1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 struct f2fs_fault_info f2fs_fault; 44 45 char *fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 [FAULT_IO] = "IO error", 54 }; 55 56 static void f2fs_build_fault_attr(unsigned int rate) 57 { 58 if (rate) { 59 atomic_set(&f2fs_fault.inject_ops, 0); 60 f2fs_fault.inject_rate = rate; 61 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1; 62 } else { 63 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info)); 64 } 65 } 66 #endif 67 68 /* f2fs-wide shrinker description */ 69 static struct shrinker f2fs_shrinker_info = { 70 .scan_objects = f2fs_shrink_scan, 71 .count_objects = f2fs_shrink_count, 72 .seeks = DEFAULT_SEEKS, 73 }; 74 75 enum { 76 Opt_gc_background, 77 Opt_disable_roll_forward, 78 Opt_norecovery, 79 Opt_discard, 80 Opt_nodiscard, 81 Opt_noheap, 82 Opt_user_xattr, 83 Opt_nouser_xattr, 84 Opt_acl, 85 Opt_noacl, 86 Opt_active_logs, 87 Opt_disable_ext_identify, 88 Opt_inline_xattr, 89 Opt_inline_data, 90 Opt_inline_dentry, 91 Opt_noinline_dentry, 92 Opt_flush_merge, 93 Opt_noflush_merge, 94 Opt_nobarrier, 95 Opt_fastboot, 96 Opt_extent_cache, 97 Opt_noextent_cache, 98 Opt_noinline_data, 99 Opt_data_flush, 100 Opt_mode, 101 Opt_fault_injection, 102 Opt_lazytime, 103 Opt_nolazytime, 104 Opt_err, 105 }; 106 107 static match_table_t f2fs_tokens = { 108 {Opt_gc_background, "background_gc=%s"}, 109 {Opt_disable_roll_forward, "disable_roll_forward"}, 110 {Opt_norecovery, "norecovery"}, 111 {Opt_discard, "discard"}, 112 {Opt_nodiscard, "nodiscard"}, 113 {Opt_noheap, "no_heap"}, 114 {Opt_user_xattr, "user_xattr"}, 115 {Opt_nouser_xattr, "nouser_xattr"}, 116 {Opt_acl, "acl"}, 117 {Opt_noacl, "noacl"}, 118 {Opt_active_logs, "active_logs=%u"}, 119 {Opt_disable_ext_identify, "disable_ext_identify"}, 120 {Opt_inline_xattr, "inline_xattr"}, 121 {Opt_inline_data, "inline_data"}, 122 {Opt_inline_dentry, "inline_dentry"}, 123 {Opt_noinline_dentry, "noinline_dentry"}, 124 {Opt_flush_merge, "flush_merge"}, 125 {Opt_noflush_merge, "noflush_merge"}, 126 {Opt_nobarrier, "nobarrier"}, 127 {Opt_fastboot, "fastboot"}, 128 {Opt_extent_cache, "extent_cache"}, 129 {Opt_noextent_cache, "noextent_cache"}, 130 {Opt_noinline_data, "noinline_data"}, 131 {Opt_data_flush, "data_flush"}, 132 {Opt_mode, "mode=%s"}, 133 {Opt_fault_injection, "fault_injection=%u"}, 134 {Opt_lazytime, "lazytime"}, 135 {Opt_nolazytime, "nolazytime"}, 136 {Opt_err, NULL}, 137 }; 138 139 /* Sysfs support for f2fs */ 140 enum { 141 GC_THREAD, /* struct f2fs_gc_thread */ 142 SM_INFO, /* struct f2fs_sm_info */ 143 NM_INFO, /* struct f2fs_nm_info */ 144 F2FS_SBI, /* struct f2fs_sb_info */ 145 #ifdef CONFIG_F2FS_FAULT_INJECTION 146 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 147 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 148 #endif 149 }; 150 151 struct f2fs_attr { 152 struct attribute attr; 153 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 154 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 155 const char *, size_t); 156 int struct_type; 157 int offset; 158 }; 159 160 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 161 { 162 if (struct_type == GC_THREAD) 163 return (unsigned char *)sbi->gc_thread; 164 else if (struct_type == SM_INFO) 165 return (unsigned char *)SM_I(sbi); 166 else if (struct_type == NM_INFO) 167 return (unsigned char *)NM_I(sbi); 168 else if (struct_type == F2FS_SBI) 169 return (unsigned char *)sbi; 170 #ifdef CONFIG_F2FS_FAULT_INJECTION 171 else if (struct_type == FAULT_INFO_RATE || 172 struct_type == FAULT_INFO_TYPE) 173 return (unsigned char *)&f2fs_fault; 174 #endif 175 return NULL; 176 } 177 178 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 179 struct f2fs_sb_info *sbi, char *buf) 180 { 181 struct super_block *sb = sbi->sb; 182 183 if (!sb->s_bdev->bd_part) 184 return snprintf(buf, PAGE_SIZE, "0\n"); 185 186 return snprintf(buf, PAGE_SIZE, "%llu\n", 187 (unsigned long long)(sbi->kbytes_written + 188 BD_PART_WRITTEN(sbi))); 189 } 190 191 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 192 struct f2fs_sb_info *sbi, char *buf) 193 { 194 unsigned char *ptr = NULL; 195 unsigned int *ui; 196 197 ptr = __struct_ptr(sbi, a->struct_type); 198 if (!ptr) 199 return -EINVAL; 200 201 ui = (unsigned int *)(ptr + a->offset); 202 203 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 204 } 205 206 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 207 struct f2fs_sb_info *sbi, 208 const char *buf, size_t count) 209 { 210 unsigned char *ptr; 211 unsigned long t; 212 unsigned int *ui; 213 ssize_t ret; 214 215 ptr = __struct_ptr(sbi, a->struct_type); 216 if (!ptr) 217 return -EINVAL; 218 219 ui = (unsigned int *)(ptr + a->offset); 220 221 ret = kstrtoul(skip_spaces(buf), 0, &t); 222 if (ret < 0) 223 return ret; 224 #ifdef CONFIG_F2FS_FAULT_INJECTION 225 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 226 return -EINVAL; 227 #endif 228 *ui = t; 229 return count; 230 } 231 232 static ssize_t f2fs_attr_show(struct kobject *kobj, 233 struct attribute *attr, char *buf) 234 { 235 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 236 s_kobj); 237 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 238 239 return a->show ? a->show(a, sbi, buf) : 0; 240 } 241 242 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 243 const char *buf, size_t len) 244 { 245 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 246 s_kobj); 247 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 248 249 return a->store ? a->store(a, sbi, buf, len) : 0; 250 } 251 252 static void f2fs_sb_release(struct kobject *kobj) 253 { 254 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 255 s_kobj); 256 complete(&sbi->s_kobj_unregister); 257 } 258 259 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 260 static struct f2fs_attr f2fs_attr_##_name = { \ 261 .attr = {.name = __stringify(_name), .mode = _mode }, \ 262 .show = _show, \ 263 .store = _store, \ 264 .struct_type = _struct_type, \ 265 .offset = _offset \ 266 } 267 268 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 269 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 270 f2fs_sbi_show, f2fs_sbi_store, \ 271 offsetof(struct struct_name, elname)) 272 273 #define F2FS_GENERAL_RO_ATTR(name) \ 274 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 275 276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 277 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 278 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 286 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 287 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 288 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 290 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 291 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 293 #ifdef CONFIG_F2FS_FAULT_INJECTION 294 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 295 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 296 #endif 297 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 298 299 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 300 static struct attribute *f2fs_attrs[] = { 301 ATTR_LIST(gc_min_sleep_time), 302 ATTR_LIST(gc_max_sleep_time), 303 ATTR_LIST(gc_no_gc_sleep_time), 