xref: /openbmc/linux/fs/f2fs/super.c (revision 85dc2f2c6c84e99e9864ef660f79683aaad85f42)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 enum {
43 	Opt_gc_background,
44 	Opt_disable_roll_forward,
45 	Opt_discard,
46 	Opt_noheap,
47 	Opt_user_xattr,
48 	Opt_nouser_xattr,
49 	Opt_acl,
50 	Opt_noacl,
51 	Opt_active_logs,
52 	Opt_disable_ext_identify,
53 	Opt_inline_xattr,
54 	Opt_inline_data,
55 	Opt_inline_dentry,
56 	Opt_flush_merge,
57 	Opt_nobarrier,
58 	Opt_fastboot,
59 	Opt_err,
60 };
61 
62 static match_table_t f2fs_tokens = {
63 	{Opt_gc_background, "background_gc=%s"},
64 	{Opt_disable_roll_forward, "disable_roll_forward"},
65 	{Opt_discard, "discard"},
66 	{Opt_noheap, "no_heap"},
67 	{Opt_user_xattr, "user_xattr"},
68 	{Opt_nouser_xattr, "nouser_xattr"},
69 	{Opt_acl, "acl"},
70 	{Opt_noacl, "noacl"},
71 	{Opt_active_logs, "active_logs=%u"},
72 	{Opt_disable_ext_identify, "disable_ext_identify"},
73 	{Opt_inline_xattr, "inline_xattr"},
74 	{Opt_inline_data, "inline_data"},
75 	{Opt_inline_dentry, "inline_dentry"},
76 	{Opt_flush_merge, "flush_merge"},
77 	{Opt_nobarrier, "nobarrier"},
78 	{Opt_fastboot, "fastboot"},
79 	{Opt_err, NULL},
80 };
81 
82 /* Sysfs support for f2fs */
83 enum {
84 	GC_THREAD,	/* struct f2fs_gc_thread */
85 	SM_INFO,	/* struct f2fs_sm_info */
86 	NM_INFO,	/* struct f2fs_nm_info */
87 	F2FS_SBI,	/* struct f2fs_sb_info */
88 };
89 
90 struct f2fs_attr {
91 	struct attribute attr;
92 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
93 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
94 			 const char *, size_t);
95 	int struct_type;
96 	int offset;
97 };
98 
99 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
100 {
101 	if (struct_type == GC_THREAD)
102 		return (unsigned char *)sbi->gc_thread;
103 	else if (struct_type == SM_INFO)
104 		return (unsigned char *)SM_I(sbi);
105 	else if (struct_type == NM_INFO)
106 		return (unsigned char *)NM_I(sbi);
107 	else if (struct_type == F2FS_SBI)
108 		return (unsigned char *)sbi;
109 	return NULL;
110 }
111 
112 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
113 			struct f2fs_sb_info *sbi, char *buf)
114 {
115 	unsigned char *ptr = NULL;
116 	unsigned int *ui;
117 
118 	ptr = __struct_ptr(sbi, a->struct_type);
119 	if (!ptr)
120 		return -EINVAL;
121 
122 	ui = (unsigned int *)(ptr + a->offset);
123 
124 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
125 }
126 
127 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
128 			struct f2fs_sb_info *sbi,
129 			const char *buf, size_t count)
130 {
131 	unsigned char *ptr;
132 	unsigned long t;
133 	unsigned int *ui;
134 	ssize_t ret;
135 
136 	ptr = __struct_ptr(sbi, a->struct_type);
137 	if (!ptr)
138 		return -EINVAL;
139 
140 	ui = (unsigned int *)(ptr + a->offset);
141 
142 	ret = kstrtoul(skip_spaces(buf), 0, &t);
143 	if (ret < 0)
144 		return ret;
145 	*ui = t;
146 	return count;
147 }
148 
149 static ssize_t f2fs_attr_show(struct kobject *kobj,
150 				struct attribute *attr, char *buf)
151 {
152 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
153 								s_kobj);
154 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
155 
156 	return a->show ? a->show(a, sbi, buf) : 0;
157 }
158 
159 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
160 						const char *buf, size_t len)
161 {
162 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
163 									s_kobj);
164 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
165 
166 	return a->store ? a->store(a, sbi, buf, len) : 0;
167 }
168 
169 static void f2fs_sb_release(struct kobject *kobj)
170 {
171 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
172 								s_kobj);
173 	complete(&sbi->s_kobj_unregister);
174 }
175 
176 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
177 static struct f2fs_attr f2fs_attr_##_name = {			\
178 	.attr = {.name = __stringify(_name), .mode = _mode },	\
179 	.show	= _show,					\
180 	.store	= _store,					\
181 	.struct_type = _struct_type,				\
182 	.offset = _offset					\
183 }
184 
185 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
186 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
187 		f2fs_sbi_show, f2fs_sbi_store,			\
188 		offsetof(struct struct_name, elname))
189 
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
193 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
199 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
201 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
202 
203 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
204 static struct attribute *f2fs_attrs[] = {
205 	ATTR_LIST(gc_min_sleep_time),
206 	ATTR_LIST(gc_max_sleep_time),
207 	ATTR_LIST(gc_no_gc_sleep_time),
208 	ATTR_LIST(gc_idle),
209 	ATTR_LIST(reclaim_segments),
210 	ATTR_LIST(max_small_discards),
211 	ATTR_LIST(ipu_policy),
212 	ATTR_LIST(min_ipu_util),
213 	ATTR_LIST(min_fsync_blocks),
214 	ATTR_LIST(max_victim_search),
215 	ATTR_LIST(dir_level),
