1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_user_xattr, 86 Opt_nouser_xattr, 87 Opt_acl, 88 Opt_noacl, 89 Opt_active_logs, 90 Opt_disable_ext_identify, 91 Opt_inline_xattr, 92 Opt_inline_data, 93 Opt_inline_dentry, 94 Opt_noinline_dentry, 95 Opt_flush_merge, 96 Opt_noflush_merge, 97 Opt_nobarrier, 98 Opt_fastboot, 99 Opt_extent_cache, 100 Opt_noextent_cache, 101 Opt_noinline_data, 102 Opt_data_flush, 103 Opt_mode, 104 Opt_fault_injection, 105 Opt_lazytime, 106 Opt_nolazytime, 107 Opt_err, 108 }; 109 110 static match_table_t f2fs_tokens = { 111 {Opt_gc_background, "background_gc=%s"}, 112 {Opt_disable_roll_forward, "disable_roll_forward"}, 113 {Opt_norecovery, "norecovery"}, 114 {Opt_discard, "discard"}, 115 {Opt_nodiscard, "nodiscard"}, 116 {Opt_noheap, "no_heap"}, 117 {Opt_user_xattr, "user_xattr"}, 118 {Opt_nouser_xattr, "nouser_xattr"}, 119 {Opt_acl, "acl"}, 120 {Opt_noacl, "noacl"}, 121 {Opt_active_logs, "active_logs=%u"}, 122 {Opt_disable_ext_identify, "disable_ext_identify"}, 123 {Opt_inline_xattr, "inline_xattr"}, 124 {Opt_inline_data, "inline_data"}, 125 {Opt_inline_dentry, "inline_dentry"}, 126 {Opt_noinline_dentry, "noinline_dentry"}, 127 {Opt_flush_merge, "flush_merge"}, 128 {Opt_noflush_merge, "noflush_merge"}, 129 {Opt_nobarrier, "nobarrier"}, 130 {Opt_fastboot, "fastboot"}, 131 {Opt_extent_cache, "extent_cache"}, 132 {Opt_noextent_cache, "noextent_cache"}, 133 {Opt_noinline_data, "noinline_data"}, 134 {Opt_data_flush, "data_flush"}, 135 {Opt_mode, "mode=%s"}, 136 {Opt_fault_injection, "fault_injection=%u"}, 137 {Opt_lazytime, "lazytime"}, 138 {Opt_nolazytime, "nolazytime"}, 139 {Opt_err, NULL}, 140 }; 141 142 /* Sysfs support for f2fs */ 143 enum { 144 GC_THREAD, /* struct f2fs_gc_thread */ 145 SM_INFO, /* struct f2fs_sm_info */ 146 NM_INFO, /* struct f2fs_nm_info */ 147 F2FS_SBI, /* struct f2fs_sb_info */ 148 #ifdef CONFIG_F2FS_FAULT_INJECTION 149 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 151 #endif 152 }; 153 154 struct f2fs_attr { 155 struct attribute attr; 156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 158 const char *, size_t); 159 int struct_type; 160 int offset; 161 }; 162 163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 164 { 165 if (struct_type == GC_THREAD) 166 return (unsigned char *)sbi->gc_thread; 167 else if (struct_type == SM_INFO) 168 return (unsigned char *)SM_I(sbi); 169 else if (struct_type == NM_INFO) 170 return (unsigned char *)NM_I(sbi); 171 else if (struct_type == F2FS_SBI) 172 return (unsigned char *)sbi; 173 #ifdef CONFIG_F2FS_FAULT_INJECTION 174 else if (struct_type == FAULT_INFO_RATE || 175 struct_type == FAULT_INFO_TYPE) 176 return (unsigned char *)&sbi->fault_info; 177 #endif 178 return NULL; 179 } 180 181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 182 struct f2fs_sb_info *sbi, char *buf) 183 { 184 struct super_block *sb = sbi->sb; 185 186 if (!sb->s_bdev->bd_part) 187 return snprintf(buf, PAGE_SIZE, "0\n"); 188 189 return snprintf(buf, PAGE_SIZE, "%llu\n", 190 (unsigned long long)(sbi->kbytes_written + 191 BD_PART_WRITTEN(sbi))); 192 } 193 194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 195 struct f2fs_sb_info *sbi, char *buf) 196 { 197 unsigned char *ptr = NULL; 198 unsigned int *ui; 199 200 ptr = __struct_ptr(sbi, a->struct_type); 201 if (!ptr) 202 return -EINVAL; 203 204 ui = (unsigned int *)(ptr + a->offset); 205 206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 207 } 208 209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 210 struct f2fs_sb_info *sbi, 211 const char *buf, size_t count) 212 { 213 unsigned char *ptr; 214 unsigned long t; 215 unsigned int *ui; 216 ssize_t ret; 217 218 ptr = __struct_ptr(sbi, a->struct_type); 219 if (!ptr) 220 return -EINVAL; 221 222 ui = (unsigned int *)(ptr + a->offset); 223 224 ret = kstrtoul(skip_spaces(buf), 0, &t); 225 if (ret < 0) 226 return ret; 227 #ifdef CONFIG_F2FS_FAULT_INJECTION 228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 229 return -EINVAL; 230 #endif 231 *ui = t; 232 return count; 233 } 234 235 static ssize_t f2fs_attr_show(struct kobject *kobj, 236 struct attribute *attr, char *buf) 237 { 238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 239 s_kobj); 240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 241 242 return a->show ? a->show(a, sbi, buf) : 0; 243 } 244 245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 246 const char *buf, size_t len) 247 { 248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 249 s_kobj); 250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 251 252 return a->store ? a->store(a, sbi, buf, len) : 0; 253 } 254 255 static void f2fs_sb_release(struct kobject *kobj) 256 { 257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 258 s_kobj); 259 complete(&sbi->s_kobj_unregister); 260 } 261 262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 263 static struct f2fs_attr f2fs_attr_##_name = { \ 264 .attr = {.name = __stringify(_name), .mode = _mode }, \ 265 .show = _show, \ 266 .store = _store, \ 267 .struct_type = _struct_type, \ 268 .offset = _offset \ 269 } 270 271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 273 f2fs_sbi_show, f2fs_sbi_store, \ 274 offsetof(struct struct_name, elname)) 275 276 #define F2FS_GENERAL_RO_ATTR(name) \ 277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 278 279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 296 #ifdef CONFIG_F2FS_FAULT_INJECTION 297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 299 #endif 300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 301 302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 303 static struct attribute *f2fs_attrs[] = { 304 ATTR_LIST(gc_min_sleep_time), 305 ATTR_LIST(gc_max_sleep_time), 306 ATTR_LIST(gc_no_gc_sleep_time), 307 ATTR_LIST(gc_idle), 308 ATTR_LIST(reclaim_segments), 309 ATTR_LIST(max_small_discards), 310 ATTR_LIST(batched_trim_sections), 311 ATTR_LIST(ipu_policy), 312 ATTR_LIST(min_ipu_util), 313 ATTR_LIST(min_fsync_blocks), 314 ATTR_LIST(max_victim_search), 315 ATTR_LIST(dir_level), 316 ATTR_LIST(ram_thresh), 317 ATTR_LIST(ra_nid_pages), 318 ATTR_LIST(dirty_nats_ratio), 319 ATTR_LIST(cp_interval), 320 ATTR_LIST(idle_interval), 321 #ifdef CONFIG_F2FS_FAULT_INJECTION 322 ATTR_LIST(inject_rate), 323 ATTR_LIST(inject_type), 324 #endif 325 ATTR_LIST(lifetime_write_kbytes), 326 NULL, 327 }; 328 329 static const struct sysfs_ops f2fs_attr_ops = { 330 .show = f2fs_attr_show, 331 .store = f2fs_attr_store, 332 }; 333 334 static struct kobj_type f2fs_ktype = { 335 .default_attrs = f2fs_attrs, 336 .sysfs_ops = &f2fs_attr_ops, 337 .release = f2fs_sb_release, 338 }; 339 340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 341 { 342 struct va_format vaf; 343 va_list args; 344 345 va_start(args, fmt); 346 vaf.fmt = fmt; 347 vaf.va = &args; 348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 349 va_end(args); 350 } 351 352 static void init_once(void *foo) 353 { 354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 355 356 inode_init_once(&fi->vfs_inode); 357 } 358 359 static int parse_options(struct super_block *sb, char *options) 360 { 361 struct f2fs_sb_info *sbi = F2FS_SB(sb); 362 struct request_queue *q; 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 367 if (!options) 368 return 0; 369 370 while ((p = strsep(&options, ",")) != NULL) { 371 int token; 372 if (!