xref: /openbmc/linux/fs/xfs/xfs_trans.c (revision 16f6ccde74a6f8538c62f127f17207c75f4dba7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 
28 struct kmem_cache	*xfs_trans_cache;
29 
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)32 xfs_trans_trace_reservations(
33 	struct xfs_mount	*mp)
34 {
35 	struct xfs_trans_res	*res;
36 	struct xfs_trans_res	*end_res;
37 	int			i;
38 
39 	res = (struct xfs_trans_res *)M_RES(mp);
40 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 	for (i = 0; res < end_res; i++, res++)
42 		trace_xfs_trans_resv_calc(mp, i, res);
43 }
44 #else
45 # define xfs_trans_trace_reservations(mp)
46 #endif
47 
48 /*
49  * Initialize the precomputed transaction reservation values
50  * in the mount structure.
51  */
52 void
xfs_trans_init(struct xfs_mount * mp)53 xfs_trans_init(
54 	struct xfs_mount	*mp)
55 {
56 	xfs_trans_resv_calc(mp, M_RES(mp));
57 	xfs_trans_trace_reservations(mp);
58 }
59 
60 /*
61  * Free the transaction structure.  If there is more clean up
62  * to do when the structure is freed, add it here.
63  */
64 STATIC void
xfs_trans_free(struct xfs_trans * tp)65 xfs_trans_free(
66 	struct xfs_trans	*tp)
67 {
68 	xfs_extent_busy_sort(&tp->t_busy);
69 	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70 
71 	trace_xfs_trans_free(tp, _RET_IP_);
72 	xfs_trans_clear_context(tp);
73 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 		sb_end_intwrite(tp->t_mountp->m_super);
75 	xfs_trans_free_dqinfo(tp);
76 	kmem_cache_free(xfs_trans_cache, tp);
77 }
78 
79 /*
80  * This is called to create a new transaction which will share the
81  * permanent log reservation of the given transaction.  The remaining
82  * unused block and rt extent reservations are also inherited.  This
83  * implies that the original transaction is no longer allowed to allocate
84  * blocks.  Locks and log items, however, are no inherited.  They must
85  * be added to the new transaction explicitly.
86  */
87 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)88 xfs_trans_dup(
89 	struct xfs_trans	*tp)
90 {
91 	struct xfs_trans	*ntp;
92 
93 	trace_xfs_trans_dup(tp, _RET_IP_);
94 
95 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96 
97 	/*
98 	 * Initialize the new transaction structure.
99 	 */
100 	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 	ntp->t_mountp = tp->t_mountp;
102 	INIT_LIST_HEAD(&ntp->t_items);
103 	INIT_LIST_HEAD(&ntp->t_busy);
104 	INIT_LIST_HEAD(&ntp->t_dfops);
105 	ntp->t_highest_agno = NULLAGNUMBER;
106 
107 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 	ASSERT(tp->t_ticket != NULL);
109 
110 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 		       (tp->t_flags & XFS_TRANS_RESERVE) |
112 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 	/* We gave our writer reference to the new transaction */
115 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117 
118 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 	tp->t_blk_res = tp->t_blk_res_used;
121 
122 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 	tp->t_rtx_res = tp->t_rtx_res_used;
124 
125 	xfs_trans_switch_context(tp, ntp);
126 
127 	/* move deferred ops over to the new tp */
128 	xfs_defer_move(ntp, tp);
129 
130 	xfs_trans_dup_dqinfo(tp, ntp);
131 	return ntp;
132 }
133 
134 /*
135  * This is called to reserve free disk blocks and log space for the
136  * given transaction.  This must be done before allocating any resources
137  * within the transaction.
138  *
139  * This will return ENOSPC if there are not enough blocks available.
140  * It will sleep waiting for available log space.
141  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142  * is used by long running transactions.  If any one of the reservations
143  * fails then they will all be backed out.
144  *
145  * This does not do quota reservations. That typically is done by the
146  * caller afterwards.
147  */
148 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)149 xfs_trans_reserve(
150 	struct xfs_trans	*tp,
151 	struct xfs_trans_res	*resp,
152 	uint			blocks,
153 	uint			rtextents)
154 {
155 	struct xfs_mount	*mp = tp->t_mountp;
156 	int			error = 0;
157 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158 
159 	/*
160 	 * Attempt to reserve the needed disk blocks by decrementing
161 	 * the number needed from the number available.  This will
162 	 * fail if the count would go below zero.
163 	 */
164 	if (blocks > 0) {
165 		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 		if (error != 0)
167 			return -ENOSPC;
168 		tp->t_blk_res += blocks;
169 	}
170 
171 	/*
172 	 * Reserve the log space needed for this transaction.
173 	 */
174 	if (resp->tr_logres > 0) {
175 		bool	permanent = false;
176 
177 		ASSERT(tp->t_log_res == 0 ||
178 		       tp->t_log_res == resp->tr_logres);
179 		ASSERT(tp->t_log_count == 0 ||
180 		       tp->t_log_count == resp->tr_logcount);
181 
182 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 			permanent = true;
185 		} else {
186 			ASSERT(tp->t_ticket == NULL);
187 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 		}
189 
190 		if (tp->t_ticket != NULL) {
191 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 			error = xfs_log_regrant(mp, tp->t_ticket);
193 		} else {
194 			error = xfs_log_reserve(mp, resp->tr_logres,
195 						resp->tr_logcount,
196 						&tp->t_ticket, permanent);
197 		}
198 
199 		if (error)
200 			goto undo_blocks;
201 
202 		tp->t_log_res = resp->tr_logres;
203 		tp->t_log_count = resp->tr_logcount;
204 	}
205 
206 	/*
207 	 * Attempt to reserve the needed realtime extents by decrementing
208 	 * the number needed from the number available.  This will
209 	 * fail if the count would go below zero.
