cqe);
812  
813  	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
814  	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
815  	if (!ocqe) {
816  		/*
817  		 * If we're in ring overflow flush mode, or in task cancel mode,
818  		 * or cannot allocate an overflow entry, then we need to drop it
819  		 * on the floor.
820  		 */
821  		io_account_cq_overflow(ctx);
822  		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
823  		return false;
824  	}
825  	if (list_empty(&ctx->cq_overflow_list)) {
826  		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
827  		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
828  
829  	}
830  	ocqe->cqe.user_data = user_data;
831  	ocqe->cqe.res = res;
832  	ocqe->cqe.flags = cflags;
833  	if (is_cqe32) {
834  		ocqe->cqe.big_cqe[0] = extra1;
835  		ocqe->cqe.big_cqe[1] = extra2;
836  	}
837  	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
838  	return true;
839  }
840  
io_req_cqe_overflow(struct io_kiocb * req)841  void io_req_cqe_overflow(struct io_kiocb *req)
842  {
843  	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
844  				req->cqe.res, req->cqe.flags,
845  				req->big_cqe.extra1, req->big_cqe.extra2);
846  	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
847  }
848  
849  /*
850   * writes to the cq entry need to come after reading head; the
851   * control dependency is enough as we're using WRITE_ONCE to
852   * fill the cq entry
853   */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)854  bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
855  {
856  	struct io_rings *rings = ctx->rings;
857  	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
858  	unsigned int free, queued, len;
859  
860  	/*
861  	 * Posting into the CQ when there are pending overflowed CQEs may break
862  	 * ordering guarantees, which will affect links, F_MORE users and more.
863  	 * Force overflow the completion.
864  	 */
865  	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
866  		return false;
867  
868  	/* userspace may cheat modifying the tail, be safe and do min */
869  	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
870  	free = ctx->cq_entries - queued;
871  	/* we need a contiguous range, limit based on the current array offset */
872  	len = min(free, ctx->cq_entries - off);
873  	if (!len)
874  		return false;
875  
876  	if (ctx->flags & IORING_SETUP_CQE32) {
877  		off <<= 1;
878  		len <<= 1;
879  	}
880  
881  	ctx->cqe_cached = &rings->cqes[off];
882  	ctx->cqe_sentinel = ctx->cqe_cached + len;
883  	return true;
884  }
885  
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)886  static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
887  			      u32 cflags)
888  {
889  	struct io_uring_cqe *cqe;
890  
891  	ctx->cq_extra++;
892  
893  	/*
894  	 * If we can't get a cq entry, userspace overflowed the
895  	 * submission (by quite a lot). Increment the overflow count in
896  	 * the ring.
897  	 */
898  	if (likely(io_get_cqe(ctx, &cqe))) {
899  		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
900  
901  		WRITE_ONCE(cqe->user_data, user_data);
902  		WRITE_ONCE(cqe->res, res);
903  		WRITE_ONCE(cqe->flags, cflags);
904  
905  		if (ctx->flags & IORING_SETUP_CQE32) {
906  			WRITE_ONCE(cqe->big_cqe[0], 0);
907  			WRITE_ONCE(cqe->big_cqe[1], 0);
908  		}
909  		return true;
910  	}
911  	return false;
912  }
913  
__io_flush_post_cqes(struct io_ring_ctx * ctx)914  static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
915  	__must_hold(&ctx->uring_lock)
916  {
917  	struct io_submit_state *state = &ctx->submit_state;
918  	unsigned int i;
919  
920  	lockdep_assert_held(&ctx->uring_lock);
921  	for (i = 0; i < state->cqes_count; i++) {
922  		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
923  
924  		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
925  			if (ctx->lockless_cq) {
926  				spin_lock(&ctx->completion_lock);
927  				io_cqring_event_overflow(ctx, cqe->user_data,
928  							cqe->res, cqe->flags, 0, 0);
929  				spin_unlock(&ctx->completion_lock);
930  			} else {
931  				io_cqring_event_overflow(ctx, cqe->user_data,
932  							cqe->res, cqe->flags, 0, 0);
933  			}
934  		}
935  	}
936  	state->cqes_count = 0;
937  }
938  
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)939  static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
940  			      bool allow_overflow)
941  {
942  	bool filled;
943  
944  	io_cq_lock(ctx);
945  	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
946  	if (!filled && allow_overflow)
947  		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
948  
949  	io_cq_unlock_post(ctx);
950  	return filled;
951  }
952  
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)953  bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
954  {
955  	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
956  }
957  
958  /*
959   * A helper for multishot requests posting additional CQEs.
960   * Should only be used from a task_work including IO_URING_F_MULTISHOT.
961   */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)962  bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
963  {
964  	struct io_ring_ctx *ctx = req->ctx;
965  	u64 user_data = req->cqe.user_data;
966  	struct io_uring_cqe *cqe;
967  
968  	if (!defer)
969  		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
970  
971  	lockdep_assert_held(&ctx->uring_lock);
972  
973  	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
974  		__io_cq_lock(ctx);
975  		__io_flush_post_cqes(ctx);
976  		/* no need to flush - flush is deferred */
977  		__io_cq_unlock_post(ctx);
978  	}
979  
980  	/* For defered completions this is not as strict as it is otherwise,
981  	 * however it's main job is to prevent unbounded posted completions,
982  	 * and in that it works just as well.
983  	 */
984  	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
985  		return false;
986  
987  	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
988  	cqe->user_data = user_data;
989  	cqe->res = res;
990  	cqe->flags = cflags;
991  	return true;
992  }
993  
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)994  static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
995  {
996  	struct io_ring_ctx *ctx = req->ctx;
997  	struct io_rsrc_node *rsrc_node = NULL;
998  
999  	io_cq_lock(ctx);
1000  	if (!(req->flags & REQ_F_CQE_SKIP)) {
1001  		if (!io_fill_cqe_req(ctx, req))
1002  			io_req_cqe_overflow(req);
1003  	}
1004  
1005  	/*
1006  	 * If we're the last reference to this request, add to our locked
1007  	 * free_list cache.
1008  	 */
1009  	if (req_ref_put_and_test(req)) {
1010  		if (req->flags & IO_REQ_LINK_FLAGS) {
1011  			if (req->flags & IO_DISARM_MASK)
1012  				io_disarm_next(req);
1013  			if (req->link) {
1014  				io_req_task_queue(req->link);
1015  				req->link = NULL;
1016  			}
1017  		}
1018  		io_put_kbuf_comp(req);
1019  		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1020  			io_clean_op(req);
1021  		io_put_file(req);
1022  
1023  		rsrc_node = req->rsrc_node;
1024  		/*
1025  		 * Selected buffer deallocation in io_clean_op() assumes that
1026  		 * we don't hold ->completion_lock. Clean them here to avoid
1027  		 * deadlocks.
1028  		 */
1029  		io_put_task_remote(req->task);
1030  		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1031  		ctx->locked_free_nr++;
1032  	}
1033  	io_cq_unlock_post(ctx);
1034  
1035  	if (rsrc_node) {
1036  		io_ring_submit_lock(ctx, issue_flags);
1037  		io_put_rsrc_node(ctx, rsrc_node);
1038  		io_ring_submit_unlock(ctx, issue_flags);
1039  	}
1040  }
1041  
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1042  void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1043  {
1044  	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1045  		req->io_task_work.func = io_req_task_complete;
1046  		io_req_task_work_add(req);
1047  	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1048  		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1049  		__io_req_complete_post(req, issue_flags);
1050  	} else {
1051  		struct io_ring_ctx *ctx = req->ctx;
1052  
1053  		mutex_lock(&ctx->uring_lock);
1054  		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1055  		mutex_unlock(&ctx->uring_lock);
1056  	}
1057  }
1058  
io_req_defer_failed(struct io_kiocb * req,s32 res)1059  void io_req_defer_failed(struct io_kiocb *req, s32 res)
1060  	__must_hold(&ctx->uring_lock)
1061  {
1062  	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1063  
1064  	lockdep_assert_held(&req->ctx->uring_lock);
1065  
1066  	req_set_fail(req);
1067  	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1068  	if (def->fail)
1069  		def->fail(req);
1070  	io_req_complete_defer(req);
1071  }
1072  
1073  /*
1074   * Don't initialise the fields below on every allocation, but do that in
1075   * advance and keep them valid across allocations.
1076   */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1077  static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1078  {
1079  	req->ctx = ctx;
1080  	req->link = NULL;
1081  	req->async_data = NULL;
1082  	/* not necessary, but safer to zero */
1083  	memset(&req->cqe, 0, sizeof(req->cqe));
1084  	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1085  }
1086  
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1087  static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1088  					struct io_submit_state *state)
1089  {
1090  	spin_lock(&ctx->completion_lock);
1091  	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1092  	ctx->locked_free_nr = 0;
1093  	spin_unlock(&ctx->completion_lock);
1094  }
1095  
1096  /*
1097   * A request might get retired back into the request caches even before opcode
1098   * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1099   * Because of that, io_alloc_req() should be called only under ->uring_lock
1100   * and with extra caution to not get a request that is still worked on.
1101   */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1102  __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1103  	__must_hold(&ctx->uring_lock)
1104  {
1105  	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1106  	void *reqs[IO_REQ_ALLOC_BATCH];
1107  	int ret, i;
1108  
1109  	/*
1110  	 * If we have more than a batch's worth of requests in our IRQ side
1111  	 * locked cache, grab the lock and move them over to our submission
1112  	 * side cache.
1113  	 */
1114  	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1115  		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1116  		if (!io_req_cache_empty(ctx))
1117  			return true;
1118  	}
1119  
1120  	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1121  
1122  	/*
1123  	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1124  	 * retry single alloc to be on the safe side.
1125  	 */
1126  	if (unlikely(ret <= 0)) {
1127  		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1128  		if (!reqs[0])
1129  			return false;
1130  		ret = 1;
1131  	}
1132  
1133  	percpu_ref_get_many(&ctx->refs, ret);
1134  	for (i = 0; i < ret; i++) {
1135  		struct io_kiocb *req = reqs[i];
1136  
1137  		io_preinit_req(req, ctx);
1138  		io_req_add_to_cache(req, ctx);
1139  	}
1140  	return true;
1141  }
1142  
io_free_req(struct io_kiocb * req)1143  __cold void io_free_req(struct io_kiocb *req)
1144  {
1145  	/* refs were already put, restore them for io_req_task_complete() */
1146  	req->flags &= ~REQ_F_REFCOUNT;
1147  	/* we only want to free it, don't post CQEs */
1148  	req->flags |= REQ_F_CQE_SKIP;
1149  	req->io_task_work.func = io_req_task_complete;
1150  	io_req_task_work_add(req);
1151  }
1152  
__io_req_find_next_prep(struct io_kiocb * req)1153  static void __io_req_find_next_prep(struct io_kiocb *req)
1154  {
1155  	struct io_ring_ctx *ctx = req->ctx;
1156  
1157  	spin_lock(&ctx->completion_lock);
1158  	io_disarm_next(req);
1159  	spin_unlock(&ctx->completion_lock);
1160  }
1161  
io_req_find_next(struct io_kiocb * req)1162  static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1163  {
1164  	struct io_kiocb *nxt;
1165  
1166  	/*
1167  	 * If LINK is set, we have dependent requests in this chain. If we
1168  	 * didn't fail this request, queue the first one up, moving any other
1169  	 * dependencies to the next request. In case of failure, fail the rest
1170  	 * of the chain.
1171  	 */
1172  	if (unlikely(req->flags & IO_DISARM_MASK))
1173  		__io_req_find_next_prep(req);
1174  	nxt = req->link;
1175  	req->link = NULL;
1176  	return nxt;
1177  }
1178  
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1179  static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1180  {
1181  	if (!ctx)
1182  		return;
1183  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1184  		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1185  	if (ts->locked) {
1186  		io_submit_flush_completions(ctx);
1187  		mutex_unlock(&ctx->uring_lock);
1188  		ts->locked = false;
1189  	}
1190  	percpu_ref_put(&ctx->refs);
1191  }
1192  
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1193  static unsigned int handle_tw_list(struct llist_node *node,
1194  				   struct io_ring_ctx **ctx,
1195  				   struct io_tw_state *ts)
1196  {
1197  	unsigned int count = 0;
1198  
1199  	do {
1200  		struct llist_node *next = node->next;
1201  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1202  						    io_task_work.node);
1203  
1204  		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1205  
1206  		if (req->ctx != *ctx) {
1207  			ctx_flush_and_put(*ctx, ts);
1208  			*ctx = req->ctx;
1209  			/* if not contended, grab and improve batching */
1210  			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1211  			percpu_ref_get(&(*ctx)->refs);
1212  		}
1213  		INDIRECT_CALL_2(req->io_task_work.func,
1214  				io_poll_task_func, io_req_rw_complete,
1215  				req, ts);
1216  		node = next;
1217  		count++;
1218  		if (unlikely(need_resched())) {
1219  			ctx_flush_and_put(*ctx, ts);
1220  			*ctx = NULL;
1221  			cond_resched();
1222  		}
1223  	} while (node);
1224  
1225  	return count;
1226  }
1227  
1228  /**
1229   * io_llist_xchg - swap all entries in a lock-less list
1230   * @head:	the head of lock-less list to delete all entries
1231   * @new:	new entry as the head of the list
1232   *
1233   * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1234   * The order of entries returned is from the newest to the oldest added one.
