1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22
23 #include <linux/iversion.h>
24
25 struct kmem_cache *xfs_ili_cache; /* inode log item */
26
INODE_ITEM(struct xfs_log_item * lip)27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28 {
29 return container_of(lip, struct xfs_inode_log_item, ili_item);
30 }
31
32 static uint64_t
xfs_inode_item_sort(struct xfs_log_item * lip)33 xfs_inode_item_sort(
34 struct xfs_log_item *lip)
35 {
36 return INODE_ITEM(lip)->ili_inode->i_ino;
37 }
38
39 #ifdef DEBUG_EXPENSIVE
40 static void
xfs_inode_item_precommit_check(struct xfs_inode * ip)41 xfs_inode_item_precommit_check(
42 struct xfs_inode *ip)
43 {
44 struct xfs_mount *mp = ip->i_mount;
45 struct xfs_dinode *dip;
46 xfs_failaddr_t fa;
47
48 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
49 if (!dip) {
50 ASSERT(dip != NULL);
51 return;
52 }
53
54 xfs_inode_to_disk(ip, dip, 0);
55 xfs_dinode_calc_crc(mp, dip);
56 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
57 if (fa) {
58 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
59 sizeof(*dip), fa);
60 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
61 ASSERT(fa == NULL);
62 }
63 kfree(dip);
64 }
65 #else
66 # define xfs_inode_item_precommit_check(ip) ((void)0)
67 #endif
68
69 /*
70 * Prior to finally logging the inode, we have to ensure that all the
71 * per-modification inode state changes are applied. This includes VFS inode
72 * state updates, format conversions, verifier state synchronisation and
73 * ensuring the inode buffer remains in memory whilst the inode is dirty.
74 *
75 * We have to be careful when we grab the inode cluster buffer due to lock
76 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
77 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
78 * not locked until ->precommit, so it happens after everything else has been
79 * modified.
80 *
81 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
82 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
83 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
84 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
85 * AGF lock modifying directory blocks.
86 *
87 * Rather than force a complete rework of all the transactions to call
88 * xfs_trans_log_inode() once and once only at the end of every transaction, we
89 * move the pinning of the inode cluster buffer to a ->precommit operation. This
90 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
91 * ensures that the inode cluster buffer locking is always done last in a
92 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
93 * cluster buffer.
94 *
95 * If we return the inode number as the precommit sort key then we'll also
96 * guarantee that the order all inode cluster buffer locking is the same all the
97 * inodes and unlink items in the transaction.
98 */
99 static int
xfs_inode_item_precommit(struct xfs_trans * tp,struct xfs_log_item * lip)100 xfs_inode_item_precommit(
101 struct xfs_trans *tp,
102 struct xfs_log_item *lip)
103 {
104 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
105 struct xfs_inode *ip = iip->ili_inode;
106 struct inode *inode = VFS_I(ip);
107 unsigned int flags = iip->ili_dirty_flags;
108
109 /*
110 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
111 * don't matter - we either will need an extra transaction in 24 hours
112 * to log the timestamps, or will clear already cleared fields in the
113 * worst case.
114 */
115 if (inode->i_state & I_DIRTY_TIME) {
116 spin_lock(&inode->i_lock);
117 inode->i_state &= ~I_DIRTY_TIME;
118 spin_unlock(&inode->i_lock);
119 }
120
121 /*
122 * If we're updating the inode core or the timestamps and it's possible
123 * to upgrade this inode to bigtime format, do so now.
124 */
125 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
126 xfs_has_bigtime(ip->i_mount) &&
127 !xfs_inode_has_bigtime(ip)) {
128 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
129 flags |= XFS_ILOG_CORE;
130 }
131
132 /*
133 * Inode verifiers do not check that the extent size hint is an integer
134 * multiple of the rt extent size on a directory with both rtinherit
135 * and extszinherit flags set. If we're logging a directory that is
136 * misconfigured in this way, clear the hint.
137 */
138 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
139 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
140 (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) {
141 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
142 XFS_DIFLAG_EXTSZINHERIT);
143 ip->i_extsize = 0;
144 flags |= XFS_ILOG_CORE;
145 }
146
147 /*
148 * Record the specific change for fdatasync optimisation. This allows
149 * fdatasync to skip log forces for inodes that are only timestamp
150 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
151 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
152 * (ili_fields) correctly tracks that the version has changed.
153 */
154 spin_lock(&iip->ili_lock);
155 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
156 if (flags & XFS_ILOG_IVERSION)
157 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
158
159 if (!iip->ili_item.li_buf) {
160 struct xfs_buf *bp;
161 int error;
162
163 /*
164 * We hold the ILOCK here, so this inode is not going to be
165 * flushed while we are here. Further, because there is no
166 * buffer attached to the item, we know that there is no IO in
167 * progress, so nothing will clear the ili_fields while we read
168 * in the buffer. Hence we can safely drop the spin lock and
169 * read the buffer knowing that the state will not change from
170 * here.