*p) 373 continue; 374 /* 375 * Initialize args struct so we know whether arg was 376 * found; some options take optional arguments. 377 */ 378 args[0].to = args[0].from = NULL; 379 token = match_token(p, f2fs_tokens, args); 380 381 switch (token) { 382 case Opt_gc_background: 383 name = match_strdup(&args[0]); 384 385 if (!name) 386 return -ENOMEM; 387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 388 set_opt(sbi, BG_GC); 389 clear_opt(sbi, FORCE_FG_GC); 390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 391 clear_opt(sbi, BG_GC); 392 clear_opt(sbi, FORCE_FG_GC); 393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 394 set_opt(sbi, BG_GC); 395 set_opt(sbi, FORCE_FG_GC); 396 } else { 397 kfree(name); 398 return -EINVAL; 399 } 400 kfree(name); 401 break; 402 case Opt_disable_roll_forward: 403 set_opt(sbi, DISABLE_ROLL_FORWARD); 404 break; 405 case Opt_norecovery: 406 /* this option mounts f2fs with ro */ 407 set_opt(sbi, DISABLE_ROLL_FORWARD); 408 if (!f2fs_readonly(sb)) 409 return -EINVAL; 410 break; 411 case Opt_discard: 412 q = bdev_get_queue(sb->s_bdev); 413 if (blk_queue_discard(q)) { 414 set_opt(sbi, DISCARD); 415 } else { 416 f2fs_msg(sb, KERN_WARNING, 417 "mounting with \"discard\" option, but " 418 "the device does not support discard"); 419 } 420 break; 421 case Opt_nodiscard: 422 clear_opt(sbi, DISCARD); 423 case Opt_noheap: 424 set_opt(sbi, NOHEAP); 425 break; 426 #ifdef CONFIG_F2FS_FS_XATTR 427 case Opt_user_xattr: 428 set_opt(sbi, XATTR_USER); 429 break; 430 case Opt_nouser_xattr: 431 clear_opt(sbi, XATTR_USER); 432 break; 433 case Opt_inline_xattr: 434 set_opt(sbi, INLINE_XATTR); 435 break; 436 #else 437 case Opt_user_xattr: 438 f2fs_msg(sb, KERN_INFO, 439 "user_xattr options not supported"); 440 break; 441 case Opt_nouser_xattr: 442 f2fs_msg(sb, KERN_INFO, 443 "nouser_xattr options not supported"); 444 break; 445 case Opt_inline_xattr: 446 f2fs_msg(sb, KERN_INFO, 447 "inline_xattr options not supported"); 448 break; 449 #endif 450 #ifdef CONFIG_F2FS_FS_POSIX_ACL 451 case Opt_acl: 452 set_opt(sbi, POSIX_ACL); 453 break; 454 case Opt_noacl: 455 clear_opt(sbi, POSIX_ACL); 456 break; 457 #else 458 case Opt_acl: 459 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 460 break; 461 case Opt_noacl: 462 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 463 break; 464 #endif 465 case Opt_active_logs: 466 if (args->from && match_int(args, &arg)) 467 return -EINVAL; 468 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 469 return -EINVAL; 470 sbi->active_logs = arg; 471 break; 472 case Opt_disable_ext_identify: 473 set_opt(sbi, DISABLE_EXT_IDENTIFY); 474 break; 475 case Opt_inline_data: 476 set_opt(sbi, INLINE_DATA); 477 break; 478 case Opt_inline_dentry: 479 set_opt(sbi, INLINE_DENTRY); 480 break; 481 case Opt_noinline_dentry: 482 clear_opt(sbi, INLINE_DENTRY); 483 break; 484 case Opt_flush_merge: 485 set_opt(sbi, FLUSH_MERGE); 486 break; 487 case Opt_noflush_merge: 488 clear_opt(sbi, FLUSH_MERGE); 489 break; 490 case Opt_nobarrier: 491 set_opt(sbi, NOBARRIER); 492 break; 493 case Opt_fastboot: 494 set_opt(sbi, FASTBOOT); 495 break; 496 case Opt_extent_cache: 497 set_opt(sbi, EXTENT_CACHE); 498 break; 499 case Opt_noextent_cache: 500 clear_opt(sbi, EXTENT_CACHE); 501 break; 502 case Opt_noinline_data: 503 clear_opt(sbi, INLINE_DATA); 504 break; 505 case Opt_data_flush: 506 set_opt(sbi, DATA_FLUSH); 507 break; 508 case Opt_mode: 509 name = match_strdup(&args[0]); 510 511 if (!name) 512 return -ENOMEM; 513 if (strlen(name) == 8 && 514 !strncmp(name, "adaptive", 8)) { 515 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 516 } else if (strlen(name) == 3 && 517 !strncmp(name, "lfs", 3)) { 518 set_opt_mode(sbi, F2FS_MOUNT_LFS); 519 } else { 520 kfree(name); 521 return -EINVAL; 522 } 523 kfree(name); 524 break; 525 case Opt_fault_injection: 526 if (args->from && match_int(args, &arg)) 527 return -EINVAL; 528 #ifdef CONFIG_F2FS_FAULT_INJECTION 529 f2fs_build_fault_attr(sbi, arg); 530 #else 531 f2fs_msg(sb, KERN_INFO, 532 "FAULT_INJECTION was not selected"); 533 #endif 534 break; 535 case Opt_lazytime: 536 sb->s_flags |= MS_LAZYTIME; 537 break; 538 case Opt_nolazytime: 539 sb->s_flags &= ~MS_LAZYTIME; 540 break; 541 default: 542 f2fs_msg(sb, KERN_ERR, 543 "Unrecognized mount option \"%s\" or missing value", 544 p); 545 return -EINVAL; 546 } 547 } 548 return 0; 549 } 550 551 static struct inode *f2fs_alloc_inode(struct super_block *sb) 552 { 553 struct f2fs_inode_info *fi; 554 555 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 556 if (!fi) 557 return NULL; 558 559 init_once((void *) fi); 560 561 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 562 kmem_cache_free(f2fs_inode_cachep, fi); 563 return NULL; 564 } 565 566 /* Initialize f2fs-specific inode info */ 567 fi->vfs_inode.i_version = 1; 568 fi->i_current_depth = 1; 569 fi->i_advise = 0; 570 init_rwsem(&fi->i_sem); 571 INIT_LIST_HEAD(&fi->dirty_list); 572 INIT_LIST_HEAD(&fi->gdirty_list); 573 INIT_LIST_HEAD(&fi->inmem_pages); 574 mutex_init(&fi->inmem_lock); 575 init_rwsem(&fi->dio_rwsem[READ]); 576 init_rwsem(&fi->dio_rwsem[WRITE]); 577 578 /* Will be used by directory only */ 579 fi->i_dir_level = F2FS_SB(sb)->dir_level; 580 return &fi->vfs_inode; 581 } 582 583 static int f2fs_drop_inode(struct inode *inode) 584 { 585 /* 586 * This is to avoid a deadlock condition like below. 587 * writeback_single_inode(inode) 588 * - f2fs_write_data_page 589 * - f2fs_gc -> iput -> evict 590 * - inode_wait_for_writeback(inode) 591 */ 592 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 593 if (!inode->i_nlink && !is_bad_inode(inode)) { 594 /* to avoid evict_inode call simultaneously */ 595 atomic_inc(&inode->i_count); 596 spin_unlock(&inode->i_lock); 597 598 /* some remained atomic pages should discarded */ 599 if (f2fs_is_atomic_file(inode)) 600 drop_inmem_pages(inode); 601 602 /* should remain fi->extent_tree for writepage */ 603 f2fs_destroy_extent_node(inode); 604 605 sb_start_intwrite(inode->i_sb); 606 f2fs_i_size_write(inode, 0); 607 608 if (F2FS_HAS_BLOCKS(inode)) 609 f2fs_truncate(inode); 610 611 sb_end_intwrite(inode->i_sb); 612 613 fscrypt_put_encryption_info(inode, NULL); 614 spin_lock(&inode->i_lock); 615 atomic_dec(&inode->i_count); 616 } 617 return 0; 618 } 619 620 return generic_drop_inode(inode); 621 } 622 623 int f2fs_inode_dirtied(struct inode *inode, bool sync) 624 { 625 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 626 int ret = 0; 627 628 spin_lock(&sbi->inode_lock[DIRTY_META]); 629 