210 	 */
211 	if (rtextents > 0) {
212 		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 		if (error) {
214 			error = -ENOSPC;
215 			goto undo_log;
216 		}
217 		tp->t_rtx_res += rtextents;
218 	}
219 
220 	return 0;
221 
222 	/*
223 	 * Error cases jump to one of these labels to undo any
224 	 * reservations which have already been performed.
225 	 */
226 undo_log:
227 	if (resp->tr_logres > 0) {
228 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 		tp->t_ticket = NULL;
230 		tp->t_log_res = 0;
231 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 	}
233 
234 undo_blocks:
235 	if (blocks > 0) {
236 		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 		tp->t_blk_res = 0;
238 	}
239 	return error;
240 }
241 
242 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)243 xfs_trans_alloc(
244 	struct xfs_mount	*mp,
245 	struct xfs_trans_res	*resp,
246 	uint			blocks,
247 	uint			rtextents,
248 	uint			flags,
249 	struct xfs_trans	**tpp)
250 {
251 	struct xfs_trans	*tp;
252 	bool			want_retry = true;
253 	int			error;
254 
255 	/*
256 	 * Allocate the handle before we do our freeze accounting and setting up
257 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 	 */
260 retry:
261 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 		sb_start_intwrite(mp->m_super);
264 	xfs_trans_set_context(tp);
265 
266 	/*
267 	 * Zero-reservation ("empty") transactions can't modify anything, so
268 	 * they're allowed to run while we're frozen.
269 	 */
270 	WARN_ON(resp->tr_logres > 0 &&
271 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 	       xfs_has_lazysbcount(mp));
274 
275 	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 	tp->t_flags = flags;
277 	tp->t_mountp = mp;
278 	INIT_LIST_HEAD(&tp->t_items);
279 	INIT_LIST_HEAD(&tp->t_busy);
280 	INIT_LIST_HEAD(&tp->t_dfops);
281 	tp->t_highest_agno = NULLAGNUMBER;
282 
283 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 	if (error == -ENOSPC && want_retry) {
285 		xfs_trans_cancel(tp);
286 
287 		/*
288 		 * We weren't able to reserve enough space for the transaction.
289 		 * Flush the other speculative space allocations to free space.
290 		 * Do not perform a synchronous scan because callers can hold
291 		 * other locks.
292 		 */
293 		error = xfs_blockgc_flush_all(mp);
294 		if (error)
295 			return error;
296 		want_retry = false;
297 		goto retry;
298 	}
299 	if (error) {
300 		xfs_trans_cancel(tp);
301 		return error;
302 	}
303 
304 	trace_xfs_trans_alloc(tp, _RET_IP_);
305 
306 	*tpp = tp;
307 	return 0;
308 }
309 
310 /*
311  * Create an empty transaction with no reservation.  This is a defensive
312  * mechanism for routines that query metadata without actually modifying them --
313  * if the metadata being queried is somehow cross-linked (think a btree block
314  * pointer that points higher in the tree), we risk deadlock.  However, blocks
315  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
316  * notice the corrupt block and the operation will fail back to userspace
317  * without deadlocking.
318  *
319  * Note the zero-length reservation; this transaction MUST be cancelled without
320  * any dirty data.
321  *
322  * Callers should obtain freeze protection to avoid a conflict with fs freezing
323  * where we can be grabbing buffers at the same time that freeze is trying to
324  * drain the buffer LRU list.
325  */
326 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)327 xfs_trans_alloc_empty(
328 	struct xfs_mount		*mp,
329 	struct xfs_trans		**tpp)
330 {
331 	struct xfs_trans_res		resv = {0};
332 
333 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
334 }
335 
336 /*
337  * Record the indicated change to the given field for application
338  * to the file system's superblock when the transaction commits.
339  * For now, just store the change in the transaction structure.
340  *
341  * Mark the transaction structure to indicate that the superblock
342  * needs to be updated before committing.
343  *
344  * Because we may not be keeping track of allocated/free inodes and
345  * used filesystem blocks in the superblock, we do not mark the
346  * superblock dirty in this transaction if we modify these fields.
347  * We still need to update the transaction deltas so that they get
348  * applied to the incore superblock, but we don't want them to
349  * cause the superblock to get locked and logged if these are the
350  * only fields in the superblock that the transaction modifies.
351  */
352 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)353 xfs_trans_mod_sb(
354 	xfs_trans_t	*tp,
355 	uint		field,
356 	int64_t		delta)
357 {
358 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
359 	xfs_mount_t	*mp = tp->t_mountp;
360 
361 	switch (field) {
362 	case XFS_TRANS_SB_ICOUNT:
363 		tp->t_icount_delta += delta;
364 		if (xfs_has_lazysbcount(mp))
365 			flags &= ~XFS_TRANS_SB_DIRTY;
366 		break;
367 	case XFS_TRANS_SB_IFREE:
368 		tp->t_ifree_delta += delta;
369 		if (xfs_has_lazysbcount(mp))
370 			flags &= ~XFS_TRANS_SB_DIRTY;
371 		break;
372 	case XFS_TRANS_SB_FDBLOCKS:
373 		/*
374 		 * Track the number of blocks allocated in the transaction.
375 		 * Make sure it does not exceed the number reserved. If so,
376 		 * shutdown as this can lead to accounting inconsistency.
377 		 */
378 		if (delta < 0) {
379 			tp->t_blk_res_used += (uint)-delta;
380 			if (tp->t_blk_res_used > tp->t_blk_res)
381 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
382 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
383 			int64_t	blkres_delta;
384 
385 			/*
386 			 * Return freed blocks directly to the reservation
387 			 * instead of the global pool, being careful not to
388 			 * overflow the trans counter. This is used to preserve
389 			 * reservation across chains of transaction rolls that
390 			 * repeatedly free and allocate blocks.