171 */
172 spin_unlock(&iip->ili_lock);
173 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
174 if (error)
175 return error;
176
177 /*
178 * We need an explicit buffer reference for the log item but
179 * don't want the buffer to remain attached to the transaction.
180 * Hold the buffer but release the transaction reference once
181 * we've attached the inode log item to the buffer log item
182 * list.
183 */
184 xfs_buf_hold(bp);
185 spin_lock(&iip->ili_lock);
186 iip->ili_item.li_buf = bp;
187 bp->b_flags |= _XBF_INODES;
188 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
189 xfs_trans_brelse(tp, bp);
190 }
191
192 /*
193 * Always OR in the bits from the ili_last_fields field. This is to
194 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
195 * in the eventual clearing of the ili_fields bits. See the big comment
196 * in xfs_iflush() for an explanation of this coordination mechanism.
197 */
198 iip->ili_fields |= (flags | iip->ili_last_fields);
199 spin_unlock(&iip->ili_lock);
200
201 xfs_inode_item_precommit_check(ip);
202
203 /*
204 * We are done with the log item transaction dirty state, so clear it so
205 * that it doesn't pollute future transactions.
206 */
207 iip->ili_dirty_flags = 0;
208 return 0;
209 }
210
211 /*
212 * The logged size of an inode fork is always the current size of the inode
213 * fork. This means that when an inode fork is relogged, the size of the logged
214 * region is determined by the current state, not the combination of the
215 * previously logged state + the current state. This is different relogging
216 * behaviour to most other log items which will retain the size of the
217 * previously logged changes when smaller regions are relogged.
218 *
219 * Hence operations that remove data from the inode fork (e.g. shortform
220 * dir/attr remove, extent form extent removal, etc), the size of the relogged
221 * inode gets -smaller- rather than stays the same size as the previously logged
222 * size and this can result in the committing transaction reducing the amount of
223 * space being consumed by the CIL.
224 */
225 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)226 xfs_inode_item_data_fork_size(
227 struct xfs_inode_log_item *iip,
228 int *nvecs,
229 int *nbytes)
230 {
231 struct xfs_inode *ip = iip->ili_inode;
232
233 switch (ip->i_df.if_format) {
234 case XFS_DINODE_FMT_EXTENTS:
235 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
236 ip->i_df.if_nextents > 0 &&
237 ip->i_df.if_bytes > 0) {
238 /* worst case, doesn't subtract delalloc extents */
239 *nbytes += xfs_inode_data_fork_size(ip);
240 *nvecs += 1;
241 }
242 break;
243 case XFS_DINODE_FMT_BTREE:
244 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
245 ip->i_df.if_broot_bytes > 0) {
246 *nbytes += ip->i_df.if_broot_bytes;
247 *nvecs += 1;
248 }
249 break;
250 case XFS_DINODE_FMT_LOCAL:
251 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
252 ip->i_df.if_bytes > 0) {
253 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
254 *nvecs += 1;
255 }
256 break;
257
258 case XFS_DINODE_FMT_DEV:
259 break;
260 default:
261 ASSERT(0);
262 break;
263 }
264 }
265
266 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)267 xfs_inode_item_attr_fork_size(
268 struct xfs_inode_log_item *iip,
269 int *nvecs,
270 int *nbytes)
271 {
272 struct xfs_inode *ip = iip->ili_inode;
273
274 switch (ip->i_af.if_format) {
275 case XFS_DINODE_FMT_EXTENTS:
276 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
277 ip->i_af.if_nextents > 0 &&
278 ip->i_af.if_bytes > 0) {
279 /* worst case, doesn't subtract unused space */
280 *nbytes += xfs_inode_attr_fork_size(ip);
281 *nvecs += 1;
282 }
283 break;
284 case XFS_DINODE_FMT_BTREE:
285 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
286 ip->i_af.if_broot_bytes > 0) {
287 *nbytes += ip->i_af.if_broot_bytes;
288 *nvecs += 1;
289 }
290 break;
291 case XFS_DINODE_FMT_LOCAL:
292 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
293 ip->i_af.if_bytes > 0) {
294 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
295 *nvecs += 1;
296 }
297 break;
298 default:
299 ASSERT(0);
300 break;
301 }
302 }
303
304 /*
305 * This returns the number of iovecs needed to log the given inode item.
306 *
307 * We need one iovec for the inode log format structure, one for the
308 * inode core, and possibly one for the inode data/extents/b-tree root
309 * and one for the inode attribute data/extents/b-tree root.
