1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/f2fs_fs.h> 27 #include <linux/sysfs.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "gc.h" 34 #include "trace.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/f2fs.h> 38 39 static struct kmem_cache *f2fs_inode_cachep; 40 41 #ifdef CONFIG_F2FS_FAULT_INJECTION 42 43 char *fault_name[FAULT_MAX] = { 44 [FAULT_KMALLOC] = "kmalloc", 45 [FAULT_PAGE_ALLOC] = "page alloc", 46 [FAULT_ALLOC_NID] = "alloc nid", 47 [FAULT_ORPHAN] = "orphan", 48 [FAULT_BLOCK] = "no more block", 49 [FAULT_DIR_DEPTH] = "too big dir depth", 50 [FAULT_EVICT_INODE] = "evict_inode fail", 51 [FAULT_TRUNCATE] = "truncate fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_heap, 86 Opt_user_xattr, 87 Opt_nouser_xattr, 88 Opt_acl, 89 Opt_noacl, 90 Opt_active_logs, 91 Opt_disable_ext_identify, 92 Opt_inline_xattr, 93 Opt_noinline_xattr, 94 Opt_inline_data, 95 Opt_inline_dentry, 96 Opt_noinline_dentry, 97 Opt_flush_merge, 98 Opt_noflush_merge, 99 Opt_nobarrier, 100 Opt_fastboot, 101 Opt_extent_cache, 102 Opt_noextent_cache, 103 Opt_noinline_data, 104 Opt_data_flush, 105 Opt_mode, 106 Opt_io_size_bits, 107 Opt_fault_injection, 108 Opt_lazytime, 109 Opt_nolazytime, 110 Opt_usrquota, 111 Opt_grpquota, 112 Opt_prjquota, 113 Opt_err, 114 }; 115 116 static match_table_t f2fs_tokens = { 117 {Opt_gc_background, "background_gc=%s"}, 118 {Opt_disable_roll_forward, "disable_roll_forward"}, 119 {Opt_norecovery, "norecovery"}, 120 {Opt_discard, "discard"}, 121 {Opt_nodiscard, "nodiscard"}, 122 {Opt_noheap, "no_heap"}, 123 {Opt_heap, "heap"}, 124 {Opt_user_xattr, "user_xattr"}, 125 {Opt_nouser_xattr, "nouser_xattr"}, 126 {Opt_acl, "acl"}, 127 {Opt_noacl, "noacl"}, 128 {Opt_active_logs, "active_logs=%u"}, 129 {Opt_disable_ext_identify, "disable_ext_identify"}, 130 {Opt_inline_xattr, "inline_xattr"}, 131 {Opt_noinline_xattr, "noinline_xattr"}, 132 {Opt_inline_data, "inline_data"}, 133 {Opt_inline_dentry, "inline_dentry"}, 134 {Opt_noinline_dentry, "noinline_dentry"}, 135 {Opt_flush_merge, "flush_merge"}, 136 {Opt_noflush_merge, "noflush_merge"}, 137 {Opt_nobarrier, "nobarrier"}, 138 {Opt_fastboot, "fastboot"}, 139 {Opt_extent_cache, "extent_cache"}, 140 {Opt_noextent_cache, "noextent_cache"}, 141 {Opt_noinline_data, "noinline_data"}, 142 {Opt_data_flush, "data_flush"}, 143 {Opt_mode, "mode=%s"}, 144 {Opt_io_size_bits, "io_bits=%u"}, 145 {Opt_fault_injection, "fault_injection=%u"}, 146 {Opt_lazytime, "lazytime"}, 147 {Opt_nolazytime, "nolazytime"}, 148 {Opt_usrquota, "usrquota"}, 149 {Opt_grpquota, "grpquota"}, 150 {Opt_prjquota, "prjquota"}, 151 {Opt_err, NULL}, 152 }; 153 154 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 155 { 156 struct va_format vaf; 157 va_list args; 158 159 va_start(args, fmt); 160 vaf.fmt = fmt; 161 vaf.va = &args; 162 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 163 va_end(args); 164 } 165 166 static void init_once(void *foo) 167 { 168 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 169 170 inode_init_once(&fi->vfs_inode); 171 } 172 173 static int parse_options(struct super_block *sb, char *options) 174 { 175 struct f2fs_sb_info *sbi = F2FS_SB(sb); 176 struct request_queue *q; 177 substring_t args[MAX_OPT_ARGS]; 178 char *p, *name; 179 int arg = 0; 180 181 if (!options) 182 return 0; 183 184 while ((p = strsep(&options, ",")) != NULL) { 185 int token; 186 if (!*p) 187 continue; 188 /* 189 * Initialize args struct so we know whether arg was 190 * found; some options take optional arguments. 191 */ 192 args[0].to = args[0].from = NULL; 193 token = match_token(p, f2fs_tokens, args); 194 195 switch (token) { 196 case Opt_gc_background: 197 name = match_strdup(&args[0]); 198 199 if (!name) 200 return -ENOMEM; 201 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 202 set_opt(sbi, BG_GC); 203 clear_opt(sbi, FORCE_FG_GC); 204 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 205 clear_opt(sbi, BG_GC); 206 clear_opt(sbi, FORCE_FG_GC); 207 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 208 set_opt(sbi, BG_GC); 209 set_opt(sbi, FORCE_FG_GC); 210 } else { 211 kfree(name); 212 return -EINVAL; 213 } 214 kfree(name); 215 break; 216 case Opt_disable_roll_forward: 217 set_opt(sbi, DISABLE_ROLL_FORWARD); 218 break; 219 case Opt_norecovery: 220 /* this option mounts f2fs with ro */ 221 set_opt(sbi, DISABLE_ROLL_FORWARD); 222 if (!f2fs_readonly(sb)) 223 return -EINVAL; 224 break; 225 case Opt_discard: 226 q = bdev_get_queue(sb->s_bdev); 227 if (blk_queue_discard(q)) { 228 set_opt(sbi, DISCARD); 229 } else if (!f2fs_sb_mounted_blkzoned(sb)) { 230 f2fs_msg(sb, KERN_WARNING, 231 "mounting with \"discard\" option, but " 232 "the device does not support discard"); 233 } 234 break; 235 case Opt_nodiscard: 236 if (f2fs_sb_mounted_blkzoned(sb)) { 237 f2fs_msg(sb, KERN_WARNING, 238 "discard is required for zoned block devices"); 239 return -EINVAL; 240 } 241 clear_opt(sbi, DISCARD); 242 break; 243 case Opt_noheap: 244 set_opt(sbi, NOHEAP); 245 break; 246 case Opt_heap: 247 clear_opt(sbi, NOHEAP); 248 break; 249 #ifdef CONFIG_F2FS_FS_XATTR 250 case Opt_user_xattr: 251 