391 			 */
392 			blkres_delta = min_t(int64_t, delta,
393 					     UINT_MAX - tp->t_blk_res);
394 			tp->t_blk_res += blkres_delta;
395 			delta -= blkres_delta;
396 		}
397 		tp->t_fdblocks_delta += delta;
398 		if (xfs_has_lazysbcount(mp))
399 			flags &= ~XFS_TRANS_SB_DIRTY;
400 		break;
401 	case XFS_TRANS_SB_RES_FDBLOCKS:
402 		/*
403 		 * The allocation has already been applied to the
404 		 * in-core superblock's counter.  This should only
405 		 * be applied to the on-disk superblock.
406 		 */
407 		tp->t_res_fdblocks_delta += delta;
408 		if (xfs_has_lazysbcount(mp))
409 			flags &= ~XFS_TRANS_SB_DIRTY;
410 		break;
411 	case XFS_TRANS_SB_FREXTENTS:
412 		/*
413 		 * Track the number of blocks allocated in the
414 		 * transaction.  Make sure it does not exceed the
415 		 * number reserved.
416 		 */
417 		if (delta < 0) {
418 			tp->t_rtx_res_used += (uint)-delta;
419 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
420 		}
421 		tp->t_frextents_delta += delta;
422 		break;
423 	case XFS_TRANS_SB_RES_FREXTENTS:
424 		/*
425 		 * The allocation has already been applied to the
426 		 * in-core superblock's counter.  This should only
427 		 * be applied to the on-disk superblock.
428 		 */
429 		ASSERT(delta < 0);
430 		tp->t_res_frextents_delta += delta;
431 		break;
432 	case XFS_TRANS_SB_DBLOCKS:
433 		tp->t_dblocks_delta += delta;
434 		break;
435 	case XFS_TRANS_SB_AGCOUNT:
436 		ASSERT(delta > 0);
437 		tp->t_agcount_delta += delta;
438 		break;
439 	case XFS_TRANS_SB_IMAXPCT:
440 		tp->t_imaxpct_delta += delta;
441 		break;
442 	case XFS_TRANS_SB_REXTSIZE:
443 		tp->t_rextsize_delta += delta;
444 		break;
445 	case XFS_TRANS_SB_RBMBLOCKS:
446 		tp->t_rbmblocks_delta += delta;
447 		break;
448 	case XFS_TRANS_SB_RBLOCKS:
449 		tp->t_rblocks_delta += delta;
450 		break;
451 	case XFS_TRANS_SB_REXTENTS:
452 		tp->t_rextents_delta += delta;
453 		break;
454 	case XFS_TRANS_SB_REXTSLOG:
455 		tp->t_rextslog_delta += delta;
456 		break;
457 	default:
458 		ASSERT(0);
459 		return;
460 	}
461 
462 	tp->t_flags |= flags;
463 }
464 
465 /*
466  * xfs_trans_apply_sb_deltas() is called from the commit code
467  * to bring the superblock buffer into the current transaction
468  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
469  *
470  * For now we just look at each field allowed to change and change
471  * it if necessary.
472  */
473 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)474 xfs_trans_apply_sb_deltas(
475 	xfs_trans_t	*tp)
476 {
477 	struct xfs_dsb	*sbp;
478 	struct xfs_buf	*bp;
479 	int		whole = 0;
480 
481 	bp = xfs_trans_getsb(tp);
482 	sbp = bp->b_addr;
483 
484 	/*
485 	 * Only update the superblock counters if we are logging them
486 	 */
487 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
488 		if (tp->t_icount_delta)
489 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
490 		if (tp->t_ifree_delta)
491 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
492 		if (tp->t_fdblocks_delta)
493 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
494 		if (tp->t_res_fdblocks_delta)
495 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
496 	}
497 
498 	/*
499 	 * Updating frextents requires careful handling because it does not
500 	 * behave like the lazysb counters because we cannot rely on log
501 	 * recovery in older kenels to recompute the value from the rtbitmap.
502 	 * This means that the ondisk frextents must be consistent with the
503 	 * rtbitmap.
504 	 *
505 	 * Therefore, log the frextents change to the ondisk superblock and
506 	 * update the incore superblock so that future calls to xfs_log_sb
507 	 * write the correct value ondisk.
508 	 *
509 	 * Don't touch m_frextents because it includes incore reservations,
510 	 * and those are handled by the unreserve function.
511 	 */
512 	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
513 		struct xfs_mount	*mp = tp->t_mountp;
514 		int64_t			rtxdelta;
515 
516 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
517 
518 		spin_lock(&mp->m_sb_lock);
519 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
520 		mp->m_sb.sb_frextents += rtxdelta;
521 		spin_unlock(&mp->m_sb_lock);
522 	}
523 
524 	if (tp->t_dblocks_delta) {
525 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
526 		whole = 1;
527 	}
528 	if (tp->t_agcount_delta) {
529 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
530 		whole = 1;
531 	}
532 	if (tp->t_imaxpct_delta) {
533 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
534 		whole = 1;
535 	}
536 	if (tp->t_rextsize_delta) {
537 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
538 		whole = 1;
539 	}
540 	if (tp->t_rbmblocks_delta) {
541 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
542 		whole = 1;
543 	}
544 	if (tp->t_rblocks_delta) {
545 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
546 		whole = 1;
547 	}
548 	if (tp->t_rextents_delta) {
549 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
550 		whole = 1;
551 	}
552 	if (tp->t_rextslog_delta) {
553 		sbp->sb_rextslog += tp->t_rextslog_delta;
554 		whole = 1;
555 	}
556 
557 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
558 	if (whole)
559 		/*
560 		 * Log the whole thing, the fields are noncontiguous.
561 		 */
562 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
563 	else
564 		/*
565 		 * Since all the modifiable fields are contiguous, we
566 		 * can get away with this.