216 	ATTR_LIST(ram_thresh),
217 	NULL,
218 };
219 
220 static const struct sysfs_ops f2fs_attr_ops = {
221 	.show	= f2fs_attr_show,
222 	.store	= f2fs_attr_store,
223 };
224 
225 static struct kobj_type f2fs_ktype = {
226 	.default_attrs	= f2fs_attrs,
227 	.sysfs_ops	= &f2fs_attr_ops,
228 	.release	= f2fs_sb_release,
229 };
230 
231 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
232 {
233 	struct va_format vaf;
234 	va_list args;
235 
236 	va_start(args, fmt);
237 	vaf.fmt = fmt;
238 	vaf.va = &args;
239 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
240 	va_end(args);
241 }
242 
243 static void init_once(void *foo)
244 {
245 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
246 
247 	inode_init_once(&fi->vfs_inode);
248 }
249 
250 static int parse_options(struct super_block *sb, char *options)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 	substring_t args[MAX_OPT_ARGS];
254 	char *p, *name;
255 	int arg = 0;
256 
257 	if (!options)
258 		return 0;
259 
260 	while ((p = strsep(&options, ",")) != NULL) {
261 		int token;
262 		if (!*p)
263 			continue;
264 		/*
265 		 * Initialize args struct so we know whether arg was
266 		 * found; some options take optional arguments.
267 		 */
268 		args[0].to = args[0].from = NULL;
269 		token = match_token(p, f2fs_tokens, args);
270 
271 		switch (token) {
272 		case Opt_gc_background:
273 			name = match_strdup(&args[0]);
274 
275 			if (!name)
276 				return -ENOMEM;
277 			if (strlen(name) == 2 && !strncmp(name, "on", 2))
278 				set_opt(sbi, BG_GC);
279 			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
280 				clear_opt(sbi, BG_GC);
281 			else {
282 				kfree(name);
283 				return -EINVAL;
284 			}
285 			kfree(name);
286 			break;
287 		case Opt_disable_roll_forward:
288 			set_opt(sbi, DISABLE_ROLL_FORWARD);
289 			break;
290 		case Opt_discard:
291 			set_opt(sbi, DISCARD);
292 			break;
293 		case Opt_noheap:
294 			set_opt(sbi, NOHEAP);
295 			break;
296 #ifdef CONFIG_F2FS_FS_XATTR
297 		case Opt_user_xattr:
298 			set_opt(sbi, XATTR_USER);
299 			break;
300 		case Opt_nouser_xattr:
301 			clear_opt(sbi, XATTR_USER);
302 			break;
303 		case Opt_inline_xattr:
304 			set_opt(sbi, INLINE_XATTR);
305 			break;
306 #else
307 		case Opt_user_xattr:
308 			f2fs_msg(sb, KERN_INFO,
309 				"user_xattr options not supported");
310 			break;
311 		case Opt_nouser_xattr:
312 			f2fs_msg(sb, KERN_INFO,
313 				"nouser_xattr options not supported");
314 			break;
315 		case Opt_inline_xattr:
316 			f2fs_msg(sb, KERN_INFO,
317 				"inline_xattr options not supported");
318 			break;
319 #endif
320 #ifdef CONFIG_F2FS_FS_POSIX_ACL
321 		case Opt_acl:
322 			set_opt(sbi, POSIX_ACL);
323 			break;
324 		case Opt_noacl:
325 			clear_opt(sbi, POSIX_ACL);
326 			break;
327 #else
328 		case Opt_acl:
329 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
330 			break;
331 		case Opt_noacl:
332 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
333 			break;
334 #endif
335 		case Opt_active_logs:
336 			if (args->from && match_int(args, &arg))
337 				return -EINVAL;
338 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
339 				return -EINVAL;
340 			sbi->active_logs = arg;
341 			break;
342 		case Opt_disable_ext_identify:
343 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
344 			break;
345 		case Opt_inline_data:
346 			set_opt(sbi, INLINE_DATA);
347 			break;
348 		case Opt_inline_dentry:
349 			set_opt(sbi, INLINE_DENTRY);
350 			break;
351 		case Opt_flush_merge:
352 			set_opt(sbi, FLUSH_MERGE);
353 			break;
354 		case Opt_nobarrier:
355 			set_opt(sbi, NOBARRIER);
356 			break;
357 		case Opt_fastboot:
358 			set_opt(sbi, FASTBOOT);
359 			break;
360 		default:
361 			f2fs_msg(sb, KERN_ERR,
362 				"Unrecognized mount option \"%s\" or missing value",
363 				p);
364 			return -EINVAL;
365 		}
366 	}
367 	return 0;
368 }
369 
370 static struct inode *f2fs_alloc_inode(struct super_block *sb)
371 {
372 	struct f2fs_inode_info *fi;
373 
374 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
375 	if (!fi)
376 		return NULL;
377 
378 	init_once((void *) fi);
379 
380 	/* Initialize f2fs-specific inode info */
381 	fi->vfs_inode.i_version = 1;
382 	atomic_set(&fi->dirty_pages, 0);
383 	fi->i_current_depth = 1;
384 	fi->i_advise = 0;
385 	rwlock_init(&fi->ext.ext_lock);
386 	init_rwsem(&fi->i_sem);
387 	INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
388 	INIT_LIST_HEAD(&fi->inmem_pages);
389 	mutex_init(&fi->inmem_lock);
390 
391 	set_inode_flag(fi, FI_NEW_INODE);
392 
393 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
394 		set_inode_flag(fi, FI_INLINE_XATTR);
395 
396 	/* Will be used by directory only */
397 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
398 
399 	return &fi->vfs_inode;
400 }
401 
402 static int f2fs_drop_inode(struct inode *inode)
403 {
404 	/*
405 	 * This is to avoid a deadlock condition like below.