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 630 ret = 1; 631 } else { 632 set_inode_flag(inode, FI_DIRTY_INODE); 633 stat_inc_dirty_inode(sbi, DIRTY_META); 634 } 635 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 636 list_add_tail(&F2FS_I(inode)->gdirty_list, 637 &sbi->inode_list[DIRTY_META]); 638 inc_page_count(sbi, F2FS_DIRTY_IMETA); 639 } 640 spin_unlock(&sbi->inode_lock[DIRTY_META]); 641 return ret; 642 } 643 644 void f2fs_inode_synced(struct inode *inode) 645 { 646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 647 648 spin_lock(&sbi->inode_lock[DIRTY_META]); 649 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 650 spin_unlock(&sbi->inode_lock[DIRTY_META]); 651 return; 652 } 653 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 654 list_del_init(&F2FS_I(inode)->gdirty_list); 655 dec_page_count(sbi, F2FS_DIRTY_IMETA); 656 } 657 clear_inode_flag(inode, FI_DIRTY_INODE); 658 clear_inode_flag(inode, FI_AUTO_RECOVER); 659 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 660 spin_unlock(&sbi->inode_lock[DIRTY_META]); 661 } 662 663 /* 664 * f2fs_dirty_inode() is called from __mark_inode_dirty() 665 * 666 * We should call set_dirty_inode to write the dirty inode through write_inode. 667 */ 668 static void f2fs_dirty_inode(struct inode *inode, int flags) 669 { 670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 671 672 if (inode->i_ino == F2FS_NODE_INO(sbi) || 673 inode->i_ino == F2FS_META_INO(sbi)) 674 return; 675 676 if (flags == I_DIRTY_TIME) 677 return; 678 679 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 680 clear_inode_flag(inode, FI_AUTO_RECOVER); 681 682 f2fs_inode_dirtied(inode, false); 683 } 684 685 static void f2fs_i_callback(struct rcu_head *head) 686 { 687 struct inode *inode = container_of(head, struct inode, i_rcu); 688 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 689 } 690 691 static void f2fs_destroy_inode(struct inode *inode) 692 { 693 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 694 call_rcu(&inode->i_rcu, f2fs_i_callback); 695 } 696 697 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 698 { 699 int i; 700 701 for (i = 0; i < NR_COUNT_TYPE; i++) 702 percpu_counter_destroy(&sbi->nr_pages[i]); 703 percpu_counter_destroy(&sbi->alloc_valid_block_count); 704 percpu_counter_destroy(&sbi->total_valid_inode_count); 705 } 706 707 static void f2fs_put_super(struct super_block *sb) 708 { 709 struct f2fs_sb_info *sbi = F2FS_SB(sb); 710 711 if (sbi->s_proc) { 712 remove_proc_entry("segment_info", sbi->s_proc); 713 remove_proc_entry("segment_bits", sbi->s_proc); 714 remove_proc_entry(sb->s_id, f2fs_proc_root); 715 } 716 kobject_del(&sbi->s_kobj); 717 718 stop_gc_thread(sbi); 719 720 /* prevent remaining shrinker jobs */ 721 mutex_lock(&sbi->umount_mutex); 722 723 /* 724 * We don't need to do checkpoint when superblock is clean. 725 * But, the previous checkpoint was not done by umount, it needs to do 726 * clean checkpoint again. 727 */ 728 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 729 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 730 struct cp_control cpc = { 731 .reason = CP_UMOUNT, 732 }; 733 write_checkpoint(sbi, &cpc); 734 } 735 736 /* write_checkpoint can update stat informaion */ 737 f2fs_destroy_stats(sbi); 738 739 /* 740 * normally superblock is clean, so we need to release this. 741 * In addition, EIO will skip do checkpoint, we need this as well. 742 */ 743 release_ino_entry(sbi, true); 744 745 f2fs_leave_shrinker(sbi); 746 mutex_unlock(&sbi->umount_mutex); 747 748 /* our cp_error case, we can wait for any writeback page */ 749 f2fs_flush_merged_bios(sbi); 750 751 iput(sbi->node_inode); 752 iput(sbi->meta_inode); 753 754 /* destroy f2fs internal modules */ 755 destroy_node_manager(sbi); 756 destroy_segment_manager(sbi); 757 758 kfree(sbi->ckpt); 759 kobject_put(&sbi->s_kobj); 760 wait_for_completion(&sbi->s_kobj_unregister); 761 762 sb->s_fs_info = NULL; 763 if (sbi->s_chksum_driver) 764 crypto_free_shash(sbi->s_chksum_driver); 765 kfree(sbi->raw_super); 766 767 destroy_percpu_info(sbi); 768 kfree(sbi); 769 } 770 771 int f2fs_sync_fs(struct super_block *sb, int sync) 772 { 773 struct f2fs_sb_info *sbi = F2FS_SB(sb); 774 int err = 0; 775 776 trace_f2fs_sync_fs(sb, sync); 777 778 if (sync) { 779 struct cp_control cpc; 780 781 cpc.reason = __get_cp_reason(sbi); 782 783 mutex_lock(&sbi->gc_mutex); 784 err = write_checkpoint(sbi, &cpc); 785 mutex_unlock(&sbi->gc_mutex); 786 } 787 f2fs_trace_ios(NULL, 1); 788 789 return err; 790 } 791 792 static int f2fs_freeze(struct super_block *sb) 793 { 794 int err; 795 796 if (f2fs_readonly(sb)) 797 return 0; 798 799 err = f2fs_sync_fs(sb, 1); 800 return err; 801 } 802 803 static int f2fs_unfreeze(struct super_block *sb) 804 { 805 return 0; 806 } 807 808 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 809 { 810 struct super_block *sb = dentry->d_sb; 811 struct f2fs_sb_info *sbi = F2FS_SB(sb); 812 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 813 block_t total_count, user_block_count, start_count, ovp_count; 814 815 total_count = le64_to_cpu(sbi->raw_super->block_count); 816 user_block_count = sbi->user_block_count; 817 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 818 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 819 buf->f_type = F2FS_SUPER_MAGIC; 820 buf->f_bsize = sbi->blocksize; 821 822 buf->f_blocks = total_count - start_count; 823 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 824 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 825 826 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 827 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 828 829 buf->f_namelen = F2FS_NAME_LEN; 830 buf->f_fsid.val[0] = (u32)id; 831 buf->f_fsid.val[1] = (u32)(id >> 32); 832 833 return 0; 834 } 835 836 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 837 { 838 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 839 840 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 841 if (test_opt(sbi, FORCE_FG_GC)) 842 seq_printf(seq, ",background_gc=%s", "sync"); 843 else 844 seq_printf(seq, ",background_gc=%s", "on"); 845 } else { 846 seq_printf(seq, ",background_gc=%s", "off"); 847 } 848 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 849 seq_puts(seq, ",disable_roll_forward"); 850 if (test_opt(sbi, DISCARD)) 851 seq_puts(seq, ",discard"); 852 if (test_opt(sbi, NOHEAP)) 853 seq_puts(seq, ",no_heap_alloc"); 854 #ifdef CONFIG_F2FS_FS_XATTR 855 if (test_opt(sbi, XATTR_USER)) 856 seq_puts(seq, ",user_xattr"); 857 else 858 seq_puts(seq, ",nouser_xattr"); 859 if (test_opt(sbi, INLINE_XATTR)) 860 seq_puts(seq, ",inline_xattr"); 861 #endif 862 #ifdef CONFIG_F2FS_FS_POSIX_ACL 863 if (test_opt(sbi, POSIX_ACL)) 864 seq_puts(seq, ",acl"); 865 else 866 seq_puts(seq, ",noacl"); 867 #endif 868 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 869 seq_puts(seq, ",disable_ext_identify"); 870 if (test_opt(sbi, INLINE_DATA)) 871 seq_puts(seq, ",inline_data"); 872 