567 		 */
568 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
569 				  offsetof(struct xfs_dsb, sb_frextents) +
570 				  sizeof(sbp->sb_frextents) - 1);
571 }
572 
573 /*
574  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
575  * apply superblock counter changes to the in-core superblock.  The
576  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
577  * applied to the in-core superblock.  The idea is that that has already been
578  * done.
579  *
580  * If we are not logging superblock counters, then the inode allocated/free and
581  * used block counts are not updated in the on disk superblock. In this case,
582  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
583  * still need to update the incore superblock with the changes.
584  *
585  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
586  * so we don't need to take the counter lock on every update.
587  */
588 #define XFS_ICOUNT_BATCH	128
589 
590 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)591 xfs_trans_unreserve_and_mod_sb(
592 	struct xfs_trans	*tp)
593 {
594 	struct xfs_mount	*mp = tp->t_mountp;
595 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
596 	int64_t			blkdelta = 0;
597 	int64_t			rtxdelta = 0;
598 	int64_t			idelta = 0;
599 	int64_t			ifreedelta = 0;
600 	int			error;
601 
602 	/* calculate deltas */
603 	if (tp->t_blk_res > 0)
604 		blkdelta = tp->t_blk_res;
605 	if ((tp->t_fdblocks_delta != 0) &&
606 	    (xfs_has_lazysbcount(mp) ||
607 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
608 	        blkdelta += tp->t_fdblocks_delta;
609 
610 	if (tp->t_rtx_res > 0)
611 		rtxdelta = tp->t_rtx_res;
612 	if ((tp->t_frextents_delta != 0) &&
613 	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
614 		rtxdelta += tp->t_frextents_delta;
615 
616 	if (xfs_has_lazysbcount(mp) ||
617 	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
618 		idelta = tp->t_icount_delta;
619 		ifreedelta = tp->t_ifree_delta;
620 	}
621 
622 	/* apply the per-cpu counters */
623 	if (blkdelta) {
624 		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
625 		ASSERT(!error);
626 	}
627 
628 	if (idelta)
629 		percpu_counter_add_batch(&mp->m_icount, idelta,
630 					 XFS_ICOUNT_BATCH);
631 
632 	if (ifreedelta)
633 		percpu_counter_add(&mp->m_ifree, ifreedelta);
634 
635 	if (rtxdelta) {
636 		error = xfs_mod_frextents(mp, rtxdelta);
637 		ASSERT(!error);
638 	}
639 
640 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
641 		return;
642 
643 	/* apply remaining deltas */
644 	spin_lock(&mp->m_sb_lock);
645 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
646 	mp->m_sb.sb_icount += idelta;
647 	mp->m_sb.sb_ifree += ifreedelta;
648 	/*
649 	 * Do not touch sb_frextents here because we are dealing with incore
650 	 * reservation.  sb_frextents is not part of the lazy sb counters so it
651 	 * must be consistent with the ondisk rtbitmap and must never include
652 	 * incore reservations.
653 	 */
654 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
655 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
656 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
657 	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
658 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
659 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
660 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
661 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
662 	spin_unlock(&mp->m_sb_lock);
663 
664 	/*
665 	 * Debug checks outside of the spinlock so they don't lock up the
666 	 * machine if they fail.
667 	 */
668 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
669 	ASSERT(mp->m_sb.sb_rextslog >= 0);
670 	return;
671 }
672 
673 /* Add the given log item to the transaction's list of log items. */
674 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)675 xfs_trans_add_item(
676 	struct xfs_trans	*tp,
677 	struct xfs_log_item	*lip)
678 {
679 	ASSERT(lip->li_log == tp->t_mountp->m_log);
680 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
681 	ASSERT(list_empty(&lip->li_trans));
682 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
683 
684 	list_add_tail(&lip->li_trans, &tp->t_items);
685 	trace_xfs_trans_add_item(tp, _RET_IP_);
686 }
687 
688 /*
689  * Unlink the log item from the transaction. the log item is no longer
690  * considered dirty in this transaction, as the linked transaction has
691  * finished, either by abort or commit completion.
692  */
693 void
xfs_trans_del_item(struct xfs_log_item * lip)694 xfs_trans_del_item(
695 	struct xfs_log_item	*lip)
696 {
697 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
698 	list_del_init(&lip->li_trans);
699 }
700 
701 /* Detach and unlock all of the items in a transaction */
702 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)703 xfs_trans_free_items(
704 	struct xfs_trans	*tp,
705 	bool			abort)
706 {
707 	struct xfs_log_item	*lip, *next;
708 
709 	trace_xfs_trans_free_items(tp, _RET_IP_);
710 
711 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
712 		xfs_trans_del_item(lip);
713 		if (abort)
714 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
715 		if (lip->li_ops->iop_release)
716 			lip->li_ops->iop_release(lip);
717 	}
718 }
719 
720 static inline void
xfs_log_item_batch_insert(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)721 xfs_log_item_batch_insert(
722 	struct xfs_ail		*ailp,
723 	struct xfs_ail_cursor	*cur,
724 	struct xfs_log_item	**log_items,
725 	int			nr_items,
726 	xfs_lsn_t		commit_lsn)
727 {
728 	int	i;
729 
730 	spin_lock(&ailp->ail_lock);
731 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
732 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
733 
734 	for (i = 0; i < nr_items; i++) {
735 		struct xfs_log_item *lip = log_items[i];
736 
737 		if (lip->li_ops->iop_unpin)
738 			lip->li_ops->iop_unpin(lip, 0);
739 	}
740 }
741 
742 /*
743  * Bulk operation version of xfs_trans_committed that takes a log vector of
744  * items to insert into the AIL. This uses bulk AIL insertion techniques to
745  * minimise lock traffic.