406 	 * writeback_single_inode(inode)
407 	 *  - f2fs_write_data_page
408 	 *    - f2fs_gc -> iput -> evict
409 	 *       - inode_wait_for_writeback(inode)
410 	 */
411 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
412 		return 0;
413 	return generic_drop_inode(inode);
414 }
415 
416 /*
417  * f2fs_dirty_inode() is called from __mark_inode_dirty()
418  *
419  * We should call set_dirty_inode to write the dirty inode through write_inode.
420  */
421 static void f2fs_dirty_inode(struct inode *inode, int flags)
422 {
423 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
424 }
425 
426 static void f2fs_i_callback(struct rcu_head *head)
427 {
428 	struct inode *inode = container_of(head, struct inode, i_rcu);
429 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
430 }
431 
432 static void f2fs_destroy_inode(struct inode *inode)
433 {
434 	call_rcu(&inode->i_rcu, f2fs_i_callback);
435 }
436 
437 static void f2fs_put_super(struct super_block *sb)
438 {
439 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
440 
441 	if (sbi->s_proc) {
442 		remove_proc_entry("segment_info", sbi->s_proc);
443 		remove_proc_entry(sb->s_id, f2fs_proc_root);
444 	}
445 	kobject_del(&sbi->s_kobj);
446 
447 	f2fs_destroy_stats(sbi);
448 	stop_gc_thread(sbi);
449 
450 	/*
451 	 * We don't need to do checkpoint when superblock is clean.
452 	 * But, the previous checkpoint was not done by umount, it needs to do
453 	 * clean checkpoint again.
454 	 */
455 	if (sbi->s_dirty ||
456 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
457 		struct cp_control cpc = {
458 			.reason = CP_UMOUNT,
459 		};
460 		write_checkpoint(sbi, &cpc);
461 	}
462 
463 	/*
464 	 * normally superblock is clean, so we need to release this.
465 	 * In addition, EIO will skip do checkpoint, we need this as well.
466 	 */
467 	release_dirty_inode(sbi);
468 	release_discard_addrs(sbi);
469 
470 	iput(sbi->node_inode);
471 	iput(sbi->meta_inode);
472 
473 	/* destroy f2fs internal modules */
474 	destroy_node_manager(sbi);
475 	destroy_segment_manager(sbi);
476 
477 	kfree(sbi->ckpt);
478 	kobject_put(&sbi->s_kobj);
479 	wait_for_completion(&sbi->s_kobj_unregister);
480 
481 	sb->s_fs_info = NULL;
482 	brelse(sbi->raw_super_buf);
483 	kfree(sbi);
484 }
485 
486 int f2fs_sync_fs(struct super_block *sb, int sync)
487 {
488 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
489 
490 	trace_f2fs_sync_fs(sb, sync);
491 
492 	if (sync) {
493 		struct cp_control cpc;
494 
495 		cpc.reason = (test_opt(sbi, FASTBOOT) || sbi->s_closing) ?