1235   */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1236  static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1237  					       struct llist_node *new)
1238  {
1239  	return xchg(&head->first, new);
1240  }
1241  
io_fallback_tw(struct io_uring_task * tctx,bool sync)1242  static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1243  {
1244  	struct llist_node *node = llist_del_all(&tctx->task_list);
1245  	struct io_ring_ctx *last_ctx = NULL;
1246  	struct io_kiocb *req;
1247  
1248  	while (node) {
1249  		req = container_of(node, struct io_kiocb, io_task_work.node);
1250  		node = node->next;
1251  		if (sync && last_ctx != req->ctx) {
1252  			if (last_ctx) {
1253  				flush_delayed_work(&last_ctx->fallback_work);
1254  				percpu_ref_put(&last_ctx->refs);
1255  			}
1256  			last_ctx = req->ctx;
1257  			percpu_ref_get(&last_ctx->refs);
1258  		}
1259  		if (llist_add(&req->io_task_work.node,
1260  			      &req->ctx->fallback_llist))
1261  			schedule_delayed_work(&req->ctx->fallback_work, 1);
1262  	}
1263  
1264  	if (last_ctx) {
1265  		flush_delayed_work(&last_ctx->fallback_work);
1266  		percpu_ref_put(&last_ctx->refs);
1267  	}
1268  }
1269  
tctx_task_work(struct callback_head * cb)1270  void tctx_task_work(struct callback_head *cb)
1271  {
1272  	struct io_tw_state ts = {};
1273  	struct io_ring_ctx *ctx = NULL;
1274  	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1275  						  task_work);
1276  	struct llist_node *node;
1277  	unsigned int count = 0;
1278  
1279  	if (unlikely(current->flags & PF_EXITING)) {
1280  		io_fallback_tw(tctx, true);
1281  		return;
1282  	}
1283  
1284  	node = llist_del_all(&tctx->task_list);
1285  	if (node)
1286  		count = handle_tw_list(node, &ctx, &ts);
1287  
1288  	ctx_flush_and_put(ctx, &ts);
1289  
1290  	/* relaxed read is enough as only the task itself sets ->in_cancel */
1291  	if (unlikely(atomic_read(&tctx->in_cancel)))
1292  		io_uring_drop_tctx_refs(current);
1293  
1294  	trace_io_uring_task_work_run(tctx, count, 1);
1295  }
1296  
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1297  static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1298  {
1299  	struct io_ring_ctx *ctx = req->ctx;
1300  	unsigned nr_wait, nr_tw, nr_tw_prev;
1301  	struct llist_node *first;
1302  
1303  	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1304  		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1305  
1306  	first = READ_ONCE(ctx->work_llist.first);
1307  	do {
1308  		nr_tw_prev = 0;
1309  		if (first) {
1310  			struct io_kiocb *first_req = container_of(first,
1311  							struct io_kiocb,
1312  							io_task_work.node);
1313  			/*
1314  			 * Might be executed at any moment, rely on
1315  			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1316  			 */
1317  			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1318  		}
1319  		nr_tw = nr_tw_prev + 1;
1320  		/* Large enough to fail the nr_wait comparison below */
1321  		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1322  			nr_tw = INT_MAX;
1323  
1324  		req->nr_tw = nr_tw;
1325  		req->io_task_work.node.next = first;
1326  	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1327  			      &req->io_task_work.node));
1328  
1329  	if (!first) {
1330  		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1331  			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1332  		if (ctx->has_evfd)
1333  			io_eventfd_signal(ctx);
1334  	}
1335  
1336  	nr_wait = atomic_read(&ctx->cq_wait_nr);
1337  	/* no one is waiting */
1338  	if (!nr_wait)
1339  		return;
1340  	/* either not enough or the previous add has already woken it up */
1341  	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1342  		return;
1343  	/* pairs with set_current_state() in io_cqring_wait() */
1344  	smp_mb__after_atomic();
1345  	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1346  }
1347  
io_req_normal_work_add(struct io_kiocb * req)1348  static void io_req_normal_work_add(struct io_kiocb *req)
1349  {
1350  	struct io_uring_task *tctx = req->task->io_uring;
1351  	struct io_ring_ctx *ctx = req->ctx;
1352  
1353  	/* task_work already pending, we're done */
1354  	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1355  		return;
1356  
1357  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1358  		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359  
1360  	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1361  		return;
1362  
1363  	io_fallback_tw(tctx, false);
1364  }
1365  
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1366  void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1367  {
1368  	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1369  		rcu_read_lock();
1370  		io_req_local_work_add(req, flags);
1371  		rcu_read_unlock();
1372  	} else {
1373  		io_req_normal_work_add(req);
1374  	}
1375  }
1376  
io_move_task_work_from_local(struct io_ring_ctx * ctx)1377  static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1378  {
1379  	struct llist_node *node;
1380  
1381  	node = llist_del_all(&ctx->work_llist);
1382  	while (node) {
1383  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1384  						    io_task_work.node);
1385  
1386  		node = node->next;
1387  		io_req_normal_work_add(req);
1388  	}
1389  }
1390  
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1391  static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1392  				       int min_events)
1393  {
1394  	if (llist_empty(&ctx->work_llist))
1395  		return false;
1396  	if (events < min_events)
1397  		return true;
1398  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1399  		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1400  	return false;
1401  }
1402  
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1403  static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1404  			       int min_events)
1405  {
1406  	struct llist_node *node;
1407  	unsigned int loops = 0;
1408  	int ret = 0;
1409  
1410  	if (WARN_ON_ONCE(ctx->submitter_task != current))
1411  		return -EEXIST;
1412  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1413  		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1414  again:
1415  	/*
1416  	 * llists are in reverse order, flip it back the right way before
1417  	 * running the pending items.
1418  	 */
1419  	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1420  	while (node) {
1421  		struct llist_node *next = node->next;
1422  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1423  						    io_task_work.node);
1424  		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1425  		INDIRECT_CALL_2(req->io_task_work.func,
1426  				io_poll_task_func, io_req_rw_complete,
1427  				req, ts);
1428  		ret++;
1429  		node = next;
1430  	}
1431  	loops++;
1432  
1433  	if (io_run_local_work_continue(ctx, ret, min_events))
1434  		goto again;
1435  	if (ts->locked) {
1436  		io_submit_flush_completions(ctx);
1437  		if (io_run_local_work_continue(ctx, ret, min_events))
1438  			goto again;
1439  	}
1440  
1441  	trace_io_uring_local_work_run(ctx, ret, loops);
1442  	return ret;
1443  }
1444  
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1445  static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1446  					   int min_events)
1447  {
1448  	struct io_tw_state ts = { .locked = true, };
1449  	int ret;
1450  
1451  	if (llist_empty(&ctx->work_llist))
1452  		return 0;
1453  
1454  	ret = __io_run_local_work(ctx, &ts, min_events);
1455  	/* shouldn't happen! */
1456  	if (WARN_ON_ONCE(!ts.locked))
1457  		mutex_lock(&ctx->uring_lock);
1458  	return ret;
1459  }
1460  
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1461  static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1462  {
1463  	struct io_tw_state ts = {};
1464  	int ret;
1465  
1466  	ts.locked = mutex_trylock(&ctx->uring_lock);
1467  	ret = __io_run_local_work(ctx, &ts, min_events);
1468  	if (ts.locked)
1469  		mutex_unlock(&ctx->uring_lock);
1470  
1471  	return ret;
1472  }
1473  
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1474  static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1475  {
1476  	io_tw_lock(req->ctx, ts);
1477  	io_req_defer_failed(req, req->cqe.res);
1478  }
1479  
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1480  void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1481  {
1482  	io_tw_lock(req->ctx, ts);
1483  	/* req->task == current here, checking PF_EXITING is safe */
1484  	if (unlikely(req->task->flags & PF_EXITING))
1485  		io_req_defer_failed(req, -EFAULT);
1486  	else if (req->flags & REQ_F_FORCE_ASYNC)
1487  		io_queue_iowq(req);
1488  	else
1489  		io_queue_sqe(req);
1490  }
1491  
io_req_task_queue_fail(struct io_kiocb * req,int ret)1492  void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1493  {
1494  	io_req_set_res(req, ret, 0);
1495  	req->io_task_work.func = io_req_task_cancel;
1496  	io_req_task_work_add(req);
1497  }
1498  
io_req_task_queue(struct io_kiocb * req)1499  void io_req_task_queue(struct io_kiocb *req)
1500  {
1501  	req->io_task_work.func = io_req_task_submit;
1502  	io_req_task_work_add(req);
1503  }
1504  
io_queue_next(struct io_kiocb * req)1505  void io_queue_next(struct io_kiocb *req)
1506  {
1507  	struct io_kiocb *nxt = io_req_find_next(req);
1508  
1509  	if (nxt)
1510  		io_req_task_queue(nxt);
1511  }
1512  
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1513  static void io_free_batch_list(struct io_ring_ctx *ctx,
1514  			       struct io_wq_work_node *node)
1515  	__must_hold(&ctx->uring_lock)
1516  {
1517  	do {
1518  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1519  						    comp_list);
1520  
1521  		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1522  			if (req->flags & REQ_F_REFCOUNT) {
1523  				node = req->comp_list.next;
1524  				if (!req_ref_put_and_test(req))
1525  					continue;
1526  			}
1527  			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1528  				struct async_poll *apoll = req->apoll;
1529  
1530  				if (apoll->double_poll)
1531  					kfree(apoll->double_poll);
1532  				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1533  					kfree(apoll);
1534  				req->flags &= ~REQ_F_POLLED;
1535  			}
1536  			if (req->flags & IO_REQ_LINK_FLAGS)
1537  				io_queue_next(req);
1538  			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1539  				io_clean_op(req);
1540  		}
1541  		io_put_file(req);
1542  
1543  		io_req_put_rsrc_locked(req, ctx);
1544  
1545  		io_put_task(req->task);
1546  		node = req->comp_list.next;
1547  		io_req_add_to_cache(req, ctx);
1548  	} while (node);
1549  }
1550  
__io_submit_flush_completions(struct io_ring_ctx * ctx)1551  void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1552  	__must_hold(&ctx->uring_lock)
1553  {
1554  	struct io_submit_state *state = &ctx->submit_state;
1555  	struct io_wq_work_node *node;
1556  
1557  	__io_cq_lock(ctx);
1558  	/* must come first to preserve CQE ordering in failure cases */
1559  	if (state->cqes_count)
1560  		__io_flush_post_cqes(ctx);
1561  	__wq_list_for_each(node, &state->compl_reqs) {
1562  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1563  					    comp_list);
1564  
1565  		if (!(req->flags & REQ_F_CQE_SKIP) &&
1566  		    unlikely(!io_fill_cqe_req(ctx, req))) {
1567  			if (ctx->lockless_cq) {
1568  				spin_lock(&ctx->completion_lock);
1569  				io_req_cqe_overflow(req);
1570  				spin_unlock(&ctx->completion_lock);
1571  			} else {
1572  				io_req_cqe_overflow(req);
1573  			}
1574  		}
1575  	}
1576  	__io_cq_unlock_post(ctx);
1577  
1578  	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1579  		io_free_batch_list(ctx, state->compl_reqs.first);
1580  		INIT_WQ_LIST(&state->compl_reqs);
1581  	}
1582  }
1583  
io_cqring_events(struct io_ring_ctx * ctx)1584  static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1585  {
1586  	/* See comment at the top of this file */
1587  	smp_rmb();
1588  	return __io_cqring_events(ctx);
1589  }
1590  
1591  /*
1592   * We can't just wait for polled events to come to us, we have to actively
1593   * find and complete them.
1594   */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1595  static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1596  {
1597  	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1598  		return;
1599  
1600  	mutex_lock(&ctx->uring_lock);
1601  	while (!wq_list_empty(&ctx->iopoll_list)) {
1602  		/* let it sleep and repeat later if can't complete a request */
1603  		if (io_do_iopoll(ctx, true) == 0)
1604  			break;
1605  		/*
1606  		 * Ensure we allow local-to-the-cpu processing to take place,
1607  		 * in this case we need to ensure that we reap all events.
1608  		 * Also let task_work, etc. to progress by releasing the mutex
1609  		 */
1610  		if (need_resched()) {
1611  			mutex_unlock(&ctx->uring_lock);
1612  			cond_resched();
1613  			mutex_lock(&ctx->uring_lock);
1614  		}
1615  	}
1616  	mutex_unlock(&ctx->uring_lock);
1617  }
1618  
io_iopoll_check(struct io_ring_ctx * ctx,long min)1619  static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1620  {
1621  	unsigned int nr_events = 0;
1622  	unsigned long check_cq;
1623  
1624  	lockdep_assert_held(&ctx->uring_lock);
1625  
1626  	if (!io_allowed_run_tw(ctx))
1627  		return -EEXIST;
1628  
1629  	check_cq = READ_ONCE(ctx->check_cq);
1630  	if (unlikely(check_cq)) {
1631  		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632  			__io_cqring_overflow_flush(ctx);
1633  		/*
1634  		 * Similarly do not spin if we have not informed the user of any
1635  		 * dropped CQE.
1636  		 */
1637  		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638  			return -EBADR;
1639  	}
1640  	/*
1641  	 * Don't enter poll loop if we already have events pending.
1642  	 * If we do, we can potentially be spinning for commands that
1643  	 * already triggered a CQE (eg in error).
1644  	 */
1645  	if (io_cqring_events(ctx))
1646  		return 0;
1647  
1648  	do {
1649  		int ret = 0;
1650  
1651  		/*
1652  		 * If a submit got punted to a workqueue, we can have the
1653  		 * application entering polling for a command before it gets
1654  		 * issued. That app will hold the uring_lock for the duration
1655  		 * of the poll right here, so we need to take a breather every
1656  		 * now and then to ensure that the issue has a chance to add
1657  		 * the poll to the issued list. Otherwise we can spin here
1658  		 * forever, while the workqueue is stuck trying to acquire the
1659  		 * very same mutex.
1660  		 */
1661  		if (wq_list_empty(&ctx->iopoll_list) ||
1662  		    io_task_work_pending(ctx)) {
1663  			u32 tail = ctx->cached_cq_tail;
1664  
1665  			(void) io_run_local_work_locked(ctx, min);
1666  
1667  			if (task_work_pending(current) ||
1668  			    wq_list_empty(&ctx->iopoll_list)) {
1669  				mutex_unlock(&ctx->uring_lock);
1670  				io_run_task_work();
1671  				mutex_lock(&ctx->uring_lock);
1672  			}
1673  			/* some requests don't go through iopoll_list */
1674  			if (tail != ctx->cached_cq_tail ||
1675  			    wq_list_empty(&ctx->iopoll_list))
1676  				break;
1677  		}
1678  		ret = io_do_iopoll(ctx, !min);
1679  		if (unlikely(ret < 0))
1680  			return ret;
1681  
1682  		if (task_sigpending(current))
1683  			return -EINTR;
1684  		if (need_resched())
1685  			break;
1686  
1687  		nr_events += ret;
1688  	} while (nr_events < min);
1689  
1690  	return 0;
1691  }
1692  
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1693  void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694  {
1695  	if (ts->locked)
1696  		io_req_complete_defer(req);
1697  	else
1698  		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699  }
1700  
1701  /*
1702   * After the iocb has been issued, it's safe to be found on the poll list.
1703   * Adding the kiocb to the list AFTER submission ensures that we don't
1704   * find it from a io_do_iopoll() thread before the issuer is done
1705   * accessing the kiocb cookie.
1706   */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1707  static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708  {
1709  	struct io_ring_ctx *ctx = req->ctx;
1710  	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711  
1712  	/* workqueue context doesn't hold uring_lock, grab it now */
1713  	if (unlikely(needs_lock))
1714  		mutex_lock(&ctx->uring_lock);
1715  
1716  	/*
1717  	 * Track whether we have multiple files in our lists. This will impact
1718  	 * how we do polling eventually, not spinning if we're on potentially
1719  	 * different devices.
1720  	 */
1721  	if (wq_list_empty(&ctx->iopoll_list)) {
1722  		ctx->poll_multi_queue = false;
1723  	} else if (!ctx->poll_multi_queue) {
1724  		struct io_kiocb *list_req;
1725  
1726  		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727  					comp_list);
1728  		if (list_req->file != req->file)
1729  			ctx->poll_multi_queue = true;
1730  	}
1731  
1732  	/*
1733  	 * For fast devices, IO may have already completed. If it has, add
1734  	 * it to the front so we find it first.
1735  	 */
1736  	if (READ_ONCE(req->iopoll_completed))
1737  		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738  	else
1739  		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740  
1741  	if (unlikely(needs_lock)) {
1742  		/*
1743  		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744  		 * in sq thread task context or in io worker task context. If
1745  		 * current task context is sq thread, we don't need to check
1746  		 * whether should wake up sq thread.