746  *
747  * If we are called with the aborted flag set, it is because a log write during
748  * a CIL checkpoint commit has failed. In this case, all the items in the
749  * checkpoint have already gone through iop_committed and iop_committing, which
750  * means that checkpoint commit abort handling is treated exactly the same
751  * as an iclog write error even though we haven't started any IO yet. Hence in
752  * this case all we need to do is iop_committed processing, followed by an
753  * iop_unpin(aborted) call.
754  *
755  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
756  * at the end of the AIL, the insert cursor avoids the need to walk
757  * the AIL to find the insertion point on every xfs_log_item_batch_insert()
758  * call. This saves a lot of needless list walking and is a net win, even
759  * though it slightly increases that amount of AIL lock traffic to set it up
760  * and tear it down.
761  */
762 void
xfs_trans_committed_bulk(struct xfs_ail * ailp,struct list_head * lv_chain,xfs_lsn_t commit_lsn,bool aborted)763 xfs_trans_committed_bulk(
764 	struct xfs_ail		*ailp,
765 	struct list_head	*lv_chain,
766 	xfs_lsn_t		commit_lsn,
767 	bool			aborted)
768 {
769 #define LOG_ITEM_BATCH_SIZE	32
770 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
771 	struct xfs_log_vec	*lv;
772 	struct xfs_ail_cursor	cur;
773 	int			i = 0;
774 
775 	spin_lock(&ailp->ail_lock);
776 	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
777 	spin_unlock(&ailp->ail_lock);
778 
779 	/* unpin all the log items */
780 	list_for_each_entry(lv, lv_chain, lv_list) {
781 		struct xfs_log_item	*lip = lv->lv_item;
782 		xfs_lsn_t		item_lsn;
783 
784 		if (aborted)
785 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
786 
787 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
788 			lip->li_ops->iop_release(lip);
789 			continue;
790 		}
791 
792 		if (lip->li_ops->iop_committed)
793 			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
794 		else
795 			item_lsn = commit_lsn;
796 
797 		/* item_lsn of -1 means the item needs no further processing */
798 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
799 			continue;
800 
801 		/*
802 		 * if we are aborting the operation, no point in inserting the
803 		 * object into the AIL as we are in a shutdown situation.
804 		 */
805 		if (aborted) {
806 			ASSERT(xlog_is_shutdown(ailp->ail_log));
807 			if (lip->li_ops->iop_unpin)
808 				lip->li_ops->iop_unpin(lip, 1);
809 			continue;
810 		}
811 
812 		if (item_lsn != commit_lsn) {
813 
814 			/*
815 			 * Not a bulk update option due to unusual item_lsn.
816 			 * Push into AIL immediately, rechecking the lsn once
817 			 * we have the ail lock. Then unpin the item. This does
818 			 * not affect the AIL cursor the bulk insert path is
819 			 * using.
820 			 */
821 			spin_lock(&ailp->ail_lock);
822 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
823 				xfs_trans_ail_update(ailp, lip, item_lsn);
824 			else
825 				spin_unlock(&ailp->ail_lock);
826 			if (lip->li_ops->iop_unpin)
827 				lip->li_ops->iop_unpin(lip, 0);
828 			continue;
829 		}
830 
831 		/* Item is a candidate for bulk AIL insert.  */
832 		log_items[i++] = lv->lv_item;
833 		if (i >= LOG_ITEM_BATCH_SIZE) {
834 			xfs_log_item_batch_insert(ailp, &cur, log_items,
835 					LOG_ITEM_BATCH_SIZE, commit_lsn);
836 			i = 0;
837 		}
838 	}
839 
840 	/* make sure we insert the remainder! */
841 	if (i)
842 		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
843 
844 	spin_lock(&ailp->ail_lock);
845 	xfs_trans_ail_cursor_done(&cur);
846 	spin_unlock(&ailp->ail_lock);
847 }
848 
849 /*
850  * Sort transaction items prior to running precommit operations. This will
851  * attempt to order the items such that they will always be locked in the same
852  * order. Items that have no sort function are moved to the end of the list
853  * and so are locked last.
854  *
855  * This may need refinement as different types of objects add sort functions.
856  *
857  * Function is more complex than it needs to be because we are comparing 64 bit
858  * values and the function only returns 32 bit values.
859  */
860 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)861 xfs_trans_precommit_sort(
862 	void			*unused_arg,
863 	const struct list_head	*a,
864 	const struct list_head	*b)
865 {
866 	struct xfs_log_item	*lia = container_of(a,
867 					struct xfs_log_item, li_trans);
868 	struct xfs_log_item	*lib = container_of(b,
869 					struct xfs_log_item, li_trans);
870 	int64_t			diff;
871 
872 	/*
873 	 * If both items are non-sortable, leave them alone. If only one is
874 	 * sortable, move the non-sortable item towards the end of the list.
875 	 */
876 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
877 		return 0;
878 	if (!lia->li_ops->iop_sort)
879 		return 1;
880 	if (!lib->li_ops->iop_sort)
881 		return -1;
882 
883 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
884 	if (diff < 0)
885 		return -1;
886 	if (diff > 0)
887 		return 1;
888 	return 0;
889 }
890 
891 /*
892  * Run transaction precommit functions.
893  *
894  * If there is an error in any of the callouts, then stop immediately and
895  * trigger a shutdown to abort the transaction. There is no recovery possible
896  * from errors at this point as the transaction is dirty....
897  */
898 static int
xfs_trans_run_precommits(struct xfs_trans * tp)899 xfs_trans_run_precommits(
900 	struct xfs_trans	*tp)
901 {
902 	struct xfs_mount	*mp = tp->t_mountp;
903 	struct xfs_log_item	*lip, *n;
904 	int			error = 0;
905 
906 	/*
907 	 * Sort the item list to avoid ABBA deadlocks with other transactions
908 	 * running precommit operations that lock multiple shared items such as
909 	 * inode cluster buffers.