set_opt(sbi, XATTR_USER); 252 break; 253 case Opt_nouser_xattr: 254 clear_opt(sbi, XATTR_USER); 255 break; 256 case Opt_inline_xattr: 257 set_opt(sbi, INLINE_XATTR); 258 break; 259 case Opt_noinline_xattr: 260 clear_opt(sbi, INLINE_XATTR); 261 break; 262 #else 263 case Opt_user_xattr: 264 f2fs_msg(sb, KERN_INFO, 265 "user_xattr options not supported"); 266 break; 267 case Opt_nouser_xattr: 268 f2fs_msg(sb, KERN_INFO, 269 "nouser_xattr options not supported"); 270 break; 271 case Opt_inline_xattr: 272 f2fs_msg(sb, KERN_INFO, 273 "inline_xattr options not supported"); 274 break; 275 case Opt_noinline_xattr: 276 f2fs_msg(sb, KERN_INFO, 277 "noinline_xattr options not supported"); 278 break; 279 #endif 280 #ifdef CONFIG_F2FS_FS_POSIX_ACL 281 case Opt_acl: 282 set_opt(sbi, POSIX_ACL); 283 break; 284 case Opt_noacl: 285 clear_opt(sbi, POSIX_ACL); 286 break; 287 #else 288 case Opt_acl: 289 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 290 break; 291 case Opt_noacl: 292 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 293 break; 294 #endif 295 case Opt_active_logs: 296 if (args->from && match_int(args, &arg)) 297 return -EINVAL; 298 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 299 return -EINVAL; 300 sbi->active_logs = arg; 301 break; 302 case Opt_disable_ext_identify: 303 set_opt(sbi, DISABLE_EXT_IDENTIFY); 304 break; 305 case Opt_inline_data: 306 set_opt(sbi, INLINE_DATA); 307 break; 308 case Opt_inline_dentry: 309 set_opt(sbi, INLINE_DENTRY); 310 break; 311 case Opt_noinline_dentry: 312 clear_opt(sbi, INLINE_DENTRY); 313 break; 314 case Opt_flush_merge: 315 set_opt(sbi, FLUSH_MERGE); 316 break; 317 case Opt_noflush_merge: 318 clear_opt(sbi, FLUSH_MERGE); 319 break; 320 case Opt_nobarrier: 321 set_opt(sbi, NOBARRIER); 322 break; 323 case Opt_fastboot: 324 set_opt(sbi, FASTBOOT); 325 break; 326 case Opt_extent_cache: 327 set_opt(sbi, EXTENT_CACHE); 328 break; 329 case Opt_noextent_cache: 330 clear_opt(sbi, EXTENT_CACHE); 331 break; 332 case Opt_noinline_data: 333 clear_opt(sbi, INLINE_DATA); 334 break; 335 case Opt_data_flush: 336 set_opt(sbi, DATA_FLUSH); 337 break; 338 case Opt_mode: 339 name = match_strdup(&args[0]); 340 341 if (!name) 342 return -ENOMEM; 343 if (strlen(name) == 8 && 344 !strncmp(name, "adaptive", 8)) { 345 if (f2fs_sb_mounted_blkzoned(sb)) { 346 f2fs_msg(sb, KERN_WARNING, 347 "adaptive mode is not allowed with " 348 "zoned block device feature"); 349 kfree(name); 350 return -EINVAL; 351 } 352 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 353 } else if (strlen(name) == 3 && 354 !strncmp(name, "lfs", 3)) { 355 set_opt_mode(sbi, F2FS_MOUNT_LFS); 356 } else { 357 kfree(name); 358 return -EINVAL; 359 } 360 kfree(name); 361 break; 362 case Opt_io_size_bits: 363 if (args->from && match_int(args, &arg)) 364 return -EINVAL; 365 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 366 f2fs_msg(sb, KERN_WARNING, 367 "Not support %d, larger than %d", 368 1 << arg, BIO_MAX_PAGES); 369 return -EINVAL; 370 } 371 sbi->write_io_size_bits = arg; 372 break; 373 case Opt_fault_injection: 374 if (args->from && match_int(args, &arg)) 375 return -EINVAL; 376 #ifdef CONFIG_F2FS_FAULT_INJECTION 377 f2fs_build_fault_attr(sbi, arg); 378 set_opt(sbi, FAULT_INJECTION); 379 #else 380 f2fs_msg(sb, KERN_INFO, 381 "FAULT_INJECTION was not selected"); 382 #endif 383 break; 384 case Opt_lazytime: 385 sb->s_flags |= MS_LAZYTIME; 386 break; 387 case Opt_nolazytime: 388 sb->s_flags &= ~MS_LAZYTIME; 389 break; 390 #ifdef CONFIG_QUOTA 391 case Opt_usrquota: 392 set_opt(sbi, USRQUOTA); 393 break; 394 case Opt_grpquota: 395 set_opt(sbi, GRPQUOTA); 396 break; 397 case Opt_prjquota: 398 set_opt(sbi, PRJQUOTA); 399 break; 400 #else 401 case Opt_usrquota: 402 case Opt_grpquota: 403 case Opt_prjquota: 404 f2fs_msg(sb, KERN_INFO, 405 "quota operations not supported"); 406 break; 407 #endif 408 default: 409 f2fs_msg(sb, KERN_ERR, 410 "Unrecognized mount option \"%s\" or missing value", 411 p); 412 return -EINVAL; 413 } 414 } 415 416 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 417 f2fs_msg(sb, KERN_ERR, 418 "Should set mode=lfs with %uKB-sized IO", 419 F2FS_IO_SIZE_KB(sbi)); 420 return -EINVAL; 421 } 422 return 0; 423 } 424 425 static struct inode *f2fs_alloc_inode(struct super_block *sb) 426 { 427 struct f2fs_inode_info *fi; 428 429 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 430 if (!fi) 431 return NULL; 432 433 init_once((void *) fi); 434 435 /* Initialize f2fs-specific inode info */ 436 fi->vfs_inode.i_version = 1; 437 atomic_set(&fi->dirty_pages, 0); 438 fi->i_current_depth = 1; 439 fi->i_advise = 0; 440 init_rwsem(&fi->i_sem); 441 INIT_LIST_HEAD(&fi->dirty_list); 442 INIT_LIST_HEAD(&fi->gdirty_list); 443 INIT_LIST_HEAD(&fi->inmem_pages); 444 mutex_init(&fi->inmem_lock); 445 init_rwsem(&fi->dio_rwsem[READ]); 446 init_rwsem(&fi->dio_rwsem[WRITE]); 447 init_rwsem(&fi->i_mmap_sem); 448 449 #ifdef CONFIG_QUOTA 450 memset(&fi->i_dquot, 0, sizeof(fi->i_dquot)); 451 fi->i_reserved_quota = 0; 452 #endif 453 /* Will be used by directory only */ 454 fi->i_dir_level = F2FS_SB(sb)->dir_level; 455 456 return &fi->vfs_inode; 457 } 458 459 static int f2fs_drop_inode(struct inode *inode) 460 { 461 int ret; 462 /* 463 * This is to avoid a deadlock condition like below. 