1747  		 */
1748  		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749  		    wq_has_sleeper(&ctx->sq_data->wait))
1750  			wake_up(&ctx->sq_data->wait);
1751  
1752  		mutex_unlock(&ctx->uring_lock);
1753  	}
1754  }
1755  
io_file_get_flags(struct file * file)1756  unsigned int io_file_get_flags(struct file *file)
1757  {
1758  	unsigned int res = 0;
1759  
1760  	if (S_ISREG(file_inode(file)->i_mode))
1761  		res |= REQ_F_ISREG;
1762  	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763  		res |= REQ_F_SUPPORT_NOWAIT;
1764  	return res;
1765  }
1766  
io_alloc_async_data(struct io_kiocb * req)1767  bool io_alloc_async_data(struct io_kiocb *req)
1768  {
1769  	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770  	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771  	if (req->async_data) {
1772  		req->flags |= REQ_F_ASYNC_DATA;
1773  		return false;
1774  	}
1775  	return true;
1776  }
1777  
io_req_prep_async(struct io_kiocb * req)1778  int io_req_prep_async(struct io_kiocb *req)
1779  {
1780  	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782  	int ret;
1783  
1784  	/* assign early for deferred execution for non-fixed file */
1785  	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1786  		req->file = io_file_get_normal(req, req->cqe.fd);
1787  	if (!cdef->prep_async)
1788  		return 0;
1789  	if (WARN_ON_ONCE(req_has_async_data(req)))
1790  		return -EFAULT;
1791  	if (!def->manual_alloc) {
1792  		if (io_alloc_async_data(req))
1793  			return -EAGAIN;
1794  	}
1795  	ret = cdef->prep_async(req);
1796  	io_kbuf_recycle(req, 0);
1797  	return ret;
1798  }
1799  
io_get_sequence(struct io_kiocb * req)1800  static u32 io_get_sequence(struct io_kiocb *req)
1801  {
1802  	u32 seq = req->ctx->cached_sq_head;
1803  	struct io_kiocb *cur;
1804  
1805  	/* need original cached_sq_head, but it was increased for each req */
1806  	io_for_each_link(cur, req)
1807  		seq--;
1808  	return seq;
1809  }
1810  
io_drain_req(struct io_kiocb * req)1811  static __cold void io_drain_req(struct io_kiocb *req)
1812  	__must_hold(&ctx->uring_lock)
1813  {
1814  	struct io_ring_ctx *ctx = req->ctx;
1815  	struct io_defer_entry *de;
1816  	int ret;
1817  	u32 seq = io_get_sequence(req);
1818  
1819  	/* Still need defer if there is pending req in defer list. */
1820  	spin_lock(&ctx->completion_lock);
1821  	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1822  		spin_unlock(&ctx->completion_lock);
1823  queue:
1824  		ctx->drain_active = false;
1825  		io_req_task_queue(req);
1826  		return;
1827  	}
1828  	spin_unlock(&ctx->completion_lock);
1829  
1830  	io_prep_async_link(req);
1831  	de = kmalloc(sizeof(*de), GFP_KERNEL);
1832  	if (!de) {
1833  		ret = -ENOMEM;
1834  		io_req_defer_failed(req, ret);
1835  		return;
1836  	}
1837  
1838  	spin_lock(&ctx->completion_lock);
1839  	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1840  		spin_unlock(&ctx->completion_lock);
1841  		kfree(de);
1842  		goto queue;
1843  	}
1844  
1845  	trace_io_uring_defer(req);
1846  	de->req = req;
1847  	de->seq = seq;
1848  	list_add_tail(&de->list, &ctx->defer_list);
1849  	spin_unlock(&ctx->completion_lock);
1850  }
1851  
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1852  static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1853  			   unsigned int issue_flags)
1854  {
1855  	if (req->file || !def->needs_file)
1856  		return true;
1857  
1858  	if (req->flags & REQ_F_FIXED_FILE)
1859  		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1860  	else
1861  		req->file = io_file_get_normal(req, req->cqe.fd);
1862  
1863  	return !!req->file;
1864  }
1865  
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1866  static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1867  {
1868  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1869  	const struct cred *creds = NULL;
1870  	int ret;
1871  
1872  	if (unlikely(!io_assign_file(req, def, issue_flags)))
1873  		return -EBADF;
1874  
1875  	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1876  		creds = override_creds(req->creds);
1877  
1878  	if (!def->audit_skip)
1879  		audit_uring_entry(req->opcode);
1880  
1881  	ret = def->issue(req, issue_flags);
1882  
1883  	if (!def->audit_skip)
1884  		audit_uring_exit(!ret, ret);
1885  
1886  	if (creds)
1887  		revert_creds(creds);
1888  
1889  	if (ret == IOU_OK) {
1890  		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1891  			io_req_complete_defer(req);
1892  		else
1893  			io_req_complete_post(req, issue_flags);
1894  
1895  		return 0;
1896  	}
1897  
1898  	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899  		return ret;
1900  
1901  	/* If the op doesn't have a file, we're not polling for it */
1902  	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903  		io_iopoll_req_issued(req, issue_flags);
1904  
1905  	return 0;
1906  }
1907  
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1908  int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909  {
1910  	io_tw_lock(req->ctx, ts);
1911  	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912  				 IO_URING_F_COMPLETE_DEFER);
1913  }
1914  
io_wq_free_work(struct io_wq_work * work)1915  struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916  {
1917  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918  	struct io_kiocb *nxt = NULL;
1919  
1920  	if (req_ref_put_and_test(req)) {
1921  		if (req->flags & IO_REQ_LINK_FLAGS)
1922  			nxt = io_req_find_next(req);
1923  		io_free_req(req);
1924  	}
1925  	return nxt ? &nxt->work : NULL;
1926  }
1927  
io_wq_submit_work(struct io_wq_work * work)1928  void io_wq_submit_work(struct io_wq_work *work)
1929  {
1930  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932  	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933  	bool needs_poll = false;
1934  	int ret = 0, err = -ECANCELED;
1935  
1936  	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937  	if (!(req->flags & REQ_F_REFCOUNT))
1938  		__io_req_set_refcount(req, 2);
1939  	else
1940  		req_ref_get(req);
1941  
1942  	io_arm_ltimeout(req);
1943  
1944  	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945  	if (work->flags & IO_WQ_WORK_CANCEL) {
1946  fail:
1947  		io_req_task_queue_fail(req, err);
1948  		return;
1949  	}
1950  	if (!io_assign_file(req, def, issue_flags)) {
1951  		err = -EBADF;
1952  		work->flags |= IO_WQ_WORK_CANCEL;
1953  		goto fail;
1954  	}
1955  
1956  	if (req->flags & REQ_F_FORCE_ASYNC) {
1957  		bool opcode_poll = def->pollin || def->pollout;
1958  
1959  		if (opcode_poll && file_can_poll(req->file)) {
1960  			needs_poll = true;
1961  			issue_flags |= IO_URING_F_NONBLOCK;
1962  		}
1963  	}
1964  
1965  	do {
1966  		ret = io_issue_sqe(req, issue_flags);
1967  		if (ret != -EAGAIN)
1968  			break;
1969  
1970  		/*
1971  		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972  		 * poll. -EAGAIN is final for that case.
1973  		 */
1974  		if (req->flags & REQ_F_NOWAIT)
1975  			break;
1976  
1977  		/*
1978  		 * We can get EAGAIN for iopolled IO even though we're
1979  		 * forcing a sync submission from here, since we can't
1980  		 * wait for request slots on the block side.
1981  		 */
1982  		if (!needs_poll) {
1983  			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984  				break;
1985  			if (io_wq_worker_stopped())
1986  				break;
1987  			cond_resched();
1988  			continue;
1989  		}
1990  
1991  		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992  			return;
1993  		/* aborted or ready, in either case retry blocking */
1994  		needs_poll = false;
1995  		issue_flags &= ~IO_URING_F_NONBLOCK;
1996  	} while (1);
1997  
1998  	/* avoid locking problems by failing it from a clean context */
1999  	if (ret < 0)
2000  		io_req_task_queue_fail(req, ret);
2001  }
2002  
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2003  inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004  				      unsigned int issue_flags)
2005  {
2006  	struct io_ring_ctx *ctx = req->ctx;
2007  	struct io_fixed_file *slot;
2008  	struct file *file = NULL;
2009  
2010  	io_ring_submit_lock(ctx, issue_flags);
2011  
2012  	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013  		goto out;
2014  	fd = array_index_nospec(fd, ctx->nr_user_files);
2015  	slot = io_fixed_file_slot(&ctx->file_table, fd);
2016  	file = io_slot_file(slot);
2017  	req->flags |= io_slot_flags(slot);
2018  	io_req_set_rsrc_node(req, ctx, 0);
2019  out:
2020  	io_ring_submit_unlock(ctx, issue_flags);
2021  	return file;
2022  }
2023  
io_file_get_normal(struct io_kiocb * req,int fd)2024  struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025  {
2026  	struct file *file = fget(fd);
2027  
2028  	trace_io_uring_file_get(req, fd);
2029  
2030  	/* we don't allow fixed io_uring files */
2031  	if (file && io_is_uring_fops(file))
2032  		io_req_track_inflight(req);
2033  	return file;
2034  }
2035  
io_queue_async(struct io_kiocb * req,int ret)2036  static void io_queue_async(struct io_kiocb *req, int ret)
2037  	__must_hold(&req->ctx->uring_lock)
2038  {
2039  	struct io_kiocb *linked_timeout;
2040  
2041  	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042  		io_req_defer_failed(req, ret);
2043  		return;
2044  	}
2045  
2046  	linked_timeout = io_prep_linked_timeout(req);
2047  
2048  	switch (io_arm_poll_handler(req, 0)) {
2049  	case IO_APOLL_READY:
2050  		io_kbuf_recycle(req, 0);
2051  		io_req_task_queue(req);
2052  		break;
2053  	case IO_APOLL_ABORTED:
2054  		io_kbuf_recycle(req, 0);
2055  		io_queue_iowq(req);
2056  		break;
2057  	case IO_APOLL_OK:
2058  		break;
2059  	}
2060  
2061  	if (linked_timeout)
2062  		io_queue_linked_timeout(linked_timeout);
2063  }
2064  
io_queue_sqe(struct io_kiocb * req)2065  static inline void io_queue_sqe(struct io_kiocb *req)
2066  	__must_hold(&req->ctx->uring_lock)
2067  {
2068  	int ret;
2069  
2070  	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071  
2072  	/*
2073  	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074  	 * doesn't support non-blocking read/write attempts
2075  	 */
2076  	if (likely(!ret))
2077  		io_arm_ltimeout(req);
2078  	else
2079  		io_queue_async(req, ret);
2080  }
2081  
io_queue_sqe_fallback(struct io_kiocb * req)2082  static void io_queue_sqe_fallback(struct io_kiocb *req)
2083  	__must_hold(&req->ctx->uring_lock)
2084  {
2085  	if (unlikely(req->flags & REQ_F_FAIL)) {
2086  		/*
2087  		 * We don't submit, fail them all, for that replace hardlinks
2088  		 * with normal links. Extra REQ_F_LINK is tolerated.
2089  		 */
2090  		req->flags &= ~REQ_F_HARDLINK;
2091  		req->flags |= REQ_F_LINK;
2092  		io_req_defer_failed(req, req->cqe.res);
2093  	} else {
2094  		int ret = io_req_prep_async(req);
2095  
2096  		if (unlikely(ret)) {
2097  			io_req_defer_failed(req, ret);
2098  			return;
2099  		}
2100  
2101  		if (unlikely(req->ctx->drain_active))
2102  			io_drain_req(req);
2103  		else
2104  			io_queue_iowq(req);
2105  	}
2106  }
2107  
2108  /*
2109   * Check SQE restrictions (opcode and flags).
2110   *
2111   * Returns 'true' if SQE is allowed, 'false' otherwise.
2112   */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2113  static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114  					struct io_kiocb *req,
2115  					unsigned int sqe_flags)
2116  {
2117  	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118  		return false;
2119  
2120  	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121  	    ctx->restrictions.sqe_flags_required)
2122  		return false;
2123  
2124  	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125  			  ctx->restrictions.sqe_flags_required))
2126  		return false;
2127  
2128  	return true;
2129  }
2130  
io_init_req_drain(struct io_kiocb * req)2131  static void io_init_req_drain(struct io_kiocb *req)
2132  {
2133  	struct io_ring_ctx *ctx = req->ctx;
2134  	struct io_kiocb *head = ctx->submit_state.link.head;
2135  
2136  	ctx->drain_active = true;
2137  	if (head) {
2138  		/*
2139  		 * If we need to drain a request in the middle of a link, drain
2140  		 * the head request and the next request/link after the current
2141  		 * link. Considering sequential execution of links,
2142  		 * REQ_F_IO_DRAIN will be maintained for every request of our
2143  		 * link.
2144  		 */
2145  		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146  		ctx->drain_next = true;
2147  	}
2148  }
2149  
io_init_fail_req(struct io_kiocb * req,int err)2150  static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2151  {
2152  	/* ensure per-opcode data is cleared if we fail before prep */
2153  	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2154  	return err;
2155  }
2156  
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2157  static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158  		       const struct io_uring_sqe *sqe)
2159  	__must_hold(&ctx->uring_lock)
2160  {
2161  	const struct io_issue_def *def;
2162  	unsigned int sqe_flags;
2163  	int personality;
2164  	u8 opcode;
2165  
2166  	/* req is partially pre-initialised, see io_preinit_req() */
2167  	req->opcode = opcode = READ_ONCE(sqe->opcode);
2168  	/* same numerical values with corresponding REQ_F_*, safe to copy */
2169  	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2170  	req->cqe.user_data = READ_ONCE(sqe->user_data);
2171  	req->file = NULL;
2172  	req->rsrc_node = NULL;
2173  	req->task = current;
2174  
2175  	if (unlikely(opcode >= IORING_OP_LAST)) {
2176  		req->opcode = 0;
2177  		return io_init_fail_req(req, -EINVAL);
2178  	}
2179  	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2180  
2181  	def = &io_issue_defs[opcode];
2182  	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183  		/* enforce forwards compatibility on users */
2184  		if (sqe_flags & ~SQE_VALID_FLAGS)
2185  			return io_init_fail_req(req, -EINVAL);
2186  		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187  			if (!def->buffer_select)
2188  				return io_init_fail_req(req, -EOPNOTSUPP);
2189  			req->buf_index = READ_ONCE(sqe->buf_group);
2190  		}
2191  		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192  			ctx->drain_disabled = true;
2193  		if (sqe_flags & IOSQE_IO_DRAIN) {
2194  			if (ctx->drain_disabled)
2195  				return io_init_fail_req(req, -EOPNOTSUPP);
2196  			io_init_req_drain(req);
2197  		}
2198  	}
2199  	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200  		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2201  			return io_init_fail_req(req, -EACCES);
2202  		/* knock it to the slow queue path, will be drained there */
2203  		if (ctx->drain_active)
2204  			req->flags |= REQ_F_FORCE_ASYNC;
2205  		/* if there is no link, we're at "next" request and need to drain */
2206  		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207  			ctx->drain_next = false;
2208  			ctx->drain_active = true;
2209  			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2210  		}
2211  	}
2212  
2213  	if (!def->ioprio && sqe->ioprio)
2214  		return io_init_fail_req(req, -EINVAL);
2215  	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2216  		return io_init_fail_req(req, -EINVAL);
2217  
2218  	if (def->needs_file) {
2219  		struct io_submit_state *state = &ctx->submit_state;
2220  
2221  		req->cqe.fd = READ_ONCE(sqe->fd);
2222  
2223  		/*
2224  		 * Plug now if we have more than 2 IO left after this, and the
2225  		 * target is potentially a read/write to block based storage.
2226  		 */
2227  		if (state->need_plug && def->plug) {
2228  			state->plug_started = true;
2229  			state->need_plug = false;
2230  			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2231  		}
2232  	}
2233  
2234  	personality = READ_ONCE(sqe->personality);
2235  	if (personality) {
2236  		int ret;
2237  
2238  		req->creds = xa_load(&ctx->personalities, personality);
2239  		if (!req->creds)
2240  			return io_init_fail_req(req, -EINVAL);
2241  		get_cred(req->creds);
2242  		ret = security_uring_override_creds(req->creds);
2243  		if (ret) {
2244  			put_cred(req->creds);
2245  			return io_init_fail_req(req, ret);
2246  		}
2247  		req->flags |= REQ_F_CREDS;
2248  	}
2249  
2250  	return def->prep(req, sqe);
2251  }
2252  
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2253  static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254  				      struct io_kiocb *req, int ret)
2255  {
2256  	struct io_ring_ctx *ctx = req->ctx;
2257  	struct io_submit_link *link = &ctx->submit_state.link;
2258  	struct io_kiocb *head = link->head;
2259  
2260  	trace_io_uring_req_failed(sqe, req, ret);
2261  
2262  	/*
2263  	 * Avoid breaking links in the middle as it renders links with SQPOLL
2264  	 * unusable. Instead of failing eagerly, continue assembling the link if
2265  	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266  	 * should find the flag and handle the rest.