else 873 seq_puts(seq, ",noinline_data"); 874 if (test_opt(sbi, INLINE_DENTRY)) 875 seq_puts(seq, ",inline_dentry"); 876 else 877 seq_puts(seq, ",noinline_dentry"); 878 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 879 seq_puts(seq, ",flush_merge"); 880 if (test_opt(sbi, NOBARRIER)) 881 seq_puts(seq, ",nobarrier"); 882 if (test_opt(sbi, FASTBOOT)) 883 seq_puts(seq, ",fastboot"); 884 if (test_opt(sbi, EXTENT_CACHE)) 885 seq_puts(seq, ",extent_cache"); 886 else 887 seq_puts(seq, ",noextent_cache"); 888 if (test_opt(sbi, DATA_FLUSH)) 889 seq_puts(seq, ",data_flush"); 890 891 seq_puts(seq, ",mode="); 892 if (test_opt(sbi, ADAPTIVE)) 893 seq_puts(seq, "adaptive"); 894 else if (test_opt(sbi, LFS)) 895 seq_puts(seq, "lfs"); 896 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 897 898 return 0; 899 } 900 901 static int segment_info_seq_show(struct seq_file *seq, void *offset) 902 { 903 struct super_block *sb = seq->private; 904 struct f2fs_sb_info *sbi = F2FS_SB(sb); 905 unsigned int total_segs = 906 le32_to_cpu(sbi->raw_super->segment_count_main); 907 int i; 908 909 seq_puts(seq, "format: segment_type|valid_blocks\n" 910 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 911 912 for (i = 0; i < total_segs; i++) { 913 struct seg_entry *se = get_seg_entry(sbi, i); 914 915 if ((i % 10) == 0) 916 seq_printf(seq, "%-10d", i); 917 seq_printf(seq, "%d|%-3u", se->type, 918 get_valid_blocks(sbi, i, 1)); 919 if ((i % 10) == 9 || i == (total_segs - 1)) 920 seq_putc(seq, '\n'); 921 else 922 seq_putc(seq, ' '); 923 } 924 925 return 0; 926 } 927 928 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 929 { 930 struct super_block *sb = seq->private; 931 struct f2fs_sb_info *sbi = F2FS_SB(sb); 932 unsigned int total_segs = 933 le32_to_cpu(sbi->raw_super->segment_count_main); 934 int i, j; 935 936 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 937 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 938 939 for (i = 0; i < total_segs; i++) { 940 struct seg_entry *se = get_seg_entry(sbi, i); 941 942 seq_printf(seq, "%-10d", i); 943 seq_printf(seq, "%d|%-3u|", se->type, 944 get_valid_blocks(sbi, i, 1)); 945 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 946 seq_printf(seq, " %.2x", se->cur_valid_map[j]); 947 seq_putc(seq, '\n'); 948 } 949 return 0; 950 } 951 952 #define F2FS_PROC_FILE_DEF(_name) \ 953 static int _name##_open_fs(struct inode *inode, struct file *file) \ 954 { \ 955 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 956 } \ 957 \ 958 static const struct file_operations f2fs_seq_##_name##_fops = { \ 959 .open = _name##_open_fs, \ 960 .read = seq_read, \ 961 .llseek = seq_lseek, \ 962 .release = single_release, \ 963 }; 964 965 F2FS_PROC_FILE_DEF(segment_info); 966 F2FS_PROC_FILE_DEF(segment_bits); 967 968 static void default_options(struct f2fs_sb_info *sbi) 969 { 970 /* init some FS parameters */ 971 sbi->active_logs = NR_CURSEG_TYPE; 972 973 set_opt(sbi, BG_GC); 974 set_opt(sbi, INLINE_DATA); 975 set_opt(sbi, INLINE_DENTRY); 976 set_opt(sbi, EXTENT_CACHE); 977 sbi->sb->s_flags |= MS_LAZYTIME; 978 set_opt(sbi, FLUSH_MERGE); 979 if (f2fs_sb_mounted_hmsmr(sbi->sb)) { 980 set_opt_mode(sbi, F2FS_MOUNT_LFS); 981 set_opt(sbi, DISCARD); 982 } else { 983 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 984 } 985 986 #ifdef CONFIG_F2FS_FS_XATTR 987 set_opt(sbi, XATTR_USER); 988 #endif 989 #ifdef CONFIG_F2FS_FS_POSIX_ACL 990 set_opt(sbi, POSIX_ACL); 991 #endif 992 993 #ifdef CONFIG_F2FS_FAULT_INJECTION 994 f2fs_build_fault_attr(sbi, 0); 995 #endif 996 } 997 998 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 999 { 1000 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1001 struct f2fs_mount_info org_mount_opt; 1002 int err, active_logs; 1003 bool need_restart_gc = false; 1004 bool need_stop_gc = false; 1005 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1006 #ifdef CONFIG_F2FS_FAULT_INJECTION 1007 struct f2fs_fault_info ffi = sbi->fault_info; 1008 #endif 1009 1010 /* 1011 * Save the old mount options in case we 1012 * need to restore them. 1013 */ 1014 org_mount_opt = sbi->mount_opt; 1015 active_logs = sbi->active_logs; 1016 1017 /* recover superblocks we couldn't write due to previous RO mount */ 1018 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1019 err = f2fs_commit_super(sbi, false); 1020 f2fs_msg(sb, KERN_INFO, 1021 "Try to recover all the superblocks, ret: %d", err); 1022 if (!err) 1023 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1024 } 1025 1026 sbi->mount_opt.opt = 0; 1027 default_options(sbi); 1028 1029 /* parse mount options */ 1030 err = parse_options(sb, data); 1031 if (err) 1032 goto restore_opts; 1033 1034 /* 1035 * Previous and new state of filesystem is RO, 1036 * so skip checking GC and FLUSH_MERGE conditions. 1037 */ 1038 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1039 goto skip; 1040 1041 /* disallow enable/disable extent_cache dynamically */ 1042 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1043 err = -EINVAL; 1044 f2fs_msg(sbi->sb, KERN_WARNING, 1045 "switch extent_cache option is not allowed"); 1046 goto restore_opts; 1047 } 1048 1049 /* 1050 * We stop the GC thread if FS is mounted as RO 1051 * or if background_gc = off is passed in mount 1052 * option. Also sync the filesystem. 1053 */ 1054 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1055 if (sbi->gc_thread) { 1056 stop_gc_thread(sbi); 1057 need_restart_gc = true; 1058 } 1059 } else if (!sbi->gc_thread) { 1060 err = start_gc_thread(sbi); 1061 if (err) 1062 goto restore_opts; 1063 need_stop_gc = true; 1064 } 1065 1066 if (*flags & MS_RDONLY) { 1067 writeback_inodes_sb(sb, WB_REASON_SYNC); 1068 sync_inodes_sb(sb); 1069 1070 set_sbi_flag(sbi, SBI_IS_DIRTY); 1071 set_sbi_flag(sbi, SBI_IS_CLOSE); 1072 f2fs_sync_fs(sb, 1); 1073 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1074 } 1075 1076 /* 1077 * We stop issue flush thread if FS is mounted as RO 1078 * or if flush_merge is not passed in mount option. 