910 	 */
911 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
912 
913 	/*
914 	 * Precommit operations can remove the log item from the transaction
915 	 * if the log item exists purely to delay modifications until they
916 	 * can be ordered against other operations. Hence we have to use
917 	 * list_for_each_entry_safe() here.
918 	 */
919 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
920 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
921 			continue;
922 		if (lip->li_ops->iop_precommit) {
923 			error = lip->li_ops->iop_precommit(tp, lip);
924 			if (error)
925 				break;
926 		}
927 	}
928 	if (error)
929 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
930 	return error;
931 }
932 
933 /*
934  * Commit the given transaction to the log.
935  *
936  * XFS disk error handling mechanism is not based on a typical
937  * transaction abort mechanism. Logically after the filesystem
938  * gets marked 'SHUTDOWN', we can't let any new transactions
939  * be durable - ie. committed to disk - because some metadata might
940  * be inconsistent. In such cases, this returns an error, and the
941  * caller may assume that all locked objects joined to the transaction
942  * have already been unlocked as if the commit had succeeded.
943  * Do not reference the transaction structure after this call.
944  */
945 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)946 __xfs_trans_commit(
947 	struct xfs_trans	*tp,
948 	bool			regrant)
949 {
950 	struct xfs_mount	*mp = tp->t_mountp;
951 	struct xlog		*log = mp->m_log;
952 	xfs_csn_t		commit_seq = 0;
953 	int			error = 0;
954 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
955 
956 	trace_xfs_trans_commit(tp, _RET_IP_);
957 
958 	/*
959 	 * Finish deferred items on final commit. Only permanent transactions
960 	 * should ever have deferred ops.
961 	 */
962 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
963 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
964 	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
965 		error = xfs_defer_finish_noroll(&tp);
966 		if (error)
967 			goto out_unreserve;
968 	}
969 
970 	error = xfs_trans_run_precommits(tp);
971 	if (error)
972 		goto out_unreserve;
973 
974 	/*
975 	 * If there is nothing to be logged by the transaction,
976 	 * then unlock all of the items associated with the
977 	 * transaction and free the transaction structure.
978 	 * Also make sure to return any reserved blocks to
979 	 * the free pool.
980 	 */
981 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
982 		goto out_unreserve;
983 
984 	/*
985 	 * We must check against log shutdown here because we cannot abort log
986 	 * items and leave them dirty, inconsistent and unpinned in memory while
987 	 * the log is active. This leaves them open to being written back to
988 	 * disk, and that will lead to on-disk corruption.
989 	 */
990 	if (xlog_is_shutdown(log)) {
991 		error = -EIO;
992 		goto out_unreserve;
993 	}
994 
995 	ASSERT(tp->t_ticket != NULL);
996 
997 	/*
998 	 * If we need to update the superblock, then do it now.
999 	 */
1000 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1001 		xfs_trans_apply_sb_deltas(tp);
1002 	xfs_trans_apply_dquot_deltas(tp);
1003 
1004 	xlog_cil_commit(log, tp, &commit_seq, regrant);
1005 
1006 	xfs_trans_free(tp);
1007 
1008 	/*
1009 	 * If the transaction needs to be synchronous, then force the
1010 	 * log out now and wait for it.
1011 	 */
1012 	if (sync) {
1013 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1014 		XFS_STATS_INC(mp, xs_trans_sync);
1015 	} else {
1016 		XFS_STATS_INC(mp, xs_trans_async);
1017 	}
1018 
1019 	return error;
1020 
1021 out_unreserve:
1022 	xfs_trans_unreserve_and_mod_sb(tp);
1023 
1024 	/*
1025 	 * It is indeed possible for the transaction to be not dirty but
1026 	 * the dqinfo portion to be.  All that means is that we have some
1027 	 * (non-persistent) quota reservations that need to be unreserved.
1028 	 */
1029 	xfs_trans_unreserve_and_mod_dquots(tp);
1030 	if (tp->t_ticket) {
1031 		if (regrant && !xlog_is_shutdown(log))
1032 			xfs_log_ticket_regrant(log, tp->t_ticket);
1033 		else
1034 			xfs_log_ticket_ungrant(log, tp->t_ticket);
1035 		tp->t_ticket = NULL;
1036 	}
1037 	xfs_trans_free_items(tp, !!error);
1038 	xfs_trans_free(tp);
1039 
1040 	XFS_STATS_INC(mp, xs_trans_empty);
1041 	return error;
1042 }
1043 
1044 int
xfs_trans_commit(struct xfs_trans * tp)1045 xfs_trans_commit(
1046 	struct xfs_trans	*tp)
1047 {
1048 	return __xfs_trans_commit(tp, false);
1049 }
1050 
1051 /*
1052  * Unlock all of the transaction's items and free the transaction.  If the
1053  * transaction is dirty, we must shut down the filesystem because there is no
1054  * way to restore them to their previous state.
1055  *
1056  * If the transaction has made a log reservation, make sure to release it as
1057  * well.
1058  *
1059  * This is a high level function (equivalent to xfs_trans_commit()) and so can
1060  * be called after the transaction has effectively been aborted due to the mount
1061  * being shut down. However, if the mount has not been shut down and the
1062  * transaction is dirty we will shut the mount down and, in doing so, that
1063  * guarantees that the log is shut down, too. Hence we don't need to be as
1064  * careful with shutdown state and dirty items here as we need to be in
1065  * xfs_trans_commit().
1066  */
1067 void
xfs_trans_cancel(struct xfs_trans * tp)1068 xfs_trans_cancel(
1069 	struct xfs_trans	*tp)
1070 {
1071 	struct xfs_mount	*mp = tp->t_mountp;
1072 	struct xlog		*log = mp->m_log;
1073 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1074 
1075 	trace_xfs_trans_cancel(tp, _RET_IP_);
1076 
1077 	/*
1078 	 * It's never valid to cancel a transaction with deferred ops attached,
1079 	 * because the transaction is effectively dirty.  Complain about this
1080 	 * loudly before freeing the in-memory defer items and shutting down the
1081 	 * filesystem.