2267  	 */
2268  	req_fail_link_node(req, ret);
2269  	if (head && !(head->flags & REQ_F_FAIL))
2270  		req_fail_link_node(head, -ECANCELED);
2271  
2272  	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2273  		if (head) {
2274  			link->last->link = req;
2275  			link->head = NULL;
2276  			req = head;
2277  		}
2278  		io_queue_sqe_fallback(req);
2279  		return ret;
2280  	}
2281  
2282  	if (head)
2283  		link->last->link = req;
2284  	else
2285  		link->head = req;
2286  	link->last = req;
2287  	return 0;
2288  }
2289  
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2290  static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291  			 const struct io_uring_sqe *sqe)
2292  	__must_hold(&ctx->uring_lock)
2293  {
2294  	struct io_submit_link *link = &ctx->submit_state.link;
2295  	int ret;
2296  
2297  	ret = io_init_req(ctx, req, sqe);
2298  	if (unlikely(ret))
2299  		return io_submit_fail_init(sqe, req, ret);
2300  
2301  	trace_io_uring_submit_req(req);
2302  
2303  	/*
2304  	 * If we already have a head request, queue this one for async
2305  	 * submittal once the head completes. If we don't have a head but
2306  	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2307  	 * submitted sync once the chain is complete. If none of those
2308  	 * conditions are true (normal request), then just queue it.
2309  	 */
2310  	if (unlikely(link->head)) {
2311  		ret = io_req_prep_async(req);
2312  		if (unlikely(ret))
2313  			return io_submit_fail_init(sqe, req, ret);
2314  
2315  		trace_io_uring_link(req, link->head);
2316  		link->last->link = req;
2317  		link->last = req;
2318  
2319  		if (req->flags & IO_REQ_LINK_FLAGS)
2320  			return 0;
2321  		/* last request of the link, flush it */
2322  		req = link->head;
2323  		link->head = NULL;
2324  		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2325  			goto fallback;
2326  
2327  	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2328  					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2329  		if (req->flags & IO_REQ_LINK_FLAGS) {
2330  			link->head = req;
2331  			link->last = req;
2332  		} else {
2333  fallback:
2334  			io_queue_sqe_fallback(req);
2335  		}
2336  		return 0;
2337  	}
2338  
2339  	io_queue_sqe(req);
2340  	return 0;
2341  }
2342  
2343  /*
2344   * Batched submission is done, ensure local IO is flushed out.
2345   */
io_submit_state_end(struct io_ring_ctx * ctx)2346  static void io_submit_state_end(struct io_ring_ctx *ctx)
2347  {
2348  	struct io_submit_state *state = &ctx->submit_state;
2349  
2350  	if (unlikely(state->link.head))
2351  		io_queue_sqe_fallback(state->link.head);
2352  	/* flush only after queuing links as they can generate completions */
2353  	io_submit_flush_completions(ctx);
2354  	if (state->plug_started)
2355  		blk_finish_plug(&state->plug);
2356  }
2357  
2358  /*
2359   * Start submission side cache.
2360   */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2361  static void io_submit_state_start(struct io_submit_state *state,
2362  				  unsigned int max_ios)
2363  {
2364  	state->plug_started = false;
2365  	state->need_plug = max_ios > 2;
2366  	state->submit_nr = max_ios;
2367  	/* set only head, no need to init link_last in advance */
2368  	state->link.head = NULL;
2369  }
2370  
io_commit_sqring(struct io_ring_ctx * ctx)2371  static void io_commit_sqring(struct io_ring_ctx *ctx)
2372  {
2373  	struct io_rings *rings = ctx->rings;
2374  
2375  	/*
2376  	 * Ensure any loads from the SQEs are done at this point,
2377  	 * since once we write the new head, the application could
2378  	 * write new data to them.
2379  	 */
2380  	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2381  }
2382  
2383  /*
2384   * Fetch an sqe, if one is available. Note this returns a pointer to memory
2385   * that is mapped by userspace. This means that care needs to be taken to
2386   * ensure that reads are stable, as we cannot rely on userspace always
2387   * being a good citizen. If members of the sqe are validated and then later
2388   * used, it's important that those reads are done through READ_ONCE() to
2389   * prevent a re-load down the line.
2390   */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2391  static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2392  {
2393  	unsigned mask = ctx->sq_entries - 1;
2394  	unsigned head = ctx->cached_sq_head++ & mask;
2395  
2396  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2397  		head = READ_ONCE(ctx->sq_array[head]);
2398  		if (unlikely(head >= ctx->sq_entries)) {
2399  			/* drop invalid entries */
2400  			spin_lock(&ctx->completion_lock);
2401  			ctx->cq_extra--;
2402  			spin_unlock(&ctx->completion_lock);
2403  			WRITE_ONCE(ctx->rings->sq_dropped,
2404  				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2405  			return false;
2406  		}
2407  	}
2408  
2409  	/*
2410  	 * The cached sq head (or cq tail) serves two purposes:
2411  	 *
2412  	 * 1) allows us to batch the cost of updating the user visible
2413  	 *    head updates.
2414  	 * 2) allows the kernel side to track the head on its own, even
2415  	 *    though the application is the one updating it.
2416  	 */
2417  
2418  	/* double index for 128-byte SQEs, twice as long */
2419  	if (ctx->flags & IORING_SETUP_SQE128)
2420  		head <<= 1;
2421  	*sqe = &ctx->sq_sqes[head];
2422  	return true;
2423  }
2424  
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2425  int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2426  	__must_hold(&ctx->uring_lock)
2427  {
2428  	unsigned int entries = io_sqring_entries(ctx);
2429  	unsigned int left;
2430  	int ret;
2431  
2432  	if (unlikely(!entries))
2433  		return 0;
2434  	/* make sure SQ entry isn't read before tail */
2435  	ret = left = min(nr, entries);
2436  	io_get_task_refs(left);
2437  	io_submit_state_start(&ctx->submit_state, left);
2438  
2439  	do {
2440  		const struct io_uring_sqe *sqe;
2441  		struct io_kiocb *req;
2442  
2443  		if (unlikely(!io_alloc_req(ctx, &req)))
2444  			break;
2445  		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2446  			io_req_add_to_cache(req, ctx);
2447  			break;
2448  		}
2449  
2450  		/*
2451  		 * Continue submitting even for sqe failure if the
2452  		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2453  		 */
2454  		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2455  		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2456  			left--;
2457  			break;
2458  		}
2459  	} while (--left);
2460  
2461  	if (unlikely(left)) {
2462  		ret -= left;
2463  		/* try again if it submitted nothing and can't allocate a req */
2464  		if (!ret && io_req_cache_empty(ctx))
2465  			ret = -EAGAIN;
2466  		current->io_uring->cached_refs += left;
2467  	}
2468  
2469  	io_submit_state_end(ctx);
2470  	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2471  	io_commit_sqring(ctx);
2472  	return ret;
2473  }
2474  
2475  struct io_wait_queue {
2476  	struct wait_queue_entry wq;
2477  	struct io_ring_ctx *ctx;
2478  	unsigned cq_tail;
2479  	unsigned nr_timeouts;
2480  	ktime_t timeout;
2481  };
2482  
io_has_work(struct io_ring_ctx * ctx)2483  static inline bool io_has_work(struct io_ring_ctx *ctx)
2484  {
2485  	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2486  	       !llist_empty(&ctx->work_llist);
2487  }
2488  
io_should_wake(struct io_wait_queue * iowq)2489  static inline bool io_should_wake(struct io_wait_queue *iowq)
2490  {
2491  	struct io_ring_ctx *ctx = iowq->ctx;
2492  	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2493  
2494  	/*
2495  	 * Wake up if we have enough events, or if a timeout occurred since we
2496  	 * started waiting. For timeouts, we always want to return to userspace,
2497  	 * regardless of event count.
2498  	 */
2499  	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2500  }
2501  
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2502  static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2503  			    int wake_flags, void *key)
2504  {
2505  	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2506  
2507  	/*
2508  	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2509  	 * the task, and the next invocation will do it.
2510  	 */
2511  	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2512  		return autoremove_wake_function(curr, mode, wake_flags, key);
2513  	return -1;
2514  }
2515  
io_run_task_work_sig(struct io_ring_ctx * ctx)2516  int io_run_task_work_sig(struct io_ring_ctx *ctx)
2517  {
2518  	if (!llist_empty(&ctx->work_llist)) {
2519  		__set_current_state(TASK_RUNNING);
2520  		if (io_run_local_work(ctx, INT_MAX) > 0)
2521  			return 0;
2522  	}
2523  	if (io_run_task_work() > 0)
2524  		return 0;
2525  	if (task_sigpending(current))
2526  		return -EINTR;
2527  	return 0;
2528  }
2529  
current_pending_io(void)2530  static bool current_pending_io(void)
2531  {
2532  	struct io_uring_task *tctx = current->io_uring;
2533  
2534  	if (!tctx)
2535  		return false;
2536  	return percpu_counter_read_positive(&tctx->inflight);
2537  }
2538  
2539  /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2540  static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2541  					  struct io_wait_queue *iowq)
2542  {
2543  	int ret;
2544  
2545  	if (unlikely(READ_ONCE(ctx->check_cq)))
2546  		return 1;
2547  	if (unlikely(!llist_empty(&ctx->work_llist)))
2548  		return 1;
2549  	if (unlikely(task_work_pending(current)))
2550  		return 1;
2551  	if (unlikely(task_sigpending(current)))
2552  		return -EINTR;
2553  	if (unlikely(io_should_wake(iowq)))
2554  		return 0;
2555  
2556  	/*
2557  	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2558  	 * can take into account that the task is waiting for IO - turns out
2559  	 * to be important for low QD IO.
2560  	 */
2561  	if (current_pending_io())
2562  		current->in_iowait = 1;
2563  	ret = 0;
2564  	if (iowq->timeout == KTIME_MAX)
2565  		schedule();
2566  	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2567  		ret = -ETIME;
2568  	current->in_iowait = 0;
2569  	return ret;
2570  }
2571  
2572  /*
2573   * Wait until events become available, if we don't already have some. The
2574   * application must reap them itself, as they reside on the shared cq ring.
2575   */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2576  static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2577  			  const sigset_t __user *sig, size_t sigsz,
2578  			  struct __kernel_timespec __user *uts)
2579  {
2580  	struct io_wait_queue iowq;
2581  	struct io_rings *rings = ctx->rings;
2582  	int ret;
2583  
2584  	if (!io_allowed_run_tw(ctx))
2585  		return -EEXIST;
2586  	if (!llist_empty(&ctx->work_llist))
2587  		io_run_local_work(ctx, min_events);
2588  	io_run_task_work();
2589  	io_cqring_overflow_flush(ctx);
2590  	/* if user messes with these they will just get an early return */
2591  	if (__io_cqring_events_user(ctx) >= min_events)
2592  		return 0;
2593  
2594  	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2595  	iowq.wq.private = current;
2596  	INIT_LIST_HEAD(&iowq.wq.entry);
2597  	iowq.ctx = ctx;
2598  	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2599  	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2600  	iowq.timeout = KTIME_MAX;
2601  
2602  	if (uts) {
2603  		struct timespec64 ts;
2604  
2605  		if (get_timespec64(&ts, uts))
2606  			return -EFAULT;
2607  		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2608  	}
2609  
2610  	if (sig) {
2611  #ifdef CONFIG_COMPAT
2612  		if (in_compat_syscall())
2613  			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2614  						      sigsz);
2615  		else
2616  #endif
2617  			ret = set_user_sigmask(sig, sigsz);
2618  
2619  		if (ret)
2620  			return ret;
2621  	}
2622  
2623  	trace_io_uring_cqring_wait(ctx, min_events);
2624  	do {
2625  		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2626  		unsigned long check_cq;
2627  
2628  		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2629  			atomic_set(&ctx->cq_wait_nr, nr_wait);
2630  			set_current_state(TASK_INTERRUPTIBLE);
2631  		} else {
2632  			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2633  							TASK_INTERRUPTIBLE);
2634  		}
2635  
2636  		ret = io_cqring_wait_schedule(ctx, &iowq);
2637  		__set_current_state(TASK_RUNNING);
2638  		atomic_set(&ctx->cq_wait_nr, 0);
2639  
2640  		/*
2641  		 * Run task_work after scheduling and before io_should_wake().
2642  		 * If we got woken because of task_work being processed, run it
2643  		 * now rather than let the caller do another wait loop.
2644  		 */
2645  		if (!llist_empty(&ctx->work_llist))
2646  			io_run_local_work(ctx, nr_wait);
2647  		io_run_task_work();
2648  
2649  		/*
2650  		 * Non-local task_work will be run on exit to userspace, but
2651  		 * if we're using DEFER_TASKRUN, then we could have waited
2652  		 * with a timeout for a number of requests. If the timeout
2653  		 * hits, we could have some requests ready to process. Ensure
2654  		 * this break is _after_ we have run task_work, to avoid
2655  		 * deferring running potentially pending requests until the
2656  		 * next time we wait for events.
2657  		 */
2658  		if (ret < 0)
2659  			break;
2660  
2661  		check_cq = READ_ONCE(ctx->check_cq);
2662  		if (unlikely(check_cq)) {
2663  			/* let the caller flush overflows, retry */
2664  			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2665  				io_cqring_do_overflow_flush(ctx);
2666  			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2667  				ret = -EBADR;
2668  				break;
2669  			}
2670  		}
2671  
2672  		if (io_should_wake(&iowq)) {
2673  			ret = 0;
2674  			break;
2675  		}
2676  		cond_resched();
2677  	} while (1);
2678  
2679  	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2680  		finish_wait(&ctx->cq_wait, &iowq.wq);
2681  	restore_saved_sigmask_unless(ret == -EINTR);
2682  
2683  	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2684  }
2685  
io_mem_free(void * ptr)2686  void io_mem_free(void *ptr)
2687  {
2688  	if (!ptr)
2689  		return;
2690  
2691  	folio_put(virt_to_folio(ptr));
2692  }
2693  
io_pages_free(struct page *** pages,int npages)2694  static void io_pages_free(struct page ***pages, int npages)
2695  {
2696  	struct page **page_array;
2697  	int i;
2698  
2699  	if (!pages)
2700  		return;
2701  
2702  	page_array = *pages;
2703  	if (!page_array)
2704  		return;
2705  
2706  	for (i = 0; i < npages; i++)
2707  		unpin_user_page(page_array[i]);
2708  	kvfree(page_array);
2709  	*pages = NULL;
2710  }
2711  
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2712  static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2713  			    unsigned long uaddr, size_t size)
2714  {
2715  	struct page **page_array;
2716  	unsigned int nr_pages;
2717  	void *page_addr;
2718  	int ret, i, pinned;
2719  
2720  	*npages = 0;
2721  
2722  	if (uaddr & (PAGE_SIZE - 1) || !size)
2723  		return ERR_PTR(-EINVAL);
2724  
2725  	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2726  	if (nr_pages > USHRT_MAX)
2727  		return ERR_PTR(-EINVAL);
2728  	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2729  	if (!page_array)
2730  		return ERR_PTR(-ENOMEM);
2731  
2732  
2733  	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2734  				     page_array);
2735  	if (pinned != nr_pages) {
2736  		ret = (pinned < 0) ? pinned : -EFAULT;
2737  		goto free_pages;
2738  	}
2739  
2740  	page_addr = page_address(page_array[0]);
2741  	for (i = 0; i < nr_pages; i++) {
2742  		ret = -EINVAL;
2743  
2744  		/*
2745  		 * Can't support mapping user allocated ring memory on 32-bit
2746  		 * archs where it could potentially reside in highmem. Just
2747  		 * fail those with -EINVAL, just like we did on kernels that
2748  		 * didn't support this feature.