1079 */ 1080 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1081 destroy_flush_cmd_control(sbi); 1082 } else if (!SM_I(sbi)->cmd_control_info) { 1083 err = create_flush_cmd_control(sbi); 1084 if (err) 1085 goto restore_gc; 1086 } 1087 skip: 1088 /* Update the POSIXACL Flag */ 1089 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1090 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1091 1092 return 0; 1093 restore_gc: 1094 if (need_restart_gc) { 1095 if (start_gc_thread(sbi)) 1096 f2fs_msg(sbi->sb, KERN_WARNING, 1097 "background gc thread has stopped"); 1098 } else if (need_stop_gc) { 1099 stop_gc_thread(sbi); 1100 } 1101 restore_opts: 1102 sbi->mount_opt = org_mount_opt; 1103 sbi->active_logs = active_logs; 1104 #ifdef CONFIG_F2FS_FAULT_INJECTION 1105 sbi->fault_info = ffi; 1106 #endif 1107 return err; 1108 } 1109 1110 static struct super_operations f2fs_sops = { 1111 .alloc_inode = f2fs_alloc_inode, 1112 .drop_inode = f2fs_drop_inode, 1113 .destroy_inode = f2fs_destroy_inode, 1114 .write_inode = f2fs_write_inode, 1115 .dirty_inode = f2fs_dirty_inode, 1116 .show_options = f2fs_show_options, 1117 .evict_inode = f2fs_evict_inode, 1118 .put_super = f2fs_put_super, 1119 .sync_fs = f2fs_sync_fs, 1120 .freeze_fs = f2fs_freeze, 1121 .unfreeze_fs = f2fs_unfreeze, 1122 .statfs = f2fs_statfs, 1123 .remount_fs = f2fs_remount, 1124 }; 1125 1126 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1127 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1128 { 1129 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1130 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1131 ctx, len, NULL); 1132 } 1133 1134 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1135 { 1136 *key = F2FS_I_SB(inode)->key_prefix; 1137 return F2FS_I_SB(inode)->key_prefix_size; 1138 } 1139 1140 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1141 void *fs_data) 1142 { 1143 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1144 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1145 ctx, len, fs_data, XATTR_CREATE); 1146 } 1147 1148 static unsigned f2fs_max_namelen(struct inode *inode) 1149 { 1150 return S_ISLNK(inode->i_mode) ? 1151 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1152 } 1153 1154 static struct fscrypt_operations f2fs_cryptops = { 1155 .get_context = f2fs_get_context, 1156 .key_prefix = f2fs_key_prefix, 1157 .set_context = f2fs_set_context, 1158 .is_encrypted = f2fs_encrypted_inode, 1159 .empty_dir = f2fs_empty_dir, 1160 .max_namelen = f2fs_max_namelen, 1161 }; 1162 #else 1163 static struct fscrypt_operations f2fs_cryptops = { 1164 .is_encrypted = f2fs_encrypted_inode, 1165 }; 1166 #endif 1167 1168 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1169 u64 ino, u32 generation) 1170 { 1171 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1172 struct inode *inode; 1173 1174 if (check_nid_range(sbi, ino)) 1175 return ERR_PTR(-ESTALE); 1176 1177 /* 1178 * f2fs_iget isn't quite right if the inode is currently unallocated! 1179 * However f2fs_iget currently does appropriate checks to handle stale 1180 * inodes so everything is OK. 1181 */ 1182 inode = f2fs_iget(sb, ino); 1183 if (IS_ERR(inode)) 1184 return ERR_CAST(inode); 1185 if (unlikely(generation && inode->i_generation != generation)) { 1186 /* we didn't find the right inode.. */ 1187 iput(inode); 1188 return ERR_PTR(-ESTALE); 1189 } 1190 return inode; 1191 } 1192 1193 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1194 int fh_len, int fh_type) 1195 { 1196 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1197 f2fs_nfs_get_inode); 1198 } 1199 1200 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1201 int fh_len, int fh_type) 1202 { 1203 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1204 f2fs_nfs_get_inode); 1205 } 1206 1207 static const struct export_operations f2fs_export_ops = { 1208 .fh_to_dentry = f2fs_fh_to_dentry, 1209 .fh_to_parent = f2fs_fh_to_parent, 1210 .get_parent = f2fs_get_parent, 1211 }; 1212 1213 static loff_t max_file_blocks(void) 1214 { 1215 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1216 loff_t leaf_count = ADDRS_PER_BLOCK; 1217 1218 /* two direct node blocks */ 1219 result += (leaf_count * 2); 1220 1221 /* two indirect node blocks */ 1222 leaf_count *= NIDS_PER_BLOCK; 1223 result += (leaf_count * 2); 1224 1225 /* one double indirect node block */ 1226 leaf_count *= NIDS_PER_BLOCK; 1227 result += leaf_count; 1228 1229 return result; 1230 } 1231 1232 static int __f2fs_commit_super(struct buffer_head *bh, 1233 struct f2fs_super_block *super) 1234 { 1235 lock_buffer(bh); 1236 if (super) 1237 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1238 set_buffer_uptodate(bh); 1239 set_buffer_dirty(bh); 1240 unlock_buffer(bh); 1241 1242 /* it's rare case, we can do fua all the time */ 1243 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1244 } 1245 1246 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1247 struct buffer_head *bh) 1248 { 1249 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1250 (bh->b_data + F2FS_SUPER_OFFSET); 1251 struct super_block *sb = sbi->sb; 1252 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1253 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1254 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1255 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1256 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1257 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1258 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1259 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1260 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1261 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1262 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1263 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1264 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1265 u64 main_end_blkaddr = main_blkaddr + 1266 (segment_count_main << log_blocks_per_seg); 1267 u64 seg_end_blkaddr = segment0_blkaddr + 1268 (segment_count << log_blocks_per_seg); 1269 1270 if (segment0_blkaddr != cp_blkaddr) { 1271 f2fs_msg(sb, KERN_INFO, 1272 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1273 segment0_blkaddr, cp_blkaddr); 1274 return true; 1275 } 1276 1277 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1278 sit_blkaddr) { 1279 f2fs_msg(sb, KERN_INFO, 1280 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1281 cp_blkaddr, sit_blkaddr, 1282 segment_count_ckpt << log_blocks_per_seg); 1283 return true; 1284 } 1285 1286 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1287 nat_blkaddr) { 1288 f2fs_msg(sb, KERN_INFO, 1289 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1290 sit_blkaddr, nat_blkaddr, 1291 segment_count_sit << log_blocks_per_seg); 1292 return true; 1293 } 1294 1295 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1296 ssa_blkaddr) { 1297 f2fs_msg(sb, KERN_INFO, 1298 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1299 nat_blkaddr, ssa_blkaddr, 1300 segment_count_nat << log_blocks_per_seg); 1301 return true; 1302 } 1303 1304 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1305 main_blkaddr) { 1306 f2fs_msg(sb, KERN_INFO, 1307 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1308 ssa_blkaddr, main_blkaddr, 1309 segment_count_ssa << log_blocks_per_seg); 1310 return true; 1311 } 1312 1313 if (main_end_blkaddr > seg_end_blkaddr) { 1314 f2fs_msg(sb, KERN_INFO, 1315 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1316 main_blkaddr, 1317 segment0_blkaddr + 1318 (segment_count << log_blocks_per_seg), 1319 segment_count_main << log_blocks_per_seg); 1320 return true; 1321 } else if (main_end_blkaddr < seg_end_blkaddr) { 1322 int err = 0; 1323 char *res; 1324 1325 /* fix in-memory information all the time */ 1326 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1327 segment0_blkaddr) >> log_blocks_per_seg); 1328 1329 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1330 