304 ATTR_LIST(gc_idle), 305 ATTR_LIST(reclaim_segments), 306 ATTR_LIST(max_small_discards), 307 ATTR_LIST(batched_trim_sections), 308 ATTR_LIST(ipu_policy), 309 ATTR_LIST(min_ipu_util), 310 ATTR_LIST(min_fsync_blocks), 311 ATTR_LIST(max_victim_search), 312 ATTR_LIST(dir_level), 313 ATTR_LIST(ram_thresh), 314 ATTR_LIST(ra_nid_pages), 315 ATTR_LIST(dirty_nats_ratio), 316 ATTR_LIST(cp_interval), 317 ATTR_LIST(idle_interval), 318 ATTR_LIST(lifetime_write_kbytes), 319 NULL, 320 }; 321 322 static const struct sysfs_ops f2fs_attr_ops = { 323 .show = f2fs_attr_show, 324 .store = f2fs_attr_store, 325 }; 326 327 static struct kobj_type f2fs_ktype = { 328 .default_attrs = f2fs_attrs, 329 .sysfs_ops = &f2fs_attr_ops, 330 .release = f2fs_sb_release, 331 }; 332 333 #ifdef CONFIG_F2FS_FAULT_INJECTION 334 /* sysfs for f2fs fault injection */ 335 static struct kobject f2fs_fault_inject; 336 337 static struct attribute *f2fs_fault_attrs[] = { 338 ATTR_LIST(inject_rate), 339 ATTR_LIST(inject_type), 340 NULL 341 }; 342 343 static struct kobj_type f2fs_fault_ktype = { 344 .default_attrs = f2fs_fault_attrs, 345 .sysfs_ops = &f2fs_attr_ops, 346 }; 347 #endif 348 349 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 350 { 351 struct va_format vaf; 352 va_list args; 353 354 va_start(args, fmt); 355 vaf.fmt = fmt; 356 vaf.va = &args; 357 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 358 va_end(args); 359 } 360 361 static void init_once(void *foo) 362 { 363 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 364 365 inode_init_once(&fi->vfs_inode); 366 } 367 368 static int parse_options(struct super_block *sb, char *options) 369 { 370 struct f2fs_sb_info *sbi = F2FS_SB(sb); 371 struct request_queue *q; 372 substring_t args[MAX_OPT_ARGS]; 373 char *p, *name; 374 int arg = 0; 375 376 #ifdef CONFIG_F2FS_FAULT_INJECTION 377 f2fs_build_fault_attr(0); 378 #endif 379 380 if (!options) 381 return 0; 382 383 while ((p = strsep(&options, ",")) != NULL) { 384 int token; 385 if (!*p) 386 continue; 387 /* 388 * Initialize args struct so we know whether arg was 389 * found; some options take optional arguments. 390 */ 391 args[0].to = args[0].from = NULL; 392 token = match_token(p, f2fs_tokens, args); 393 394 switch (token) { 395 case Opt_gc_background: 396 name = match_strdup(&args[0]); 397 398 if (!name) 399 return -ENOMEM; 400 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 401 set_opt(sbi, BG_GC); 402 clear_opt(sbi, FORCE_FG_GC); 403 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 404 clear_opt(sbi, BG_GC); 405 clear_opt(sbi, FORCE_FG_GC); 406 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 407 set_opt(sbi, BG_GC); 408 set_opt(sbi, FORCE_FG_GC); 409 } else { 410 kfree(name); 411 return -EINVAL; 412 } 413 kfree(name); 414 break; 415 case Opt_disable_roll_forward: 416 set_opt(sbi, DISABLE_ROLL_FORWARD); 417 break; 418 case Opt_norecovery: 419 /* this option mounts f2fs with ro */ 420 set_opt(sbi, DISABLE_ROLL_FORWARD); 421 if (!f2fs_readonly(sb)) 422 return -EINVAL; 423 break; 424 case Opt_discard: 425 q = bdev_get_queue(sb->s_bdev); 426 if (blk_queue_discard(q)) { 427 set_opt(sbi, DISCARD); 428 } else { 429 f2fs_msg(sb, KERN_WARNING, 430 "mounting with \"discard\" option, but " 431 "the device does not support discard"); 432 } 433 break; 434 case Opt_nodiscard: 435 clear_opt(sbi, DISCARD); 436 case Opt_noheap: 437 set_opt(sbi, NOHEAP); 438 break; 439 #ifdef CONFIG_F2FS_FS_XATTR 440 case Opt_user_xattr: 441 set_opt(sbi, XATTR_USER); 442 break; 443 case Opt_nouser_xattr: 444 clear_opt(sbi, XATTR_USER); 445 break; 446 case Opt_inline_xattr: 447 set_opt(sbi, INLINE_XATTR); 448 break; 449 #else 450 case Opt_user_xattr: 451 f2fs_msg(sb, KERN_INFO, 452 "user_xattr options not supported"); 453 break; 454 case Opt_nouser_xattr: 455 f2fs_msg(sb, KERN_INFO, 456 "nouser_xattr options not supported"); 457 break; 458 case Opt_inline_xattr: 459 f2fs_msg(sb, KERN_INFO, 460 "inline_xattr options not supported"); 461 break; 462 #endif 463 #ifdef CONFIG_F2FS_FS_POSIX_ACL 464 case Opt_acl: 465 set_opt(sbi, POSIX_ACL); 466 break; 467 case Opt_noacl: 468 clear_opt(sbi, POSIX_ACL); 469 break; 470 #else 471 case Opt_acl: 472 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 473 break; 474 case Opt_noacl: 475 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 476 break; 477 #endif 478 case Opt_active_logs: 479 if (args->from && match_int(args, &arg)) 480 return -EINVAL; 481 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 482 return -EINVAL; 483 sbi->active_logs = arg; 484 break; 485 case Opt_disable_ext_identify: 486 set_opt(sbi, DISABLE_EXT_IDENTIFY); 487 break; 488 case Opt_inline_data: 489 set_opt(sbi, INLINE_DATA); 490 break; 491 case Opt_inline_dentry: 492 set_opt(sbi, INLINE_DENTRY); 493 break; 494 case Opt_noinline_dentry: 495 clear_opt(sbi, INLINE_DENTRY); 496 break; 497 case Opt_flush_merge: 498 set_opt(sbi, FLUSH_MERGE); 499 break; 500 case Opt_noflush_merge: 501 clear_opt(sbi, FLUSH_MERGE); 502 break; 503 case Opt_nobarrier: 504 set_opt(sbi, NOBARRIER); 505 break; 506 case Opt_fastboot: 507 set_opt(sbi, FASTBOOT); 508 break; 509 case Opt_extent_cache: 510 set_opt(sbi, EXTENT_CACHE); 511 break; 512 case Opt_noextent_cache: 513 clear_opt(sbi, EXTENT_CACHE); 514 break; 515 case Opt_noinline_data: 516 clear_opt(sbi, INLINE_DATA); 517 break; 518 case Opt_data_flush: 519 set_opt(sbi, DATA_FLUSH); 520 break; 521 case Opt_mode: 522 name = match_strdup(&args[0]); 523 524 if (!name) 525 return -ENOMEM; 526 if (strlen(name) == 8 && 527 !strncmp(name, "adaptive", 8)) { 528 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 529 } else if (strlen(name) == 3 && 530 !strncmp(name, "lfs", 3)) { 531 set_opt_mode(sbi, F2FS_MOUNT_LFS); 532 } else { 533 kfree(name); 534 return -EINVAL; 535 } 536 kfree(name); 537 break; 538 case Opt_fault_injection: 539 if (args->from && match_int(args, &arg)) 540 return -EINVAL; 541 #ifdef CONFIG_F2FS_FAULT_INJECTION 542 f2fs_build_fault_attr(arg); 543 #else 544 f2fs_msg(sb, KERN_INFO, 545 "FAULT_INJECTION was not selected"); 546 #endif 547 break; 548 case Opt_lazytime: 549 sb->s_flags |= MS_LAZYTIME; 550 break; 551 case Opt_nolazytime: 552 sb->s_flags &= ~MS_LAZYTIME; 553 break; 554 default: 555 f2fs_msg(sb, KERN_ERR, 556 "Unrecognized mount option \"%s\" or missing value", 557 p); 558 return -EINVAL; 559 } 560 } 561 return 0; 562 } 563 564 static struct inode *f2fs_alloc_inode(struct super_block *sb) 565 { 566 struct f2fs_inode_info *fi; 567 568 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 569 if (!fi) 570 return NULL; 571 572 init_once((void *) fi); 573 574 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 575 kmem_cache_free(f2fs_inode_cachep, fi); 576 return NULL; 577 } 578 579 /* Initialize f2fs-specific inode info */ 580 fi->vfs_inode.i_version = 1; 581 fi->i_current_depth = 1; 582 fi->i_advise = 0; 583 init_rwsem(&fi->i_sem); 584 INIT_LIST_HEAD(&fi->dirty_list); 585 INIT_LIST_HEAD(&fi->gdirty_list); 586 INIT_LIST_HEAD(&fi->inmem_pages); 587 mutex_init(&fi->inmem_lock); 588 init_rwsem(&fi->dio_rwsem[READ]); 589 init_rwsem(&fi->dio_rwsem[WRITE]); 590 591 /* Will be used by directory only */ 592 fi->i_dir_level = F2FS_SB(sb)->dir_level; 593 return &fi->vfs_inode; 594 } 595 596 static int f2fs_drop_inode(struct inode *inode) 597 { 598 /* 599 * This is to avoid a deadlock condition like below. 