2749  		 */
2750  		if (PageHighMem(page_array[i]))
2751  			goto free_pages;
2752  
2753  		/*
2754  		 * No support for discontig pages for now, should either be a
2755  		 * single normal page, or a huge page. Later on we can add
2756  		 * support for remapping discontig pages, for now we will
2757  		 * just fail them with EINVAL.
2758  		 */
2759  		if (page_address(page_array[i]) != page_addr)
2760  			goto free_pages;
2761  		page_addr += PAGE_SIZE;
2762  	}
2763  
2764  	*pages = page_array;
2765  	*npages = nr_pages;
2766  	return page_to_virt(page_array[0]);
2767  
2768  free_pages:
2769  	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2770  	return ERR_PTR(ret);
2771  }
2772  
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2773  static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2774  			  size_t size)
2775  {
2776  	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2777  				size);
2778  }
2779  
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2780  static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2781  			 size_t size)
2782  {
2783  	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2784  				size);
2785  }
2786  
io_rings_free(struct io_ring_ctx * ctx)2787  static void io_rings_free(struct io_ring_ctx *ctx)
2788  {
2789  	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2790  		io_mem_free(ctx->rings);
2791  		io_mem_free(ctx->sq_sqes);
2792  	} else {
2793  		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2794  		ctx->n_ring_pages = 0;
2795  		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2796  		ctx->n_sqe_pages = 0;
2797  	}
2798  
2799  	ctx->rings = NULL;
2800  	ctx->sq_sqes = NULL;
2801  }
2802  
io_mem_alloc(size_t size)2803  void *io_mem_alloc(size_t size)
2804  {
2805  	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2806  	void *ret;
2807  
2808  	ret = (void *) __get_free_pages(gfp, get_order(size));
2809  	if (ret)
2810  		return ret;
2811  	return ERR_PTR(-ENOMEM);
2812  }
2813  
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2814  static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2815  				unsigned int cq_entries, size_t *sq_offset)
2816  {
2817  	struct io_rings *rings;
2818  	size_t off, sq_array_size;
2819  
2820  	off = struct_size(rings, cqes, cq_entries);
2821  	if (off == SIZE_MAX)
2822  		return SIZE_MAX;
2823  	if (ctx->flags & IORING_SETUP_CQE32) {
2824  		if (check_shl_overflow(off, 1, &off))
2825  			return SIZE_MAX;
2826  	}
2827  
2828  #ifdef CONFIG_SMP
2829  	off = ALIGN(off, SMP_CACHE_BYTES);
2830  	if (off == 0)
2831  		return SIZE_MAX;
2832  #endif
2833  
2834  	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2835  		if (sq_offset)
2836  			*sq_offset = SIZE_MAX;
2837  		return off;
2838  	}
2839  
2840  	if (sq_offset)
2841  		*sq_offset = off;
2842  
2843  	sq_array_size = array_size(sizeof(u32), sq_entries);
2844  	if (sq_array_size == SIZE_MAX)
2845  		return SIZE_MAX;
2846  
2847  	if (check_add_overflow(off, sq_array_size, &off))
2848  		return SIZE_MAX;
2849  
2850  	return off;
2851  }
2852  
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2853  static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2854  			       unsigned int eventfd_async)
2855  {
2856  	struct io_ev_fd *ev_fd;
2857  	__s32 __user *fds = arg;
2858  	int fd;
2859  
2860  	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2861  					lockdep_is_held(&ctx->uring_lock));
2862  	if (ev_fd)
2863  		return -EBUSY;
2864  
2865  	if (copy_from_user(&fd, fds, sizeof(*fds)))
2866  		return -EFAULT;
2867  
2868  	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2869  	if (!ev_fd)
2870  		return -ENOMEM;
2871  
2872  	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2873  	if (IS_ERR(ev_fd->cq_ev_fd)) {
2874  		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2875  		kfree(ev_fd);
2876  		return ret;
2877  	}
2878  
2879  	spin_lock(&ctx->completion_lock);
2880  	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2881  	spin_unlock(&ctx->completion_lock);
2882  
2883  	ev_fd->eventfd_async = eventfd_async;
2884  	ctx->has_evfd = true;
2885  	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2886  	atomic_set(&ev_fd->refs, 1);
2887  	atomic_set(&ev_fd->ops, 0);
2888  	return 0;
2889  }
2890  
io_eventfd_unregister(struct io_ring_ctx * ctx)2891  static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2892  {
2893  	struct io_ev_fd *ev_fd;
2894  
2895  	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2896  					lockdep_is_held(&ctx->uring_lock));
2897  	if (ev_fd) {
2898  		ctx->has_evfd = false;
2899  		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2900  		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2901  			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2902  		return 0;
2903  	}
2904  
2905  	return -ENXIO;
2906  }
2907  
io_req_caches_free(struct io_ring_ctx * ctx)2908  static void io_req_caches_free(struct io_ring_ctx *ctx)
2909  {
2910  	struct io_kiocb *req;
2911  	int nr = 0;
2912  
2913  	mutex_lock(&ctx->uring_lock);
2914  	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2915  
2916  	while (!io_req_cache_empty(ctx)) {
2917  		req = io_extract_req(ctx);
2918  		kmem_cache_free(req_cachep, req);
2919  		nr++;
2920  	}
2921  	if (nr)
2922  		percpu_ref_put_many(&ctx->refs, nr);
2923  	mutex_unlock(&ctx->uring_lock);
2924  }
2925  
io_rsrc_node_cache_free(struct io_cache_entry * entry)2926  static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2927  {
2928  	kfree(container_of(entry, struct io_rsrc_node, cache));
2929  }
2930  
io_ring_ctx_free(struct io_ring_ctx * ctx)2931  static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2932  {
2933  	io_sq_thread_finish(ctx);
2934  	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2935  	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2936  		return;
2937  
2938  	mutex_lock(&ctx->uring_lock);
2939  	if (ctx->buf_data)
2940  		__io_sqe_buffers_unregister(ctx);
2941  	if (ctx->file_data)
2942  		__io_sqe_files_unregister(ctx);
2943  	io_cqring_overflow_kill(ctx);
2944  	io_eventfd_unregister(ctx);
2945  	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2946  	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2947  	io_destroy_buffers(ctx);
2948  	mutex_unlock(&ctx->uring_lock);
2949  	if (ctx->sq_creds)
2950  		put_cred(ctx->sq_creds);
2951  	if (ctx->submitter_task)
2952  		put_task_struct(ctx->submitter_task);
2953  
2954  	/* there are no registered resources left, nobody uses it */
2955  	if (ctx->rsrc_node)
2956  		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2957  
2958  	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2959  	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2960  
2961  	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2962  	if (ctx->mm_account) {
2963  		mmdrop(ctx->mm_account);
2964  		ctx->mm_account = NULL;
2965  	}
2966  	io_rings_free(ctx);
2967  	io_kbuf_mmap_list_free(ctx);
2968  
2969  	percpu_ref_exit(&ctx->refs);
2970  	free_uid(ctx->user);
2971  	io_req_caches_free(ctx);
2972  	if (ctx->hash_map)
2973  		io_wq_put_hash(ctx->hash_map);
2974  	kfree(ctx->cancel_table.hbs);
2975  	kfree(ctx->cancel_table_locked.hbs);
2976  	xa_destroy(&ctx->io_bl_xa);
2977  	kfree(ctx);
2978  }
2979  
io_activate_pollwq_cb(struct callback_head * cb)2980  static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2981  {
2982  	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2983  					       poll_wq_task_work);
2984  
2985  	mutex_lock(&ctx->uring_lock);
2986  	ctx->poll_activated = true;
2987  	mutex_unlock(&ctx->uring_lock);
2988  
2989  	/*
2990  	 * Wake ups for some events between start of polling and activation
2991  	 * might've been lost due to loose synchronisation.
2992  	 */
2993  	wake_up_all(&ctx->poll_wq);
2994  	percpu_ref_put(&ctx->refs);
2995  }
2996  
io_activate_pollwq(struct io_ring_ctx * ctx)2997  static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2998  {
2999  	spin_lock(&ctx->completion_lock);
3000  	/* already activated or in progress */
3001  	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
3002  		goto out;
3003  	if (WARN_ON_ONCE(!ctx->task_complete))
3004  		goto out;
3005  	if (!ctx->submitter_task)
3006  		goto out;
3007  	/*
3008  	 * with ->submitter_task only the submitter task completes requests, we
3009  	 * only need to sync with it, which is done by injecting a tw
3010  	 */
3011  	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3012  	percpu_ref_get(&ctx->refs);
3013  	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3014  		percpu_ref_put(&ctx->refs);
3015  out:
3016  	spin_unlock(&ctx->completion_lock);
3017  }
3018  
io_uring_poll(struct file * file,poll_table * wait)3019  static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3020  {
3021  	struct io_ring_ctx *ctx = file->private_data;
3022  	__poll_t mask = 0;
3023  
3024  	if (unlikely(!ctx->poll_activated))
3025  		io_activate_pollwq(ctx);
3026  
3027  	poll_wait(file, &ctx->poll_wq, wait);
3028  	/*
3029  	 * synchronizes with barrier from wq_has_sleeper call in
3030  	 * io_commit_cqring
3031  	 */
3032  	smp_rmb();
3033  	if (!io_sqring_full(ctx))
3034  		mask |= EPOLLOUT | EPOLLWRNORM;
3035  
3036  	/*
3037  	 * Don't flush cqring overflow list here, just do a simple check.
3038  	 * Otherwise there could possible be ABBA deadlock:
3039  	 *      CPU0                    CPU1
3040  	 *      ----                    ----
3041  	 * lock(&ctx->uring_lock);
3042  	 *                              lock(&ep->mtx);
3043  	 *                              lock(&ctx->uring_lock);
3044  	 * lock(&ep->mtx);
3045  	 *
3046  	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3047  	 * pushes them to do the flush.
3048  	 */
3049  
3050  	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3051  		mask |= EPOLLIN | EPOLLRDNORM;
3052  
3053  	return mask;
3054  }
3055  
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3056  static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3057  {
3058  	const struct cred *creds;
3059  
3060  	creds = xa_erase(&ctx->personalities, id);
3061  	if (creds) {
3062  		put_cred(creds);
3063  		return 0;
3064  	}
3065  
3066  	return -EINVAL;
3067  }
3068  
3069  struct io_tctx_exit {
3070  	struct callback_head		task_work;
3071  	struct completion		completion;
3072  	struct io_ring_ctx		*ctx;
3073  };
3074  
io_tctx_exit_cb(struct callback_head * cb)3075  static __cold void io_tctx_exit_cb(struct callback_head *cb)
3076  {
3077  	struct io_uring_task *tctx = current->io_uring;
3078  	struct io_tctx_exit *work;
3079  
3080  	work = container_of(cb, struct io_tctx_exit, task_work);
3081  	/*
3082  	 * When @in_cancel, we're in cancellation and it's racy to remove the
3083  	 * node. It'll be removed by the end of cancellation, just ignore it.
3084  	 * tctx can be NULL if the queueing of this task_work raced with
3085  	 * work cancelation off the exec path.
3086  	 */
3087  	if (tctx && !atomic_read(&tctx->in_cancel))
3088  		io_uring_del_tctx_node((unsigned long)work->ctx);
3089  	complete(&work->completion);
3090  }
3091  
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3092  static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3093  {
3094  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3095  
3096  	return req->ctx == data;
3097  }
3098  
io_ring_exit_work(struct work_struct * work)3099  static __cold void io_ring_exit_work(struct work_struct *work)
3100  {
3101  	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3102  	unsigned long timeout = jiffies + HZ * 60 * 5;
3103  	unsigned long interval = HZ / 20;
3104  	struct io_tctx_exit exit;
3105  	struct io_tctx_node *node;
3106  	int ret;
3107  
3108  	/*
3109  	 * If we're doing polled IO and end up having requests being
3110  	 * submitted async (out-of-line), then completions can come in while
3111  	 * we're waiting for refs to drop. We need to reap these manually,
3112  	 * as nobody else will be looking for them.
3113  	 */
3114  	do {
3115  		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3116  			mutex_lock(&ctx->uring_lock);
3117  			io_cqring_overflow_kill(ctx);
3118  			mutex_unlock(&ctx->uring_lock);
3119  		}
3120  
3121  		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3122  			io_move_task_work_from_local(ctx);
3123  
3124  		while (io_uring_try_cancel_requests(ctx, NULL, true))
3125  			cond_resched();
3126  
3127  		if (ctx->sq_data) {
3128  			struct io_sq_data *sqd = ctx->sq_data;
3129  			struct task_struct *tsk;
3130  
3131  			io_sq_thread_park(sqd);
3132  			tsk = sqd->thread;
3133  			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3134  				io_wq_cancel_cb(tsk->io_uring->io_wq,
3135  						io_cancel_ctx_cb, ctx, true);
3136  			io_sq_thread_unpark(sqd);
3137  		}
3138  
3139  		io_req_caches_free(ctx);
3140  
3141  		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3142  			/* there is little hope left, don't run it too often */
3143  			interval = HZ * 60;
3144  		}
3145  		/*
3146  		 * This is really an uninterruptible wait, as it has to be
3147  		 * complete. But it's also run from a kworker, which doesn't
3148  		 * take signals, so it's fine to make it interruptible. This
3149  		 * avoids scenarios where we knowingly can wait much longer
3150  		 * on completions, for example if someone does a SIGSTOP on
3151  		 * a task that needs to finish task_work to make this loop
3152  		 * complete. That's a synthetic situation that should not
3153  		 * cause a stuck task backtrace, and hence a potential panic
3154  		 * on stuck tasks if that is enabled.
3155  		 */
3156  	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3157  
3158  	init_completion(&exit.completion);
3159  	init_task_work(&exit.task_work, io_tctx_exit_cb);
3160  	exit.ctx = ctx;
3161  
3162  	mutex_lock(&ctx->uring_lock);
3163  	while (!list_empty(&ctx->tctx_list)) {
3164  		WARN_ON_ONCE(time_after(jiffies, timeout));
3165  
3166  		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3167  					ctx_node);
3168  		/* don't spin on a single task if cancellation failed */
3169  		list_rotate_left(&ctx->tctx_list);
3170  		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3171  		if (WARN_ON_ONCE(ret))
3172  			continue;
3173  
3174  		mutex_unlock(&ctx->uring_lock);
3175  		/*
3176  		 * See comment above for
3177  		 * wait_for_completion_interruptible_timeout() on why this
3178  		 * wait is marked as interruptible.
3179  		 */
3180  		wait_for_completion_interruptible(&exit.completion);
3181  		mutex_lock(&ctx->uring_lock);
3182  	}
3183  	mutex_unlock(&ctx->uring_lock);
3184  	spin_lock(&ctx->completion_lock);
3185  	spin_unlock(&ctx->completion_lock);
3186  
3187  	/* pairs with RCU read section in io_req_local_work_add() */
3188  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3189  		synchronize_rcu();
3190  
3191  	io_ring_ctx_free(ctx);
3192  }
3193  
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3194  static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3195  {
3196  	unsigned long index;
3197  	struct creds *creds;
3198  
3199  	mutex_lock(&ctx->uring_lock);
3200  	percpu_ref_kill(&ctx->refs);
3201  	xa_for_each(&ctx->personalities, index, creds)
3202  		io_unregister_personality(ctx, index);
3203  	if (ctx->rings)
3204  		io_poll_remove_all(ctx, NULL, true);
3205  	mutex_unlock(&ctx->uring_lock);
3206  
3207  	/*
3208  	 * If we failed setting up the ctx, we might not have any rings
3209  	 * and therefore did not submit any requests
3210  	 */
3211  	if (ctx->rings)
3212  		io_kill_timeouts(ctx, NULL, true);
3213  
3214  	flush_delayed_work(&ctx->fallback_work);
3215  
3216  	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3217  	/*
3218  	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3219  	 * if we're exiting a ton of rings at the same time. It just adds
3220  	 * noise and overhead, there's no discernable change in runtime
3221  	 * over using system_wq.