496 							CP_UMOUNT : CP_SYNC;
497 		mutex_lock(&sbi->gc_mutex);
498 		write_checkpoint(sbi, &cpc);
499 		mutex_unlock(&sbi->gc_mutex);
500 	} else {
501 		f2fs_balance_fs(sbi);
502 	}
503 	f2fs_trace_ios(NULL, NULL, 1);
504 
505 	return 0;
506 }
507 
508 static int f2fs_freeze(struct super_block *sb)
509 {
510 	int err;
511 
512 	if (f2fs_readonly(sb))
513 		return 0;
514 
515 	err = f2fs_sync_fs(sb, 1);
516 	return err;
517 }
518 
519 static int f2fs_unfreeze(struct super_block *sb)
520 {
521 	return 0;
522 }
523 
524 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
525 {
526 	struct super_block *sb = dentry->d_sb;
527 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
528 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
529 	block_t total_count, user_block_count, start_count, ovp_count;
530 
531 	total_count = le64_to_cpu(sbi->raw_super->block_count);
532 	user_block_count = sbi->user_block_count;
533 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
534 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
535 	buf->f_type = F2FS_SUPER_MAGIC;
536 	buf->f_bsize = sbi->blocksize;
537 
538 	buf->f_blocks = total_count - start_count;
539 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
540 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
541 
542 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
543 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
544 
545 	buf->f_namelen = F2FS_NAME_LEN;
546 	buf->f_fsid.val[0] = (u32)id;
547 	buf->f_fsid.val[1] = (u32)(id >> 32);
548 
549 	return 0;
550 }
551 
552 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
555 
556 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
557 		seq_printf(seq, ",background_gc=%s", "on");
558 	else
559 		seq_printf(seq, ",background_gc=%s", "off");
560 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
561 		seq_puts(seq, ",disable_roll_forward");
562 	if (test_opt(sbi, DISCARD))
563 		seq_puts(seq, ",discard");
564 	if (test_opt(sbi, NOHEAP))
565 		seq_puts(seq, ",no_heap_alloc");
566 #ifdef CONFIG_F2FS_FS_XATTR
567 	if (test_opt(sbi, XATTR_USER))
568 		seq_puts(seq, ",user_xattr");
569 	else
570 		seq_puts(seq, ",nouser_xattr");
571 	if (test_opt(sbi, INLINE_XATTR))
572 		seq_puts(seq, ",inline_xattr");
573 #endif
574 #ifdef CONFIG_F2FS_FS_POSIX_ACL
575 	if (test_opt(sbi, POSIX_ACL))
576 		seq_puts(seq, ",acl");
577 	else
578 		seq_puts(seq, ",noacl");
579 #endif
580 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
581 		seq_puts(seq, ",disable_ext_identify");
582 	if (test_opt(sbi, INLINE_DATA))
583 		seq_puts(seq, ",inline_data");
584 	if (test_opt(sbi, INLINE_DENTRY))
585 		seq_puts(seq, ",inline_dentry");
586 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
587 		seq_puts(seq, ",flush_merge");
588 	if (test_opt(sbi, NOBARRIER))
589 		seq_puts(seq, ",nobarrier");
590 	if (test_opt(sbi, FASTBOOT))
591 		seq_puts(seq, ",fastboot");
592 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
593 
594 	return 0;
595 }
596 
597 static int segment_info_seq_show(struct seq_file *seq, void *offset)
598 {
599 	struct super_block *sb = seq->private;
600 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
601 	unsigned int total_segs =
602 			le32_to_cpu(sbi->raw_super->segment_count_main);
603 	int i;
604 
605 	seq_puts(seq, "format: segment_type|valid_blocks\n"
606 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
607 
608 	for (i = 0; i < total_segs; i++) {
609 		struct seg_entry *se = get_seg_entry(sbi, i);
610 
611 		if ((i % 10) == 0)
612 			seq_printf(seq, "%-5d", i);
613 		seq_printf(seq, "%d|%-3u", se->type,
614 					get_valid_blocks(sbi, i, 1));
615 		if ((i % 10) == 9 || i == (total_segs - 1))
616 			seq_putc(seq, '\n');
617 		else
618 			seq_putc(seq, ' ');
619 	}
620 
621 	return 0;
622 }
623 
624 static int segment_info_open_fs(struct inode *inode, struct file *file)
625 {
626 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
627 }
628 
629 static const struct file_operations f2fs_seq_segment_info_fops = {
630 	.owner = THIS_MODULE,
631 	.open = segment_info_open_fs,
632 	.read = seq_read,
633 	.llseek = seq_lseek,
634 	.release = single_release,
635 };
636 
637 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
638 {
639 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
640 	struct f2fs_mount_info org_mount_opt;
641 	int err, active_logs;
642 	bool need_restart_gc = false;
643 	bool need_stop_gc = false;
644 
645 	sync_filesystem(sb);
646 
647 	/*
648 	 * Save the old mount options in case we
649 	 * need to restore them.
650 	 */
651 	org_mount_opt = sbi->mount_opt;
652 	active_logs = sbi->active_logs;
653 
654 	sbi->mount_opt.opt = 0;
655 	sbi->active_logs = NR_CURSEG_TYPE;
656 
657 	/* parse mount options */
658 	err = parse_options(sb, data);
659 	if (err)
660 		goto restore_opts;
661 
662 	/*
663 	 * Previous and new state of filesystem is RO,
664 	 * so skip checking GC and FLUSH_MERGE conditions.
665 	 */
666 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
667 		goto skip;
668 
669 	/*
670 	 * We stop the GC thread if FS is mounted as RO
671 	 * or if background_gc = off is passed in mount
672 	 * option. Also sync the filesystem.