600 * writeback_single_inode(inode) 601 * - f2fs_write_data_page 602 * - f2fs_gc -> iput -> evict 603 * - inode_wait_for_writeback(inode) 604 */ 605 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 606 if (!inode->i_nlink && !is_bad_inode(inode)) { 607 /* to avoid evict_inode call simultaneously */ 608 atomic_inc(&inode->i_count); 609 spin_unlock(&inode->i_lock); 610 611 /* some remained atomic pages should discarded */ 612 if (f2fs_is_atomic_file(inode)) 613 drop_inmem_pages(inode); 614 615 /* should remain fi->extent_tree for writepage */ 616 f2fs_destroy_extent_node(inode); 617 618 sb_start_intwrite(inode->i_sb); 619 f2fs_i_size_write(inode, 0); 620 621 if (F2FS_HAS_BLOCKS(inode)) 622 f2fs_truncate(inode); 623 624 sb_end_intwrite(inode->i_sb); 625 626 fscrypt_put_encryption_info(inode, NULL); 627 spin_lock(&inode->i_lock); 628 atomic_dec(&inode->i_count); 629 } 630 return 0; 631 } 632 633 return generic_drop_inode(inode); 634 } 635 636 int f2fs_inode_dirtied(struct inode *inode) 637 { 638 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 639 640 spin_lock(&sbi->inode_lock[DIRTY_META]); 641 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 642 spin_unlock(&sbi->inode_lock[DIRTY_META]); 643 return 1; 644 } 645 646 set_inode_flag(inode, FI_DIRTY_INODE); 647 list_add_tail(&F2FS_I(inode)->gdirty_list, 648 &sbi->inode_list[DIRTY_META]); 649 inc_page_count(sbi, F2FS_DIRTY_IMETA); 650 stat_inc_dirty_inode(sbi, DIRTY_META); 651 spin_unlock(&sbi->inode_lock[DIRTY_META]); 652 653 return 0; 654 } 655 656 void f2fs_inode_synced(struct inode *inode) 657 { 658 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 659 660 spin_lock(&sbi->inode_lock[DIRTY_META]); 661 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 662 spin_unlock(&sbi->inode_lock[DIRTY_META]); 663 return; 664 } 665 list_del_init(&F2FS_I(inode)->gdirty_list); 666 clear_inode_flag(inode, FI_DIRTY_INODE); 667 clear_inode_flag(inode, FI_AUTO_RECOVER); 668 dec_page_count(sbi, F2FS_DIRTY_IMETA); 669 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 670 spin_unlock(&sbi->inode_lock[DIRTY_META]); 671 } 672 673 /* 674 * f2fs_dirty_inode() is called from __mark_inode_dirty() 675 * 676 * We should call set_dirty_inode to write the dirty inode through write_inode. 677 */ 678 static void f2fs_dirty_inode(struct inode *inode, int flags) 679 { 680 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 681 682 if (inode->i_ino == F2FS_NODE_INO(sbi) || 683 inode->i_ino == F2FS_META_INO(sbi)) 684 return; 685 686 if (flags == I_DIRTY_TIME) 687 return; 688 689 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 690 clear_inode_flag(inode, FI_AUTO_RECOVER); 691 692 f2fs_inode_dirtied(inode); 693 } 694 695 static void f2fs_i_callback(struct rcu_head *head) 696 { 697 struct inode *inode = container_of(head, struct inode, i_rcu); 698 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 699 } 700 701 static void f2fs_destroy_inode(struct inode *inode) 702 { 703 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 704 call_rcu(&inode->i_rcu, f2fs_i_callback); 705 } 706 707 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 708 { 709 int i; 710 711 for (i = 0; i < NR_COUNT_TYPE; i++) 712 percpu_counter_destroy(&sbi->nr_pages[i]); 713 percpu_counter_destroy(&sbi->alloc_valid_block_count); 714 percpu_counter_destroy(&sbi->total_valid_inode_count); 715 } 716 717 static void f2fs_put_super(struct super_block *sb) 718 { 719 struct f2fs_sb_info *sbi = F2FS_SB(sb); 720 721 if (sbi->s_proc) { 722 remove_proc_entry("segment_info", sbi->s_proc); 723 remove_proc_entry("segment_bits", sbi->s_proc); 724 remove_proc_entry(sb->s_id, f2fs_proc_root); 725 } 726 kobject_del(&sbi->s_kobj); 727 728 stop_gc_thread(sbi); 729 730 /* prevent remaining shrinker jobs */ 731 mutex_lock(&sbi->umount_mutex); 732 733 /* 734 * We don't need to do checkpoint when superblock is clean. 735 * But, the previous checkpoint was not done by umount, it needs to do 736 * clean checkpoint again. 737 */ 738 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 739 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 740 struct cp_control cpc = { 741 .reason = CP_UMOUNT, 742 }; 743 write_checkpoint(sbi, &cpc); 744 } 745 746 /* write_checkpoint can update stat informaion */ 747 f2fs_destroy_stats(sbi); 748 749 /* 750 * normally superblock is clean, so we need to release this. 751 * In addition, EIO will skip do checkpoint, we need this as well. 752 */ 753 release_ino_entry(sbi, true); 754 release_discard_addrs(sbi); 755 756 f2fs_leave_shrinker(sbi); 757 mutex_unlock(&sbi->umount_mutex); 758 759 /* our cp_error case, we can wait for any writeback page */ 760 f2fs_flush_merged_bios(sbi); 761 762 iput(sbi->node_inode); 763 iput(sbi->meta_inode); 764 765 /* destroy f2fs internal modules */ 766 destroy_node_manager(sbi); 767 destroy_segment_manager(sbi); 768 769 kfree(sbi->ckpt); 770 kobject_put(&sbi->s_kobj); 771 wait_for_completion(&sbi->s_kobj_unregister); 772 773 sb->s_fs_info = NULL; 774 if (sbi->s_chksum_driver) 775 crypto_free_shash(sbi->s_chksum_driver); 776 kfree(sbi->raw_super); 777 778 destroy_percpu_info(sbi); 779 kfree(sbi); 780 } 781 782 int f2fs_sync_fs(struct super_block *sb, int sync) 783 { 784 struct f2fs_sb_info *sbi = F2FS_SB(sb); 785 int err = 0; 786 787 trace_f2fs_sync_fs(sb, sync); 788 789 if (sync) { 790 struct cp_control cpc; 791 792 cpc.reason = __get_cp_reason(sbi); 793 794 mutex_lock(&sbi->gc_mutex); 795 err = write_checkpoint(sbi, &cpc); 796 mutex_unlock(&sbi->gc_mutex); 797 } 798 f2fs_trace_ios(NULL, 1); 799 800 return err; 801 } 802 803 static int f2fs_freeze(struct super_block *sb) 804 { 805 int err; 806 807 if (f2fs_readonly(sb)) 808 return 0; 809 810 err = f2fs_sync_fs(sb, 1); 811 return err; 812 } 813 814 static int f2fs_unfreeze(struct super_block *sb) 815 { 816 return 0; 817 } 818 819 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 820 { 821 struct super_block *sb = dentry->d_sb; 822 struct f2fs_sb_info *sbi = F2FS_SB(sb); 823 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 824 block_t total_count, user_block_count, start_count, ovp_count; 825 826 total_count = le64_to_cpu(sbi->raw_super->block_count); 827 user_block_count = sbi->user_block_count; 828 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 829 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 830 buf->f_type = F2FS_SUPER_MAGIC; 831 buf->f_bsize = sbi->blocksize; 832 833 buf->f_blocks = total_count - start_count; 834 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 835 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 836 837 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 838 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 839 840 buf->f_namelen = F2FS_NAME_LEN; 841 buf->f_fsid.val[0] = (u32)id; 842 buf->f_fsid.val[1] = (u32)(id >> 32); 843 844 return 0; 845 } 846 847 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 848 { 849 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 850 851 