310 */
311 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)312 xfs_inode_item_size(
313 struct xfs_log_item *lip,
314 int *nvecs,
315 int *nbytes)
316 {
317 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
318 struct xfs_inode *ip = iip->ili_inode;
319
320 *nvecs += 2;
321 *nbytes += sizeof(struct xfs_inode_log_format) +
322 xfs_log_dinode_size(ip->i_mount);
323
324 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
325 if (xfs_inode_has_attr_fork(ip))
326 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
327 }
328
329 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)330 xfs_inode_item_format_data_fork(
331 struct xfs_inode_log_item *iip,
332 struct xfs_inode_log_format *ilf,
333 struct xfs_log_vec *lv,
334 struct xfs_log_iovec **vecp)
335 {
336 struct xfs_inode *ip = iip->ili_inode;
337 size_t data_bytes;
338
339 switch (ip->i_df.if_format) {
340 case XFS_DINODE_FMT_EXTENTS:
341 iip->ili_fields &=
342 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
343
344 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
345 ip->i_df.if_nextents > 0 &&
346 ip->i_df.if_bytes > 0) {
347 struct xfs_bmbt_rec *p;
348
349 ASSERT(xfs_iext_count(&ip->i_df) > 0);
350
351 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
352 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
353 xlog_finish_iovec(lv, *vecp, data_bytes);
354
355 ASSERT(data_bytes <= ip->i_df.if_bytes);
356
357 ilf->ilf_dsize = data_bytes;
358 ilf->ilf_size++;
359 } else {
360 iip->ili_fields &= ~XFS_ILOG_DEXT;
361 }
362 break;
363 case XFS_DINODE_FMT_BTREE:
364 iip->ili_fields &=
365 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
366
367 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
368 ip->i_df.if_broot_bytes > 0) {
369 ASSERT(ip->i_df.if_broot != NULL);
370 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
371 ip->i_df.if_broot,
372 ip->i_df.if_broot_bytes);
373 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
374 ilf->ilf_size++;
375 } else {
376 ASSERT(!(iip->ili_fields &
377 XFS_ILOG_DBROOT));
378 iip->ili_fields &= ~XFS_ILOG_DBROOT;
379 }
380 break;
381 case XFS_DINODE_FMT_LOCAL:
382 iip->ili_fields &=
383 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
384 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
385 ip->i_df.if_bytes > 0) {
386 ASSERT(ip->i_df.if_u1.if_data != NULL);
387 ASSERT(ip->i_disk_size > 0);
388 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
389 ip->i_df.if_u1.if_data,
390 ip->i_df.if_bytes);
391 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
392 ilf->ilf_size++;
393 } else {
394 iip->ili_fields &= ~XFS_ILOG_DDATA;
395 }
396 break;
397 case XFS_DINODE_FMT_DEV:
398 iip->ili_fields &=
399 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
400 if (iip->ili_fields & XFS_ILOG_DEV)
401 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
402 break;
403 default:
404 ASSERT(0);
405 break;
406 }
407 }
408
409 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)410 xfs_inode_item_format_attr_fork(
411 struct xfs_inode_log_item *iip,
412 struct xfs_inode_log_format *ilf,
413 struct xfs_log_vec *lv,
414 struct xfs_log_iovec **vecp)
415 {
416 struct xfs_inode *ip = iip->ili_inode;
417 size_t data_bytes;
418
419 switch (ip->i_af.if_format) {
420 case XFS_DINODE_FMT_EXTENTS:
421 iip->ili_fields &=
422 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
423
424 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
425 ip->i_af.if_nextents > 0 &&
426 ip->i_af.if_bytes > 0) {
427 struct xfs_bmbt_rec *p;
428
429 ASSERT(xfs_iext_count(&ip->i_af) ==
430 ip->i_af.if_nextents);
431
432 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
433 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
434 xlog_finish_iovec(lv, *vecp, data_bytes);
435
436 ilf->ilf_asize = data_bytes;
437 ilf->ilf_size++;
438 } else {
439 iip->ili_fields &= ~XFS_ILOG_AEXT;
440 }
441 break;
442 case XFS_DINODE_FMT_BTREE:
443 iip->ili_fields &=
444 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
445
446 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
447 ip->i_af.if_broot_bytes > 0) {
448 ASSERT(ip->i_af.if_broot != NULL);
449
450 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
451 ip->i_af.if_broot,
452 ip->i_af.if_broot_bytes);
453 ilf->ilf_asize = ip->i_af.if_broot_bytes;
454 ilf->ilf_size++;
455 } else {
456 iip->ili_fields &= ~XFS_ILOG_ABROOT;
457 }
458 break;
459 case XFS_DINODE_FMT_LOCAL:
460 iip->ili_fields &=
461 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
462
463 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
464 ip->i_af.if_bytes > 0) {
465 ASSERT(ip->i_af.if_u1.if_data != NULL);
466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
467 ip->i_af.if_u1.if_data,
468 ip->i_af.if_bytes);
469 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
470 ilf->ilf_size++;
471 } else {
472 iip->ili_fields &= ~XFS_ILOG_ADATA;
473 }
474 break;
475 default:
476 ASSERT(0);
477 break;
478 }
479 }
480
481 /*
482 * Convert an incore timestamp to a log timestamp. Note that the log format
483 * specifies host endian format!
