1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27
28 struct kmem_cache *xfs_trans_cache;
29
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)32 xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34 {
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
43 }
44 #else
45 # define xfs_trans_trace_reservations(mp)
46 #endif
47
48 /*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52 void
xfs_trans_init(struct xfs_mount * mp)53 xfs_trans_init(
54 struct xfs_mount *mp)
55 {
56 xfs_trans_resv_calc(mp, M_RES(mp));
57 xfs_trans_trace_reservations(mp);
58 }
59
60 /*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64 STATIC void
xfs_trans_free(struct xfs_trans * tp)65 xfs_trans_free(
66 struct xfs_trans *tp)
67 {
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71 trace_xfs_trans_free(tp, _RET_IP_);
72 xfs_trans_clear_context(tp);
73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 sb_end_intwrite(tp->t_mountp->m_super);
75 xfs_trans_free_dqinfo(tp);
76 kmem_cache_free(xfs_trans_cache, tp);
77 }
78
79 /*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
87 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)88 xfs_trans_dup(
89 struct xfs_trans *tp)
90 {
91 struct xfs_trans *ntp;
92
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97 /*
98 * Initialize the new transaction structure.
99 */
100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 ntp->t_mountp = tp->t_mountp;
102 INIT_LIST_HEAD(&ntp->t_items);
103 INIT_LIST_HEAD(&ntp->t_busy);
104 INIT_LIST_HEAD(&ntp->t_dfops);
105 ntp->t_highest_agno = NULLAGNUMBER;
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 ASSERT(tp->t_ticket != NULL);
109
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 /* We gave our writer reference to the new transaction */
115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
121
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
124
125 xfs_trans_switch_context(tp, ntp);
126
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
129
130 xfs_trans_dup_dqinfo(tp, ntp);
131 return ntp;
132 }
133
134 /*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)149 xfs_trans_reserve(
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
154 {
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logres > 0) {
175 bool permanent = false;
176
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
181
182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 permanent = true;
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 }
189
190 if (tp->t_ticket != NULL) {
191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 error = xfs_log_regrant(mp, tp->t_ticket);
193 } else {
194 error = xfs_log_reserve(mp, resp->tr_logres,
195 resp->tr_logcount,
196 &tp->t_ticket, permanent);
197 }
198
199 if (error)
200 goto undo_blocks;
201
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 if (error) {
214 error = -ENOSPC;
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226 undo_log:
227 if (resp->tr_logres > 0) {
228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234 undo_blocks:
235 if (blocks > 0) {
236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 tp->t_blk_res = 0;
238 }
239 return error;
240 }
241
242 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)243 xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250 {
251 struct xfs_trans *tp;
252 bool want_retry = true;
253 int error;
254
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
260 retry:
261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
264 xfs_trans_set_context(tp);
265
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 xfs_has_lazysbcount(mp));
274
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
280 INIT_LIST_HEAD(&tp->t_dfops);
281 tp->t_highest_agno = NULLAGNUMBER;
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
293 error = xfs_blockgc_flush_all(mp);
294 if (error)
295 return error;
296 want_retry = false;
297 goto retry;
298 }
299 if (error) {
300 xfs_trans_cancel(tp);
301 return error;
302 }
303
304 trace_xfs_trans_alloc(tp, _RET_IP_);
305
306 *tpp = tp;
307 return 0;
308 }
309
310 /*
311 * Create an empty transaction with no reservation. This is a defensive
312 * mechanism for routines that query metadata without actually modifying them --
313 * if the metadata being queried is somehow cross-linked (think a btree block
314 * pointer that points higher in the tree), we risk deadlock. However, blocks
315 * grabbed as part of a transaction can be re-grabbed. The verifiers will
316 * notice the corrupt block and the operation will fail back to userspace
317 * without deadlocking.
318 *
319 * Note the zero-length reservation; this transaction MUST be cancelled without
320 * any dirty data.
321 *
322 * Callers should obtain freeze protection to avoid a conflict with fs freezing
323 * where we can be grabbing buffers at the same time that freeze is trying to
324 * drain the buffer LRU list.
325 */
326 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)327 xfs_trans_alloc_empty(
328 struct xfs_mount *mp,
329 struct xfs_trans **tpp)
330 {
331 struct xfs_trans_res resv = {0};
332
333 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
334 }
335
336 /*
337 * Record the indicated change to the given field for application
338 * to the file system's superblock when the transaction commits.
339 * For now, just store the change in the transaction structure.
340 *
341 * Mark the transaction structure to indicate that the superblock
342 * needs to be updated before committing.
343 *
344 * Because we may not be keeping track of allocated/free inodes and
345 * used filesystem blocks in the superblock, we do not mark the
346 * superblock dirty in this transaction if we modify these fields.
347 * We still need to update the transaction deltas so that they get
348 * applied to the incore superblock, but we don't want them to
349 * cause the superblock to get locked and logged if these are the
350 * only fields in the superblock that the transaction modifies.