3222  	 */
3223  	queue_work(iou_wq, &ctx->exit_work);
3224  }
3225  
io_uring_release(struct inode * inode,struct file * file)3226  static int io_uring_release(struct inode *inode, struct file *file)
3227  {
3228  	struct io_ring_ctx *ctx = file->private_data;
3229  
3230  	file->private_data = NULL;
3231  	io_ring_ctx_wait_and_kill(ctx);
3232  	return 0;
3233  }
3234  
3235  struct io_task_cancel {
3236  	struct task_struct *task;
3237  	bool all;
3238  };
3239  
io_cancel_task_cb(struct io_wq_work * work,void * data)3240  static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3241  {
3242  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3243  	struct io_task_cancel *cancel = data;
3244  
3245  	return io_match_task_safe(req, cancel->task, cancel->all);
3246  }
3247  
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3248  static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3249  					 struct task_struct *task,
3250  					 bool cancel_all)
3251  {
3252  	struct io_defer_entry *de;
3253  	LIST_HEAD(list);
3254  
3255  	spin_lock(&ctx->completion_lock);
3256  	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3257  		if (io_match_task_safe(de->req, task, cancel_all)) {
3258  			list_cut_position(&list, &ctx->defer_list, &de->list);
3259  			break;
3260  		}
3261  	}
3262  	spin_unlock(&ctx->completion_lock);
3263  	if (list_empty(&list))
3264  		return false;
3265  
3266  	while (!list_empty(&list)) {
3267  		de = list_first_entry(&list, struct io_defer_entry, list);
3268  		list_del_init(&de->list);
3269  		io_req_task_queue_fail(de->req, -ECANCELED);
3270  		kfree(de);
3271  	}
3272  	return true;
3273  }
3274  
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3275  static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3276  {
3277  	struct io_tctx_node *node;
3278  	enum io_wq_cancel cret;
3279  	bool ret = false;
3280  
3281  	mutex_lock(&ctx->uring_lock);
3282  	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3283  		struct io_uring_task *tctx = node->task->io_uring;
3284  
3285  		/*
3286  		 * io_wq will stay alive while we hold uring_lock, because it's
3287  		 * killed after ctx nodes, which requires to take the lock.
3288  		 */
3289  		if (!tctx || !tctx->io_wq)
3290  			continue;
3291  		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3292  		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3293  	}
3294  	mutex_unlock(&ctx->uring_lock);
3295  
3296  	return ret;
3297  }
3298  
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3299  static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3300  						struct task_struct *task,
3301  						bool cancel_all)
3302  {
3303  	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3304  	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3305  	enum io_wq_cancel cret;
3306  	bool ret = false;
3307  
3308  	/* set it so io_req_local_work_add() would wake us up */
3309  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3310  		atomic_set(&ctx->cq_wait_nr, 1);
3311  		smp_mb();
3312  	}
3313  
3314  	/* failed during ring init, it couldn't have issued any requests */
3315  	if (!ctx->rings)
3316  		return false;
3317  
3318  	if (!task) {
3319  		ret |= io_uring_try_cancel_iowq(ctx);
3320  	} else if (tctx && tctx->io_wq) {
3321  		/*
3322  		 * Cancels requests of all rings, not only @ctx, but
3323  		 * it's fine as the task is in exit/exec.
3324  		 */
3325  		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3326  				       &cancel, true);
3327  		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3328  	}
3329  
3330  	/* SQPOLL thread does its own polling */
3331  	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3332  	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3333  		while (!wq_list_empty(&ctx->iopoll_list)) {
3334  			io_iopoll_try_reap_events(ctx);
3335  			ret = true;
3336  			cond_resched();
3337  		}
3338  	}
3339  
3340  	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3341  	    io_allowed_defer_tw_run(ctx))
3342  		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3343  	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3344  	mutex_lock(&ctx->uring_lock);
3345  	ret |= io_poll_remove_all(ctx, task, cancel_all);
3346  	mutex_unlock(&ctx->uring_lock);
3347  	ret |= io_kill_timeouts(ctx, task, cancel_all);
3348  	if (task)
3349  		ret |= io_run_task_work() > 0;
3350  	return ret;
3351  }
3352  
tctx_inflight(struct io_uring_task * tctx,bool tracked)3353  static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3354  {
3355  	if (tracked)
3356  		return atomic_read(&tctx->inflight_tracked);
3357  	return percpu_counter_sum(&tctx->inflight);
3358  }
3359  
3360  /*
3361   * Find any io_uring ctx that this task has registered or done IO on, and cancel
3362   * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3363   */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3364  __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3365  {
3366  	struct io_uring_task *tctx = current->io_uring;
3367  	struct io_ring_ctx *ctx;
3368  	struct io_tctx_node *node;
3369  	unsigned long index;
3370  	s64 inflight;
3371  	DEFINE_WAIT(wait);
3372  
3373  	WARN_ON_ONCE(sqd && sqd->thread != current);
3374  
3375  	if (!current->io_uring)
3376  		return;
3377  	if (tctx->io_wq)
3378  		io_wq_exit_start(tctx->io_wq);
3379  
3380  	atomic_inc(&tctx->in_cancel);
3381  	do {
3382  		bool loop = false;
3383  
3384  		io_uring_drop_tctx_refs(current);
3385  		if (!tctx_inflight(tctx, !cancel_all))
3386  			break;
3387  
3388  		/* read completions before cancelations */
3389  		inflight = tctx_inflight(tctx, false);
3390  		if (!inflight)
3391  			break;
3392  
3393  		if (!sqd) {
3394  			xa_for_each(&tctx->xa, index, node) {
3395  				/* sqpoll task will cancel all its requests */
3396  				if (node->ctx->sq_data)
3397  					continue;
3398  				loop |= io_uring_try_cancel_requests(node->ctx,
3399  							current, cancel_all);
3400  			}
3401  		} else {
3402  			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3403  				loop |= io_uring_try_cancel_requests(ctx,
3404  								     current,
3405  								     cancel_all);
3406  		}
3407  
3408  		if (loop) {
3409  			cond_resched();
3410  			continue;
3411  		}
3412  
3413  		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3414  		io_run_task_work();
3415  		io_uring_drop_tctx_refs(current);
3416  		xa_for_each(&tctx->xa, index, node) {
3417  			if (!llist_empty(&node->ctx->work_llist)) {
3418  				WARN_ON_ONCE(node->ctx->submitter_task &&
3419  					     node->ctx->submitter_task != current);
3420  				goto end_wait;
3421  			}
3422  		}
3423  		/*
3424  		 * If we've seen completions, retry without waiting. This
3425  		 * avoids a race where a completion comes in before we did
3426  		 * prepare_to_wait().
3427  		 */
3428  		if (inflight == tctx_inflight(tctx, !cancel_all))
3429  			schedule();
3430  end_wait:
3431  		finish_wait(&tctx->wait, &wait);
3432  	} while (1);
3433  
3434  	io_uring_clean_tctx(tctx);
3435  	if (cancel_all) {
3436  		/*
3437  		 * We shouldn't run task_works after cancel, so just leave
3438  		 * ->in_cancel set for normal exit.
3439  		 */
3440  		atomic_dec(&tctx->in_cancel);
3441  		/* for exec all current's requests should be gone, kill tctx */
3442  		__io_uring_free(current);
3443  	}
3444  }
3445  
__io_uring_cancel(bool cancel_all)3446  void __io_uring_cancel(bool cancel_all)
3447  {
3448  	io_uring_unreg_ringfd();
3449  	io_uring_cancel_generic(cancel_all, NULL);
3450  }
3451  
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3452  static void *io_uring_validate_mmap_request(struct file *file,
3453  					    loff_t pgoff, size_t sz)
3454  {
3455  	struct io_ring_ctx *ctx = file->private_data;
3456  	loff_t offset = pgoff << PAGE_SHIFT;
3457  	struct page *page;
3458  	void *ptr;
3459  
3460  	switch (offset & IORING_OFF_MMAP_MASK) {
3461  	case IORING_OFF_SQ_RING:
3462  	case IORING_OFF_CQ_RING:
3463  		/* Don't allow mmap if the ring was setup without it */
3464  		if (ctx->flags & IORING_SETUP_NO_MMAP)
3465  			return ERR_PTR(-EINVAL);
3466  		ptr = ctx->rings;
3467  		break;
3468  	case IORING_OFF_SQES:
3469  		/* Don't allow mmap if the ring was setup without it */
3470  		if (ctx->flags & IORING_SETUP_NO_MMAP)
3471  			return ERR_PTR(-EINVAL);
3472  		ptr = ctx->sq_sqes;
3473  		break;
3474  	case IORING_OFF_PBUF_RING: {
3475  		struct io_buffer_list *bl;
3476  		unsigned int bgid;
3477  
3478  		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3479  		bl = io_pbuf_get_bl(ctx, bgid);
3480  		if (IS_ERR(bl))
3481  			return bl;
3482  		ptr = bl->buf_ring;
3483  		io_put_bl(ctx, bl);
3484  		break;
3485  		}
3486  	default:
3487  		return ERR_PTR(-EINVAL);
3488  	}
3489  
3490  	page = virt_to_head_page(ptr);
3491  	if (sz > page_size(page))
3492  		return ERR_PTR(-EINVAL);
3493  
3494  	return ptr;
3495  }
3496  
3497  #ifdef CONFIG_MMU
3498  
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3499  static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3500  {
3501  	size_t sz = vma->vm_end - vma->vm_start;
3502  	unsigned long pfn;
3503  	void *ptr;
3504  
3505  	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3506  	if (IS_ERR(ptr))
3507  		return PTR_ERR(ptr);
3508  
3509  	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3510  	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3511  }
3512  
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3513  static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3514  			unsigned long addr, unsigned long len,
3515  			unsigned long pgoff, unsigned long flags)
3516  {
3517  	void *ptr;
3518  
3519  	/*
3520  	 * Do not allow to map to user-provided address to avoid breaking the
3521  	 * aliasing rules. Userspace is not able to guess the offset address of
3522  	 * kernel kmalloc()ed memory area.
3523  	 */
3524  	if (addr)
3525  		return -EINVAL;
3526  
3527  	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3528  	if (IS_ERR(ptr))
3529  		return -ENOMEM;
3530  
3531  	/*
3532  	 * Some architectures have strong cache aliasing requirements.
3533  	 * For such architectures we need a coherent mapping which aliases
3534  	 * kernel memory *and* userspace memory. To achieve that:
3535  	 * - use a NULL file pointer to reference physical memory, and
3536  	 * - use the kernel virtual address of the shared io_uring context
3537  	 *   (instead of the userspace-provided address, which has to be 0UL
3538  	 *   anyway).
3539  	 * - use the same pgoff which the get_unmapped_area() uses to
3540  	 *   calculate the page colouring.
3541  	 * For architectures without such aliasing requirements, the
3542  	 * architecture will return any suitable mapping because addr is 0.
3543  	 */
3544  	filp = NULL;
3545  	flags |= MAP_SHARED;
3546  	pgoff = 0;	/* has been translated to ptr above */
3547  #ifdef SHM_COLOUR
3548  	addr = (uintptr_t) ptr;
3549  	pgoff = addr >> PAGE_SHIFT;
3550  #else
3551  	addr = 0UL;
3552  #endif
3553  	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3554  }
3555  
3556  #else /* !CONFIG_MMU */
3557  
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3558  static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3559  {
3560  	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3561  }
3562  
io_uring_nommu_mmap_capabilities(struct file * file)3563  static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3564  {
3565  	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3566  }
3567  
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3568  static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3569  	unsigned long addr, unsigned long len,
3570  	unsigned long pgoff, unsigned long flags)
3571  {
3572  	void *ptr;
3573  
3574  	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3575  	if (IS_ERR(ptr))
3576  		return PTR_ERR(ptr);
3577  
3578  	return (unsigned long) ptr;
3579  }
3580  
3581  #endif /* !CONFIG_MMU */
3582  
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3583  static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3584  {
3585  	if (flags & IORING_ENTER_EXT_ARG) {
3586  		struct io_uring_getevents_arg arg;
3587  
3588  		if (argsz != sizeof(arg))
3589  			return -EINVAL;
3590  		if (copy_from_user(&arg, argp, sizeof(arg)))
3591  			return -EFAULT;
3592  	}
3593  	return 0;
3594  }
3595  
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3596  static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3597  			  struct __kernel_timespec __user **ts,
3598  			  const sigset_t __user **sig)
3599  {
3600  	struct io_uring_getevents_arg arg;
3601  
3602  	/*
3603  	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3604  	 * is just a pointer to the sigset_t.
3605  	 */
3606  	if (!(flags & IORING_ENTER_EXT_ARG)) {
3607  		*sig = (const sigset_t __user *) argp;
3608  		*ts = NULL;
3609  		return 0;
3610  	}
3611  
3612  	/*
3613  	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3614  	 * timespec and sigset_t pointers if good.
3615  	 */
3616  	if (*argsz != sizeof(arg))
3617  		return -EINVAL;
3618  	if (copy_from_user(&arg, argp, sizeof(arg)))
3619  		return -EFAULT;
3620  	if (arg.pad)
3621  		return -EINVAL;
3622  	*sig = u64_to_user_ptr(arg.sigmask);
3623  	*argsz = arg.sigmask_sz;
3624  	*ts = u64_to_user_ptr(arg.ts);
3625  	return 0;
3626  }
3627  
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3628  SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3629  		u32, min_complete, u32, flags, const void __user *, argp,
3630  		size_t, argsz)
3631  {
3632  	struct io_ring_ctx *ctx;
3633  	struct file *file;
3634  	long ret;
3635  
3636  	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3637  			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3638  			       IORING_ENTER_REGISTERED_RING)))
3639  		return -EINVAL;
3640  
3641  	/*
3642  	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3643  	 * need only dereference our task private array to find it.
3644  	 */
3645  	if (flags & IORING_ENTER_REGISTERED_RING) {
3646  		struct io_uring_task *tctx = current->io_uring;
3647  
3648  		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3649  			return -EINVAL;
3650  		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3651  		file = tctx->registered_rings[fd];
3652  		if (unlikely(!file))
3653  			return -EBADF;
3654  	} else {
3655  		file = fget(fd);
3656  		if (unlikely(!file))
3657  			return -EBADF;
3658  		ret = -EOPNOTSUPP;
3659  		if (unlikely(!io_is_uring_fops(file)))
3660  			goto out;
3661  	}
3662  
3663  	ctx = file->private_data;
3664  	ret = -EBADFD;
3665  	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3666  		goto out;
3667  
3668  	/*
3669  	 * For SQ polling, the thread will do all submissions and completions.
3670  	 * Just return the requested submit count, and wake the thread if
3671  	 * we were asked to.