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1331 res = "internally"; 1332 } else { 1333 err = __f2fs_commit_super(bh, NULL); 1334 res = err ? "failed" : "done"; 1335 } 1336 f2fs_msg(sb, KERN_INFO, 1337 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1338 res, main_blkaddr, 1339 segment0_blkaddr + 1340 (segment_count << log_blocks_per_seg), 1341 segment_count_main << log_blocks_per_seg); 1342 if (err) 1343 return true; 1344 } 1345 return false; 1346 } 1347 1348 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1349 struct buffer_head *bh) 1350 { 1351 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1352 (bh->b_data + F2FS_SUPER_OFFSET); 1353 struct super_block *sb = sbi->sb; 1354 unsigned int blocksize; 1355 1356 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1357 f2fs_msg(sb, KERN_INFO, 1358 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1359 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1360 return 1; 1361 } 1362 1363 /* Currently, support only 4KB page cache size */ 1364 if (F2FS_BLKSIZE != PAGE_SIZE) { 1365 f2fs_msg(sb, KERN_INFO, 1366 "Invalid page_cache_size (%lu), supports only 4KB\n", 1367 PAGE_SIZE); 1368 return 1; 1369 } 1370 1371 /* Currently, support only 4KB block size */ 1372 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1373 if (blocksize != F2FS_BLKSIZE) { 1374 f2fs_msg(sb, KERN_INFO, 1375 "Invalid blocksize (%u), supports only 4KB\n", 1376 blocksize); 1377 return 1; 1378 } 1379 1380 /* check log blocks per segment */ 1381 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1382 f2fs_msg(sb, KERN_INFO, 1383 "Invalid log blocks per segment (%u)\n", 1384 le32_to_cpu(raw_super->log_blocks_per_seg)); 1385 return 1; 1386 } 1387 1388 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1389 if (le32_to_cpu(raw_super->log_sectorsize) > 1390 F2FS_MAX_LOG_SECTOR_SIZE || 1391 le32_to_cpu(raw_super->log_sectorsize) < 1392 F2FS_MIN_LOG_SECTOR_SIZE) { 1393 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1394 le32_to_cpu(raw_super->log_sectorsize)); 1395 return 1; 1396 } 1397 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1398 le32_to_cpu(raw_super->log_sectorsize) != 1399 F2FS_MAX_LOG_SECTOR_SIZE) { 1400 f2fs_msg(sb, KERN_INFO, 1401 "Invalid log sectors per block(%u) log sectorsize(%u)", 1402 le32_to_cpu(raw_super->log_sectors_per_block), 1403 le32_to_cpu(raw_super->log_sectorsize)); 1404 return 1; 1405 } 1406 1407 /* check reserved ino info */ 1408 if (le32_to_cpu(raw_super->node_ino) != 1 || 1409 le32_to_cpu(raw_super->meta_ino) != 2 || 1410 le32_to_cpu(raw_super->root_ino) != 3) { 1411 f2fs_msg(sb, KERN_INFO, 1412 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1413 le32_to_cpu(raw_super->node_ino), 1414 le32_to_cpu(raw_super->meta_ino), 1415 le32_to_cpu(raw_super->root_ino)); 1416 return 1; 1417 } 1418 1419 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1420 if (sanity_check_area_boundary(sbi, bh)) 1421 return 1; 1422 1423 return 0; 1424 } 1425 1426 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1427 { 1428 unsigned int total, fsmeta; 1429 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1430 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1431 1432 total = le32_to_cpu(raw_super->segment_count); 1433 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1434 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1435 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1436 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1437 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1438 1439 if (unlikely(fsmeta >= total)) 1440 return 1; 1441 1442 if (unlikely(f2fs_cp_error(sbi))) { 1443 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1444 return 1; 1445 } 1446 return 0; 1447 } 1448 1449 static void init_sb_info(struct f2fs_sb_info *sbi) 1450 { 1451 struct f2fs_super_block *raw_super = sbi->raw_super; 1452 1453 sbi->log_sectors_per_block = 1454 le32_to_cpu(raw_super->log_sectors_per_block); 1455 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1456 sbi->blocksize = 1 << sbi->log_blocksize; 1457 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1458 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1459 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1460 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1461 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1462 sbi->total_node_count = 1463 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1464 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1465 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1466 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1467 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1468 sbi->cur_victim_sec = NULL_SECNO; 1469 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1470 1471 sbi->dir_level = DEF_DIR_LEVEL; 1472 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1473 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1474 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1475 1476 INIT_LIST_HEAD(&sbi->s_list); 1477 mutex_init(&sbi->umount_mutex); 1478 mutex_init(&sbi->wio_mutex[NODE]); 1479 mutex_init(&sbi->wio_mutex[DATA]); 1480 spin_lock_init(&sbi->cp_lock); 1481 1482 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1483 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1484 F2FS_KEY_DESC_PREFIX_SIZE); 1485 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1486 #endif 1487 } 1488 1489 static int init_percpu_info(struct f2fs_sb_info *sbi) 1490 { 1491 int i, err; 1492 1493 for (i = 0; i < NR_COUNT_TYPE; i++) { 1494 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1495 if (err) 1496 return err; 1497 } 1498 1499 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1500 if (err) 1501 return err; 1502 1503 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1504 GFP_KERNEL); 1505 } 1506 1507 /* 1508 * Read f2fs raw super block. 1509 * Because we have two copies of super block, so read both of them 1510 * to get the first valid one. If any one of them is broken, we pass 1511 * them recovery flag back to the caller. 1512 */ 1513 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1514 struct f2fs_super_block **raw_super, 1515 int *valid_super_block, int *recovery) 1516 { 1517 struct super_block *sb = sbi->sb; 1518 int block; 1519 struct buffer_head *bh; 1520 struct f2fs_super_block *super; 1521 int err = 0; 1522 1523 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1524 if (!super) 1525 return -ENOMEM; 1526 1527 for (block = 0; block < 2; block++) { 1528 bh = sb_bread(sb, block); 1529 if (!bh) { 1530 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1531 block + 1); 1532 err = -EIO; 1533 continue; 1534 } 1535 1536 /* sanity checking of raw super */ 1537 if (sanity_check_raw_super(sbi, bh)) { 1538 f2fs_msg(sb, KERN_ERR, 1539 "Can't find valid F2FS filesystem in %dth superblock", 1540 block + 1); 1541 err = -EINVAL; 1542 brelse(bh); 1543 continue; 1544 } 1545 1546 if (!