1082 	 */
1083 	if (!list_empty(&tp->t_dfops)) {
1084 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1085 		dirty = true;
1086 		xfs_defer_cancel(tp);
1087 	}
1088 
1089 	/*
1090 	 * See if the caller is relying on us to shut down the filesystem. We
1091 	 * only want an error report if there isn't already a shutdown in
1092 	 * progress, so we only need to check against the mount shutdown state
1093 	 * here.
1094 	 */
1095 	if (dirty && !xfs_is_shutdown(mp)) {
1096 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1097 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1098 	}
1099 #ifdef DEBUG
1100 	/* Log items need to be consistent until the log is shut down. */
1101 	if (!dirty && !xlog_is_shutdown(log)) {
1102 		struct xfs_log_item *lip;
1103 
1104 		list_for_each_entry(lip, &tp->t_items, li_trans)
1105 			ASSERT(!xlog_item_is_intent_done(lip));
1106 	}
1107 #endif
1108 	xfs_trans_unreserve_and_mod_sb(tp);
1109 	xfs_trans_unreserve_and_mod_dquots(tp);
1110 
1111 	if (tp->t_ticket) {
1112 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1113 		tp->t_ticket = NULL;
1114 	}
1115 
1116 	xfs_trans_free_items(tp, dirty);
1117 	xfs_trans_free(tp);
1118 }
1119 
1120 /*
1121  * Roll from one trans in the sequence of PERMANENT transactions to
1122  * the next: permanent transactions are only flushed out when
1123  * committed with xfs_trans_commit(), but we still want as soon
1124  * as possible to let chunks of it go to the log. So we commit the
1125  * chunk we've been working on and get a new transaction to continue.
1126  */
1127 int
xfs_trans_roll(struct xfs_trans ** tpp)1128 xfs_trans_roll(
1129 	struct xfs_trans	**tpp)
1130 {
1131 	struct xfs_trans	*trans = *tpp;
1132 	struct xfs_trans_res	tres;
1133 	int			error;
1134 
1135 	trace_xfs_trans_roll(trans, _RET_IP_);
1136 
1137 	/*
1138 	 * Copy the critical parameters from one trans to the next.
1139 	 */
1140 	tres.tr_logres = trans->t_log_res;
1141 	tres.tr_logcount = trans->t_log_count;
1142 
1143 	*tpp = xfs_trans_dup(trans);
1144 
1145 	/*
1146 	 * Commit the current transaction.
1147 	 * If this commit failed, then it'd just unlock those items that
1148 	 * are not marked ihold. That also means that a filesystem shutdown
1149 	 * is in progress. The caller takes the responsibility to cancel
1150 	 * the duplicate transaction that gets returned.
1151 	 */
1152 	error = __xfs_trans_commit(trans, true);
1153 	if (error)
1154 		return error;
1155 
1156 	/*
1157 	 * Reserve space in the log for the next transaction.
1158 	 * This also pushes items in the "AIL", the list of logged items,
1159 	 * out to disk if they are taking up space at the tail of the log
1160 	 * that we want to use.  This requires that either nothing be locked
1161 	 * across this call, or that anything that is locked be logged in
1162 	 * the prior and the next transactions.
1163 	 */
1164 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1165 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1166 }
1167 
1168 /*
1169  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1170  *
1171  * The caller must ensure that the on-disk dquots attached to this inode have
1172  * already been allocated and initialized.  The caller is responsible for
1173  * releasing ILOCK_EXCL if a new transaction is returned.
1174  */
1175 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1176 xfs_trans_alloc_inode(
1177 	struct xfs_inode	*ip,
1178 	struct xfs_trans_res	*resv,
1179 	unsigned int		dblocks,
1180 	unsigned int		rblocks,
1181 	bool			force,
1182 	struct xfs_trans	**tpp)
1183 {
1184 	struct xfs_trans	*tp;
1185 	struct xfs_mount	*mp = ip->i_mount;
1186 	bool			retried = false;
1187 	int			error;
1188 
1189 retry:
1190 	error = xfs_trans_alloc(mp, resv, dblocks,
1191 			rblocks / mp->m_sb.sb_rextsize,
1192 			force ? XFS_TRANS_RESERVE : 0, &tp);
1193 	if (error)
1194 		return error;
1195 
1196 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1197 	xfs_trans_ijoin(tp, ip, 0);
1198 
1199 	error = xfs_qm_dqattach_locked(ip, false);
1200 	if (error) {
1201 		/* Caller should have allocated the dquots! */
1202 		ASSERT(error != -ENOENT);
1203 		goto out_cancel;
1204 	}
1205 
1206 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1207 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1208 		xfs_trans_cancel(tp);
1209 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210 		xfs_blockgc_free_quota(ip, 0);
1211 		retried = true;
1212 		goto retry;
1213 	}
1214 	if (error)
1215 		goto out_cancel;
1216 
1217 	*tpp = tp;
1218 	return 0;
1219 
1220 out_cancel:
1221 	xfs_trans_cancel(tp);
1222 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1223 	return error;
1224 }
1225 
1226 /*
1227  * Allocate an transaction in preparation for inode creation by reserving quota
1228  * against the given dquots.  Callers are not required to hold any inode locks.