464 * writeback_single_inode(inode) 465 * - f2fs_write_data_page 466 * - f2fs_gc -> iput -> evict 467 * - inode_wait_for_writeback(inode) 468 */ 469 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 470 if (!inode->i_nlink && !is_bad_inode(inode)) { 471 /* to avoid evict_inode call simultaneously */ 472 atomic_inc(&inode->i_count); 473 spin_unlock(&inode->i_lock); 474 475 /* some remained atomic pages should discarded */ 476 if (f2fs_is_atomic_file(inode)) 477 drop_inmem_pages(inode); 478 479 /* should remain fi->extent_tree for writepage */ 480 f2fs_destroy_extent_node(inode); 481 482 sb_start_intwrite(inode->i_sb); 483 f2fs_i_size_write(inode, 0); 484 485 if (F2FS_HAS_BLOCKS(inode)) 486 f2fs_truncate(inode); 487 488 sb_end_intwrite(inode->i_sb); 489 490 fscrypt_put_encryption_info(inode, NULL); 491 spin_lock(&inode->i_lock); 492 atomic_dec(&inode->i_count); 493 } 494 trace_f2fs_drop_inode(inode, 0); 495 return 0; 496 } 497 ret = generic_drop_inode(inode); 498 trace_f2fs_drop_inode(inode, ret); 499 return ret; 500 } 501 502 int f2fs_inode_dirtied(struct inode *inode, bool sync) 503 { 504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 505 int ret = 0; 506 507 spin_lock(&sbi->inode_lock[DIRTY_META]); 508 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 509 ret = 1; 510 } else { 511 set_inode_flag(inode, FI_DIRTY_INODE); 512 stat_inc_dirty_inode(sbi, DIRTY_META); 513 } 514 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 515 list_add_tail(&F2FS_I(inode)->gdirty_list, 516 &sbi->inode_list[DIRTY_META]); 517 inc_page_count(sbi, F2FS_DIRTY_IMETA); 518 } 519 spin_unlock(&sbi->inode_lock[DIRTY_META]); 520 return ret; 521 } 522 523 void f2fs_inode_synced(struct inode *inode) 524 { 525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 526 527 spin_lock(&sbi->inode_lock[DIRTY_META]); 528 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 529 spin_unlock(&sbi->inode_lock[DIRTY_META]); 530 return; 531 } 532 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 533 list_del_init(&F2FS_I(inode)->gdirty_list); 534 dec_page_count(sbi, F2FS_DIRTY_IMETA); 535 } 536 clear_inode_flag(inode, FI_DIRTY_INODE); 537 clear_inode_flag(inode, FI_AUTO_RECOVER); 538 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 539 spin_unlock(&sbi->inode_lock[DIRTY_META]); 540 } 541 542 /* 543 * f2fs_dirty_inode() is called from __mark_inode_dirty() 544 * 545 * We should call set_dirty_inode to write the dirty inode through write_inode. 546 */ 547 static void f2fs_dirty_inode(struct inode *inode, int flags) 548 { 549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 550 551 if (inode->i_ino == F2FS_NODE_INO(sbi) || 552 inode->i_ino == F2FS_META_INO(sbi)) 553 return; 554 555 if (flags == I_DIRTY_TIME) 556 return; 557 558 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 559 clear_inode_flag(inode, FI_AUTO_RECOVER); 560 561 f2fs_inode_dirtied(inode, false); 562 } 563 564 static void f2fs_i_callback(struct rcu_head *head) 565 { 566 struct inode *inode = container_of(head, struct inode, i_rcu); 567 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 568 } 569 570 static void f2fs_destroy_inode(struct inode *inode) 571 { 572 call_rcu(&inode->i_rcu, f2fs_i_callback); 573 } 574 575 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 576 { 577 percpu_counter_destroy(&sbi->alloc_valid_block_count); 578 percpu_counter_destroy(&sbi->total_valid_inode_count); 579 } 580 581 static void destroy_device_list(struct f2fs_sb_info *sbi) 582 { 583 int i; 584 585 for (i = 0; i < sbi->s_ndevs; i++) { 586 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 587 #ifdef CONFIG_BLK_DEV_ZONED 588 kfree(FDEV(i).blkz_type); 589 #endif 590 } 591 kfree(sbi->devs); 592 } 593 594 static void f2fs_quota_off_umount(struct super_block *sb); 595 static void f2fs_put_super(struct super_block *sb) 596 { 597 struct f2fs_sb_info *sbi = F2FS_SB(sb); 598 int i; 599 600 f2fs_quota_off_umount(sb); 601 602 /* prevent remaining shrinker jobs */ 603 mutex_lock(&sbi->umount_mutex); 604 605 /* 606 * We don't need to do checkpoint when superblock is clean. 607 * But, the previous checkpoint was not done by umount, it needs to do 608 * clean checkpoint again. 609 */ 610 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 611 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 612 struct cp_control cpc = { 613 .reason = CP_UMOUNT, 614 }; 615 write_checkpoint(sbi, &cpc); 616 } 617 618 /* be sure to wait for any on-going discard commands */ 619 f2fs_wait_discard_bios(sbi); 620 621 if (f2fs_discard_en(sbi) && !sbi->discard_blks) { 622 struct cp_control cpc = { 623 .reason = CP_UMOUNT | CP_TRIMMED, 624 }; 625 write_checkpoint(sbi, &cpc); 626 } 627 628 /* write_checkpoint can update stat informaion */ 629 f2fs_destroy_stats(sbi); 630 631 /* 632 * normally superblock is clean, so we need to release this. 633 * In addition, EIO will skip do checkpoint, we need this as well. 634 */ 635 release_ino_entry(sbi, true); 636 