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 852 if (test_opt(sbi, FORCE_FG_GC)) 853 seq_printf(seq, ",background_gc=%s", "sync"); 854 else 855 seq_printf(seq, ",background_gc=%s", "on"); 856 } else { 857 seq_printf(seq, ",background_gc=%s", "off"); 858 } 859 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 860 seq_puts(seq, ",disable_roll_forward"); 861 if (test_opt(sbi, DISCARD)) 862 seq_puts(seq, ",discard"); 863 if (test_opt(sbi, NOHEAP)) 864 seq_puts(seq, ",no_heap_alloc"); 865 #ifdef CONFIG_F2FS_FS_XATTR 866 if (test_opt(sbi, XATTR_USER)) 867 seq_puts(seq, ",user_xattr"); 868 else 869 seq_puts(seq, ",nouser_xattr"); 870 if (test_opt(sbi, INLINE_XATTR)) 871 seq_puts(seq, ",inline_xattr"); 872 #endif 873 #ifdef CONFIG_F2FS_FS_POSIX_ACL 874 if (test_opt(sbi, POSIX_ACL)) 875 seq_puts(seq, ",acl"); 876 else 877 seq_puts(seq, ",noacl"); 878 #endif 879 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 880 seq_puts(seq, ",disable_ext_identify"); 881 if (test_opt(sbi, INLINE_DATA)) 882 seq_puts(seq, ",inline_data"); 883 else 884 seq_puts(seq, ",noinline_data"); 885 if (test_opt(sbi, INLINE_DENTRY)) 886 seq_puts(seq, ",inline_dentry"); 887 else 888 seq_puts(seq, ",noinline_dentry"); 889 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 890 seq_puts(seq, ",flush_merge"); 891 if (test_opt(sbi, NOBARRIER)) 892 seq_puts(seq, ",nobarrier"); 893 if (test_opt(sbi, FASTBOOT)) 894 seq_puts(seq, ",fastboot"); 895 if (test_opt(sbi, EXTENT_CACHE)) 896 seq_puts(seq, ",extent_cache"); 897 else 898 seq_puts(seq, ",noextent_cache"); 899 if (test_opt(sbi, DATA_FLUSH)) 900 seq_puts(seq, ",data_flush"); 901 902 seq_puts(seq, ",mode="); 903 if (test_opt(sbi, ADAPTIVE)) 904 seq_puts(seq, "adaptive"); 905 else if (test_opt(sbi, LFS)) 906 seq_puts(seq, "lfs"); 907 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 908 909 return 0; 910 } 911 912 static int segment_info_seq_show(struct seq_file *seq, void *offset) 913 { 914 struct super_block *sb = seq->private; 915 struct f2fs_sb_info *sbi = F2FS_SB(sb); 916 unsigned int total_segs = 917 le32_to_cpu(sbi->raw_super->segment_count_main); 918 int i; 919 920 seq_puts(seq, "format: segment_type|valid_blocks\n" 921 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 922 923 for (i = 0; i < total_segs; i++) { 924 struct seg_entry *se = get_seg_entry(sbi, i); 925 926 if ((i % 10) == 0) 927 seq_printf(seq, "%-10d", i); 928 seq_printf(seq, "%d|%-3u", se->type, 929 get_valid_blocks(sbi, i, 1)); 930 if ((i % 10) == 9 || i == (total_segs - 1)) 931 seq_putc(seq, '\n'); 932 else 933 seq_putc(seq, ' '); 934 } 935 936 return 0; 937 } 938 939 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 940 { 941 struct super_block *sb = seq->private; 942 struct f2fs_sb_info *sbi = F2FS_SB(sb); 943 unsigned int total_segs = 944 le32_to_cpu(sbi->raw_super->segment_count_main); 945 int i, j; 946 947 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 948 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 949 950 for (i = 0; i < total_segs; i++) { 951 struct seg_entry *se = get_seg_entry(sbi, i); 952 953 seq_printf(seq, "%-10d", i); 954 seq_printf(seq, "%d|%-3u|", se->type, 955 get_valid_blocks(sbi, i, 1)); 956 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 957 seq_printf(seq, "%x ", se->cur_valid_map[j]); 958 seq_putc(seq, '\n'); 959 } 960 return 0; 961 } 962 963 #define F2FS_PROC_FILE_DEF(_name) \ 964 static int _name##_open_fs(struct inode *inode, struct file *file) \ 965 { \ 966 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 967 } \ 968 \ 969 static const struct file_operations f2fs_seq_##_name##_fops = { \ 970 .open = _name##_open_fs, \ 971 .read = seq_read, \ 972 .llseek = seq_lseek, \ 973 .release = single_release, \ 974 }; 975 976 F2FS_PROC_FILE_DEF(segment_info); 977 F2FS_PROC_FILE_DEF(segment_bits); 978 979 static void default_options(struct f2fs_sb_info *sbi) 980 { 981 /* init some FS parameters */ 982 sbi->active_logs = NR_CURSEG_TYPE; 983 984 set_opt(sbi, BG_GC); 985 set_opt(sbi, INLINE_DATA); 986 set_opt(sbi, INLINE_DENTRY); 987 set_opt(sbi, EXTENT_CACHE); 988 sbi->sb->s_flags |= MS_LAZYTIME; 989 set_opt(sbi, FLUSH_MERGE); 990 if (f2fs_sb_mounted_hmsmr(sbi->sb)) { 991 set_opt_mode(sbi, F2FS_MOUNT_LFS); 992 set_opt(sbi, DISCARD); 993 } else { 994 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 995 } 996 997 #ifdef CONFIG_F2FS_FS_XATTR 998 set_opt(sbi, XATTR_USER); 999 #endif 1000 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1001 set_opt(sbi, POSIX_ACL); 1002 #endif 1003 } 1004 1005 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1006 { 1007 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1008 struct f2fs_mount_info org_mount_opt; 1009 int err, active_logs; 1010 bool need_restart_gc = false; 1011 bool need_stop_gc = false; 1012 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1013 1014 /* 1015 * Save the old mount options in case we 1016 * need to restore them. 1017 */ 1018 org_mount_opt = sbi->mount_opt; 1019 active_logs = sbi->active_logs; 1020 1021 /* recover superblocks we couldn't write due to previous RO mount */ 1022 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1023 err = f2fs_commit_super(sbi, false); 1024 f2fs_msg(sb, KERN_INFO, 1025 "Try to recover all the superblocks, ret: %d", err); 1026 if (!err) 1027 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1028 } 1029 1030 sbi->mount_opt.opt = 0; 1031 default_options(sbi); 1032 1033 /* parse mount options */ 1034 err = parse_options(sb, data); 1035 if (err) 1036 goto restore_opts; 1037 1038 /* 1039 * Previous and new state of filesystem is RO, 1040 * so skip checking GC and FLUSH_MERGE conditions. 1041 */ 1042 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1043 goto skip; 1044 1045 /* disallow enable/disable extent_cache dynamically */ 1046 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1047 err = -EINVAL; 1048 f2fs_msg(sbi->sb, KERN_WARNING, 1049 "switch extent_cache option is not allowed"); 1050 goto restore_opts; 1051 } 1052 1053 /* 1054 * We stop the GC thread if FS is mounted as RO 1055 * or if background_gc = off is passed in mount 1056 * option. Also sync the filesystem. 1057 */ 1058 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1059 if (sbi->gc_thread) { 1060 stop_gc_thread(sbi); 1061 need_restart_gc = true; 1062 } 1063 } else if (!sbi->gc_thread) { 1064 err = start_gc_thread(sbi); 1065 if (err) 1066 goto restore_opts; 1067 need_stop_gc = true; 1068 } 1069 1070 if (*flags & MS_RDONLY) { 1071 writeback_inodes_sb(sb, WB_REASON_SYNC); 1072 sync_inodes_sb(sb); 1073 1074 set_sbi_flag(sbi, SBI_IS_DIRTY); 1075 set_sbi_flag(sbi, SBI_IS_CLOSE); 1076 f2fs_sync_fs(sb, 1); 1077 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1078 } 1079 1080 /* 1081 * We stop issue flush thread if FS is mounted as RO 1082 * or if flush_merge is not passed in mount option. 