1229  */
1230 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1231 xfs_trans_alloc_icreate(
1232 	struct xfs_mount	*mp,
1233 	struct xfs_trans_res	*resv,
1234 	struct xfs_dquot	*udqp,
1235 	struct xfs_dquot	*gdqp,
1236 	struct xfs_dquot	*pdqp,
1237 	unsigned int		dblocks,
1238 	struct xfs_trans	**tpp)
1239 {
1240 	struct xfs_trans	*tp;
1241 	bool			retried = false;
1242 	int			error;
1243 
1244 retry:
1245 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1246 	if (error)
1247 		return error;
1248 
1249 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1250 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1251 		xfs_trans_cancel(tp);
1252 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1253 		retried = true;
1254 		goto retry;
1255 	}
1256 	if (error) {
1257 		xfs_trans_cancel(tp);
1258 		return error;
1259 	}
1260 
1261 	*tpp = tp;
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Allocate an transaction, lock and join the inode to it, and reserve quota
1267  * in preparation for inode attribute changes that include uid, gid, or prid
1268  * changes.
1269  *
1270  * The caller must ensure that the on-disk dquots attached to this inode have
1271  * already been allocated and initialized.  The ILOCK will be dropped when the
1272  * transaction is committed or cancelled.
1273  */
1274 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1275 xfs_trans_alloc_ichange(
1276 	struct xfs_inode	*ip,
1277 	struct xfs_dquot	*new_udqp,
1278 	struct xfs_dquot	*new_gdqp,
1279 	struct xfs_dquot	*new_pdqp,
1280 	bool			force,
1281 	struct xfs_trans	**tpp)
1282 {
1283 	struct xfs_trans	*tp;
1284 	struct xfs_mount	*mp = ip->i_mount;
1285 	struct xfs_dquot	*udqp;
1286 	struct xfs_dquot	*gdqp;
1287 	struct xfs_dquot	*pdqp;
1288 	bool			retried = false;
1289 	int			error;
1290 
1291 retry:
1292 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1293 	if (error)
1294 		return error;
1295 
1296 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1297 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1298 
1299 	error = xfs_qm_dqattach_locked(ip, false);
1300 	if (error) {
1301 		/* Caller should have allocated the dquots! */
1302 		ASSERT(error != -ENOENT);
1303 		goto out_cancel;
1304 	}
1305 
1306 	/*
1307 	 * For each quota type, skip quota reservations if the inode's dquots
1308 	 * now match the ones that came from the caller, or the caller didn't
1309 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1310 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1311 	 */
1312 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1313 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1314 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1315 	if (udqp || gdqp || pdqp) {
1316 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1317 
1318 		if (force)
1319 			qflags |= XFS_QMOPT_FORCE_RES;
1320 
1321 		/*
1322 		 * Reserve enough quota to handle blocks on disk and reserved
1323 		 * for a delayed allocation.  We'll actually transfer the
1324 		 * delalloc reservation between dquots at chown time, even
1325 		 * though that part is only semi-transactional.
1326 		 */
1327 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1328 				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1329 				1, qflags);
1330 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1331 			xfs_trans_cancel(tp);
1332 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1333 			retried = true;
1334 			goto retry;
1335 		}
1336 		if (error)
1337 			goto out_cancel;
1338 	}
1339 
1340 	*tpp = tp;
1341 	return 0;
1342 
1343 out_cancel:
1344 	xfs_trans_cancel(tp);
1345 	return error;
1346 }
1347 
1348 /*
1349  * Allocate an transaction, lock and join the directory and child inodes to it,
1350  * and reserve quota for a directory update.  If there isn't sufficient space,
1351  * @dblocks will be set to zero for a reservationless directory update and
1352  * @nospace_error will be set to a negative errno describing the space
1353  * constraint we hit.
1354  *
1355  * The caller must ensure that the on-disk dquots attached to this inode have
1356  * already been allocated and initialized.  The ILOCKs will be dropped when the
1357  * transaction is committed or cancelled.
1358  */
1359 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1360 xfs_trans_alloc_dir(
1361 	struct xfs_inode	*dp,
1362 	struct xfs_trans_res	*resv,
1363 	struct xfs_inode	*ip,
1364 	unsigned int		*dblocks,
1365 	struct xfs_trans	**tpp,
1366 	int			*nospace_error)
1367 {
1368 	struct xfs_trans	*tp;
1369 	struct xfs_mount	*mp = ip->i_mount;
1370 	unsigned int		resblks;
1371 	bool			retried = false;
1372 	int			error;
1373 
1374 retry:
1375 	*nospace_error = 0;
1376 	resblks = *dblocks;
1377 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1378 	if (error == -ENOSPC) {
1379 		*nospace_error = error;
1380 		resblks = 0;
1381 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1382 	}
1383 	if (error)
1384 		return error;
1385 
1386 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1387 
1388 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1389 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1390 
1391 	error = xfs_qm_dqattach_locked(dp, false);
1392 	if (error) {
1393 		/* Caller should have allocated the dquots! */
1394 		ASSERT(error != -ENOENT);
1395 		goto out_cancel;
1396 	}
1397 
1398 	error = xfs_qm_dqattach_locked(ip, false);
1399 	if (error) {
1400 		/* Caller should have allocated the dquots! */
1401 		ASSERT(error != -ENOENT);
1402 		goto out_cancel;
1403 	}
1404 
1405 	if (resblks == 0)
1406 		goto done;
1407 
1408 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1409 	if (error == -EDQUOT || error == -ENOSPC) {
1410 		if (!retried) {
1411 			xfs_trans_cancel(tp);
1412 			xfs_blockgc_free_quota(dp, 0);
1413 			retried = true;
1414 			goto retry;
1415 		}
1416 
1417 		*nospace_error = error;
1418 		resblks = 0;
1419 		error = 0;
1420 	}
1421 	if (error)
1422 		goto out_cancel;
1423 
1424 done:
1425 	*tpp = tp;
1426 	*dblocks = resblks;
1427 	return 0;
1428 
1429 out_cancel:
1430 	xfs_trans_cancel(tp);
1431 	return error;
1432 }
1433