673 	 */
674 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
675 		if (sbi->gc_thread) {
676 			stop_gc_thread(sbi);
677 			f2fs_sync_fs(sb, 1);
678 			need_restart_gc = true;
679 		}
680 	} else if (!sbi->gc_thread) {
681 		err = start_gc_thread(sbi);
682 		if (err)
683 			goto restore_opts;
684 		need_stop_gc = true;
685 	}
686 
687 	/*
688 	 * We stop issue flush thread if FS is mounted as RO
689 	 * or if flush_merge is not passed in mount option.
690 	 */
691 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
692 		destroy_flush_cmd_control(sbi);
693 	} else if (!SM_I(sbi)->cmd_control_info) {
694 		err = create_flush_cmd_control(sbi);
695 		if (err)
696 			goto restore_gc;
697 	}
698 skip:
699 	/* Update the POSIXACL Flag */
700 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
701 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
702 	return 0;
703 restore_gc:
704 	if (need_restart_gc) {
705 		if (start_gc_thread(sbi))
706 			f2fs_msg(sbi->sb, KERN_WARNING,
707 				"background gc thread has stopped");
708 	} else if (need_stop_gc) {
709 		stop_gc_thread(sbi);
710 	}
711 restore_opts:
712 	sbi->mount_opt = org_mount_opt;
713 	sbi->active_logs = active_logs;
714 	return err;
715 }
716 
717 static struct super_operations f2fs_sops = {
718 	.alloc_inode	= f2fs_alloc_inode,
719 	.drop_inode	= f2fs_drop_inode,
720 	.destroy_inode	= f2fs_destroy_inode,
721 	.write_inode	= f2fs_write_inode,
722 	.dirty_inode	= f2fs_dirty_inode,
723 	.show_options	= f2fs_show_options,
724 	.evict_inode	= f2fs_evict_inode,
725 	.put_super	= f2fs_put_super,
726 	.sync_fs	= f2fs_sync_fs,
727 	.freeze_fs	= f2fs_freeze,
728 	.unfreeze_fs	= f2fs_unfreeze,
729 	.statfs		= f2fs_statfs,
730 	.remount_fs	= f2fs_remount,
731 };
732 
733 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
734 		u64 ino, u32 generation)
735 {
736 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
737 	struct inode *inode;
738 
739 	if (check_nid_range(sbi, ino))
740 		return ERR_PTR(-ESTALE);
741 
742 	/*
743 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
744 	 * However f2fs_iget currently does appropriate checks to handle stale
745 	 * inodes so everything is OK.
746 	 */
747 	inode = f2fs_iget(sb, ino);
748 	if (IS_ERR(inode))
749 		return ERR_CAST(inode);
750 	if (unlikely(generation && inode->i_generation != generation)) {
751 		/* we didn't find the right inode.. */
752 		iput(inode);
753 		return ERR_PTR(-ESTALE);
754 	}
755 	return inode;
756 }
757 
758 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
759 		int fh_len, int fh_type)
760 {
761 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
762 				    f2fs_nfs_get_inode);
763 }
764 
765 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
766 		int fh_len, int fh_type)
767 {
768 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
769 				    f2fs_nfs_get_inode);
770 }
771 
772 static const struct export_operations f2fs_export_ops = {
773 	.fh_to_dentry = f2fs_fh_to_dentry,
774 	.fh_to_parent = f2fs_fh_to_parent,
775 	.get_parent = f2fs_get_parent,
776 };
777 
778 static loff_t max_file_size(unsigned bits)
779 {
780 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
781 	loff_t leaf_count = ADDRS_PER_BLOCK;
782 
783 	/* two direct node blocks */
784 	result += (leaf_count * 2);
785 
786 	/* two indirect node blocks */
787 	leaf_count *= NIDS_PER_BLOCK;
788 	result += (leaf_count * 2);
789 
790 	/* one double indirect node block */
791 	leaf_count *= NIDS_PER_BLOCK;
792 	result += leaf_count;
793 
794 	result <<= bits;
795 	return result;
796 }
797 
798 static int sanity_check_raw_super(struct super_block *sb,
799 			struct f2fs_super_block *raw_super)
800 {
801 	unsigned int blocksize;
802 
803 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
804 		f2fs_msg(sb, KERN_INFO,
805 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
806 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
807 		return 1;
808 	}
809 
810 	/* Currently, support only 4KB page cache size */
811 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
812 		f2fs_msg(sb, KERN_INFO,
813 			"Invalid page_cache_size (%lu), supports only 4KB\n",
814 			PAGE_CACHE_SIZE);
815 		return 1;
816 	}
817 
818 	/* Currently, support only 4KB block size */
819 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
820 	if (blocksize != F2FS_BLKSIZE) {
821 		f2fs_msg(sb, KERN_INFO,
822 			"Invalid blocksize (%u), supports only 4KB\n",
823 			blocksize);
824 		return 1;
825 	}
826 
827 	/* Currently, support 512/1024/2048/4096 bytes sector size */
828 	if (le32_to_cpu(raw_super->log_sectorsize) >
829 				F2FS_MAX_LOG_SECTOR_SIZE ||
830 		le32_to_cpu(raw_super->log_sectorsize) <
831 				F2FS_MIN_LOG_SECTOR_SIZE) {
832 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
833 			le32_to_cpu(raw_super->log_sectorsize));
834 		return 1;