1083 */ 1084 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1085 destroy_flush_cmd_control(sbi); 1086 } else if (!SM_I(sbi)->cmd_control_info) { 1087 err = create_flush_cmd_control(sbi); 1088 if (err) 1089 goto restore_gc; 1090 } 1091 skip: 1092 /* Update the POSIXACL Flag */ 1093 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1094 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1095 1096 return 0; 1097 restore_gc: 1098 if (need_restart_gc) { 1099 if (start_gc_thread(sbi)) 1100 f2fs_msg(sbi->sb, KERN_WARNING, 1101 "background gc thread has stopped"); 1102 } else if (need_stop_gc) { 1103 stop_gc_thread(sbi); 1104 } 1105 restore_opts: 1106 sbi->mount_opt = org_mount_opt; 1107 sbi->active_logs = active_logs; 1108 return err; 1109 } 1110 1111 static struct super_operations f2fs_sops = { 1112 .alloc_inode = f2fs_alloc_inode, 1113 .drop_inode = f2fs_drop_inode, 1114 .destroy_inode = f2fs_destroy_inode, 1115 .write_inode = f2fs_write_inode, 1116 .dirty_inode = f2fs_dirty_inode, 1117 .show_options = f2fs_show_options, 1118 .evict_inode = f2fs_evict_inode, 1119 .put_super = f2fs_put_super, 1120 .sync_fs = f2fs_sync_fs, 1121 .freeze_fs = f2fs_freeze, 1122 .unfreeze_fs = f2fs_unfreeze, 1123 .statfs = f2fs_statfs, 1124 .remount_fs = f2fs_remount, 1125 }; 1126 1127 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1128 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1129 { 1130 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1131 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1132 ctx, len, NULL); 1133 } 1134 1135 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1136 { 1137 *key = F2FS_I_SB(inode)->key_prefix; 1138 return F2FS_I_SB(inode)->key_prefix_size; 1139 } 1140 1141 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1142 void *fs_data) 1143 { 1144 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1145 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1146 ctx, len, fs_data, XATTR_CREATE); 1147 } 1148 1149 static unsigned f2fs_max_namelen(struct inode *inode) 1150 { 1151 return S_ISLNK(inode->i_mode) ? 1152 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1153 } 1154 1155 static struct fscrypt_operations f2fs_cryptops = { 1156 .get_context = f2fs_get_context, 1157 .key_prefix = f2fs_key_prefix, 1158 .set_context = f2fs_set_context, 1159 .is_encrypted = f2fs_encrypted_inode, 1160 .empty_dir = f2fs_empty_dir, 1161 .max_namelen = f2fs_max_namelen, 1162 }; 1163 #else 1164 static struct fscrypt_operations f2fs_cryptops = { 1165 .is_encrypted = f2fs_encrypted_inode, 1166 }; 1167 #endif 1168 1169 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1170 u64 ino, u32 generation) 1171 { 1172 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1173 struct inode *inode; 1174 1175 if (check_nid_range(sbi, ino)) 1176 return ERR_PTR(-ESTALE); 1177 1178 /* 1179 * f2fs_iget isn't quite right if the inode is currently unallocated! 1180 * However f2fs_iget currently does appropriate checks to handle stale 1181 * inodes so everything is OK. 1182 */ 1183 inode = f2fs_iget(sb, ino); 1184 if (IS_ERR(inode)) 1185 return ERR_CAST(inode); 1186 if (unlikely(generation && inode->i_generation != generation)) { 1187 /* we didn't find the right inode.. */ 1188 iput(inode); 1189 return ERR_PTR(-ESTALE); 1190 } 1191 return inode; 1192 } 1193 1194 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1195 int fh_len, int fh_type) 1196 { 1197 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1198 f2fs_nfs_get_inode); 1199 } 1200 1201 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1202 int fh_len, int fh_type) 1203 { 1204 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1205 f2fs_nfs_get_inode); 1206 } 1207 1208 static const struct export_operations f2fs_export_ops = { 1209 .fh_to_dentry = f2fs_fh_to_dentry, 1210 .fh_to_parent = f2fs_fh_to_parent, 1211 .get_parent = f2fs_get_parent, 1212 }; 1213 1214 static loff_t max_file_blocks(void) 1215 { 1216 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1217 loff_t leaf_count = ADDRS_PER_BLOCK; 1218 1219 /* two direct node blocks */ 1220 result += (leaf_count * 2); 1221 1222 /* two indirect node blocks */ 1223 leaf_count *= NIDS_PER_BLOCK; 1224 result += (leaf_count * 2); 1225 1226 /* one double indirect node block */ 1227 leaf_count *= NIDS_PER_BLOCK; 1228 result += leaf_count; 1229 1230 return result; 1231 } 1232 1233 static int __f2fs_commit_super(struct buffer_head *bh, 1234 struct f2fs_super_block *super) 1235 { 1236 lock_buffer(bh); 1237 if (super) 1238 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1239 set_buffer_uptodate(bh); 1240 set_buffer_dirty(bh); 1241 unlock_buffer(bh); 1242 1243 /* it's rare case, we can do fua all the time */ 1244 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1245 } 1246 1247 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1248 struct buffer_head *bh) 1249 { 1250 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1251 (bh->b_data + F2FS_SUPER_OFFSET); 1252 struct super_block *sb = sbi->sb; 1253 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1254 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1255 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1256 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1257 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1258 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1259 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1260 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1261 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1262 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1263 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1264 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1265 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1266 u64 main_end_blkaddr = main_blkaddr + 1267 (segment_count_main << log_blocks_per_seg); 1268 u64 seg_end_blkaddr = segment0_blkaddr + 1269 (segment_count << log_blocks_per_seg); 1270 1271 if (segment0_blkaddr != cp_blkaddr) { 1272 f2fs_msg(sb, KERN_INFO, 1273 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1274 segment0_blkaddr, cp_blkaddr); 1275 return true; 1276 } 1277 1278 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1279 sit_blkaddr) { 1280 f2fs_msg(sb, KERN_INFO, 1281 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1282 cp_blkaddr, sit_blkaddr, 1283 segment_count_ckpt << log_blocks_per_seg); 1284 return true; 1285 } 1286 1287 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1288 nat_blkaddr) { 1289 f2fs_msg(sb, KERN_INFO, 1290 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1291 sit_blkaddr, nat_blkaddr, 1292 segment_count_sit << log_blocks_per_seg); 1293 return true; 1294 } 1295 1296 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1297 ssa_blkaddr) { 1298 f2fs_msg(sb, KERN_INFO, 1299 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1300 nat_blkaddr, ssa_blkaddr, 1301 segment_count_nat << log_blocks_per_seg); 1302 return true; 1303 } 1304 1305 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1306 main_blkaddr) { 1307 f2fs_msg(sb, KERN_INFO, 1308 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1309 ssa_blkaddr, main_blkaddr, 1310 segment_count_ssa << log_blocks_per_seg); 1311 return true; 1312 } 1313 1314 if (main_end_blkaddr > seg_end_blkaddr) { 1315 f2fs_msg(sb, KERN_INFO, 1316 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1317 main_blkaddr, 1318 segment0_blkaddr + 1319 (segment_count << log_blocks_per_seg), 1320 segment_count_main << log_blocks_per_seg); 