484 */
485 static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)486 xfs_inode_to_log_dinode_ts(
487 struct xfs_inode *ip,
488 const struct timespec64 tv)
489 {
490 struct xfs_log_legacy_timestamp *lits;
491 xfs_log_timestamp_t its;
492
493 if (xfs_inode_has_bigtime(ip))
494 return xfs_inode_encode_bigtime(tv);
495
496 lits = (struct xfs_log_legacy_timestamp *)&its;
497 lits->t_sec = tv.tv_sec;
498 lits->t_nsec = tv.tv_nsec;
499
500 return its;
501 }
502
503 /*
504 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
505 * but not in the in-memory one. But we are guaranteed to have an inode buffer
506 * in memory when logging an inode, so we can just copy it from the on-disk
507 * inode to the in-log inode here so that recovery of file system with these
508 * fields set to non-zero values doesn't lose them. For all other cases we zero
509 * the fields.
510 */
511 static void
xfs_copy_dm_fields_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to)512 xfs_copy_dm_fields_to_log_dinode(
513 struct xfs_inode *ip,
514 struct xfs_log_dinode *to)
515 {
516 struct xfs_dinode *dip;
517
518 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
519 ip->i_imap.im_boffset);
520
521 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
522 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
523 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
524 } else {
525 to->di_dmevmask = 0;
526 to->di_dmstate = 0;
527 }
528 }
529
530 static inline void
xfs_inode_to_log_dinode_iext_counters(struct xfs_inode * ip,struct xfs_log_dinode * to)531 xfs_inode_to_log_dinode_iext_counters(
532 struct xfs_inode *ip,
533 struct xfs_log_dinode *to)
534 {
535 if (xfs_inode_has_large_extent_counts(ip)) {
536 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
537 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
538 to->di_nrext64_pad = 0;
539 } else {
540 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
541 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
542 }
543 }
544
545 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)546 xfs_inode_to_log_dinode(
547 struct xfs_inode *ip,
548 struct xfs_log_dinode *to,
549 xfs_lsn_t lsn)
550 {
551 struct inode *inode = VFS_I(ip);
552
553 to->di_magic = XFS_DINODE_MAGIC;
554 to->di_format = xfs_ifork_format(&ip->i_df);
555 to->di_uid = i_uid_read(inode);
556 to->di_gid = i_gid_read(inode);
557 to->di_projid_lo = ip->i_projid & 0xffff;
558 to->di_projid_hi = ip->i_projid >> 16;
559
560 memset(to->di_pad3, 0, sizeof(to->di_pad3));
561 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
562 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
563 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
564 to->di_nlink = inode->i_nlink;
565 to->di_gen = inode->i_generation;
566 to->di_mode = inode->i_mode;
567
568 to->di_size = ip->i_disk_size;
569 to->di_nblocks = ip->i_nblocks;
570 to->di_extsize = ip->i_extsize;
571 to->di_forkoff = ip->i_forkoff;
572 to->di_aformat = xfs_ifork_format(&ip->i_af);
573 to->di_flags = ip->i_diflags;
574
575 xfs_copy_dm_fields_to_log_dinode(ip, to);
576
577 /* log a dummy value to ensure log structure is fully initialised */
578 to->di_next_unlinked = NULLAGINO;
579
580 if (xfs_has_v3inodes(ip->i_mount)) {
581 to->di_version = 3;
582 to->di_changecount = inode_peek_iversion(inode);
583 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
584 to->di_flags2 = ip->i_diflags2;
585 to->di_cowextsize = ip->i_cowextsize;
586 to->di_ino = ip->i_ino;
587 to->di_lsn = lsn;
588 memset(to->di_pad2, 0, sizeof(to->di_pad2));
589 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
590 to->di_v3_pad = 0;
591
592 /* dummy value for initialisation */
593 to->di_crc = 0;
594 } else {
595 to->di_version = 2;
596 to->di_flushiter = ip->i_flushiter;
597 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
598 }
599
600 xfs_inode_to_log_dinode_iext_counters(ip, to);
601 }
602
603 /*
604 * Format the inode core. Current timestamp data is only in the VFS inode
605 * fields, so we need to grab them from there. Hence rather than just copying
606 * the XFS inode core structure, format the fields directly into the iovec.
607 */
608 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)609 xfs_inode_item_format_core(
610 struct xfs_inode *ip,
611 struct xfs_log_vec *lv,
612 struct xfs_log_iovec **vecp)
613 {
614 struct xfs_log_dinode *dic;
615
616 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
617 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
618 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
619 }
620
621 /*
622 * This is called to fill in the vector of log iovecs for the given inode
623 * log item. It fills the first item with an inode log format structure,
624 * the second with the on-disk inode structure, and a possible third and/or
625 * fourth with the inode data/extents/b-tree root and inode attributes
626 * data/extents/b-tree root.