*raw_super) { 1547 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1548 sizeof(*super)); 1549 *valid_super_block = block; 1550 *raw_super = super; 1551 } 1552 brelse(bh); 1553 } 1554 1555 /* Fail to read any one of the superblocks*/ 1556 if (err < 0) 1557 *recovery = 1; 1558 1559 /* No valid superblock */ 1560 if (!*raw_super) 1561 kfree(super); 1562 else 1563 err = 0; 1564 1565 return err; 1566 } 1567 1568 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1569 { 1570 struct buffer_head *bh; 1571 int err; 1572 1573 if ((recover && f2fs_readonly(sbi->sb)) || 1574 bdev_read_only(sbi->sb->s_bdev)) { 1575 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1576 return -EROFS; 1577 } 1578 1579 /* write back-up superblock first */ 1580 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1581 if (!bh) 1582 return -EIO; 1583 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1584 brelse(bh); 1585 1586 /* if we are in recovery path, skip writing valid superblock */ 1587 if (recover || err) 1588 return err; 1589 1590 /* write current valid superblock */ 1591 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1592 if (!bh) 1593 return -EIO; 1594 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1595 brelse(bh); 1596 return err; 1597 } 1598 1599 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1600 { 1601 struct f2fs_sb_info *sbi; 1602 struct f2fs_super_block *raw_super; 1603 struct inode *root; 1604 int err; 1605 bool retry = true, need_fsck = false; 1606 char *options = NULL; 1607 int recovery, i, valid_super_block; 1608 struct curseg_info *seg_i; 1609 1610 try_onemore: 1611 err = -EINVAL; 1612 raw_super = NULL; 1613 valid_super_block = -1; 1614 recovery = 0; 1615 1616 /* allocate memory for f2fs-specific super block info */ 1617 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1618 if (!sbi) 1619 return -ENOMEM; 1620 1621 sbi->sb = sb; 1622 1623 /* Load the checksum driver */ 1624 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1625 if (IS_ERR(sbi->s_chksum_driver)) { 1626 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1627 err = PTR_ERR(sbi->s_chksum_driver); 1628 sbi->s_chksum_driver = NULL; 1629 goto free_sbi; 1630 } 1631 1632 /* set a block size */ 1633 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1634 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1635 goto free_sbi; 1636 } 1637 1638 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1639 &recovery); 1640 if (err) 1641 goto free_sbi; 1642 1643 sb->s_fs_info = sbi; 1644 sbi->raw_super = raw_super; 1645 1646 default_options(sbi); 1647 /* parse mount options */ 1648 options = kstrdup((const char *)data, GFP_KERNEL); 1649 if (data && !options) { 1650 err = -ENOMEM; 1651 goto free_sb_buf; 1652 } 1653 1654 err = parse_options(sb, options); 1655 if (err) 1656 goto free_options; 1657 1658 sbi->max_file_blocks = max_file_blocks(); 1659 sb->s_maxbytes = sbi->max_file_blocks << 1660 le32_to_cpu(raw_super->log_blocksize); 1661 sb->s_max_links = F2FS_LINK_MAX; 1662 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1663 1664 sb->s_op = &f2fs_sops; 1665 sb->s_cop = &f2fs_cryptops; 1666 sb->s_xattr = f2fs_xattr_handlers; 1667 sb->s_export_op = &f2fs_export_ops; 1668 sb->s_magic = F2FS_SUPER_MAGIC; 1669 sb->s_time_gran = 1; 1670 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1671 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1672 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1673 1674 /* init f2fs-specific super block info */ 1675 sbi->valid_super_block = valid_super_block; 1676 mutex_init(&sbi->gc_mutex); 1677 mutex_init(&sbi->cp_mutex); 1678 init_rwsem(&sbi->node_write); 1679 1680 /* disallow all the data/node/meta page writes */ 1681 set_sbi_flag(sbi, SBI_POR_DOING); 1682 spin_lock_init(&sbi->stat_lock); 1683 1684 init_rwsem(&sbi->read_io.io_rwsem); 1685 sbi->read_io.sbi = sbi; 1686 sbi->read_io.bio = NULL; 1687 for (i = 0; i < NR_PAGE_TYPE; i++) { 1688 init_rwsem(&sbi->write_io[i].io_rwsem); 1689 sbi->write_io[i].sbi = sbi; 1690 sbi->write_io[i].bio = NULL; 1691 } 1692 1693 init_rwsem(&sbi->cp_rwsem); 1694 init_waitqueue_head(&sbi->cp_wait); 1695 init_sb_info(sbi); 1696 1697 err = init_percpu_info(sbi); 1698 if (err) 1699 goto free_options; 1700 1701 /* get an inode for meta space */ 1702 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1703 if (IS_ERR(sbi->meta_inode)) { 1704 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1705 err = PTR_ERR(sbi->meta_inode); 1706 goto free_options; 1707 } 1708 1709 err = get_valid_checkpoint(sbi); 1710 if (err) { 1711 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1712 goto free_meta_inode; 1713 } 1714 1715 sbi->total_valid_node_count = 1716 le32_to_cpu(sbi->ckpt->valid_node_count); 1717 percpu_counter_set(&sbi->total_valid_inode_count, 1718 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1719 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1720 sbi->total_valid_block_count = 1721 le64_to_cpu(sbi->ckpt->valid_block_count); 1722 sbi->last_valid_block_count = sbi->total_valid_block_count; 1723 1724 for (i = 0; i < NR_INODE_TYPE; i++) { 1725 INIT_LIST_HEAD(&sbi->inode_list[i]); 1726 spin_lock_init(&sbi->inode_lock[i]); 1727 } 1728 1729 init_extent_cache_info(sbi); 1730 1731 init_ino_entry_info(sbi); 1732 1733 /* setup f2fs internal modules */ 1734 err = build_segment_manager(sbi); 1735 if (err) { 1736 f2fs_msg(sb, KERN_ERR, 1737 "Failed to initialize F2FS segment manager"); 1738 goto free_sm; 1739 } 1740 err = build_node_manager(sbi); 1741 if (err) { 1742 f2fs_msg(sb, KERN_ERR, 1743 "Failed to initialize F2FS node manager"); 1744 goto free_nm; 1745 } 1746 1747 /* For write statistics */ 1748 if (sb->s_bdev->bd_part) 1749 sbi->sectors_written_start = 1750 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1751 1752 /* Read accumulated write IO statistics if exists */ 1753 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1754 if (__exist_node_summaries(sbi)) 1755 sbi->kbytes_written = 1756 le64_to_cpu(seg_i->journal->info.kbytes_written); 1757 1758 build_gc_manager(sbi); 1759 1760 /* get an inode for node space */ 1761 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1762 if (IS_ERR(sbi->node_inode)) { 1763 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1764 err = PTR_ERR(sbi->node_inode); 1765 goto free_nm; 1766 } 1767 1768 f2fs_join_shrinker(sbi); 1769 1770 /* if there are nt orphan nodes free them */ 1771 err = recover_orphan_inodes(sbi); 1772 if (err) 1773 goto free_node_inode; 1774 1775 /* read root inode and dentry */ 1776 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1777 if (IS_ERR(root)) { 1778 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1779 err = PTR_ERR(root); 1780 goto free_node_inode; 1781 } 1782 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1783 iput(root); 1784 err = -EINVAL; 1785 goto free_node_inode; 1786 } 1787 1788 sb->s_root = d_make_root(root); /* allocate root dentry */ 1789 if (!sb->s_root) { 1790 err = -ENOMEM; 1791 goto free_root_inode; 1792 } 1793 1794 err = f2fs_build_stats(sbi); 1795 if (err) 1796 goto free_root_inode; 1797 1798 if (f2fs_proc_root) 1799 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1800 1801 if (sbi->s_proc) { 1802 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1803 &f2fs_seq_segment_info_fops, sb); 1804 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1805 &f2fs_seq_segment_bits_fops, sb); 1806 } 1807 1808 sbi->s_kobj.kset = f2fs_kset; 1809 init_completion(&sbi->s_kobj_unregister); 1810 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1811 "%s", sb->s_id); 1812 if (err) 1813 goto free_proc; 1814 1815 /* recover fsynced data */ 1816 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1817 /* 1818 * mount should be failed, when device has readonly mode, and 1819 * previous checkpoint was not done by clean system shutdown. 