637 f2fs_leave_shrinker(sbi); 638 mutex_unlock(&sbi->umount_mutex); 639 640 /* our cp_error case, we can wait for any writeback page */ 641 f2fs_flush_merged_writes(sbi); 642 643 iput(sbi->node_inode); 644 iput(sbi->meta_inode); 645 646 /* destroy f2fs internal modules */ 647 destroy_node_manager(sbi); 648 destroy_segment_manager(sbi); 649 650 kfree(sbi->ckpt); 651 652 f2fs_exit_sysfs(sbi); 653 654 sb->s_fs_info = NULL; 655 if (sbi->s_chksum_driver) 656 crypto_free_shash(sbi->s_chksum_driver); 657 kfree(sbi->raw_super); 658 659 destroy_device_list(sbi); 660 mempool_destroy(sbi->write_io_dummy); 661 destroy_percpu_info(sbi); 662 for (i = 0; i < NR_PAGE_TYPE; i++) 663 kfree(sbi->write_io[i]); 664 kfree(sbi); 665 } 666 667 int f2fs_sync_fs(struct super_block *sb, int sync) 668 { 669 struct f2fs_sb_info *sbi = F2FS_SB(sb); 670 int err = 0; 671 672 trace_f2fs_sync_fs(sb, sync); 673 674 if (sync) { 675 struct cp_control cpc; 676 677 cpc.reason = __get_cp_reason(sbi); 678 679 mutex_lock(&sbi->gc_mutex); 680 err = write_checkpoint(sbi, &cpc); 681 mutex_unlock(&sbi->gc_mutex); 682 } 683 f2fs_trace_ios(NULL, 1); 684 685 return err; 686 } 687 688 static int f2fs_freeze(struct super_block *sb) 689 { 690 if (f2fs_readonly(sb)) 691 return 0; 692 693 /* IO error happened before */ 694 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 695 return -EIO; 696 697 /* must be clean, since sync_filesystem() was already called */ 698 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 699 return -EINVAL; 700 return 0; 701 } 702 703 static int f2fs_unfreeze(struct super_block *sb) 704 { 705 return 0; 706 } 707 708 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 709 { 710 struct super_block *sb = dentry->d_sb; 711 struct f2fs_sb_info *sbi = F2FS_SB(sb); 712 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 713 block_t total_count, user_block_count, start_count, ovp_count; 714 u64 avail_node_count; 715 716 total_count = le64_to_cpu(sbi->raw_super->block_count); 717 user_block_count = sbi->user_block_count; 718 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 719 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 720 buf->f_type = F2FS_SUPER_MAGIC; 721 buf->f_bsize = sbi->blocksize; 722 723 buf->f_blocks = total_count - start_count; 724 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 725 buf->f_bavail = user_block_count - valid_user_blocks(sbi) - 726 sbi->reserved_blocks; 727 728 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 729 730 if (avail_node_count > user_block_count) { 731 buf->f_files = user_block_count; 732 buf->f_ffree = buf->f_bavail; 733 } else { 734 buf->f_files = avail_node_count; 735 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 736 buf->f_bavail); 737 } 738 739 buf->f_namelen = F2FS_NAME_LEN; 740 buf->f_fsid.val[0] = (u32)id; 741 buf->f_fsid.val[1] = (u32)(id >> 32); 742 743 return 0; 744 } 745 746 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 747 { 748 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 749 750 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 751 if (test_opt(sbi, FORCE_FG_GC)) 752 seq_printf(seq, ",background_gc=%s", "sync"); 753 else 754 seq_printf(seq, ",background_gc=%s", "on"); 755 } else { 756 seq_printf(seq, ",background_gc=%s", "off"); 757 } 758 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 759 seq_puts(seq, ",disable_roll_forward"); 760 if (test_opt(sbi, DISCARD)) 761 seq_puts(seq, ",discard"); 762 if (test_opt(sbi, NOHEAP)) 763 seq_puts(seq, ",no_heap"); 764 else 765 seq_puts(seq, ",heap"); 766 #ifdef CONFIG_F2FS_FS_XATTR 767 if (test_opt(sbi, XATTR_USER)) 768 seq_puts(seq, ",user_xattr"); 769 else 770 seq_puts(seq, ",nouser_xattr"); 771 if (test_opt(sbi, INLINE_XATTR)) 772 seq_puts(seq, ",inline_xattr"); 773 else 774 seq_puts(seq, ",noinline_xattr"); 775 #endif 776 #ifdef CONFIG_F2FS_FS_POSIX_ACL 777 if (test_opt(sbi, POSIX_ACL)) 778 seq_puts(seq, ",acl"); 779 else 780 seq_puts(seq, ",noacl"); 781 #endif 782 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 783 seq_puts(seq, ",disable_ext_identify"); 784 if (test_opt(sbi, INLINE_DATA)) 785 seq_puts(seq, ",inline_data"); 786 else 787 seq_puts(seq, ",noinline_data"); 788 if (test_opt(sbi, INLINE_DENTRY)) 789 seq_puts(seq, ",inline_dentry"); 790 else 791 seq_puts(seq, ",noinline_dentry"); 792 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 793 seq_puts(seq, ",flush_merge"); 794 if (test_opt(sbi, NOBARRIER)) 795 seq_puts(seq, ",nobarrier"); 796 if (test_opt(sbi, FASTBOOT)) 797 seq_puts(seq, ",fastboot"); 798 if (test_opt(sbi, EXTENT_CACHE)) 799 seq_puts(seq, ",extent_cache"); 800 else 801 seq_puts(seq, ",noextent_cache"); 802 if (test_opt(sbi, DATA_FLUSH)) 803 seq_puts(seq, ",data_flush"); 804 805 seq_puts(seq, ",mode="); 806 if (test_opt(sbi, ADAPTIVE)) 807 seq_puts(seq, "adaptive"); 808 else if (test_opt(sbi, LFS)) 809 seq_puts(seq, "lfs"); 810 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 811 if (F2FS_IO_SIZE_BITS(sbi)) 812 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 813 #ifdef CONFIG_F2FS_FAULT_INJECTION 814 if (test_opt(sbi, FAULT_INJECTION)) 815 