627 *
628 * Note: Always use the 64 bit inode log format structure so we don't
629 * leave an uninitialised hole in the format item on 64 bit systems. Log
630 * recovery on 32 bit systems handles this just fine, so there's no reason
631 * for not using an initialising the properly padded structure all the time.
632 */
633 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)634 xfs_inode_item_format(
635 struct xfs_log_item *lip,
636 struct xfs_log_vec *lv)
637 {
638 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
639 struct xfs_inode *ip = iip->ili_inode;
640 struct xfs_log_iovec *vecp = NULL;
641 struct xfs_inode_log_format *ilf;
642
643 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
644 ilf->ilf_type = XFS_LI_INODE;
645 ilf->ilf_ino = ip->i_ino;
646 ilf->ilf_blkno = ip->i_imap.im_blkno;
647 ilf->ilf_len = ip->i_imap.im_len;
648 ilf->ilf_boffset = ip->i_imap.im_boffset;
649 ilf->ilf_fields = XFS_ILOG_CORE;
650 ilf->ilf_size = 2; /* format + core */
651
652 /*
653 * make sure we don't leak uninitialised data into the log in the case
654 * when we don't log every field in the inode.
655 */
656 ilf->ilf_dsize = 0;
657 ilf->ilf_asize = 0;
658 ilf->ilf_pad = 0;
659 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
660
661 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
662
663 xfs_inode_item_format_core(ip, lv, &vecp);
664 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
665 if (xfs_inode_has_attr_fork(ip)) {
666 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
667 } else {
668 iip->ili_fields &=
669 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
670 }
671
672 /* update the format with the exact fields we actually logged */
673 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
674 }
675
676 /*
677 * This is called to pin the inode associated with the inode log
678 * item in memory so it cannot be written out.
679 */
680 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)681 xfs_inode_item_pin(
682 struct xfs_log_item *lip)
683 {
684 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
685
686 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
687 ASSERT(lip->li_buf);
688
689 trace_xfs_inode_pin(ip, _RET_IP_);
690 atomic_inc(&ip->i_pincount);
691 }
692
693
694 /*
695 * This is called to unpin the inode associated with the inode log
696 * item which was previously pinned with a call to xfs_inode_item_pin().
697 *
698 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
699 *
700 * Note that unpin can race with inode cluster buffer freeing marking the buffer
701 * stale. In that case, flush completions are run from the buffer unpin call,
702 * which may happen before the inode is unpinned. If we lose the race, there
703 * will be no buffer attached to the log item, but the inode will be marked
704 * XFS_ISTALE.
705 */
706 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)707 xfs_inode_item_unpin(
708 struct xfs_log_item *lip,
709 int remove)
710 {
711 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
712
713 trace_xfs_inode_unpin(ip, _RET_IP_);
714 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
715 ASSERT(atomic_read(&ip->i_pincount) > 0);
716 if (atomic_dec_and_test(&ip->i_pincount))
717 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
718 }
719
720 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)721 xfs_inode_item_push(
722 struct xfs_log_item *lip,
723 struct list_head *buffer_list)
724 __releases(&lip->li_ailp->ail_lock)
725 __acquires(&lip->li_ailp->ail_lock)
726 {
727 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
728 struct xfs_inode *ip = iip->ili_inode;
729 struct xfs_buf *bp = lip->li_buf;
730 uint rval = XFS_ITEM_SUCCESS;
731 int error;
732
733 if (!bp || (ip->i_flags & XFS_ISTALE)) {
734 /*
735 * Inode item/buffer is being aborted due to cluster
736 * buffer deletion. Trigger a log force to have that operation
737 * completed and items removed from the AIL before the next push
738 * attempt.
739 */
740 return XFS_ITEM_PINNED;
741 }
742
743 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
744 return XFS_ITEM_PINNED;
745
746 if (xfs_iflags_test(ip, XFS_IFLUSHING))
747 return XFS_ITEM_FLUSHING;
748
749 if (!xfs_buf_trylock(bp))
750 return XFS_ITEM_LOCKED;
751
752 spin_unlock(&lip->li_ailp->ail_lock);
753
754 /*
755 * We need to hold a reference for flushing the cluster buffer as it may
756 * fail the buffer without IO submission. In which case, we better get a
757 * reference for that completion because otherwise we don't get a
758 * reference for IO until we queue the buffer for delwri submission.
759 */
760 xfs_buf_hold(bp);
761 error = xfs_iflush_cluster(bp);
762 if (!error) {
763 if (!xfs_buf_delwri_queue(bp, buffer_list))
764 rval = XFS_ITEM_FLUSHING;
765 xfs_buf_relse(bp);
766 } else {
767 /*
768 * Release the buffer if we were unable to flush anything. On
769 * any other error, the buffer has already been released.
770 */
771 if (error == -EAGAIN)
772 xfs_buf_relse(bp);
773 rval = XFS_ITEM_LOCKED;
774 }
775
776 spin_lock(&lip->li_ailp->ail_lock);
777 return rval;
778 }
779
780 /*
781 * Unlock the inode associated with the inode log item.