3672  	 */
3673  	ret = 0;
3674  	if (ctx->flags & IORING_SETUP_SQPOLL) {
3675  		io_cqring_overflow_flush(ctx);
3676  
3677  		if (unlikely(ctx->sq_data->thread == NULL)) {
3678  			ret = -EOWNERDEAD;
3679  			goto out;
3680  		}
3681  		if (flags & IORING_ENTER_SQ_WAKEUP)
3682  			wake_up(&ctx->sq_data->wait);
3683  		if (flags & IORING_ENTER_SQ_WAIT)
3684  			io_sqpoll_wait_sq(ctx);
3685  
3686  		ret = to_submit;
3687  	} else if (to_submit) {
3688  		ret = io_uring_add_tctx_node(ctx);
3689  		if (unlikely(ret))
3690  			goto out;
3691  
3692  		mutex_lock(&ctx->uring_lock);
3693  		ret = io_submit_sqes(ctx, to_submit);
3694  		if (ret != to_submit) {
3695  			mutex_unlock(&ctx->uring_lock);
3696  			goto out;
3697  		}
3698  		if (flags & IORING_ENTER_GETEVENTS) {
3699  			if (ctx->syscall_iopoll)
3700  				goto iopoll_locked;
3701  			/*
3702  			 * Ignore errors, we'll soon call io_cqring_wait() and
3703  			 * it should handle ownership problems if any.
3704  			 */
3705  			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3706  				(void)io_run_local_work_locked(ctx, min_complete);
3707  		}
3708  		mutex_unlock(&ctx->uring_lock);
3709  	}
3710  
3711  	if (flags & IORING_ENTER_GETEVENTS) {
3712  		int ret2;
3713  
3714  		if (ctx->syscall_iopoll) {
3715  			/*
3716  			 * We disallow the app entering submit/complete with
3717  			 * polling, but we still need to lock the ring to
3718  			 * prevent racing with polled issue that got punted to
3719  			 * a workqueue.
3720  			 */
3721  			mutex_lock(&ctx->uring_lock);
3722  iopoll_locked:
3723  			ret2 = io_validate_ext_arg(flags, argp, argsz);
3724  			if (likely(!ret2)) {
3725  				min_complete = min(min_complete,
3726  						   ctx->cq_entries);
3727  				ret2 = io_iopoll_check(ctx, min_complete);
3728  			}
3729  			mutex_unlock(&ctx->uring_lock);
3730  		} else {
3731  			const sigset_t __user *sig;
3732  			struct __kernel_timespec __user *ts;
3733  
3734  			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3735  			if (likely(!ret2)) {
3736  				min_complete = min(min_complete,
3737  						   ctx->cq_entries);
3738  				ret2 = io_cqring_wait(ctx, min_complete, sig,
3739  						      argsz, ts);
3740  			}
3741  		}
3742  
3743  		if (!ret) {
3744  			ret = ret2;
3745  
3746  			/*
3747  			 * EBADR indicates that one or more CQE were dropped.
3748  			 * Once the user has been informed we can clear the bit
3749  			 * as they are obviously ok with those drops.
3750  			 */
3751  			if (unlikely(ret2 == -EBADR))
3752  				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3753  					  &ctx->check_cq);
3754  		}
3755  	}
3756  out:
3757  	if (!(flags & IORING_ENTER_REGISTERED_RING))
3758  		fput(file);
3759  	return ret;
3760  }
3761  
3762  static const struct file_operations io_uring_fops = {
3763  	.release	= io_uring_release,
3764  	.mmap		= io_uring_mmap,
3765  #ifndef CONFIG_MMU
3766  	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3767  	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3768  #else
3769  	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3770  #endif
3771  	.poll		= io_uring_poll,
3772  #ifdef CONFIG_PROC_FS
3773  	.show_fdinfo	= io_uring_show_fdinfo,
3774  #endif
3775  };
3776  
io_is_uring_fops(struct file * file)3777  bool io_is_uring_fops(struct file *file)
3778  {
3779  	return file->f_op == &io_uring_fops;
3780  }
3781  
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3782  static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3783  					 struct io_uring_params *p)
3784  {
3785  	struct io_rings *rings;
3786  	size_t size, sq_array_offset;
3787  	void *ptr;
3788  
3789  	/* make sure these are sane, as we already accounted them */
3790  	ctx->sq_entries = p->sq_entries;
3791  	ctx->cq_entries = p->cq_entries;
3792  
3793  	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3794  	if (size == SIZE_MAX)
3795  		return -EOVERFLOW;
3796  
3797  	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3798  		rings = io_mem_alloc(size);
3799  	else
3800  		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3801  
3802  	if (IS_ERR(rings))
3803  		return PTR_ERR(rings);
3804  
3805  	ctx->rings = rings;
3806  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3807  		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3808  	rings->sq_ring_mask = p->sq_entries - 1;
3809  	rings->cq_ring_mask = p->cq_entries - 1;
3810  	rings->sq_ring_entries = p->sq_entries;
3811  	rings->cq_ring_entries = p->cq_entries;
3812  
3813  	if (p->flags & IORING_SETUP_SQE128)
3814  		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3815  	else
3816  		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3817  	if (size == SIZE_MAX) {
3818  		io_rings_free(ctx);
3819  		return -EOVERFLOW;
3820  	}
3821  
3822  	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3823  		ptr = io_mem_alloc(size);
3824  	else
3825  		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3826  
3827  	if (IS_ERR(ptr)) {
3828  		io_rings_free(ctx);
3829  		return PTR_ERR(ptr);
3830  	}
3831  
3832  	ctx->sq_sqes = ptr;
3833  	return 0;
3834  }
3835  
io_uring_install_fd(struct file * file)3836  static int io_uring_install_fd(struct file *file)
3837  {
3838  	int fd;
3839  
3840  	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3841  	if (fd < 0)
3842  		return fd;
3843  	fd_install(fd, file);
3844  	return fd;
3845  }
3846  
3847  /*
3848   * Allocate an anonymous fd, this is what constitutes the application
3849   * visible backing of an io_uring instance. The application mmaps this
3850   * fd to gain access to the SQ/CQ ring details.
3851   */
io_uring_get_file(struct io_ring_ctx * ctx)3852  static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3853  {
3854  	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3855  					 O_RDWR | O_CLOEXEC, NULL);
3856  }
3857  
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3858  static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3859  				  struct io_uring_params __user *params)
3860  {
3861  	struct io_ring_ctx *ctx;
3862  	struct io_uring_task *tctx;
3863  	struct file *file;
3864  	int ret;
3865  
3866  	if (!entries)
3867  		return -EINVAL;
3868  	if (entries > IORING_MAX_ENTRIES) {
3869  		if (!(p->flags & IORING_SETUP_CLAMP))
3870  			return -EINVAL;
3871  		entries = IORING_MAX_ENTRIES;
3872  	}
3873  
3874  	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3875  	    && !(p->flags & IORING_SETUP_NO_MMAP))
3876  		return -EINVAL;
3877  
3878  	/*
3879  	 * Use twice as many entries for the CQ ring. It's possible for the
3880  	 * application to drive a higher depth than the size of the SQ ring,
3881  	 * since the sqes are only used at submission time. This allows for
3882  	 * some flexibility in overcommitting a bit. If the application has
3883  	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3884  	 * of CQ ring entries manually.
3885  	 */
3886  	p->sq_entries = roundup_pow_of_two(entries);
3887  	if (p->flags & IORING_SETUP_CQSIZE) {
3888  		/*
3889  		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3890  		 * to a power-of-two, if it isn't already. We do NOT impose
3891  		 * any cq vs sq ring sizing.
3892  		 */
3893  		if (!p->cq_entries)
3894  			return -EINVAL;
3895  		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3896  			if (!(p->flags & IORING_SETUP_CLAMP))
3897  				return -EINVAL;
3898  			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3899  		}
3900  		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3901  		if (p->cq_entries < p->sq_entries)
3902  			return -EINVAL;
3903  	} else {
3904  		p->cq_entries = 2 * p->sq_entries;
3905  	}
3906  
3907  	ctx = io_ring_ctx_alloc(p);
3908  	if (!ctx)
3909  		return -ENOMEM;
3910  
3911  	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3912  	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3913  	    !(ctx->flags & IORING_SETUP_SQPOLL))
3914  		ctx->task_complete = true;
3915  
3916  	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3917  		ctx->lockless_cq = true;
3918  
3919  	/*
3920  	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3921  	 * purposes, see io_activate_pollwq()
3922  	 */
3923  	if (!ctx->task_complete)
3924  		ctx->poll_activated = true;
3925  
3926  	/*
3927  	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3928  	 * space applications don't need to do io completion events
3929  	 * polling again, they can rely on io_sq_thread to do polling
3930  	 * work, which can reduce cpu usage and uring_lock contention.
3931  	 */
3932  	if (ctx->flags & IORING_SETUP_IOPOLL &&
3933  	    !(ctx->flags & IORING_SETUP_SQPOLL))
3934  		ctx->syscall_iopoll = 1;
3935  
3936  	ctx->compat = in_compat_syscall();
3937  	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3938  		ctx->user = get_uid(current_user());
3939  
3940  	/*
3941  	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3942  	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3943  	 */
3944  	ret = -EINVAL;
3945  	if (ctx->flags & IORING_SETUP_SQPOLL) {
3946  		/* IPI related flags don't make sense with SQPOLL */
3947  		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3948  				  IORING_SETUP_TASKRUN_FLAG |
3949  				  IORING_SETUP_DEFER_TASKRUN))
3950  			goto err;
3951  		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3952  	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3953  		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3954  	} else {
3955  		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3956  		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3957  			goto err;
3958  		ctx->notify_method = TWA_SIGNAL;
3959  	}
3960  
3961  	/*
3962  	 * For DEFER_TASKRUN we require the completion task to be the same as the
3963  	 * submission task. This implies that there is only one submitter, so enforce
3964  	 * that.
3965  	 */
3966  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3967  	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3968  		goto err;
3969  	}
3970  
3971  	/*
3972  	 * This is just grabbed for accounting purposes. When a process exits,
3973  	 * the mm is exited and dropped before the files, hence we need to hang
3974  	 * on to this mm purely for the purposes of being able to unaccount
3975  	 * memory (locked/pinned vm). It's not used for anything else.
3976  	 */
3977  	mmgrab(current->mm);
3978  	ctx->mm_account = current->mm;
3979  
3980  	ret = io_allocate_scq_urings(ctx, p);
3981  	if (ret)
3982  		goto err;
3983  
3984  	ret = io_sq_offload_create(ctx, p);
3985  	if (ret)
3986  		goto err;
3987  
3988  	ret = io_rsrc_init(ctx);
3989  	if (ret)
3990  		goto err;
3991  
3992  	p->sq_off.head = offsetof(struct io_rings, sq.head);
3993  	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3994  	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3995  	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3996  	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3997  	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3998  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3999  		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4000  	p->sq_off.resv1 = 0;
4001  	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4002  		p->sq_off.user_addr = 0;
4003  
4004  	p->cq_off.head = offsetof(struct io_rings, cq.head);
4005  	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4006  	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4007  	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4008  	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4009  	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4010  	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4011  	p->cq_off.resv1 = 0;
4012  	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4013  		p->cq_off.user_addr = 0;
4014  
4015  	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4016  			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4017  			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4018  			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4019  			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4020  			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4021  			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4022  
4023  	if (copy_to_user(params, p, sizeof(*p))) {
4024  		ret = -EFAULT;
4025  		goto err;
4026  	}
4027  
4028  	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4029  	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4030  		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4031  
4032  	file = io_uring_get_file(ctx);
4033  	if (IS_ERR(file)) {
4034  		ret = PTR_ERR(file);
4035  		goto err;
4036  	}
4037  
4038  	ret = __io_uring_add_tctx_node(ctx);
4039  	if (ret)
4040  		goto err_fput;
4041  	tctx = current->io_uring;
4042  
4043  	/*
4044  	 * Install ring fd as the very last thing, so we don't risk someone
4045  	 * having closed it before we finish setup
4046  	 */
4047  	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4048  		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4049  	else
4050  		ret = io_uring_install_fd(file);
4051  	if (ret < 0)
4052  		goto err_fput;
4053  
4054  	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4055  	return ret;
4056  err:
4057  	io_ring_ctx_wait_and_kill(ctx);
4058  	return ret;
4059  err_fput:
4060  	fput(file);
4061  	return ret;
4062  }
4063  
4064  /*
4065   * Sets up an aio uring context, and returns the fd. Applications asks for a
4066   * ring size, we return the actual sq/cq ring sizes (among other things) in the
4067   * params structure passed in.
4068   */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4069  static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4070  {
4071  	struct io_uring_params p;
4072  	int i;
4073  
4074  	if (copy_from_user(&p, params, sizeof(p)))
4075  		return -EFAULT;
4076  	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4077  		if (p.resv[i])
4078  			return -EINVAL;
4079  	}
4080  
4081  	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4082  			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4083  			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4084  			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4085  			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4086  			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4087  			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4088  			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4089  			IORING_SETUP_NO_SQARRAY))
4090  		return -EINVAL;
4091  
4092  	return io_uring_create(entries, &p, params);
4093  }
4094  
io_uring_allowed(void)4095  static inline bool io_uring_allowed(void)
4096  {
4097  	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4098  	kgid_t io_uring_group;
4099  
4100  	if (disabled == 2)
4101  		return false;
4102  
4103  	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4104  		return true;
4105  
4106  	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4107  	if (!gid_valid(io_uring_group))
4108  		return false;
4109  
4110  	return in_group_p(io_uring_group);
4111  }
4112  
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4113  SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4114  		struct io_uring_params __user *, params)
4115  {
4116  	if (!io_uring_allowed())
4117  		return -EPERM;
4118  
4119  	return io_uring_setup(entries, params);
4120  }
4121  
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4122  static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4123  			   unsigned nr_args)
4124  {
4125  	struct io_uring_probe *p;
4126  	size_t size;
4127  	int i, ret;
4128  
4129  	size = struct_size(p, ops, nr_args);
4130  	if (size == SIZE_MAX)
4131  		return -EOVERFLOW;
4132  	p = kzalloc(size, GFP_KERNEL);
4133  	if (!p)
4134  		return -ENOMEM;
4135  
4136  	ret = -EFAULT;
4137  	if (copy_from_user(p, arg, size))
4138  		goto out;
4139  	ret = -EINVAL;
4140  	if (memchr_inv(p, 0, size))
4141  		goto out;
4142  
4143  	p->last_op = IORING_OP_LAST - 1;
4144  	if (nr_args > IORING_OP_LAST)
4145  		nr_args = IORING_OP_LAST;
4146  
4147  	for (i = 0; i < nr_args; i++) {
4148  		p->ops[i].op = i;
4149  		if (!io_issue_defs[i].not_supported)
4150  			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4151  	}
4152  	p->ops_len = i;
4153  
4154  	ret = 0;
4155  	if (copy_to_user(arg, p, size))
4156  		ret = -EFAULT;
4157  out:
4158  	kfree(p);
4159  	return ret;
4160  }
4161  
io_register_personality(struct io_ring_ctx * ctx)4162  static int io_register_personality(struct io_ring_ctx *ctx)
4163  {
4164  	const struct cred *creds;
4165  	u32 id;
4166  	int ret;
4167  
4168  	creds = get_current_cred();
4169  
4170  	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4171  			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4172  	if (ret < 0) {
4173  		put_cred(creds);
4174  		return ret;
4175  	}
4176  	return id;
4177  }
4178  
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4179  static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4180  					   void __user *arg, unsigned int nr_args)
4181  {
4182  	struct io_uring_restriction *res;
4183  	size_t size;
4184  	int i, ret;
4185  
4186  	/* Restrictions allowed only if rings started disabled */
4187  	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4188  		return -EBADFD;
4189  
4190  	/* We allow only a single restrictions registration */
4191  	if (ctx->restrictions.registered)
4192  		return -EBUSY;
4193  
4194  	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4195  		return -EINVAL;
4196  
4197  	size = array_size(nr_args, sizeof(*res));
4198  	if (size == SIZE_MAX)
4199  		return -EOVERFLOW;
4200  
4201  	res = memdup_user(arg, size);
4202  	if (IS_ERR(res))
4203  		return PTR_ERR(res);
4204  
4205  	ret = 0;
4206  
4207  	for (i = 0; i < nr_args; i++) {
4208  		switch (res[i].opcode) {
4209  		case IORING_RESTRICTION_REGISTER_OP:
4210  			if (res[i].register_op >= IORING_REGISTER_LAST) {
4211  				ret = -EINVAL;
4212  				goto out;
4213  			}
4214  
4215  			__set_bit(res[i].register_op,
4216  				  ctx->restrictions.register_op);
4217  			break;
4218  		case IORING_RESTRICTION_SQE_OP:
4219  			if (res[i].sqe_op >= IORING_OP_LAST) {
4220  				ret = -EINVAL;
4221  				goto out;
4222  			}
4223  
4224  			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4225  			break;
4226  		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4227  			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4228  			break;
4229  		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4230  			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4231  			break;
4232  		default:
4233  			ret = -EINVAL;
4234  			goto out;
4235  		}
4236  	}
4237  
4238  out:
4239  	/* Reset all restrictions if an error happened */
4240  	if (ret != 0)
4241  		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4242  	else
4243  		ctx->restrictions.registered = true;
4244  
4245  	kfree(res);
4246  	return ret;
4247  }
4248  
io_register_enable_rings(struct io_ring_ctx * ctx)4249  static int io_register_enable_rings(struct io_ring_ctx *ctx)
4250  {
4251  	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4252  		return -EBADFD;
4253  
4254  	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4255  		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4256  		/*
4257  		 * Lazy activation attempts would fail if it was polled before
4258  		 * submitter_task is set.