seq_printf(seq, ",fault_injection=%u", 816 sbi->fault_info.inject_rate); 817 #endif 818 #ifdef CONFIG_QUOTA 819 if (test_opt(sbi, USRQUOTA)) 820 seq_puts(seq, ",usrquota"); 821 if (test_opt(sbi, GRPQUOTA)) 822 seq_puts(seq, ",grpquota"); 823 if (test_opt(sbi, PRJQUOTA)) 824 seq_puts(seq, ",prjquota"); 825 #endif 826 827 return 0; 828 } 829 830 static void default_options(struct f2fs_sb_info *sbi) 831 { 832 /* init some FS parameters */ 833 sbi->active_logs = NR_CURSEG_TYPE; 834 835 set_opt(sbi, BG_GC); 836 set_opt(sbi, INLINE_XATTR); 837 set_opt(sbi, INLINE_DATA); 838 set_opt(sbi, INLINE_DENTRY); 839 set_opt(sbi, EXTENT_CACHE); 840 set_opt(sbi, NOHEAP); 841 sbi->sb->s_flags |= MS_LAZYTIME; 842 set_opt(sbi, FLUSH_MERGE); 843 if (f2fs_sb_mounted_blkzoned(sbi->sb)) { 844 set_opt_mode(sbi, F2FS_MOUNT_LFS); 845 set_opt(sbi, DISCARD); 846 } else { 847 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 848 } 849 850 #ifdef CONFIG_F2FS_FS_XATTR 851 set_opt(sbi, XATTR_USER); 852 #endif 853 #ifdef CONFIG_F2FS_FS_POSIX_ACL 854 set_opt(sbi, POSIX_ACL); 855 #endif 856 857 #ifdef CONFIG_F2FS_FAULT_INJECTION 858 f2fs_build_fault_attr(sbi, 0); 859 #endif 860 } 861 862 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 863 { 864 struct f2fs_sb_info *sbi = F2FS_SB(sb); 865 struct f2fs_mount_info org_mount_opt; 866 unsigned long old_sb_flags; 867 int err, active_logs; 868 bool need_restart_gc = false; 869 bool need_stop_gc = false; 870 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 871 #ifdef CONFIG_F2FS_FAULT_INJECTION 872 struct f2fs_fault_info ffi = sbi->fault_info; 873 #endif 874 875 /* 876 * Save the old mount options in case we 877 * need to restore them. 878 */ 879 org_mount_opt = sbi->mount_opt; 880 old_sb_flags = sb->s_flags; 881 active_logs = sbi->active_logs; 882 883 /* recover superblocks we couldn't write due to previous RO mount */ 884 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 885 err = f2fs_commit_super(sbi, false); 886 f2fs_msg(sb, KERN_INFO, 887 "Try to recover all the superblocks, ret: %d", err); 888 if (!err) 889 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 890 } 891 892 default_options(sbi); 893 894 /* parse mount options */ 895 err = parse_options(sb, data); 896 if (err) 897 goto restore_opts; 898 899 /* 900 * Previous and new state of filesystem is RO, 901 * so skip checking GC and FLUSH_MERGE conditions. 902 */ 903 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 904 goto skip; 905 906 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) { 907 err = dquot_suspend(sb, -1); 908 if (err < 0) 909 goto restore_opts; 910 } else { 911 /* dquot_resume needs RW */ 912 sb->s_flags &= ~MS_RDONLY; 913 dquot_resume(sb, -1); 914 } 915 916 /* disallow enable/disable extent_cache dynamically */ 917 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 918 err = -EINVAL; 919 f2fs_msg(sbi->sb, KERN_WARNING, 920 "switch extent_cache option is not allowed"); 921 goto restore_opts; 922 } 923 924 /* 925 * We stop the GC thread if FS is mounted as RO 926 * or if background_gc = off is passed in mount 927 * option. Also sync the filesystem. 928 */ 929 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 930 if (sbi->gc_thread) { 931 stop_gc_thread(sbi); 932 need_restart_gc = true; 933 } 934 } else if (!sbi->gc_thread) { 935 err = start_gc_thread(sbi); 936 if (err) 937 goto restore_opts; 938 need_stop_gc = true; 939 } 940 941 if (*flags & MS_RDONLY) { 942 writeback_inodes_sb(sb, WB_REASON_SYNC); 943 sync_inodes_sb(sb); 944 945 set_sbi_flag(sbi, SBI_IS_DIRTY); 946 set_sbi_flag(sbi, SBI_IS_CLOSE); 947 f2fs_sync_fs(sb, 1); 948 clear_sbi_flag(sbi, SBI_IS_CLOSE); 949 } 950 951 /* 952 * We stop issue flush thread if FS is mounted as RO 953 * or if flush_merge is not passed in mount option. 954 */ 955 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 956 clear_opt(sbi, FLUSH_MERGE); 957 destroy_flush_cmd_control(sbi, false); 958 } else { 959 err = create_flush_cmd_control(sbi); 960 if (err) 961 goto restore_gc; 962 } 963 skip: 964 /* Update the POSIXACL Flag */ 965 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 966 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 967 968 return 0; 969 restore_gc: 970 if (need_restart_gc) { 971 if (start_gc_thread(sbi)) 972 f2fs_msg(sbi->sb, KERN_WARNING, 973 "background gc thread has stopped"); 974 } else if (need_stop_gc) { 975 stop_gc_thread(sbi); 976 } 977 restore_opts: 978 sbi->mount_opt = org_mount_opt; 979 sbi->active_logs = active_logs; 980 sb->s_flags = old_sb_flags; 981 #ifdef CONFIG_F2FS_FAULT_INJECTION 982 sbi->fault_info = ffi; 983 #endif 984 return err; 985 } 986 987 #ifdef CONFIG_QUOTA 988 /* Read data from quotafile */ 989 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 990 size_t len, loff_t off) 991 { 992 struct inode *inode = sb_dqopt(sb)->files[type]; 993 struct address_space *mapping = inode->i_mapping; 994 block_t blkidx = F2FS_BYTES_TO_BLK(off); 995 int offset = off & (sb->s_blocksize - 1); 996 int tocopy; 997 size_t toread; 998 loff_t i_size = i_size_read(inode); 999 struct page *page; 1000 char *kaddr; 1001 1002 if (off > i_size) 