351 */
352 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)353 xfs_trans_mod_sb(
354 xfs_trans_t *tp,
355 uint field,
356 int64_t delta)
357 {
358 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
359 xfs_mount_t *mp = tp->t_mountp;
360
361 switch (field) {
362 case XFS_TRANS_SB_ICOUNT:
363 tp->t_icount_delta += delta;
364 if (xfs_has_lazysbcount(mp))
365 flags &= ~XFS_TRANS_SB_DIRTY;
366 break;
367 case XFS_TRANS_SB_IFREE:
368 tp->t_ifree_delta += delta;
369 if (xfs_has_lazysbcount(mp))
370 flags &= ~XFS_TRANS_SB_DIRTY;
371 break;
372 case XFS_TRANS_SB_FDBLOCKS:
373 /*
374 * Track the number of blocks allocated in the transaction.
375 * Make sure it does not exceed the number reserved. If so,
376 * shutdown as this can lead to accounting inconsistency.
377 */
378 if (delta < 0) {
379 tp->t_blk_res_used += (uint)-delta;
380 if (tp->t_blk_res_used > tp->t_blk_res)
381 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
382 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
383 int64_t blkres_delta;
384
385 /*
386 * Return freed blocks directly to the reservation
387 * instead of the global pool, being careful not to
388 * overflow the trans counter. This is used to preserve
389 * reservation across chains of transaction rolls that
390 * repeatedly free and allocate blocks.
391 */
392 blkres_delta = min_t(int64_t, delta,
393 UINT_MAX - tp->t_blk_res);
394 tp->t_blk_res += blkres_delta;
395 delta -= blkres_delta;
396 }
397 tp->t_fdblocks_delta += delta;
398 if (xfs_has_lazysbcount(mp))
399 flags &= ~XFS_TRANS_SB_DIRTY;
400 break;
401 case XFS_TRANS_SB_RES_FDBLOCKS:
402 /*
403 * The allocation has already been applied to the
404 * in-core superblock's counter. This should only
405 * be applied to the on-disk superblock.
406 */
407 tp->t_res_fdblocks_delta += delta;
408 if (xfs_has_lazysbcount(mp))
409 flags &= ~XFS_TRANS_SB_DIRTY;
410 break;
411 case XFS_TRANS_SB_FREXTENTS:
412 /*
413 * Track the number of blocks allocated in the
414 * transaction. Make sure it does not exceed the
415 * number reserved.
416 */
417 if (delta < 0) {
418 tp->t_rtx_res_used += (uint)-delta;
419 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
420 }
421 tp->t_frextents_delta += delta;
422 break;
423 case XFS_TRANS_SB_RES_FREXTENTS:
424 /*
425 * The allocation has already been applied to the
426 * in-core superblock's counter. This should only
427 * be applied to the on-disk superblock.
428 */
429 ASSERT(delta < 0);
430 tp->t_res_frextents_delta += delta;
431 break;
432 case XFS_TRANS_SB_DBLOCKS:
433 tp->t_dblocks_delta += delta;
434 break;
435 case XFS_TRANS_SB_AGCOUNT:
436 ASSERT(delta > 0);
437 tp->t_agcount_delta += delta;
438 break;
439 case XFS_TRANS_SB_IMAXPCT:
440 tp->t_imaxpct_delta += delta;
441 break;
442 case XFS_TRANS_SB_REXTSIZE:
443 tp->t_rextsize_delta += delta;
444 break;
445 case XFS_TRANS_SB_RBMBLOCKS:
446 tp->t_rbmblocks_delta += delta;
447 break;
448 case XFS_TRANS_SB_RBLOCKS:
449 tp->t_rblocks_delta += delta;
450 break;
451 case XFS_TRANS_SB_REXTENTS:
452 tp->t_rextents_delta += delta;
453 break;
454 case XFS_TRANS_SB_REXTSLOG:
455 tp->t_rextslog_delta += delta;
456 break;
457 default:
458 ASSERT(0);
459 return;
460 }
461
462 tp->t_flags |= flags;
463 }
464
465 /*
466 * xfs_trans_apply_sb_deltas() is called from the commit code
467 * to bring the superblock buffer into the current transaction
468 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
469 *
470 * For now we just look at each field allowed to change and change
471 * it if necessary.
472 */
473 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)474 xfs_trans_apply_sb_deltas(
475 xfs_trans_t *tp)
476 {
477 struct xfs_dsb *sbp;
478 struct xfs_buf *bp;
479 int whole = 0;
480
481 bp = xfs_trans_getsb(tp);
482 sbp = bp->b_addr;
483
484 /*
485 * Only update the superblock counters if we are logging them
486 */
487 if (!xfs_has_lazysbcount((tp->t_mountp))) {
488 if (tp->t_icount_delta)
489 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
490 if (tp->t_ifree_delta)
491 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
492 if (tp->t_fdblocks_delta)
493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
494 if (tp->t_res_fdblocks_delta)
495 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
496 }
497
498 /*
499 * Updating frextents requires careful handling because it does not
500 * behave like the lazysb counters because we cannot rely on log
501 * recovery in older kenels to recompute the value from the rtbitmap.