782 */
783 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)784 xfs_inode_item_release(
785 struct xfs_log_item *lip)
786 {
787 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
788 struct xfs_inode *ip = iip->ili_inode;
789 unsigned short lock_flags;
790
791 ASSERT(ip->i_itemp != NULL);
792 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
793
794 lock_flags = iip->ili_lock_flags;
795 iip->ili_lock_flags = 0;
796 if (lock_flags)
797 xfs_iunlock(ip, lock_flags);
798 }
799
800 /*
801 * This is called to find out where the oldest active copy of the inode log
802 * item in the on disk log resides now that the last log write of it completed
803 * at the given lsn. Since we always re-log all dirty data in an inode, the
804 * latest copy in the on disk log is the only one that matters. Therefore,
805 * simply return the given lsn.
806 *
807 * If the inode has been marked stale because the cluster is being freed, we
808 * don't want to (re-)insert this inode into the AIL. There is a race condition
809 * where the cluster buffer may be unpinned before the inode is inserted into
810 * the AIL during transaction committed processing. If the buffer is unpinned
811 * before the inode item has been committed and inserted, then it is possible
812 * for the buffer to be written and IO completes before the inode is inserted
813 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
814 * AIL which will never get removed. It will, however, get reclaimed which
815 * triggers an assert in xfs_inode_free() complaining about freein an inode
816 * still in the AIL.
817 *
818 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
819 * transaction committed code knows that it does not need to do any further
820 * processing on the item.
821 */
822 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)823 xfs_inode_item_committed(
824 struct xfs_log_item *lip,
825 xfs_lsn_t lsn)
826 {
827 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
828 struct xfs_inode *ip = iip->ili_inode;
829
830 if (xfs_iflags_test(ip, XFS_ISTALE)) {
831 xfs_inode_item_unpin(lip, 0);
832 return -1;
833 }
834 return lsn;
835 }
836
837 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)838 xfs_inode_item_committing(
839 struct xfs_log_item *lip,
840 xfs_csn_t seq)
841 {
842 INODE_ITEM(lip)->ili_commit_seq = seq;
843 return xfs_inode_item_release(lip);
844 }
845
846 static const struct xfs_item_ops xfs_inode_item_ops = {
847 .iop_sort = xfs_inode_item_sort,
848 .iop_precommit = xfs_inode_item_precommit,
849 .iop_size = xfs_inode_item_size,
850 .iop_format = xfs_inode_item_format,
851 .iop_pin = xfs_inode_item_pin,
852 .iop_unpin = xfs_inode_item_unpin,
853 .iop_release = xfs_inode_item_release,
854 .iop_committed = xfs_inode_item_committed,
855 .iop_push = xfs_inode_item_push,
856 .iop_committing = xfs_inode_item_committing,
857 };
858
859
860 /*
861 * Initialize the inode log item for a newly allocated (in-core) inode.
862 */
863 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)864 xfs_inode_item_init(
865 struct xfs_inode *ip,
866 struct xfs_mount *mp)
867 {
868 struct xfs_inode_log_item *iip;
869
870 ASSERT(ip->i_itemp == NULL);
871 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
872 GFP_KERNEL | __GFP_NOFAIL);
873
874 iip->ili_inode = ip;
875 spin_lock_init(&iip->ili_lock);
876 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
877 &xfs_inode_item_ops);
878 }
879
880 /*
881 * Free the inode log item and any memory hanging off of it.
882 */
883 void
xfs_inode_item_destroy(struct xfs_inode * ip)884 xfs_inode_item_destroy(
885 struct xfs_inode *ip)
886 {
887 struct xfs_inode_log_item *iip = ip->i_itemp;
888
889 ASSERT(iip->ili_item.li_buf == NULL);
890
891 ip->i_itemp = NULL;
892 kmem_free(iip->ili_item.li_lv_shadow);
893 kmem_cache_free(xfs_ili_cache, iip);
894 }
895
896
897 /*
898 * We only want to pull the item from the AIL if it is actually there
899 * and its location in the log has not changed since we started the
900 * flush. Thus, we only bother if the inode's lsn has not changed.
901 */
902 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)903 xfs_iflush_ail_updates(
904 struct xfs_ail *ailp,
905 struct list_head *list)
906 {
907 struct xfs_log_item *lip;
908 xfs_lsn_t tail_lsn = 0;
909
910 /* this is an opencoded batch version of xfs_trans_ail_delete */
911 spin_lock(&ailp->ail_lock);
912 list_for_each_entry(lip, list, li_bio_list) {
913 xfs_lsn_t lsn;
914
915 clear_bit(XFS_LI_FAILED, &lip->li_flags);
916 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
917 continue;
918
919 /*
920 * dgc: Not sure how this happens, but it happens very
921 * occassionaly via generic/388. xfs_iflush_abort() also
922 * silently handles this same "under writeback but not in AIL at
923 * shutdown" condition via xfs_trans_ail_delete().