1321 return true; 1322 } else if (main_end_blkaddr < seg_end_blkaddr) { 1323 int err = 0; 1324 char *res; 1325 1326 /* fix in-memory information all the time */ 1327 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1328 segment0_blkaddr) >> log_blocks_per_seg); 1329 1330 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1331 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1332 res = "internally"; 1333 } else { 1334 err = __f2fs_commit_super(bh, NULL); 1335 res = err ? "failed" : "done"; 1336 } 1337 f2fs_msg(sb, KERN_INFO, 1338 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1339 res, main_blkaddr, 1340 segment0_blkaddr + 1341 (segment_count << log_blocks_per_seg), 1342 segment_count_main << log_blocks_per_seg); 1343 if (err) 1344 return true; 1345 } 1346 return false; 1347 } 1348 1349 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1350 struct buffer_head *bh) 1351 { 1352 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1353 (bh->b_data + F2FS_SUPER_OFFSET); 1354 struct super_block *sb = sbi->sb; 1355 unsigned int blocksize; 1356 1357 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1358 f2fs_msg(sb, KERN_INFO, 1359 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1360 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1361 return 1; 1362 } 1363 1364 /* Currently, support only 4KB page cache size */ 1365 if (F2FS_BLKSIZE != PAGE_SIZE) { 1366 f2fs_msg(sb, KERN_INFO, 1367 "Invalid page_cache_size (%lu), supports only 4KB\n", 1368 PAGE_SIZE); 1369 return 1; 1370 } 1371 1372 /* Currently, support only 4KB block size */ 1373 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1374 if (blocksize != F2FS_BLKSIZE) { 1375 f2fs_msg(sb, KERN_INFO, 1376 "Invalid blocksize (%u), supports only 4KB\n", 1377 blocksize); 1378 return 1; 1379 } 1380 1381 /* check log blocks per segment */ 1382 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1383 f2fs_msg(sb, KERN_INFO, 1384 "Invalid log blocks per segment (%u)\n", 1385 le32_to_cpu(raw_super->log_blocks_per_seg)); 1386 return 1; 1387 } 1388 1389 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1390 if (le32_to_cpu(raw_super->log_sectorsize) > 1391 F2FS_MAX_LOG_SECTOR_SIZE || 1392 le32_to_cpu(raw_super->log_sectorsize) < 1393 F2FS_MIN_LOG_SECTOR_SIZE) { 1394 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1395 le32_to_cpu(raw_super->log_sectorsize)); 1396 return 1; 1397 } 1398 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1399 le32_to_cpu(raw_super->log_sectorsize) != 1400 F2FS_MAX_LOG_SECTOR_SIZE) { 1401 f2fs_msg(sb, KERN_INFO, 1402 "Invalid log sectors per block(%u) log sectorsize(%u)", 1403 le32_to_cpu(raw_super->log_sectors_per_block), 1404 le32_to_cpu(raw_super->log_sectorsize)); 1405 return 1; 1406 } 1407 1408 /* check reserved ino info */ 1409 if (le32_to_cpu(raw_super->node_ino) != 1 || 1410 le32_to_cpu(raw_super->meta_ino) != 2 || 1411 le32_to_cpu(raw_super->root_ino) != 3) { 1412 f2fs_msg(sb, KERN_INFO, 1413 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1414 le32_to_cpu(raw_super->node_ino), 1415 le32_to_cpu(raw_super->meta_ino), 1416 le32_to_cpu(raw_super->root_ino)); 1417 return 1; 1418 } 1419 1420 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1421 if (sanity_check_area_boundary(sbi, bh)) 1422 return 1; 1423 1424 return 0; 1425 } 1426 1427 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1428 { 1429 unsigned int total, fsmeta; 1430 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1431 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1432 1433 total = le32_to_cpu(raw_super->segment_count); 1434 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1435 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1436 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1437 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1438 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1439 1440 if (unlikely(fsmeta >= total)) 1441 return 1; 1442 1443 if (unlikely(f2fs_cp_error(sbi))) { 1444 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1445 return 1; 1446 } 1447 return 0; 1448 } 1449 1450 static void init_sb_info(struct f2fs_sb_info *sbi) 1451 { 1452 struct f2fs_super_block *raw_super = sbi->raw_super; 1453 1454 sbi->log_sectors_per_block = 1455 le32_to_cpu(raw_super->log_sectors_per_block); 1456 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1457 sbi->blocksize = 1 << sbi->log_blocksize; 1458 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1459 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1460 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1461 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1462 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1463 sbi->total_node_count = 1464 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1465 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1466 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1467 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1468 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1469 sbi->cur_victim_sec = NULL_SECNO; 1470 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1471 1472 sbi->dir_level = DEF_DIR_LEVEL; 1473 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1474 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1475 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1476 1477 INIT_LIST_HEAD(&sbi->s_list); 1478 mutex_init(&sbi->umount_mutex); 1479 mutex_init(&sbi->wio_mutex[NODE]); 1480 mutex_init(&sbi->wio_mutex[DATA]); 1481 1482 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1483 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1484 F2FS_KEY_DESC_PREFIX_SIZE); 1485 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1486 #endif 1487 } 1488 1489 static int init_percpu_info(struct f2fs_sb_info *sbi) 1490 { 1491 int i, err; 1492 1493 for (i = 0; i < NR_COUNT_TYPE; i++) { 1494 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1495 if (err) 1496 return err; 1497 } 1498 1499 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1500 if (err) 1501 return err; 1502 1503 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1504 GFP_KERNEL); 1505 } 1506 1507 /* 1508 * Read f2fs raw super block. 1509 * Because we have two copies of super block, so read both of them 1510 * to get the first valid one. If any one of them is broken, we pass 1511 * them recovery flag back to the caller. 1512 */ 1513 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1514 struct f2fs_super_block **raw_super, 1515 int *valid_super_block, int *recovery) 1516 { 1517 struct super_block *sb = sbi->sb; 1518 int block; 1519 struct buffer_head *bh; 1520 struct f2fs_super_block *super; 1521 int err = 0; 1522 1523 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1524 if (!super) 1525 return -ENOMEM; 1526 1527 for (block = 0; block < 2; block++) { 1528 bh = sb_bread(sb, block); 1529 if (!bh) { 1530 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1531 block + 1); 1532 err = -EIO; 1533 continue; 1534 } 1535 1536 /* sanity checking of raw super */ 1537 if (sanity_check_raw_super(sbi, bh)) { 1538 f2fs_msg(sb, KERN_ERR, 1539 "Can't find valid F2FS filesystem in %dth superblock", 1540 block + 1); 1541 err = -EINVAL; 1542 brelse(bh); 1543 continue; 1544 } 1545 1546 if (!