835 	}
836 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
837 		le32_to_cpu(raw_super->log_sectorsize) !=
838 			F2FS_MAX_LOG_SECTOR_SIZE) {
839 		f2fs_msg(sb, KERN_INFO,
840 			"Invalid log sectors per block(%u) log sectorsize(%u)",
841 			le32_to_cpu(raw_super->log_sectors_per_block),
842 			le32_to_cpu(raw_super->log_sectorsize));
843 		return 1;
844 	}
845 	return 0;
846 }
847 
848 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
849 {
850 	unsigned int total, fsmeta;
851 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
852 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
853 
854 	total = le32_to_cpu(raw_super->segment_count);
855 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
856 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
857 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
858 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
859 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
860 
861 	if (unlikely(fsmeta >= total))
862 		return 1;
863 
864 	if (unlikely(f2fs_cp_error(sbi))) {
865 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
866 		return 1;
867 	}
868 	return 0;
869 }
870 
871 static void init_sb_info(struct f2fs_sb_info *sbi)
872 {
873 	struct f2fs_super_block *raw_super = sbi->raw_super;
874 	int i;
875 
876 	sbi->log_sectors_per_block =
877 		le32_to_cpu(raw_super->log_sectors_per_block);
878 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
879 	sbi->blocksize = 1 << sbi->log_blocksize;
880 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
881 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
882 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
883 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
884 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
885 	sbi->total_node_count =
886 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
887 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
888 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
889 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
890 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
891 	sbi->cur_victim_sec = NULL_SECNO;
892 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
893 
894 	for (i = 0; i < NR_COUNT_TYPE; i++)
895 		atomic_set(&sbi->nr_pages[i], 0);
896 
897 	sbi->dir_level = DEF_DIR_LEVEL;
898 	sbi->need_fsck = false;
899 }
900 
901 /*
902  * Read f2fs raw super block.
903  * Because we have two copies of super block, so read the first one at first,
904  * if the first one is invalid, move to read the second one.
905  */
906 static int read_raw_super_block(struct super_block *sb,
907 			struct f2fs_super_block **raw_super,
908 			struct buffer_head **raw_super_buf)
909 {
910 	int block = 0;
911 
912 retry:
913 	*raw_super_buf = sb_bread(sb, block);
914 	if (!*raw_super_buf) {
915 		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
916 				block + 1);
917 		if (block == 0) {
918 			block++;
919 			goto retry;
920 		} else {
921 			return -EIO;
922 		}
923 	}
924 
925 	*raw_super = (struct f2fs_super_block *)
926 		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
927 
928 	/* sanity checking of raw super */
929 	if (sanity_check_raw_super(sb, *raw_super)) {
930 		brelse(*raw_super_buf);
931 		f2fs_msg(sb, KERN_ERR,
932 			"Can't find valid F2FS filesystem in %dth superblock",
933 								block + 1);
934 		if (block == 0) {
935 			block++;
936 			goto retry;
937 		} else {
938 			return -EINVAL;
939 		}
940 	}
941 
942 	return 0;
943 }
944 
945 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
946 {
947 	struct f2fs_sb_info *sbi;
948 	struct f2fs_super_block *raw_super = NULL;
949 	struct buffer_head *raw_super_buf;
950 	struct inode *root;
951 	long err = -EINVAL;
952 	bool retry = true;
953 	int i;
954 
955 try_onemore:
956 	/* allocate memory for f2fs-specific super block info */
957 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
958 	if (!sbi)
959 		return -ENOMEM;
960 
961 	/* set a block size */
962 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
963 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
964 		goto free_sbi;
965 	}
966 
967 	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
968 	if (err)
969 		goto free_sbi;
970 
971 	sb->s_fs_info = sbi;
972 	/* init some FS parameters */
973 	sbi->active_logs = NR_CURSEG_TYPE;
974 
975 	set_opt(sbi, BG_GC);
976 
977 #ifdef CONFIG_F2FS_FS_XATTR
978 	set_opt(sbi, XATTR_USER);
979 #endif
980 #ifdef CONFIG_F2FS_FS_POSIX_ACL
981 	set_opt(sbi, POSIX_ACL);
982 #endif
983 	/* parse mount options */
984 	err = parse_options(sb, (char *)data);
985 	if (err)
986 		goto free_sb_buf;
987 
988 	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
989 	sb->s_max_links = F2FS_LINK_MAX;
990 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
991 
992 	sb->s_op = &f2fs_sops;