1003 return 0; 1004 1005 if (off + len > i_size) 1006 len = i_size - off; 1007 toread = len; 1008 while (toread > 0) { 1009 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1010 repeat: 1011 page = read_mapping_page(mapping, blkidx, NULL); 1012 if (IS_ERR(page)) 1013 return PTR_ERR(page); 1014 1015 lock_page(page); 1016 1017 if (unlikely(page->mapping != mapping)) { 1018 f2fs_put_page(page, 1); 1019 goto repeat; 1020 } 1021 if (unlikely(!PageUptodate(page))) { 1022 f2fs_put_page(page, 1); 1023 return -EIO; 1024 } 1025 1026 kaddr = kmap_atomic(page); 1027 memcpy(data, kaddr + offset, tocopy); 1028 kunmap_atomic(kaddr); 1029 f2fs_put_page(page, 1); 1030 1031 offset = 0; 1032 toread -= tocopy; 1033 data += tocopy; 1034 blkidx++; 1035 } 1036 return len; 1037 } 1038 1039 /* Write to quotafile */ 1040 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1041 const char *data, size_t len, loff_t off) 1042 { 1043 struct inode *inode = sb_dqopt(sb)->files[type]; 1044 struct address_space *mapping = inode->i_mapping; 1045 const struct address_space_operations *a_ops = mapping->a_ops; 1046 int offset = off & (sb->s_blocksize - 1); 1047 size_t towrite = len; 1048 struct page *page; 1049 char *kaddr; 1050 int err = 0; 1051 int tocopy; 1052 1053 while (towrite > 0) { 1054 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1055 towrite); 1056 1057 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1058 &page, NULL); 1059 if (unlikely(err)) 1060 break; 1061 1062 kaddr = kmap_atomic(page); 1063 memcpy(kaddr + offset, data, tocopy); 1064 kunmap_atomic(kaddr); 1065 flush_dcache_page(page); 1066 1067 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1068 page, NULL); 1069 offset = 0; 1070 towrite -= tocopy; 1071 off += tocopy; 1072 data += tocopy; 1073 cond_resched(); 1074 } 1075 1076 if (len == towrite) 1077 return err; 1078 inode->i_version++; 1079 inode->i_mtime = inode->i_ctime = current_time(inode); 1080 f2fs_mark_inode_dirty_sync(inode, false); 1081 return len - towrite; 1082 } 1083 1084 static struct dquot **f2fs_get_dquots(struct inode *inode) 1085 { 1086 return F2FS_I(inode)->i_dquot; 1087 } 1088 1089 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1090 { 1091 return &F2FS_I(inode)->i_reserved_quota; 1092 } 1093 1094 static int f2fs_quota_sync(struct super_block *sb, int type) 1095 { 1096 struct quota_info *dqopt = sb_dqopt(sb); 1097 int cnt; 1098 int ret; 1099 1100 ret = dquot_writeback_dquots(sb, type); 1101 if (ret) 1102 return ret; 1103 1104 /* 1105 * Now when everything is written we can discard the pagecache so 1106 * that userspace sees the changes. 1107 */ 1108 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1109 if (type != -1 && cnt != type) 1110 continue; 1111 if (!sb_has_quota_active(sb, cnt)) 1112 continue; 1113 1114 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping); 1115 if (ret) 1116 return ret; 1117 1118 inode_lock(dqopt->files[cnt]); 1119 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1120 inode_unlock(dqopt->files[cnt]); 1121 } 1122 return 0; 1123 } 1124 1125 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1126 const struct path *path) 1127 { 1128 struct inode *inode; 1129 int err; 1130 1131 err = f2fs_quota_sync(sb, -1); 1132 if (err) 1133 return err; 1134 1135 err = dquot_quota_on(sb, type, format_id, path); 1136 if (err) 1137 return err; 1138 1139 inode = d_inode(path->dentry); 1140 1141 inode_lock(inode); 1142 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL; 1143 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 1144 S_NOATIME | S_IMMUTABLE); 1145 inode_unlock(inode); 1146 f2fs_mark_inode_dirty_sync(inode, false); 1147 1148 return 0; 1149 } 1150 1151 static int f2fs_quota_off(struct super_block *sb, int type) 1152 { 1153 struct inode *inode = sb_dqopt(sb)->files[type]; 1154 int err; 1155 1156 if (!inode || !igrab(inode)) 1157 return dquot_quota_off(sb, type); 1158 1159 f2fs_quota_sync(sb, -1); 1160 1161 err = dquot_quota_off(sb, type); 1162 if (err) 1163 goto out_put; 1164 1165 inode_lock(inode); 1166 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL); 1167 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 1168 inode_unlock(inode); 1169 f2fs_mark_inode_dirty_sync(inode, false); 1170 out_put: 1171 iput(inode); 1172 return err; 1173 } 1174 1175 static void f2fs_quota_off_umount(struct super_block *sb) 1176 { 1177 int type; 1178 1179 for (type = 0; type < MAXQUOTAS; type++) 1180 f2fs_quota_off(sb, type); 1181 } 1182 1183 int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 1184 { 1185 *projid = F2FS_I(inode)->i_projid; 1186 return 0; 1187 } 1188 1189 static const struct dquot_operations f2fs_quota_operations = { 1190 .get_reserved_space = f2fs_get_reserved_space, 1191 .write_dquot = dquot_commit, 1192 .acquire_dquot = dquot_acquire, 1193 .release_dquot = dquot_release, 1194 .mark_dirty = dquot_mark_dquot_dirty, 1195 .write_info = dquot_commit_info, 1196 .alloc_dquot = dquot_alloc, 1197 .destroy_dquot = dquot_destroy, 1198 .get_projid = f2fs_get_projid, 1199 .get_next_id = dquot_get_next_id, 1200 }; 1201 1202 static const struct quotactl_ops