502 * This means that the ondisk frextents must be consistent with the
503 * rtbitmap.
504 *
505 * Therefore, log the frextents change to the ondisk superblock and
506 * update the incore superblock so that future calls to xfs_log_sb
507 * write the correct value ondisk.
508 *
509 * Don't touch m_frextents because it includes incore reservations,
510 * and those are handled by the unreserve function.
511 */
512 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
513 struct xfs_mount *mp = tp->t_mountp;
514 int64_t rtxdelta;
515
516 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
517
518 spin_lock(&mp->m_sb_lock);
519 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
520 mp->m_sb.sb_frextents += rtxdelta;
521 spin_unlock(&mp->m_sb_lock);
522 }
523
524 if (tp->t_dblocks_delta) {
525 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
526 whole = 1;
527 }
528 if (tp->t_agcount_delta) {
529 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
530 whole = 1;
531 }
532 if (tp->t_imaxpct_delta) {
533 sbp->sb_imax_pct += tp->t_imaxpct_delta;
534 whole = 1;
535 }
536 if (tp->t_rextsize_delta) {
537 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
538 whole = 1;
539 }
540 if (tp->t_rbmblocks_delta) {
541 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
542 whole = 1;
543 }
544 if (tp->t_rblocks_delta) {
545 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
546 whole = 1;
547 }
548 if (tp->t_rextents_delta) {
549 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
550 whole = 1;
551 }
552 if (tp->t_rextslog_delta) {
553 sbp->sb_rextslog += tp->t_rextslog_delta;
554 whole = 1;
555 }
556
557 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
558 if (whole)
559 /*
560 * Log the whole thing, the fields are noncontiguous.
561 */
562 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
563 else
564 /*
565 * Since all the modifiable fields are contiguous, we
566 * can get away with this.
567 */
568 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
569 offsetof(struct xfs_dsb, sb_frextents) +
570 sizeof(sbp->sb_frextents) - 1);
571 }
572
573 /*
574 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
575 * apply superblock counter changes to the in-core superblock. The
576 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
577 * applied to the in-core superblock. The idea is that that has already been
578 * done.
579 *
580 * If we are not logging superblock counters, then the inode allocated/free and
581 * used block counts are not updated in the on disk superblock. In this case,
582 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
583 * still need to update the incore superblock with the changes.
584 *
585 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
586 * so we don't need to take the counter lock on every update.
587 */
588 #define XFS_ICOUNT_BATCH 128
589
590 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)591 xfs_trans_unreserve_and_mod_sb(
592 struct xfs_trans *tp)
593 {
594 struct xfs_mount *mp = tp->t_mountp;
595 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
596 int64_t blkdelta = 0;
597 int64_t rtxdelta = 0;
598 int64_t idelta = 0;
599 int64_t ifreedelta = 0;
600 int error;
601
602 /* calculate deltas */
603 if (tp->t_blk_res > 0)
604 blkdelta = tp->t_blk_res;
605 if ((tp->t_fdblocks_delta != 0) &&
606 (xfs_has_lazysbcount(mp) ||
607 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
608 blkdelta += tp->t_fdblocks_delta;
609
610 if (tp->t_rtx_res > 0)
611 rtxdelta = tp->t_rtx_res;
612 if ((tp->t_frextents_delta != 0) &&
613 (tp->t_flags & XFS_TRANS_SB_DIRTY))
614 rtxdelta += tp->t_frextents_delta;
615
616 if (xfs_has_lazysbcount(mp) ||
617 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
618 idelta = tp->t_icount_delta;
619 ifreedelta = tp->t_ifree_delta;
620 }
621
622 /* apply the per-cpu counters */
623 if (blkdelta) {
624 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
625 ASSERT(!error);
626 }
627
628 if (idelta)
629 percpu_counter_add_batch(&mp->m_icount, idelta,
630 XFS_ICOUNT_BATCH);
631
632 if (ifreedelta)
633 percpu_counter_add(&mp->m_ifree, ifreedelta);
634
635 if (rtxdelta) {
636 error = xfs_mod_frextents(mp, rtxdelta);
637 ASSERT(!error);
638 }
639
640 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
641 return;
642
643 /* apply remaining deltas */
644 spin_lock(&mp->m_sb_lock);
645 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
646 mp->m_sb.sb_icount += idelta;
647 mp->m_sb.sb_ifree += ifreedelta;
648 /*
649 * Do not touch sb_frextents here because we are dealing with incore
650 * reservation. sb_frextents is not part of the lazy sb counters so it
651 * must be consistent with the ondisk rtbitmap and must never include
652 * incore reservations.
653 */
654 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
655 mp->m_sb.sb_agcount += tp->t_agcount_delta;
656 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
657 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
658 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
659 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
660 mp->m_sb.sb_rextents += tp->t_rextents_delta;
661 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
662 spin_unlock(&mp->m_sb_lock);
663
664 /*
665 * Debug checks outside of the spinlock so they don't lock up the
666 * machine if they fail.