993 	sb->s_xattr = f2fs_xattr_handlers;
994 	sb->s_export_op = &f2fs_export_ops;
995 	sb->s_magic = F2FS_SUPER_MAGIC;
996 	sb->s_time_gran = 1;
997 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
998 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
999 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1000 
1001 	/* init f2fs-specific super block info */
1002 	sbi->sb = sb;
1003 	sbi->raw_super = raw_super;
1004 	sbi->raw_super_buf = raw_super_buf;
1005 	mutex_init(&sbi->gc_mutex);
1006 	mutex_init(&sbi->writepages);
1007 	mutex_init(&sbi->cp_mutex);
1008 	init_rwsem(&sbi->node_write);
1009 	sbi->por_doing = false;
1010 	spin_lock_init(&sbi->stat_lock);
1011 
1012 	init_rwsem(&sbi->read_io.io_rwsem);
1013 	sbi->read_io.sbi = sbi;
1014 	sbi->read_io.bio = NULL;
1015 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1016 		init_rwsem(&sbi->write_io[i].io_rwsem);
1017 		sbi->write_io[i].sbi = sbi;
1018 		sbi->write_io[i].bio = NULL;
1019 	}
1020 
1021 	init_rwsem(&sbi->cp_rwsem);
1022 	init_waitqueue_head(&sbi->cp_wait);
1023 	init_sb_info(sbi);
1024 
1025 	/* get an inode for meta space */
1026 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1027 	if (IS_ERR(sbi->meta_inode)) {
1028 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1029 		err = PTR_ERR(sbi->meta_inode);
1030 		goto free_sb_buf;
1031 	}
1032 
1033 	err = get_valid_checkpoint(sbi);
1034 	if (err) {
1035 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1036 		goto free_meta_inode;
1037 	}
1038 
1039 	/* sanity checking of checkpoint */
1040 	err = -EINVAL;
1041 	if (sanity_check_ckpt(sbi)) {
1042 		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1043 		goto free_cp;
1044 	}
1045 
1046 	sbi->total_valid_node_count =
1047 				le32_to_cpu(sbi->ckpt->valid_node_count);
1048 	sbi->total_valid_inode_count =
1049 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1050 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1051 	sbi->total_valid_block_count =
1052 				le64_to_cpu(sbi->ckpt->valid_block_count);
1053 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1054 	sbi->alloc_valid_block_count = 0;
1055 	INIT_LIST_HEAD(&sbi->dir_inode_list);
1056 	spin_lock_init(&sbi->dir_inode_lock);
1057 
1058 	init_ino_entry_info(sbi);
1059 
1060 	/* setup f2fs internal modules */
1061 	err = build_segment_manager(sbi);
1062 	if (err) {
1063 		f2fs_msg(sb, KERN_ERR,
1064 			"Failed to initialize F2FS segment manager");
1065 		goto free_sm;
1066 	}
1067 	err = build_node_manager(sbi);
1068 	if (err) {
1069 		f2fs_msg(sb, KERN_ERR,
1070 			"Failed to initialize F2FS node manager");
1071 		goto free_nm;
1072 	}
1073 
1074 	build_gc_manager(sbi);
1075 
1076 	/* get an inode for node space */
1077 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1078 	if (IS_ERR(sbi->node_inode)) {
1079 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1080 		err = PTR_ERR(sbi->node_inode);
1081 		goto free_nm;
1082 	}
1083 
1084 	/* if there are nt orphan nodes free them */
1085 	recover_orphan_inodes(sbi);
1086 
1087 	/* read root inode and dentry */
1088 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1089 	if (IS_ERR(root)) {
1090 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1091 		err = PTR_ERR(root);
1092 		goto free_node_inode;
1093 	}
1094 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1095 		iput(root);
1096 		err = -EINVAL;
1097 		goto free_node_inode;
1098 	}
1099 
1100 	sb->s_root = d_make_root(root); /* allocate root dentry */
1101 	if (!sb->s_root) {
1102 		err = -ENOMEM;
1103 		goto free_root_inode;
1104 	}
1105 
1106 	err = f2fs_build_stats(sbi);
1107 	if (err)
1108 		goto free_root_inode;
1109 
1110 	if (f2fs_proc_root)
1111 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1112 
1113 	if (sbi->s_proc)
1114 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1115 				 &f2fs_seq_segment_info_fops, sb);
1116 
1117 	if (test_opt(sbi, DISCARD)) {
1118 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1119 		if (!blk_queue_discard(q))
1120 			f2fs_msg(sb, KERN_WARNING,
1121 					"mounting with \"discard\" option, but "
1122 					"the device does not support discard");
1123 	}
1124 
1125 	sbi->s_kobj.kset = f2fs_kset;
1126 	init_completion(&sbi->s_kobj_unregister);
1127 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1128 							"%s", sb->s_id);
1129 	if (err)
1130 		goto free_proc;
1131 
1132 	if (!retry)
1133 		sbi->need_fsck = true;
1134 
1135 	/* recover fsynced data */
1136 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1137 		err = recover_fsync_data(sbi);
1138 		if (err) {
1139 			f2fs_msg(sb, KERN_ERR,
1140 				"Cannot recover all fsync data errno=%ld", err);
1141 			goto free_kobj;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * If filesystem is not mounted as read-only then
1147 	 * do start the gc_thread.