f2fs_quotactl_ops = { 1203 .quota_on = f2fs_quota_on, 1204 .quota_off = f2fs_quota_off, 1205 .quota_sync = f2fs_quota_sync, 1206 .get_state = dquot_get_state, 1207 .set_info = dquot_set_dqinfo, 1208 .get_dqblk = dquot_get_dqblk, 1209 .set_dqblk = dquot_set_dqblk, 1210 .get_nextdqblk = dquot_get_next_dqblk, 1211 }; 1212 #else 1213 static inline void f2fs_quota_off_umount(struct super_block *sb) 1214 { 1215 } 1216 #endif 1217 1218 static struct super_operations f2fs_sops = { 1219 .alloc_inode = f2fs_alloc_inode, 1220 .drop_inode = f2fs_drop_inode, 1221 .destroy_inode = f2fs_destroy_inode, 1222 .write_inode = f2fs_write_inode, 1223 .dirty_inode = f2fs_dirty_inode, 1224 .show_options = f2fs_show_options, 1225 #ifdef CONFIG_QUOTA 1226 .quota_read = f2fs_quota_read, 1227 .quota_write = f2fs_quota_write, 1228 .get_dquots = f2fs_get_dquots, 1229 #endif 1230 .evict_inode = f2fs_evict_inode, 1231 .put_super = f2fs_put_super, 1232 .sync_fs = f2fs_sync_fs, 1233 .freeze_fs = f2fs_freeze, 1234 .unfreeze_fs = f2fs_unfreeze, 1235 .statfs = f2fs_statfs, 1236 .remount_fs = f2fs_remount, 1237 }; 1238 1239 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1240 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1241 { 1242 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1243 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1244 ctx, len, NULL); 1245 } 1246 1247 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1248 void *fs_data) 1249 { 1250 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1251 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1252 ctx, len, fs_data, XATTR_CREATE); 1253 } 1254 1255 static unsigned f2fs_max_namelen(struct inode *inode) 1256 { 1257 return S_ISLNK(inode->i_mode) ? 1258 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1259 } 1260 1261 static const struct fscrypt_operations f2fs_cryptops = { 1262 .key_prefix = "f2fs:", 1263 .get_context = f2fs_get_context, 1264 .set_context = f2fs_set_context, 1265 .is_encrypted = f2fs_encrypted_inode, 1266 .empty_dir = f2fs_empty_dir, 1267 .max_namelen = f2fs_max_namelen, 1268 }; 1269 #else 1270 static const struct fscrypt_operations f2fs_cryptops = { 1271 .is_encrypted = f2fs_encrypted_inode, 1272 }; 1273 #endif 1274 1275 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1276 u64 ino, u32 generation) 1277 { 1278 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1279 struct inode *inode; 1280 1281 if (check_nid_range(sbi, ino)) 1282 return ERR_PTR(-ESTALE); 1283 1284 /* 1285 * f2fs_iget isn't quite right if the inode is currently unallocated! 1286 * However f2fs_iget currently does appropriate checks to handle stale 1287 * inodes so everything is OK. 1288 */ 1289 inode = f2fs_iget(sb, ino); 1290 if (IS_ERR(inode)) 1291 return ERR_CAST(inode); 1292 if (unlikely(generation && inode->i_generation != generation)) { 1293 /* we didn't find the right inode.. */ 1294 iput(inode); 1295 return ERR_PTR(-ESTALE); 1296 } 1297 return inode; 1298 } 1299 1300 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1301 int fh_len, int fh_type) 1302 { 1303 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1304 f2fs_nfs_get_inode); 1305 } 1306 1307 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1308 int fh_len, int fh_type) 1309 { 1310 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1311 f2fs_nfs_get_inode); 1312 } 1313 1314 static const struct export_operations f2fs_export_ops = { 1315 .fh_to_dentry = f2fs_fh_to_dentry, 1316 .fh_to_parent = f2fs_fh_to_parent, 1317 .get_parent = f2fs_get_parent, 1318 }; 1319 1320 static loff_t max_file_blocks(void) 1321 { 1322 loff_t result = 0; 1323 loff_t leaf_count = ADDRS_PER_BLOCK; 1324 1325 /* 1326 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 1327 * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 1328 * space in inode.i_addr, it will be more safe to reassign 1329 * result as zero. 1330 */ 1331 1332 /* two direct node blocks */ 1333 result += (leaf_count * 2); 1334 1335 /* two indirect node blocks */ 1336 leaf_count *= NIDS_PER_BLOCK; 1337 result += (leaf_count * 2); 1338 1339 /* one double indirect node block */ 1340 leaf_count *= NIDS_PER_BLOCK; 1341 result += leaf_count; 1342 1343 return result; 1344 } 1345 1346 static int __f2fs_commit_super(struct buffer_head *bh, 1347 struct f2fs_super_block *super) 1348 { 1349 lock_buffer(bh); 1350 if (super) 1351 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1352 set_buffer_uptodate(bh); 1353 set_buffer_dirty(bh); 1354 unlock_buffer(bh); 1355 1356 /* it's rare case, we can do fua all the time */ 1357 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1358 } 1359 1360 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1361 struct buffer_head *bh) 1362 { 1363 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1364 (bh->b_data + F2FS_SUPER_OFFSET); 1365 struct super_block *sb = sbi->sb; 1366 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1367 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1368 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1369 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1370 