667 */
668 ASSERT(mp->m_sb.sb_imax_pct >= 0);
669 ASSERT(mp->m_sb.sb_rextslog >= 0);
670 return;
671 }
672
673 /* Add the given log item to the transaction's list of log items. */
674 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)675 xfs_trans_add_item(
676 struct xfs_trans *tp,
677 struct xfs_log_item *lip)
678 {
679 ASSERT(lip->li_log == tp->t_mountp->m_log);
680 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
681 ASSERT(list_empty(&lip->li_trans));
682 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
683
684 list_add_tail(&lip->li_trans, &tp->t_items);
685 trace_xfs_trans_add_item(tp, _RET_IP_);
686 }
687
688 /*
689 * Unlink the log item from the transaction. the log item is no longer
690 * considered dirty in this transaction, as the linked transaction has
691 * finished, either by abort or commit completion.
692 */
693 void
xfs_trans_del_item(struct xfs_log_item * lip)694 xfs_trans_del_item(
695 struct xfs_log_item *lip)
696 {
697 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
698 list_del_init(&lip->li_trans);
699 }
700
701 /* Detach and unlock all of the items in a transaction */
702 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)703 xfs_trans_free_items(
704 struct xfs_trans *tp,
705 bool abort)
706 {
707 struct xfs_log_item *lip, *next;
708
709 trace_xfs_trans_free_items(tp, _RET_IP_);
710
711 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
712 xfs_trans_del_item(lip);
713 if (abort)
714 set_bit(XFS_LI_ABORTED, &lip->li_flags);
715 if (lip->li_ops->iop_release)
716 lip->li_ops->iop_release(lip);
717 }
718 }
719
720 static inline void
xfs_log_item_batch_insert(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)721 xfs_log_item_batch_insert(
722 struct xfs_ail *ailp,
723 struct xfs_ail_cursor *cur,
724 struct xfs_log_item **log_items,
725 int nr_items,
726 xfs_lsn_t commit_lsn)
727 {
728 int i;
729
730 spin_lock(&ailp->ail_lock);
731 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
732 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
733
734 for (i = 0; i < nr_items; i++) {
735 struct xfs_log_item *lip = log_items[i];
736
737 if (lip->li_ops->iop_unpin)
738 lip->li_ops->iop_unpin(lip, 0);
739 }
740 }
741
742 /*
743 * Bulk operation version of xfs_trans_committed that takes a log vector of
744 * items to insert into the AIL. This uses bulk AIL insertion techniques to
745 * minimise lock traffic.
746 *
747 * If we are called with the aborted flag set, it is because a log write during
748 * a CIL checkpoint commit has failed. In this case, all the items in the
749 * checkpoint have already gone through iop_committed and iop_committing, which
750 * means that checkpoint commit abort handling is treated exactly the same
751 * as an iclog write error even though we haven't started any IO yet. Hence in
752 * this case all we need to do is iop_committed processing, followed by an
753 * iop_unpin(aborted) call.
754 *
755 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
756 * at the end of the AIL, the insert cursor avoids the need to walk
757 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
758 * call. This saves a lot of needless list walking and is a net win, even
759 * though it slightly increases that amount of AIL lock traffic to set it up
760 * and tear it down.
761 */
762 void
xfs_trans_committed_bulk(struct xfs_ail * ailp,struct list_head * lv_chain,xfs_lsn_t commit_lsn,bool aborted)763 xfs_trans_committed_bulk(
764 struct xfs_ail *ailp,
765 struct list_head *lv_chain,
766 xfs_lsn_t commit_lsn,
767 bool aborted)
768 {
769 #define LOG_ITEM_BATCH_SIZE 32
770 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
771 struct xfs_log_vec *lv;
772 struct xfs_ail_cursor cur;
773 int i = 0;
774
775 spin_lock(&ailp->ail_lock);
776 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
777 spin_unlock(&ailp->ail_lock);
778
779 /* unpin all the log items */
780 list_for_each_entry(lv, lv_chain, lv_list) {
781 struct xfs_log_item *lip = lv->lv_item;
782 xfs_lsn_t item_lsn;
783
784 if (aborted)
785 set_bit(XFS_LI_ABORTED, &lip->li_flags);
786
787 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
788 lip->li_ops->iop_release(lip);
789 continue;
790 }
791
792 if (lip->li_ops->iop_committed)
793 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
794 else
795 item_lsn = commit_lsn;
796
797 /* item_lsn of -1 means the item needs no further processing */
798 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
799 continue;
800
801 /*
802 * if we are aborting the operation, no point in inserting the
803 * object into the AIL as we are in a shutdown situation.
804 */
805 if (aborted) {
806 ASSERT(xlog_is_shutdown(ailp->ail_log));
807 if (lip->li_ops->iop_unpin)
808 lip->li_ops->iop_unpin(lip, 1);
809 continue;
810 }
811
812 if (item_lsn != commit_lsn) {
813
814 /*
815 * Not a bulk update option due to unusual item_lsn.