4259  		 */
4260  		if (wq_has_sleeper(&ctx->poll_wq))
4261  			io_activate_pollwq(ctx);
4262  	}
4263  
4264  	if (ctx->restrictions.registered)
4265  		ctx->restricted = 1;
4266  
4267  	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4268  	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4269  		wake_up(&ctx->sq_data->wait);
4270  	return 0;
4271  }
4272  
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4273  static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4274  					 cpumask_var_t new_mask)
4275  {
4276  	int ret;
4277  
4278  	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4279  		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4280  	} else {
4281  		mutex_unlock(&ctx->uring_lock);
4282  		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4283  		mutex_lock(&ctx->uring_lock);
4284  	}
4285  
4286  	return ret;
4287  }
4288  
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4289  static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4290  				       void __user *arg, unsigned len)
4291  {
4292  	cpumask_var_t new_mask;
4293  	int ret;
4294  
4295  	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4296  		return -ENOMEM;
4297  
4298  	cpumask_clear(new_mask);
4299  	if (len > cpumask_size())
4300  		len = cpumask_size();
4301  
4302  	if (in_compat_syscall()) {
4303  		ret = compat_get_bitmap(cpumask_bits(new_mask),
4304  					(const compat_ulong_t __user *)arg,
4305  					len * 8 /* CHAR_BIT */);
4306  	} else {
4307  		ret = copy_from_user(new_mask, arg, len);
4308  	}
4309  
4310  	if (ret) {
4311  		free_cpumask_var(new_mask);
4312  		return -EFAULT;
4313  	}
4314  
4315  	ret = __io_register_iowq_aff(ctx, new_mask);
4316  	free_cpumask_var(new_mask);
4317  	return ret;
4318  }
4319  
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4320  static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4321  {
4322  	return __io_register_iowq_aff(ctx, NULL);
4323  }
4324  
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4325  static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4326  					       void __user *arg)
4327  	__must_hold(&ctx->uring_lock)
4328  {
4329  	struct io_tctx_node *node;
4330  	struct io_uring_task *tctx = NULL;
4331  	struct io_sq_data *sqd = NULL;
4332  	__u32 new_count[2];
4333  	int i, ret;
4334  
4335  	if (copy_from_user(new_count, arg, sizeof(new_count)))
4336  		return -EFAULT;
4337  	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4338  		if (new_count[i] > INT_MAX)
4339  			return -EINVAL;
4340  
4341  	if (ctx->flags & IORING_SETUP_SQPOLL) {
4342  		sqd = ctx->sq_data;
4343  		if (sqd) {
4344  			/*
4345  			 * Observe the correct sqd->lock -> ctx->uring_lock
4346  			 * ordering. Fine to drop uring_lock here, we hold
4347  			 * a ref to the ctx.
4348  			 */
4349  			refcount_inc(&sqd->refs);
4350  			mutex_unlock(&ctx->uring_lock);
4351  			mutex_lock(&sqd->lock);
4352  			mutex_lock(&ctx->uring_lock);
4353  			if (sqd->thread)
4354  				tctx = sqd->thread->io_uring;
4355  		}
4356  	} else {
4357  		tctx = current->io_uring;
4358  	}
4359  
4360  	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4361  
4362  	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4363  		if (new_count[i])
4364  			ctx->iowq_limits[i] = new_count[i];
4365  	ctx->iowq_limits_set = true;
4366  
4367  	if (tctx && tctx->io_wq) {
4368  		ret = io_wq_max_workers(tctx->io_wq, new_count);
4369  		if (ret)
4370  			goto err;
4371  	} else {
4372  		memset(new_count, 0, sizeof(new_count));
4373  	}
4374  
4375  	if (sqd) {
4376  		mutex_unlock(&ctx->uring_lock);
4377  		mutex_unlock(&sqd->lock);
4378  		io_put_sq_data(sqd);
4379  		mutex_lock(&ctx->uring_lock);
4380  	}
4381  
4382  	if (copy_to_user(arg, new_count, sizeof(new_count)))
4383  		return -EFAULT;
4384  
4385  	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4386  	if (sqd)
4387  		return 0;
4388  
4389  	/* now propagate the restriction to all registered users */
4390  	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4391  		struct io_uring_task *tctx = node->task->io_uring;
4392  
4393  		if (WARN_ON_ONCE(!tctx->io_wq))
4394  			continue;
4395  
4396  		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4397  			new_count[i] = ctx->iowq_limits[i];
4398  		/* ignore errors, it always returns zero anyway */
4399  		(void)io_wq_max_workers(tctx->io_wq, new_count);
4400  	}
4401  	return 0;
4402  err:
4403  	if (sqd) {
4404  		mutex_unlock(&ctx->uring_lock);
4405  		mutex_unlock(&sqd->lock);
4406  		io_put_sq_data(sqd);
4407  		mutex_lock(&ctx->uring_lock);
4408  
4409  	}
4410  	return ret;
4411  }
4412  
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4413  static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4414  			       void __user *arg, unsigned nr_args)
4415  	__releases(ctx->uring_lock)
4416  	__acquires(ctx->uring_lock)
4417  {
4418  	int ret;
4419  
4420  	/*
4421  	 * We don't quiesce the refs for register anymore and so it can't be
4422  	 * dying as we're holding a file ref here.
4423  	 */
4424  	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4425  		return -ENXIO;
4426  
4427  	if (ctx->submitter_task && ctx->submitter_task != current)
4428  		return -EEXIST;
4429  
4430  	if (ctx->restricted) {
4431  		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4432  		if (!test_bit(opcode, ctx->restrictions.register_op))
4433  			return -EACCES;
4434  	}
4435  
4436  	switch (opcode) {
4437  	case IORING_REGISTER_BUFFERS:
4438  		ret = -EFAULT;
4439  		if (!arg)
4440  			break;
4441  		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4442  		break;
4443  	case IORING_UNREGISTER_BUFFERS:
4444  		ret = -EINVAL;
4445  		if (arg || nr_args)
4446  			break;
4447  		ret = io_sqe_buffers_unregister(ctx);
4448  		break;
4449  	case IORING_REGISTER_FILES:
4450  		ret = -EFAULT;
4451  		if (!arg)
4452  			break;
4453  		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4454  		break;
4455  	case IORING_UNREGISTER_FILES:
4456  		ret = -EINVAL;
4457  		if (arg || nr_args)
4458  			break;
4459  		ret = io_sqe_files_unregister(ctx);
4460  		break;
4461  	case IORING_REGISTER_FILES_UPDATE:
4462  		ret = io_register_files_update(ctx, arg, nr_args);
4463  		break;
4464  	case IORING_REGISTER_EVENTFD:
4465  		ret = -EINVAL;
4466  		if (nr_args != 1)
4467  			break;
4468  		ret = io_eventfd_register(ctx, arg, 0);
4469  		break;
4470  	case IORING_REGISTER_EVENTFD_ASYNC:
4471  		ret = -EINVAL;
4472  		if (nr_args != 1)
4473  			break;
4474  		ret = io_eventfd_register(ctx, arg, 1);
4475  		break;
4476  	case IORING_UNREGISTER_EVENTFD:
4477  		ret = -EINVAL;
4478  		if (arg || nr_args)
4479  			break;
4480  		ret = io_eventfd_unregister(ctx);
4481  		break;
4482  	case IORING_REGISTER_PROBE:
4483  		ret = -EINVAL;
4484  		if (!arg || nr_args > 256)
4485  			break;
4486  		ret = io_probe(ctx, arg, nr_args);
4487  		break;
4488  	case IORING_REGISTER_PERSONALITY:
4489  		ret = -EINVAL;
4490  		if (arg || nr_args)
4491  			break;
4492  		ret = io_register_personality(ctx);
4493  		break;
4494  	case IORING_UNREGISTER_PERSONALITY:
4495  		ret = -EINVAL;
4496  		if (arg)
4497  			break;
4498  		ret = io_unregister_personality(ctx, nr_args);
4499  		break;
4500  	case IORING_REGISTER_ENABLE_RINGS:
4501  		ret = -EINVAL;
4502  		if (arg || nr_args)
4503  			break;
4504  		ret = io_register_enable_rings(ctx);
4505  		break;
4506  	case IORING_REGISTER_RESTRICTIONS:
4507  		ret = io_register_restrictions(ctx, arg, nr_args);
4508  		break;
4509  	case IORING_REGISTER_FILES2:
4510  		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4511  		break;
4512  	case IORING_REGISTER_FILES_UPDATE2:
4513  		ret = io_register_rsrc_update(ctx, arg, nr_args,
4514  					      IORING_RSRC_FILE);
4515  		break;
4516  	case IORING_REGISTER_BUFFERS2:
4517  		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4518  		break;
4519  	case IORING_REGISTER_BUFFERS_UPDATE:
4520  		ret = io_register_rsrc_update(ctx, arg, nr_args,
4521  					      IORING_RSRC_BUFFER);
4522  		break;
4523  	case IORING_REGISTER_IOWQ_AFF:
4524  		ret = -EINVAL;
4525  		if (!arg || !nr_args)
4526  			break;
4527  		ret = io_register_iowq_aff(ctx, arg, nr_args);
4528  		break;
4529  	case IORING_UNREGISTER_IOWQ_AFF:
4530  		ret = -EINVAL;
4531  		if (arg || nr_args)
4532  			break;
4533  		ret = io_unregister_iowq_aff(ctx);
4534  		break;
4535  	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4536  		ret = -EINVAL;
4537  		if (!arg || nr_args != 2)
4538  			break;
4539  		ret = io_register_iowq_max_workers(ctx, arg);
4540  		break;
4541  	case IORING_REGISTER_RING_FDS:
4542  		ret = io_ringfd_register(ctx, arg, nr_args);
4543  		break;
4544  	case IORING_UNREGISTER_RING_FDS:
4545  		ret = io_ringfd_unregister(ctx, arg, nr_args);
4546  		break;
4547  	case IORING_REGISTER_PBUF_RING:
4548  		ret = -EINVAL;
4549  		if (!arg || nr_args != 1)
4550  			break;
4551  		ret = io_register_pbuf_ring(ctx, arg);
4552  		break;
4553  	case IORING_UNREGISTER_PBUF_RING:
4554  		ret = -EINVAL;
4555  		if (!arg || nr_args != 1)
4556  			break;
4557  		ret = io_unregister_pbuf_ring(ctx, arg);
4558  		break;
4559  	case IORING_REGISTER_SYNC_CANCEL:
4560  		ret = -EINVAL;
4561  		if (!arg || nr_args != 1)
4562  			break;
4563  		ret = io_sync_cancel(ctx, arg);
4564  		break;
4565  	case IORING_REGISTER_FILE_ALLOC_RANGE:
4566  		ret = -EINVAL;
4567  		if (!arg || nr_args)
4568  			break;
4569  		ret = io_register_file_alloc_range(ctx, arg);
4570  		break;
4571  	default:
4572  		ret = -EINVAL;
4573  		break;
4574  	}
4575  
4576  	return ret;
4577  }
4578  
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4579  SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4580  		void __user *, arg, unsigned int, nr_args)
4581  {
4582  	struct io_ring_ctx *ctx;
4583  	long ret = -EBADF;
4584  	struct file *file;
4585  	bool use_registered_ring;
4586  
4587  	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4588  	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4589  
4590  	if (opcode >= IORING_REGISTER_LAST)
4591  		return -EINVAL;
4592  
4593  	if (use_registered_ring) {
4594  		/*
4595  		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4596  		 * need only dereference our task private array to find it.
4597  		 */
4598  		struct io_uring_task *tctx = current->io_uring;
4599  
4600  		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4601  			return -EINVAL;
4602  		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4603  		file = tctx->registered_rings[fd];
4604  		if (unlikely(!file))
4605  			return -EBADF;
4606  	} else {
4607  		file = fget(fd);
4608  		if (unlikely(!file))
4609  			return -EBADF;
4610  		ret = -EOPNOTSUPP;
4611  		if (!io_is_uring_fops(file))
4612  			goto out_fput;
4613  	}
4614  
4615  	ctx = file->private_data;
4616  
4617  	mutex_lock(&ctx->uring_lock);
4618  	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4619  	mutex_unlock(&ctx->uring_lock);
4620  	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4621  out_fput:
4622  	if (!use_registered_ring)
4623  		fput(file);
4624  	return ret;
4625  }
4626  
io_uring_init(void)4627  static int __init io_uring_init(void)
4628  {
4629  #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4630  	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4631  	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4632  } while (0)
4633  
4634  #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4635  	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4636  #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4637  	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4638  	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4639  	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4640  	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4641  	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4642  	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4643  	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4644  	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4645  	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4646  	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4647  	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4648  	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4649  	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4650  	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4651  	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4652  	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4653  	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4654  	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4655  	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4656  	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4657  	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4658  	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4659  	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4660  	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4661  	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4662  	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4663  	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4664  	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4665  	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4666  	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4667  	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4668  	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4669  	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4670  	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4671  	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4672  	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4673  	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4674  	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4675  	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4676  	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4677  	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4678  	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4679  	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4680  	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4681  
4682  	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4683  		     sizeof(struct io_uring_rsrc_update));
4684  	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4685  		     sizeof(struct io_uring_rsrc_update2));
4686  
4687  	/* ->buf_index is u16 */
4688  	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4689  	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4690  		     offsetof(struct io_uring_buf_ring, tail));
4691  
4692  	/* should fit into one byte */
4693  	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4694  	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4695  	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4696  
4697  	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4698  
4699  	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4700  
4701  	io_uring_optable_init();
4702  
4703  	/*
4704  	 * Allow user copy in the per-command field, which starts after the
4705  	 * file in io_kiocb and until the opcode field. The openat2 handling
4706  	 * requires copying in user memory into the io_kiocb object in that
4707  	 * range, and HARDENED_USERCOPY will complain if we haven't
4708  	 * correctly annotated this range.
4709  	 */
4710  	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4711  				sizeof(struct io_kiocb), 0,
4712  				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4713  				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4714  				offsetof(struct io_kiocb, cmd.data),
4715  				sizeof_field(struct io_kiocb, cmd.data), NULL);
4716  
4717  	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4718  
4719  #ifdef CONFIG_SYSCTL
4720  	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4721  #endif
4722  
4723  	return 0;
4724  };
4725  __initcall(io_uring_init);
4726