924 */
925 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
926 ASSERT(xlog_is_shutdown(lip->li_log));
927 continue;
928 }
929
930 lsn = xfs_ail_delete_one(ailp, lip);
931 if (!tail_lsn && lsn)
932 tail_lsn = lsn;
933 }
934 xfs_ail_update_finish(ailp, tail_lsn);
935 }
936
937 /*
938 * Walk the list of inodes that have completed their IOs. If they are clean
939 * remove them from the list and dissociate them from the buffer. Buffers that
940 * are still dirty remain linked to the buffer and on the list. Caller must
941 * handle them appropriately.
942 */
943 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)944 xfs_iflush_finish(
945 struct xfs_buf *bp,
946 struct list_head *list)
947 {
948 struct xfs_log_item *lip, *n;
949
950 list_for_each_entry_safe(lip, n, list, li_bio_list) {
951 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
952 bool drop_buffer = false;
953
954 spin_lock(&iip->ili_lock);
955
956 /*
957 * Remove the reference to the cluster buffer if the inode is
958 * clean in memory and drop the buffer reference once we've
959 * dropped the locks we hold.
960 */
961 ASSERT(iip->ili_item.li_buf == bp);
962 if (!iip->ili_fields) {
963 iip->ili_item.li_buf = NULL;
964 list_del_init(&lip->li_bio_list);
965 drop_buffer = true;
966 }
967 iip->ili_last_fields = 0;
968 iip->ili_flush_lsn = 0;
969 spin_unlock(&iip->ili_lock);
970 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
971 if (drop_buffer)
972 xfs_buf_rele(bp);
973 }
974 }
975
976 /*
977 * Inode buffer IO completion routine. It is responsible for removing inodes
978 * attached to the buffer from the AIL if they have not been re-logged and
979 * completing the inode flush.
980 */
981 void
xfs_buf_inode_iodone(struct xfs_buf * bp)982 xfs_buf_inode_iodone(
983 struct xfs_buf *bp)
984 {
985 struct xfs_log_item *lip, *n;
986 LIST_HEAD(flushed_inodes);
987 LIST_HEAD(ail_updates);
988
989 /*
990 * Pull the attached inodes from the buffer one at a time and take the
991 * appropriate action on them.
992 */
993 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
994 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
995
996 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
997 xfs_iflush_abort(iip->ili_inode);
998 continue;
999 }
1000 if (!iip->ili_last_fields)
1001 continue;
1002
1003 /* Do an unlocked check for needing the AIL lock. */
1004 if (iip->ili_flush_lsn == lip->li_lsn ||
1005 test_bit(XFS_LI_FAILED, &lip->li_flags))
1006 list_move_tail(&lip->li_bio_list, &ail_updates);
1007 else
1008 list_move_tail(&lip->li_bio_list, &flushed_inodes);
1009 }
1010
1011 if (!list_empty(&ail_updates)) {
1012 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1013 list_splice_tail(&ail_updates, &flushed_inodes);
1014 }
1015
1016 xfs_iflush_finish(bp, &flushed_inodes);
1017 if (!list_empty(&flushed_inodes))
1018 list_splice_tail(&flushed_inodes, &bp->b_li_list);
1019 }
1020
1021 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)1022 xfs_buf_inode_io_fail(
1023 struct xfs_buf *bp)
1024 {
1025 struct xfs_log_item *lip;
1026
1027 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1028 set_bit(XFS_LI_FAILED, &lip->li_flags);
1029 }
1030
1031 /*
1032 * Clear the inode logging fields so no more flushes are attempted. If we are
1033 * on a buffer list, it is now safe to remove it because the buffer is
1034 * guaranteed to be locked. The caller will drop the reference to the buffer
1035 * the log item held.
1036 */
1037 static void
xfs_iflush_abort_clean(struct xfs_inode_log_item * iip)1038 xfs_iflush_abort_clean(
1039 struct xfs_inode_log_item *iip)
1040 {
1041 iip->ili_last_fields = 0;
1042 iip->ili_fields = 0;
1043 iip->ili_fsync_fields = 0;
1044 iip->ili_flush_lsn = 0;
1045 iip->ili_item.li_buf = NULL;
1046 list_del_init(&iip->ili_item.li_bio_list);
1047 }
1048
1049 /*
1050 * Abort flushing the inode from a context holding the cluster buffer locked.
1051 *
1052 * This is the normal runtime method of aborting writeback of an inode that is
1053 * attached to a cluster buffer. It occurs when the inode and the backing
1054 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1055 * flushing or buffer IO completion encounters a log shutdown situation.
1056 *
1057 * If we need to abort inode writeback and we don't already hold the buffer
1058 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1059 * necessary in a shutdown situation.