816 * Push into AIL immediately, rechecking the lsn once
817 * we have the ail lock. Then unpin the item. This does
818 * not affect the AIL cursor the bulk insert path is
819 * using.
820 */
821 spin_lock(&ailp->ail_lock);
822 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
823 xfs_trans_ail_update(ailp, lip, item_lsn);
824 else
825 spin_unlock(&ailp->ail_lock);
826 if (lip->li_ops->iop_unpin)
827 lip->li_ops->iop_unpin(lip, 0);
828 continue;
829 }
830
831 /* Item is a candidate for bulk AIL insert. */
832 log_items[i++] = lv->lv_item;
833 if (i >= LOG_ITEM_BATCH_SIZE) {
834 xfs_log_item_batch_insert(ailp, &cur, log_items,
835 LOG_ITEM_BATCH_SIZE, commit_lsn);
836 i = 0;
837 }
838 }
839
840 /* make sure we insert the remainder! */
841 if (i)
842 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
843
844 spin_lock(&ailp->ail_lock);
845 xfs_trans_ail_cursor_done(&cur);
846 spin_unlock(&ailp->ail_lock);
847 }
848
849 /*
850 * Sort transaction items prior to running precommit operations. This will
851 * attempt to order the items such that they will always be locked in the same
852 * order. Items that have no sort function are moved to the end of the list
853 * and so are locked last.
854 *
855 * This may need refinement as different types of objects add sort functions.
856 *
857 * Function is more complex than it needs to be because we are comparing 64 bit
858 * values and the function only returns 32 bit values.
859 */
860 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)861 xfs_trans_precommit_sort(
862 void *unused_arg,
863 const struct list_head *a,
864 const struct list_head *b)
865 {
866 struct xfs_log_item *lia = container_of(a,
867 struct xfs_log_item, li_trans);
868 struct xfs_log_item *lib = container_of(b,
869 struct xfs_log_item, li_trans);
870 int64_t diff;
871
872 /*
873 * If both items are non-sortable, leave them alone. If only one is
874 * sortable, move the non-sortable item towards the end of the list.
875 */
876 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
877 return 0;
878 if (!lia->li_ops->iop_sort)
879 return 1;
880 if (!lib->li_ops->iop_sort)
881 return -1;
882
883 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
884 if (diff < 0)
885 return -1;
886 if (diff > 0)
887 return 1;
888 return 0;
889 }
890
891 /*
892 * Run transaction precommit functions.
893 *
894 * If there is an error in any of the callouts, then stop immediately and
895 * trigger a shutdown to abort the transaction. There is no recovery possible
896 * from errors at this point as the transaction is dirty....
897 */
898 static int
xfs_trans_run_precommits(struct xfs_trans * tp)899 xfs_trans_run_precommits(
900 struct xfs_trans *tp)
901 {
902 struct xfs_mount *mp = tp->t_mountp;
903 struct xfs_log_item *lip, *n;
904 int error = 0;
905
906 /*
907 * Sort the item list to avoid ABBA deadlocks with other transactions
908 * running precommit operations that lock multiple shared items such as
909 * inode cluster buffers.
910 */
911 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
912
913 /*
914 * Precommit operations can remove the log item from the transaction
915 * if the log item exists purely to delay modifications until they
916 * can be ordered against other operations. Hence we have to use
917 * list_for_each_entry_safe() here.
918 */
919 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
920 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
921 continue;
922 if (lip->li_ops->iop_precommit) {
923 error = lip->li_ops->iop_precommit(tp, lip);
924 if (error)
925 break;
926 }
927 }
928 if (error)
929 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
930 return error;
931 }
932
933 /*
934 * Commit the given transaction to the log.
935 *
936 * XFS disk error handling mechanism is not based on a typical
937 * transaction abort mechanism. Logically after the filesystem
938 * gets marked 'SHUTDOWN', we can't let any new transactions
939 * be durable - ie. committed to disk - because some metadata might
940 * be inconsistent. In such cases, this returns an error, and the
941 * caller may assume that all locked objects joined to the transaction
942 * have already been unlocked as if the commit had succeeded.
943 * Do not reference the transaction structure after this call.
944 */
945 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)946 __xfs_trans_commit(
947 struct xfs_trans *tp,
948 bool regrant)
949 {
950 struct xfs_mount *mp = tp->t_mountp;
951 struct xlog *log = mp->m_log;
952 xfs_csn_t commit_seq = 0;
953 int error = 0;
954 int sync = tp->t_flags & XFS_TRANS_SYNC;
955
956 trace_xfs_trans_commit(tp, _RET_IP_);
957
958 /*
959 * Finish deferred items on final commit. Only permanent transactions
960 * should ever have deferred ops.