1148 	 */
1149 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1150 		/* After POR, we can run background GC thread.*/
1151 		err = start_gc_thread(sbi);
1152 		if (err)
1153 			goto free_kobj;
1154 	}
1155 	return 0;
1156 
1157 free_kobj:
1158 	kobject_del(&sbi->s_kobj);
1159 free_proc:
1160 	if (sbi->s_proc) {
1161 		remove_proc_entry("segment_info", sbi->s_proc);
1162 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1163 	}
1164 	f2fs_destroy_stats(sbi);
1165 free_root_inode:
1166 	dput(sb->s_root);
1167 	sb->s_root = NULL;
1168 free_node_inode:
1169 	iput(sbi->node_inode);
1170 free_nm:
1171 	destroy_node_manager(sbi);
1172 free_sm:
1173 	destroy_segment_manager(sbi);
1174 free_cp:
1175 	kfree(sbi->ckpt);
1176 free_meta_inode:
1177 	make_bad_inode(sbi->meta_inode);
1178 	iput(sbi->meta_inode);
1179 free_sb_buf:
1180 	brelse(raw_super_buf);
1181 free_sbi:
1182 	kfree(sbi);
1183 
1184 	/* give only one another chance */
1185 	if (retry) {
1186 		retry = 0;
1187 		shrink_dcache_sb(sb);
1188 		goto try_onemore;
1189 	}
1190 	return err;
1191 }
1192 
1193 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1194 			const char *dev_name, void *data)
1195 {
1196 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1197 }
1198 
1199 static void kill_f2fs_super(struct super_block *sb)
1200 {
1201 	if (sb->s_root)
1202 		F2FS_SB(sb)->s_closing = true;
1203 	kill_block_super(sb);
1204 }
1205 
1206 static struct file_system_type f2fs_fs_type = {
1207 	.owner		= THIS_MODULE,
1208 	.name		= "f2fs",
1209 	.mount		= f2fs_mount,
1210 	.kill_sb	= kill_f2fs_super,
1211 	.fs_flags	= FS_REQUIRES_DEV,
1212 };
1213 MODULE_ALIAS_FS("f2fs");
1214 
1215 static int __init init_inodecache(void)
1216 {
1217 	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1218 			sizeof(struct f2fs_inode_info));
1219 	if (!f2fs_inode_cachep)
1220 		return -ENOMEM;
1221 	return 0;
1222 }
1223 
1224 static void destroy_inodecache(void)
1225 {
1226 	/*
1227 	 * Make sure all delayed rcu free inodes are flushed before we
1228 	 * destroy cache.
1229 	 */
1230 	rcu_barrier();
1231 	kmem_cache_destroy(f2fs_inode_cachep);
1232 }
1233 
1234 static int __init init_f2fs_fs(void)
1235 {
1236 	int err;
1237 
1238 	f2fs_build_trace_ios();
1239 
1240 	err = init_inodecache();
1241 	if (err)
1242 		goto fail;
1243 	err = create_node_manager_caches();
1244 	if (err)
1245 		goto free_inodecache;
1246 	err = create_segment_manager_caches();
1247 	if (err)
1248 		goto free_node_manager_caches;
1249 	err = create_checkpoint_caches();
1250 	if (err)
1251 		goto free_segment_manager_caches;
1252 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1253 	if (!f2fs_kset) {
1254 		err = -ENOMEM;
1255 		goto free_checkpoint_caches;
1256 	}
1257 	err = register_filesystem(&f2fs_fs_type);
1258 	if (err)
1259 		goto free_kset;
1260 	f2fs_create_root_stats();
1261 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1262 	return 0;
1263 
1264 free_kset:
1265 	kset_unregister(f2fs_kset);
1266 free_checkpoint_caches:
1267 	destroy_checkpoint_caches();
1268 free_segment_manager_caches:
1269 	destroy_segment_manager_caches();
1270 free_node_manager_caches:
1271 	destroy_node_manager_caches();
1272 free_inodecache:
1273 	destroy_inodecache();
1274 fail:
1275 	return err;
1276 }
1277 
1278 static void __exit exit_f2fs_fs(void)
1279 {
1280 	remove_proc_entry("fs/f2fs", NULL);
1281 	f2fs_destroy_root_stats();
1282 	unregister_filesystem(&f2fs_fs_type);
1283 	destroy_checkpoint_caches();
1284 	destroy_segment_manager_caches();
1285 	destroy_node_manager_caches();
1286 	destroy_inodecache();
1287 	kset_unregister(f2fs_kset);
1288 	f2fs_destroy_trace_ios();
1289 }
1290 
1291 module_init(init_f2fs_fs)
1292 module_exit(exit_f2fs_fs)
1293 
1294 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1295 MODULE_DESCRIPTION("Flash Friendly File System");
1296 MODULE_LICENSE("GPL");
1297