1060 */
1061 void
xfs_iflush_abort(struct xfs_inode * ip)1062 xfs_iflush_abort(
1063 struct xfs_inode *ip)
1064 {
1065 struct xfs_inode_log_item *iip = ip->i_itemp;
1066 struct xfs_buf *bp;
1067
1068 if (!iip) {
1069 /* clean inode, nothing to do */
1070 xfs_iflags_clear(ip, XFS_IFLUSHING);
1071 return;
1072 }
1073
1074 /*
1075 * Remove the inode item from the AIL before we clear its internal
1076 * state. Whilst the inode is in the AIL, it should have a valid buffer
1077 * pointer for push operations to access - it is only safe to remove the
1078 * inode from the buffer once it has been removed from the AIL.
1079 *
1080 * We also clear the failed bit before removing the item from the AIL
1081 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1082 * references the inode item owns and needs to hold until we've fully
1083 * aborted the inode log item and detached it from the buffer.
1084 */
1085 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1086 xfs_trans_ail_delete(&iip->ili_item, 0);
1087
1088 /*
1089 * Grab the inode buffer so can we release the reference the inode log
1090 * item holds on it.
1091 */
1092 spin_lock(&iip->ili_lock);
1093 bp = iip->ili_item.li_buf;
1094 xfs_iflush_abort_clean(iip);
1095 spin_unlock(&iip->ili_lock);
1096
1097 xfs_iflags_clear(ip, XFS_IFLUSHING);
1098 if (bp)
1099 xfs_buf_rele(bp);
1100 }
1101
1102 /*
1103 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1104 * from anywhere with just an inode reference and does not require holding the
1105 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1106 * it will grab and lock it safely, then abort the inode flush.
1107 */
1108 void
xfs_iflush_shutdown_abort(struct xfs_inode * ip)1109 xfs_iflush_shutdown_abort(
1110 struct xfs_inode *ip)
1111 {
1112 struct xfs_inode_log_item *iip = ip->i_itemp;
1113 struct xfs_buf *bp;
1114
1115 if (!iip) {
1116 /* clean inode, nothing to do */
1117 xfs_iflags_clear(ip, XFS_IFLUSHING);
1118 return;
1119 }
1120
1121 spin_lock(&iip->ili_lock);
1122 bp = iip->ili_item.li_buf;
1123 if (!bp) {
1124 spin_unlock(&iip->ili_lock);
1125 xfs_iflush_abort(ip);
1126 return;
1127 }
1128
1129 /*
1130 * We have to take a reference to the buffer so that it doesn't get
1131 * freed when we drop the ili_lock and then wait to lock the buffer.
1132 * We'll clean up the extra reference after we pick up the ili_lock
1133 * again.
1134 */
1135 xfs_buf_hold(bp);
1136 spin_unlock(&iip->ili_lock);
1137 xfs_buf_lock(bp);
1138
1139 spin_lock(&iip->ili_lock);
1140 if (!iip->ili_item.li_buf) {
1141 /*
1142 * Raced with another removal, hold the only reference
1143 * to bp now. Inode should not be in the AIL now, so just clean
1144 * up and return;
1145 */
1146 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1147 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1148 xfs_iflush_abort_clean(iip);
1149 spin_unlock(&iip->ili_lock);
1150 xfs_iflags_clear(ip, XFS_IFLUSHING);
1151 xfs_buf_relse(bp);
1152 return;
1153 }
1154
1155 /*
1156 * Got two references to bp. The first will get dropped by
1157 * xfs_iflush_abort() when the item is removed from the buffer list, but
1158 * we can't drop our reference until _abort() returns because we have to
1159 * unlock the buffer as well. Hence we abort and then unlock and release
1160 * our reference to the buffer.
1161 */
1162 ASSERT(iip->ili_item.li_buf == bp);
1163 spin_unlock(&iip->ili_lock);
1164 xfs_iflush_abort(ip);
1165 xfs_buf_relse(bp);
1166 }
1167
1168
1169 /*
1170 * convert an xfs_inode_log_format struct from the old 32 bit version
1171 * (which can have different field alignments) to the native 64 bit version
1172 */
1173 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)1174 xfs_inode_item_format_convert(
1175 struct xfs_log_iovec *buf,
1176 struct xfs_inode_log_format *in_f)
1177 {
1178 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1179
1180 if (buf->i_len != sizeof(*in_f32)) {
1181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1182 return -EFSCORRUPTED;
1183 }
1184
1185 in_f->ilf_type = in_f32->ilf_type;
1186 in_f->ilf_size = in_f32->ilf_size;
1187 in_f->ilf_fields = in_f32->ilf_fields;
1188 in_f->ilf_asize = in_f32->ilf_asize;
1189 in_f->ilf_dsize = in_f32->ilf_dsize;
1190 in_f->ilf_ino = in_f32->ilf_ino;
1191 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1192 in_f->ilf_blkno = in_f32->ilf_blkno;
1193 in_f->ilf_len = in_f32->ilf_len;
1194 in_f->ilf_boffset = in_f32->ilf_boffset;
1195 return 0;
1196 }
1197