961 */
962 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
963 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
964 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
965 error = xfs_defer_finish_noroll(&tp);
966 if (error)
967 goto out_unreserve;
968 }
969
970 error = xfs_trans_run_precommits(tp);
971 if (error)
972 goto out_unreserve;
973
974 /*
975 * If there is nothing to be logged by the transaction,
976 * then unlock all of the items associated with the
977 * transaction and free the transaction structure.
978 * Also make sure to return any reserved blocks to
979 * the free pool.
980 */
981 if (!(tp->t_flags & XFS_TRANS_DIRTY))
982 goto out_unreserve;
983
984 /*
985 * We must check against log shutdown here because we cannot abort log
986 * items and leave them dirty, inconsistent and unpinned in memory while
987 * the log is active. This leaves them open to being written back to
988 * disk, and that will lead to on-disk corruption.
989 */
990 if (xlog_is_shutdown(log)) {
991 error = -EIO;
992 goto out_unreserve;
993 }
994
995 ASSERT(tp->t_ticket != NULL);
996
997 /*
998 * If we need to update the superblock, then do it now.
999 */
1000 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1001 xfs_trans_apply_sb_deltas(tp);
1002 xfs_trans_apply_dquot_deltas(tp);
1003
1004 xlog_cil_commit(log, tp, &commit_seq, regrant);
1005
1006 xfs_trans_free(tp);
1007
1008 /*
1009 * If the transaction needs to be synchronous, then force the
1010 * log out now and wait for it.
1011 */
1012 if (sync) {
1013 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1014 XFS_STATS_INC(mp, xs_trans_sync);
1015 } else {
1016 XFS_STATS_INC(mp, xs_trans_async);
1017 }
1018
1019 return error;
1020
1021 out_unreserve:
1022 xfs_trans_unreserve_and_mod_sb(tp);
1023
1024 /*
1025 * It is indeed possible for the transaction to be not dirty but
1026 * the dqinfo portion to be. All that means is that we have some
1027 * (non-persistent) quota reservations that need to be unreserved.
1028 */
1029 xfs_trans_unreserve_and_mod_dquots(tp);
1030 if (tp->t_ticket) {
1031 if (regrant && !xlog_is_shutdown(log))
1032 xfs_log_ticket_regrant(log, tp->t_ticket);
1033 else
1034 xfs_log_ticket_ungrant(log, tp->t_ticket);
1035 tp->t_ticket = NULL;
1036 }
1037 xfs_trans_free_items(tp, !!error);
1038 xfs_trans_free(tp);
1039
1040 XFS_STATS_INC(mp, xs_trans_empty);
1041 return error;
1042 }
1043
1044 int
xfs_trans_commit(struct xfs_trans * tp)1045 xfs_trans_commit(
1046 struct xfs_trans *tp)
1047 {
1048 return __xfs_trans_commit(tp, false);
1049 }
1050
1051 /*
1052 * Unlock all of the transaction's items and free the transaction. If the
1053 * transaction is dirty, we must shut down the filesystem because there is no
1054 * way to restore them to their previous state.
1055 *
1056 * If the transaction has made a log reservation, make sure to release it as
1057 * well.
1058 *
1059 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1060 * be called after the transaction has effectively been aborted due to the mount
1061 * being shut down. However, if the mount has not been shut down and the
1062 * transaction is dirty we will shut the mount down and, in doing so, that
1063 * guarantees that the log is shut down, too. Hence we don't need to be as
1064 * careful with shutdown state and dirty items here as we need to be in
1065 * xfs_trans_commit().
1066 */
1067 void
xfs_trans_cancel(struct xfs_trans * tp)1068 xfs_trans_cancel(
1069 struct xfs_trans *tp)
1070 {
1071 struct xfs_mount *mp = tp->t_mountp;
1072 struct xlog *log = mp->m_log;
1073 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1074
1075 trace_xfs_trans_cancel(tp, _RET_IP_);
1076
1077 /*
1078 * It's never valid to cancel a transaction with deferred ops attached,
1079 * because the transaction is effectively dirty. Complain about this
1080 * loudly before freeing the in-memory defer items and shutting down the
1081 * filesystem.
1082 */
1083 if (!list_empty(&tp->t_dfops)) {
1084 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1085 dirty = true;
1086 xfs_defer_cancel(tp);
1087 }
1088
1089 /*
1090 * See if the caller is relying on us to shut down the filesystem. We
1091 * only want an error report if there isn't already a shutdown in
1092 * progress, so we only need to check against the mount shutdown state
1093 * here.