*raw_super) { 1547 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1548 sizeof(*super)); 1549 *valid_super_block = block; 1550 *raw_super = super; 1551 } 1552 brelse(bh); 1553 } 1554 1555 /* Fail to read any one of the superblocks*/ 1556 if (err < 0) 1557 *recovery = 1; 1558 1559 /* No valid superblock */ 1560 if (!*raw_super) 1561 kfree(super); 1562 else 1563 err = 0; 1564 1565 return err; 1566 } 1567 1568 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1569 { 1570 struct buffer_head *bh; 1571 int err; 1572 1573 if ((recover && f2fs_readonly(sbi->sb)) || 1574 bdev_read_only(sbi->sb->s_bdev)) { 1575 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1576 return -EROFS; 1577 } 1578 1579 /* write back-up superblock first */ 1580 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1581 if (!bh) 1582 return -EIO; 1583 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1584 brelse(bh); 1585 1586 /* if we are in recovery path, skip writing valid superblock */ 1587 if (recover || err) 1588 return err; 1589 1590 /* write current valid superblock */ 1591 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1592 if (!bh) 1593 return -EIO; 1594 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1595 brelse(bh); 1596 return err; 1597 } 1598 1599 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1600 { 1601 struct f2fs_sb_info *sbi; 1602 struct f2fs_super_block *raw_super; 1603 struct inode *root; 1604 int err; 1605 bool retry = true, need_fsck = false; 1606 char *options = NULL; 1607 int recovery, i, valid_super_block; 1608 struct curseg_info *seg_i; 1609 1610 try_onemore: 1611 err = -EINVAL; 1612 raw_super = NULL; 1613 valid_super_block = -1; 1614 recovery = 0; 1615 1616 /* allocate memory for f2fs-specific super block info */ 1617 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1618 if (!sbi) 1619 return -ENOMEM; 1620 1621 sbi->sb = sb; 1622 1623 /* Load the checksum driver */ 1624 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1625 if (IS_ERR(sbi->s_chksum_driver)) { 1626 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1627 err = PTR_ERR(sbi->s_chksum_driver); 1628 sbi->s_chksum_driver = NULL; 1629 goto free_sbi; 1630 } 1631 1632 /* set a block size */ 1633 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1634 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1635 goto free_sbi; 1636 } 1637 1638 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1639 &recovery); 1640 if (err) 1641 goto free_sbi; 1642 1643 sb->s_fs_info = sbi; 1644 sbi->raw_super = raw_super; 1645 1646 default_options(sbi); 1647 /* parse mount options */ 1648 options = kstrdup((const char *)data, GFP_KERNEL); 1649 if (data && !options) { 1650 err = -ENOMEM; 1651 goto free_sb_buf; 1652 } 1653 1654 err = parse_options(sb, options); 1655 if (err) 1656 goto free_options; 1657 1658 sbi->max_file_blocks = max_file_blocks(); 1659 sb->s_maxbytes = sbi->max_file_blocks << 1660 le32_to_cpu(raw_super->log_blocksize); 1661 sb->s_max_links = F2FS_LINK_MAX; 1662 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1663 1664 sb->s_op = &f2fs_sops; 1665 sb->s_cop = &f2fs_cryptops; 1666 sb->s_xattr = f2fs_xattr_handlers; 1667 sb->s_export_op = &f2fs_export_ops; 1668 sb->s_magic = F2FS_SUPER_MAGIC; 1669 sb->s_time_gran = 1; 1670 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1671 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1672 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1673 1674 /* init f2fs-specific super block info */ 1675 sbi->valid_super_block = valid_super_block; 1676 mutex_init(&sbi->gc_mutex); 1677 mutex_init(&sbi->cp_mutex); 1678 init_rwsem(&sbi->node_write); 1679 1680 /* disallow all the data/node/meta page writes */ 1681 set_sbi_flag(sbi, SBI_POR_DOING); 1682 spin_lock_init(&sbi->stat_lock); 1683 1684 init_rwsem(&sbi->read_io.io_rwsem); 1685 sbi->read_io.sbi = sbi; 1686 sbi->read_io.bio = NULL; 1687 for (i = 0; i < NR_PAGE_TYPE; i++) { 1688 init_rwsem(&sbi->write_io[i].io_rwsem); 1689 sbi->write_io[i].sbi = sbi; 1690 sbi->write_io[i].bio = NULL; 1691 } 1692 1693 init_rwsem(&sbi->cp_rwsem); 1694 init_waitqueue_head(&sbi->cp_wait); 1695 init_sb_info(sbi); 1696 1697 err = init_percpu_info(sbi); 1698 if (err) 1699 goto free_options; 1700 1701 /* get an inode for meta space */ 1702 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1703 if (IS_ERR(sbi->meta_inode)) { 1704 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1705 err = PTR_ERR(sbi->meta_inode); 1706 goto free_options; 1707 } 1708 1709 err = get_valid_checkpoint(sbi); 1710 if (err) { 1711 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1712 goto free_meta_inode; 1713 } 1714 1715 sbi->total_valid_node_count = 1716 le32_to_cpu(sbi->ckpt->valid_node_count); 1717 percpu_counter_set(&sbi->total_valid_inode_count, 1718 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1719 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1720 sbi->total_valid_block_count = 1721 le64_to_cpu(sbi->ckpt->valid_block_count); 1722 sbi->last_valid_block_count = sbi->total_valid_block_count; 1723 1724 for (i = 0; i < NR_INODE_TYPE; i++) { 1725 INIT_LIST_HEAD(&sbi->inode_list[i]); 1726 spin_lock_init(&sbi->inode_lock[i]); 1727 } 1728 1729 init_extent_cache_info(sbi); 1730 1731 init_ino_entry_info(sbi); 1732 1733 /* setup f2fs internal modules */ 1734 err = build_segment_manager(sbi); 1735 if (err) { 1736 f2fs_msg(sb, KERN_ERR, 1737 "Failed to initialize F2FS segment manager"); 1738 goto free_sm; 1739 } 1740 err = build_node_manager(sbi); 1741 if (err) { 1742 f2fs_msg(sb, KERN_ERR, 1743 "Failed to initialize F2FS node manager"); 1744 goto free_nm; 1745 } 1746 1747 /* For write statistics */ 1748 if (sb->s_bdev->bd_part) 1749 sbi->sectors_written_start = 1750 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1751 1752 /* Read accumulated write IO statistics if exists */ 1753 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1754 if (__exist_node_summaries(sbi)) 1755 sbi->kbytes_written = 1756 le64_to_cpu(seg_i->journal->info.kbytes_written); 1757 1758 build_gc_manager(sbi); 1759 1760 /* get an inode for node space */ 1761 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1762 if (IS_ERR(sbi->node_inode)) { 1763 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1764 err = PTR_ERR(sbi->node_inode); 1765 goto free_nm; 1766 } 1767 1768 f2fs_join_shrinker(sbi); 1769 1770 /* if there are nt orphan nodes free them */ 1771 err = recover_orphan_inodes(sbi); 1772 if (err) 1773 goto free_node_inode; 1774 1775 /* read root inode and dentry */ 1776 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1777 if (IS_ERR(root)) { 1778 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1779 err = PTR_ERR(root); 1780 goto free_node_inode; 1781 } 1782 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1783 iput(root); 1784 err = -EINVAL; 1785 goto free_node_inode; 1786 } 1787 1788 sb->s_root = d_make_root(root); /* allocate root dentry */ 1789 if (!sb->s_root) { 1790 err = -ENOMEM; 1791 goto free_root_inode; 1792 } 1793 1794 err = f2fs_build_stats(sbi); 1795 if (err) 1796 goto free_root_inode; 1797 1798 if (f2fs_proc_root) 1799 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1800 1801 if (sbi->s_proc) { 1802 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1803 &f2fs_seq_segment_info_fops, sb); 1804 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1805 &f2fs_seq_segment_bits_fops, sb); 1806 } 1807 1808 sbi->s_kobj.kset = f2fs_kset; 1809 init_completion(&sbi->s_kobj_unregister); 1810 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1811 "%s", sb->s_id); 1812 if (err) 1813 goto free_proc; 1814 1815 /* recover fsynced data */ 1816 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1817 /* 1818 * mount should be failed, when device has readonly mode, and 1819 * previous checkpoint was not done by clean system shutdown. 