1820 */ 1821 if (bdev_read_only(sb->s_bdev) && 1822 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 1823 err = -EROFS; 1824 goto free_kobj; 1825 } 1826 1827 if (need_fsck) 1828 set_sbi_flag(sbi, SBI_NEED_FSCK); 1829 1830 if (!retry) 1831 goto skip_recovery; 1832 1833 err = recover_fsync_data(sbi, false); 1834 if (err < 0) { 1835 need_fsck = true; 1836 f2fs_msg(sb, KERN_ERR, 1837 "Cannot recover all fsync data errno=%d", err); 1838 goto free_kobj; 1839 } 1840 } else { 1841 err = recover_fsync_data(sbi, true); 1842 1843 if (!f2fs_readonly(sb) && err > 0) { 1844 err = -EINVAL; 1845 f2fs_msg(sb, KERN_ERR, 1846 "Need to recover fsync data"); 1847 goto free_kobj; 1848 } 1849 } 1850 skip_recovery: 1851 /* recover_fsync_data() cleared this already */ 1852 clear_sbi_flag(sbi, SBI_POR_DOING); 1853 1854 /* 1855 * If filesystem is not mounted as read-only then 1856 * do start the gc_thread. 1857 */ 1858 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1859 /* After POR, we can run background GC thread.*/ 1860 err = start_gc_thread(sbi); 1861 if (err) 1862 goto free_kobj; 1863 } 1864 kfree(options); 1865 1866 /* recover broken superblock */ 1867 if (recovery) { 1868 err = f2fs_commit_super(sbi, true); 1869 f2fs_msg(sb, KERN_INFO, 1870 "Try to recover %dth superblock, ret: %d", 1871 sbi->valid_super_block ? 1 : 2, err); 1872 } 1873 1874 f2fs_update_time(sbi, CP_TIME); 1875 f2fs_update_time(sbi, REQ_TIME); 1876 return 0; 1877 1878 free_kobj: 1879 f2fs_sync_inode_meta(sbi); 1880 kobject_del(&sbi->s_kobj); 1881 kobject_put(&sbi->s_kobj); 1882 wait_for_completion(&sbi->s_kobj_unregister); 1883 free_proc: 1884 if (sbi->s_proc) { 1885 remove_proc_entry("segment_info", sbi->s_proc); 1886 remove_proc_entry("segment_bits", sbi->s_proc); 1887 remove_proc_entry(sb->s_id, f2fs_proc_root); 1888 } 1889 f2fs_destroy_stats(sbi); 1890 free_root_inode: 1891 dput(sb->s_root); 1892 sb->s_root = NULL; 1893 free_node_inode: 1894 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1895 mutex_lock(&sbi->umount_mutex); 1896 release_ino_entry(sbi, true); 1897 f2fs_leave_shrinker(sbi); 1898 iput(sbi->node_inode); 1899 mutex_unlock(&sbi->umount_mutex); 1900 free_nm: 1901 destroy_node_manager(sbi); 1902 free_sm: 1903 destroy_segment_manager(sbi); 1904 kfree(sbi->ckpt); 1905 free_meta_inode: 1906 make_bad_inode(sbi->meta_inode); 1907 iput(sbi->meta_inode); 1908 free_options: 1909 destroy_percpu_info(sbi); 1910 kfree(options); 1911 free_sb_buf: 1912 kfree(raw_super); 1913 free_sbi: 1914 if (sbi->s_chksum_driver) 1915 crypto_free_shash(sbi->s_chksum_driver); 1916 kfree(sbi); 1917 1918 /* give only one another chance */ 1919 if (retry) { 1920 retry = false; 1921 shrink_dcache_sb(sb); 1922 goto try_onemore; 1923 } 1924 return err; 1925 } 1926 1927 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1928 const char *dev_name, void *data) 1929 { 1930 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1931 } 1932 1933 static void kill_f2fs_super(struct super_block *sb) 1934 { 1935 if (sb->s_root) 1936 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1937 kill_block_super(sb); 1938 } 1939 1940 static struct file_system_type f2fs_fs_type = { 1941 .owner = THIS_MODULE, 1942 .name = "f2fs", 1943 .mount = f2fs_mount, 1944 .kill_sb = kill_f2fs_super, 1945 .fs_flags = FS_REQUIRES_DEV, 1946 }; 1947 MODULE_ALIAS_FS("f2fs"); 1948 1949 static int __init init_inodecache(void) 1950 { 1951 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1952 sizeof(struct f2fs_inode_info), 0, 1953 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1954 if (!f2fs_inode_cachep) 1955 return -ENOMEM; 1956 return 0; 1957 } 1958 1959 static void destroy_inodecache(void) 1960 { 1961 /* 1962 * Make sure all delayed rcu free inodes are flushed before we 1963 * destroy cache. 1964 */ 1965 rcu_barrier(); 1966 kmem_cache_destroy(f2fs_inode_cachep); 1967 } 1968 1969 static int __init init_f2fs_fs(void) 1970 { 1971 int err; 1972 1973 f2fs_build_trace_ios(); 1974 1975 err = init_inodecache(); 1976 if (err) 1977 goto fail; 1978 err = create_node_manager_caches(); 1979 if (err) 1980 goto free_inodecache; 1981 err = create_segment_manager_caches(); 1982 if (err) 1983 goto free_node_manager_caches; 1984 err = create_checkpoint_caches(); 1985 if (err) 1986 goto free_segment_manager_caches; 1987 err = create_extent_cache(); 1988 if (err) 1989 goto free_checkpoint_caches; 1990 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1991 if (!f2fs_kset) { 1992 err = -ENOMEM; 1993 goto free_extent_cache; 1994 } 1995 err = register_shrinker(&f2fs_shrinker_info); 1996 if (err) 1997 goto free_kset; 1998 1999 err = register_filesystem(&f2fs_fs_type); 2000 if (err) 2001 goto free_shrinker; 2002 err = f2fs_create_root_stats(); 2003 if (err) 2004 goto free_filesystem; 2005 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2006 return 0; 2007 2008 free_filesystem: 2009 unregister_filesystem(&f2fs_fs_type); 2010 free_shrinker: 2011 unregister_shrinker(&f2fs_shrinker_info); 2012 free_kset: 2013 kset_unregister(f2fs_kset); 2014 free_extent_cache: 2015 destroy_extent_cache(); 2016 free_checkpoint_caches: 2017 destroy_checkpoint_caches(); 2018 free_segment_manager_caches: 2019 destroy_segment_manager_caches(); 2020 free_node_manager_caches: 2021 destroy_node_manager_caches(); 2022 free_inodecache: 2023 destroy_inodecache(); 2024 fail: 2025 return err; 2026 } 2027 2028 static void __exit exit_f2fs_fs(void) 2029 { 2030 remove_proc_entry("fs/f2fs", NULL); 2031 f2fs_destroy_root_stats(); 2032 unregister_filesystem(&f2fs_fs_type); 2033 unregister_shrinker(&f2fs_shrinker_info); 2034 kset_unregister(f2fs_kset); 2035 destroy_extent_cache(); 2036 destroy_checkpoint_caches(); 2037 destroy_segment_manager_caches(); 2038 destroy_node_manager_caches(); 2039 destroy_inodecache(); 2040 f2fs_destroy_trace_ios(); 2041 } 2042 2043 module_init(init_f2fs_fs) 2044 module_exit(exit_f2fs_fs) 2045 2046 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2047 MODULE_DESCRIPTION("Flash Friendly File System"); 2048 MODULE_LICENSE("GPL"); 2049