1094 */
1095 if (dirty && !xfs_is_shutdown(mp)) {
1096 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1097 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1098 }
1099 #ifdef DEBUG
1100 /* Log items need to be consistent until the log is shut down. */
1101 if (!dirty && !xlog_is_shutdown(log)) {
1102 struct xfs_log_item *lip;
1103
1104 list_for_each_entry(lip, &tp->t_items, li_trans)
1105 ASSERT(!xlog_item_is_intent_done(lip));
1106 }
1107 #endif
1108 xfs_trans_unreserve_and_mod_sb(tp);
1109 xfs_trans_unreserve_and_mod_dquots(tp);
1110
1111 if (tp->t_ticket) {
1112 xfs_log_ticket_ungrant(log, tp->t_ticket);
1113 tp->t_ticket = NULL;
1114 }
1115
1116 xfs_trans_free_items(tp, dirty);
1117 xfs_trans_free(tp);
1118 }
1119
1120 /*
1121 * Roll from one trans in the sequence of PERMANENT transactions to
1122 * the next: permanent transactions are only flushed out when
1123 * committed with xfs_trans_commit(), but we still want as soon
1124 * as possible to let chunks of it go to the log. So we commit the
1125 * chunk we've been working on and get a new transaction to continue.
1126 */
1127 int
xfs_trans_roll(struct xfs_trans ** tpp)1128 xfs_trans_roll(
1129 struct xfs_trans **tpp)
1130 {
1131 struct xfs_trans *trans = *tpp;
1132 struct xfs_trans_res tres;
1133 int error;
1134
1135 trace_xfs_trans_roll(trans, _RET_IP_);
1136
1137 /*
1138 * Copy the critical parameters from one trans to the next.
1139 */
1140 tres.tr_logres = trans->t_log_res;
1141 tres.tr_logcount = trans->t_log_count;
1142
1143 *tpp = xfs_trans_dup(trans);
1144
1145 /*
1146 * Commit the current transaction.
1147 * If this commit failed, then it'd just unlock those items that
1148 * are not marked ihold. That also means that a filesystem shutdown
1149 * is in progress. The caller takes the responsibility to cancel
1150 * the duplicate transaction that gets returned.
1151 */
1152 error = __xfs_trans_commit(trans, true);
1153 if (error)
1154 return error;
1155
1156 /*
1157 * Reserve space in the log for the next transaction.
1158 * This also pushes items in the "AIL", the list of logged items,
1159 * out to disk if they are taking up space at the tail of the log
1160 * that we want to use. This requires that either nothing be locked
1161 * across this call, or that anything that is locked be logged in
1162 * the prior and the next transactions.
1163 */
1164 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1165 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1166 }
1167
1168 /*
1169 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1170 *
1171 * The caller must ensure that the on-disk dquots attached to this inode have
1172 * already been allocated and initialized. The caller is responsible for
1173 * releasing ILOCK_EXCL if a new transaction is returned.
1174 */
1175 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1176 xfs_trans_alloc_inode(
1177 struct xfs_inode *ip,
1178 struct xfs_trans_res *resv,
1179 unsigned int dblocks,
1180 unsigned int rblocks,
1181 bool force,
1182 struct xfs_trans **tpp)
1183 {
1184 struct xfs_trans *tp;
1185 struct xfs_mount *mp = ip->i_mount;
1186 bool retried = false;
1187 int error;
1188
1189 retry:
1190 error = xfs_trans_alloc(mp, resv, dblocks,
1191 rblocks / mp->m_sb.sb_rextsize,
1192 force ? XFS_TRANS_RESERVE : 0, &tp);
1193 if (error)
1194 return error;
1195
1196 xfs_ilock(ip, XFS_ILOCK_EXCL);
1197 xfs_trans_ijoin(tp, ip, 0);
1198
1199 error = xfs_qm_dqattach_locked(ip, false);
1200 if (error) {
1201 /* Caller should have allocated the dquots! */
1202 ASSERT(error != -ENOENT);
1203 goto out_cancel;
1204 }
1205
1206 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1207 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1208 xfs_trans_cancel(tp);
1209 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210 xfs_blockgc_free_quota(ip, 0);
1211 retried = true;
1212 goto retry;
1213 }
1214 if (error)
1215 goto out_cancel;
1216
1217 *tpp = tp;
1218 return 0;
1219
1220 out_cancel:
1221 xfs_trans_cancel(tp);
1222 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1223 return error;
1224 }
1225
1226 /*
1227 * Allocate an transaction in preparation for inode creation by reserving quota
1228 * against the given dquots. Callers are not required to hold any inode locks.
1229 */
1230 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1231 xfs_trans_alloc_icreate(
1232 struct xfs_mount *mp,
1233 struct xfs_trans_res *resv,
1234 struct xfs_dquot *udqp,
1235 struct xfs_dquot *gdqp,
1236 struct xfs_dquot *pdqp,
1237 unsigned int dblocks,
1238 struct xfs_trans **tpp)
1239 {
1240 struct xfs_trans *tp;
1241 bool retried = false;
1242 int error;
1243
1244 retry:
1245 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1246 if (error)
1247 return error;
1248
1249 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1250 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1251 xfs_trans_cancel(tp);
1252 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1253 retried = true;
1254 goto retry;
1255 }
1256 if (error) {
1257 xfs_trans_cancel(tp);
1258 return error;
1259 }
1260
1261 *tpp = tp;
1262 return 0;
1263 }
1264
1265 /*
1266 * Allocate an transaction, lock and join the inode to it, and reserve quota
1267 * in preparation for inode attribute changes that include uid, gid, or prid
1268 * changes.