1820 */ 1821 if (bdev_read_only(sb->s_bdev) && 1822 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1823 err = -EROFS; 1824 goto free_kobj; 1825 } 1826 1827 if (need_fsck) 1828 set_sbi_flag(sbi, SBI_NEED_FSCK); 1829 1830 if (!retry) 1831 goto skip_recovery; 1832 1833 err = recover_fsync_data(sbi, false); 1834 if (err < 0) { 1835 need_fsck = true; 1836 f2fs_msg(sb, KERN_ERR, 1837 "Cannot recover all fsync data errno=%d", err); 1838 goto free_kobj; 1839 } 1840 } else { 1841 err = recover_fsync_data(sbi, true); 1842 1843 if (!f2fs_readonly(sb) && err > 0) { 1844 err = -EINVAL; 1845 f2fs_msg(sb, KERN_ERR, 1846 "Need to recover fsync data"); 1847 goto free_kobj; 1848 } 1849 } 1850 skip_recovery: 1851 /* recover_fsync_data() cleared this already */ 1852 clear_sbi_flag(sbi, SBI_POR_DOING); 1853 1854 /* 1855 * If filesystem is not mounted as read-only then 1856 * do start the gc_thread. 1857 */ 1858 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1859 /* After POR, we can run background GC thread.*/ 1860 err = start_gc_thread(sbi); 1861 if (err) 1862 goto free_kobj; 1863 } 1864 kfree(options); 1865 1866 /* recover broken superblock */ 1867 if (recovery) { 1868 err = f2fs_commit_super(sbi, true); 1869 f2fs_msg(sb, KERN_INFO, 1870 "Try to recover %dth superblock, ret: %d", 1871 sbi->valid_super_block ? 1 : 2, err); 1872 } 1873 1874 f2fs_update_time(sbi, CP_TIME); 1875 f2fs_update_time(sbi, REQ_TIME); 1876 return 0; 1877 1878 free_kobj: 1879 f2fs_sync_inode_meta(sbi); 1880 kobject_del(&sbi->s_kobj); 1881 kobject_put(&sbi->s_kobj); 1882 wait_for_completion(&sbi->s_kobj_unregister); 1883 free_proc: 1884 if (sbi->s_proc) { 1885 remove_proc_entry("segment_info", sbi->s_proc); 1886 remove_proc_entry("segment_bits", sbi->s_proc); 1887 remove_proc_entry(sb->s_id, f2fs_proc_root); 1888 } 1889 f2fs_destroy_stats(sbi); 1890 free_root_inode: 1891 dput(sb->s_root); 1892 sb->s_root = NULL; 1893 free_node_inode: 1894 mutex_lock(&sbi->umount_mutex); 1895 f2fs_leave_shrinker(sbi); 1896 iput(sbi->node_inode); 1897 mutex_unlock(&sbi->umount_mutex); 1898 free_nm: 1899 destroy_node_manager(sbi); 1900 free_sm: 1901 destroy_segment_manager(sbi); 1902 kfree(sbi->ckpt); 1903 free_meta_inode: 1904 make_bad_inode(sbi->meta_inode); 1905 iput(sbi->meta_inode); 1906 free_options: 1907 destroy_percpu_info(sbi); 1908 kfree(options); 1909 free_sb_buf: 1910 kfree(raw_super); 1911 free_sbi: 1912 if (sbi->s_chksum_driver) 1913 crypto_free_shash(sbi->s_chksum_driver); 1914 kfree(sbi); 1915 1916 /* give only one another chance */ 1917 if (retry) { 1918 retry = false; 1919 shrink_dcache_sb(sb); 1920 goto try_onemore; 1921 } 1922 return err; 1923 } 1924 1925 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1926 const char *dev_name, void *data) 1927 { 1928 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1929 } 1930 1931 static void kill_f2fs_super(struct super_block *sb) 1932 { 1933 if (sb->s_root) 1934 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1935 kill_block_super(sb); 1936 } 1937 1938 static struct file_system_type f2fs_fs_type = { 1939 .owner = THIS_MODULE, 1940 .name = "f2fs", 1941 .mount = f2fs_mount, 1942 .kill_sb = kill_f2fs_super, 1943 .fs_flags = FS_REQUIRES_DEV, 1944 }; 1945 MODULE_ALIAS_FS("f2fs"); 1946 1947 static int __init init_inodecache(void) 1948 { 1949 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1950 sizeof(struct f2fs_inode_info), 0, 1951 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1952 if (!f2fs_inode_cachep) 1953 return -ENOMEM; 1954 return 0; 1955 } 1956 1957 static void destroy_inodecache(void) 1958 { 1959 /* 1960 * Make sure all delayed rcu free inodes are flushed before we 1961 * destroy cache. 1962 */ 1963 rcu_barrier(); 1964 kmem_cache_destroy(f2fs_inode_cachep); 1965 } 1966 1967 static int __init init_f2fs_fs(void) 1968 { 1969 int err; 1970 1971 f2fs_build_trace_ios(); 1972 1973 err = init_inodecache(); 1974 if (err) 1975 goto fail; 1976 err = create_node_manager_caches(); 1977 if (err) 1978 goto free_inodecache; 1979 err = create_segment_manager_caches(); 1980 if (err) 1981 goto free_node_manager_caches; 1982 err = create_checkpoint_caches(); 1983 if (err) 1984 goto free_segment_manager_caches; 1985 err = create_extent_cache(); 1986 if (err) 1987 goto free_checkpoint_caches; 1988 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1989 if (!f2fs_kset) { 1990 err = -ENOMEM; 1991 goto free_extent_cache; 1992 } 1993 #ifdef CONFIG_F2FS_FAULT_INJECTION 1994 f2fs_fault_inject.kset = f2fs_kset; 1995 f2fs_build_fault_attr(0); 1996 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype, 1997 NULL, "fault_injection"); 1998 if (err) { 1999 f2fs_fault_inject.kset = NULL; 2000 goto free_kset; 2001 } 2002 #endif 2003 err = register_shrinker(&f2fs_shrinker_info); 2004 if (err) 2005 goto free_kset; 2006 2007 err = register_filesystem(&f2fs_fs_type); 2008 if (err) 2009 goto free_shrinker; 2010 err = f2fs_create_root_stats(); 2011 if (err) 2012 goto free_filesystem; 2013 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2014 return 0; 2015 2016 free_filesystem: 2017 unregister_filesystem(&f2fs_fs_type); 2018 free_shrinker: 2019 unregister_shrinker(&f2fs_shrinker_info); 2020 free_kset: 2021 #ifdef CONFIG_F2FS_FAULT_INJECTION 2022 if (f2fs_fault_inject.kset) 2023 kobject_put(&f2fs_fault_inject); 2024 #endif 2025 kset_unregister(f2fs_kset); 2026 free_extent_cache: 2027 destroy_extent_cache(); 2028 free_checkpoint_caches: 2029 destroy_checkpoint_caches(); 2030 free_segment_manager_caches: 2031 destroy_segment_manager_caches(); 2032 free_node_manager_caches: 2033 destroy_node_manager_caches(); 2034 free_inodecache: 2035 destroy_inodecache(); 2036 fail: 2037 return err; 2038 } 2039 2040 static void __exit exit_f2fs_fs(void) 2041 { 2042 remove_proc_entry("fs/f2fs", NULL); 2043 f2fs_destroy_root_stats(); 2044 unregister_filesystem(&f2fs_fs_type); 2045 unregister_shrinker(&f2fs_shrinker_info); 2046 #ifdef CONFIG_F2FS_FAULT_INJECTION 2047 kobject_put(&f2fs_fault_inject); 2048 #endif 2049 kset_unregister(f2fs_kset); 2050 destroy_extent_cache(); 2051 destroy_checkpoint_caches(); 2052 destroy_segment_manager_caches(); 2053 destroy_node_manager_caches(); 2054 destroy_inodecache(); 2055 f2fs_destroy_trace_ios(); 2056 } 2057 2058 module_init(init_f2fs_fs) 2059 module_exit(exit_f2fs_fs) 2060 2061 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2062 MODULE_DESCRIPTION("Flash Friendly File System"); 2063 MODULE_LICENSE("GPL"); 2064