1269 *
1270 * The caller must ensure that the on-disk dquots attached to this inode have
1271 * already been allocated and initialized. The ILOCK will be dropped when the
1272 * transaction is committed or cancelled.
1273 */
1274 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1275 xfs_trans_alloc_ichange(
1276 struct xfs_inode *ip,
1277 struct xfs_dquot *new_udqp,
1278 struct xfs_dquot *new_gdqp,
1279 struct xfs_dquot *new_pdqp,
1280 bool force,
1281 struct xfs_trans **tpp)
1282 {
1283 struct xfs_trans *tp;
1284 struct xfs_mount *mp = ip->i_mount;
1285 struct xfs_dquot *udqp;
1286 struct xfs_dquot *gdqp;
1287 struct xfs_dquot *pdqp;
1288 bool retried = false;
1289 int error;
1290
1291 retry:
1292 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1293 if (error)
1294 return error;
1295
1296 xfs_ilock(ip, XFS_ILOCK_EXCL);
1297 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1298
1299 error = xfs_qm_dqattach_locked(ip, false);
1300 if (error) {
1301 /* Caller should have allocated the dquots! */
1302 ASSERT(error != -ENOENT);
1303 goto out_cancel;
1304 }
1305
1306 /*
1307 * For each quota type, skip quota reservations if the inode's dquots
1308 * now match the ones that came from the caller, or the caller didn't
1309 * pass one in. The inode's dquots can change if we drop the ILOCK to
1310 * perform a blockgc scan, so we must preserve the caller's arguments.
1311 */
1312 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1313 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1314 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1315 if (udqp || gdqp || pdqp) {
1316 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1317
1318 if (force)
1319 qflags |= XFS_QMOPT_FORCE_RES;
1320
1321 /*
1322 * Reserve enough quota to handle blocks on disk and reserved
1323 * for a delayed allocation. We'll actually transfer the
1324 * delalloc reservation between dquots at chown time, even
1325 * though that part is only semi-transactional.
1326 */
1327 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1328 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1329 1, qflags);
1330 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1331 xfs_trans_cancel(tp);
1332 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1333 retried = true;
1334 goto retry;
1335 }
1336 if (error)
1337 goto out_cancel;
1338 }
1339
1340 *tpp = tp;
1341 return 0;
1342
1343 out_cancel:
1344 xfs_trans_cancel(tp);
1345 return error;
1346 }
1347
1348 /*
1349 * Allocate an transaction, lock and join the directory and child inodes to it,
1350 * and reserve quota for a directory update. If there isn't sufficient space,
1351 * @dblocks will be set to zero for a reservationless directory update and
1352 * @nospace_error will be set to a negative errno describing the space
1353 * constraint we hit.
1354 *
1355 * The caller must ensure that the on-disk dquots attached to this inode have
1356 * already been allocated and initialized. The ILOCKs will be dropped when the
1357 * transaction is committed or cancelled.
1358 */
1359 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1360 xfs_trans_alloc_dir(
1361 struct xfs_inode *dp,
1362 struct xfs_trans_res *resv,
1363 struct xfs_inode *ip,
1364 unsigned int *dblocks,
1365 struct xfs_trans **tpp,
1366 int *nospace_error)
1367 {
1368 struct xfs_trans *tp;
1369 struct xfs_mount *mp = ip->i_mount;
1370 unsigned int resblks;
1371 bool retried = false;
1372 int error;
1373
1374 retry:
1375 *nospace_error = 0;
1376 resblks = *dblocks;
1377 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1378 if (error == -ENOSPC) {
1379 *nospace_error = error;
1380 resblks = 0;
1381 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1382 }
1383 if (error)
1384 return error;
1385
1386 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1387
1388 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1389 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1390
1391 error = xfs_qm_dqattach_locked(dp, false);
1392 if (error) {
1393 /* Caller should have allocated the dquots! */
1394 ASSERT(error != -ENOENT);
1395 goto out_cancel;
1396 }
1397
1398 error = xfs_qm_dqattach_locked(ip, false);
1399 if (error) {
1400 /* Caller should have allocated the dquots! */
1401 ASSERT(error != -ENOENT);
1402 goto out_cancel;
1403 }
1404
1405 if (resblks == 0)
1406 goto done;
1407
1408 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1409 if (error == -EDQUOT || error == -ENOSPC) {
1410 if (!retried) {
1411 xfs_trans_cancel(tp);
1412 xfs_blockgc_free_quota(dp, 0);
1413 retried = true;
1414 goto retry;
1415 }
1416
1417 *nospace_error = error;
1418 resblks = 0;
1419 error = 0;
1420 }
1421 if (error)
1422 goto out_cancel;
1423
1424 done:
1425 *tpp = tp;
1426 *dblocks = resblks;
1427 return 0;
1428
1429 out_cancel:
1430 xfs_trans_cancel(tp);
1431 return error;
1432 }
1433