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1371 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1372 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1373 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1374 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1375 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1376 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1377 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1378 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1379 u64 main_end_blkaddr = main_blkaddr + 1380 (segment_count_main << log_blocks_per_seg); 1381 u64 seg_end_blkaddr = segment0_blkaddr + 1382 (segment_count << log_blocks_per_seg); 1383 1384 if (segment0_blkaddr != cp_blkaddr) { 1385 f2fs_msg(sb, KERN_INFO, 1386 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1387 segment0_blkaddr, cp_blkaddr); 1388 return true; 1389 } 1390 1391 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1392 sit_blkaddr) { 1393 f2fs_msg(sb, KERN_INFO, 1394 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1395 cp_blkaddr, sit_blkaddr, 1396 segment_count_ckpt << log_blocks_per_seg); 1397 return true; 1398 } 1399 1400 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1401 nat_blkaddr) { 1402 f2fs_msg(sb, KERN_INFO, 1403 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1404 sit_blkaddr, nat_blkaddr, 1405 segment_count_sit << log_blocks_per_seg); 1406 return true; 1407 } 1408 1409 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1410 ssa_blkaddr) { 1411 f2fs_msg(sb, KERN_INFO, 1412 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1413 nat_blkaddr, ssa_blkaddr, 1414 segment_count_nat << log_blocks_per_seg); 1415 return true; 1416 } 1417 1418 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1419 main_blkaddr) { 1420 f2fs_msg(sb, KERN_INFO, 1421 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1422 ssa_blkaddr, main_blkaddr, 1423 segment_count_ssa << log_blocks_per_seg); 1424 return true; 1425 } 1426 1427 if (main_end_blkaddr > seg_end_blkaddr) { 1428 f2fs_msg(sb, KERN_INFO, 1429 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1430 main_blkaddr, 1431 segment0_blkaddr + 1432 (segment_count << log_blocks_per_seg), 1433 segment_count_main << log_blocks_per_seg); 1434 return true; 1435 } else if (main_end_blkaddr < seg_end_blkaddr) { 1436 int err = 0; 1437 char *res; 1438 1439 /* fix in-memory information all the time */ 1440 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1441 segment0_blkaddr) >> log_blocks_per_seg); 1442 1443 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1444 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1445 res = "internally"; 1446 } else { 1447 err = __f2fs_commit_super(bh, NULL); 1448 res = err ? "failed" : "done"; 1449 } 1450 f2fs_msg(sb, KERN_INFO, 1451 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1452 res, main_blkaddr, 1453 segment0_blkaddr + 1454 (segment_count << log_blocks_per_seg), 1455 segment_count_main << log_blocks_per_seg); 1456 if (err) 1457 return true; 1458 } 1459 return false; 1460 } 1461 1462 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1463 struct buffer_head *bh) 1464 { 1465 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1466 (bh->b_data + F2FS_SUPER_OFFSET); 1467 struct super_block *sb = sbi->sb; 1468 unsigned int blocksize; 1469 1470 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1471 f2fs_msg(sb, KERN_INFO, 1472 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1473 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1474 return 1; 1475 } 1476 1477 /* Currently, support only 4KB page cache size */ 1478 if (F2FS_BLKSIZE != PAGE_SIZE) { 1479 f2fs_msg(sb, KERN_INFO, 1480 "Invalid page_cache_size (%lu), supports only 4KB\n", 1481 PAGE_SIZE); 1482 return 1; 1483 } 1484 1485 /* Currently, support only 4KB block size */ 1486 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1487 if (blocksize != F2FS_BLKSIZE) { 1488 f2fs_msg(sb, KERN_INFO, 1489 "Invalid blocksize (%u), supports only 4KB\n", 1490 blocksize); 1491 return 1; 1492 } 1493 1494 /* check log blocks per segment */ 1495 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1496 f2fs_msg(sb, KERN_INFO, 1497 "Invalid log blocks per segment (%u)\n", 1498 le32_to_cpu(raw_super->log_blocks_per_seg)); 1499 return 1; 1500 } 1501 1502 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1503 if (le32_to_cpu(raw_super->log_sectorsize) > 1504 F2FS_MAX_LOG_SECTOR_SIZE || 1505 le32_to_cpu(raw_super->log_sectorsize) < 1506 F2FS_MIN_LOG_SECTOR_SIZE) { 1507 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1508 le32_to_cpu(raw_super->log_sectorsize)); 1509 return 1; 1510 } 1511 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1512 le32_to_cpu(raw_super->log_sectorsize) != 1513 F2FS_MAX_LOG_SECTOR_SIZE) { 1514 f2fs_msg(sb, KERN_INFO, 1515 "Invalid log sectors per block(%u) log sectorsize(%u)", 1516 le32_to_cpu(raw_super->log_sectors_per_block), 1517 le32_to_cpu(raw_super->log_sectorsize)); 1518 return 1; 1519 } 1520 1521 /* check reserved ino info */ 1522 if (le32_to_cpu(raw_super->node_ino) != 1 || 1523 le32_to_cpu(raw_super->meta_ino) != 2 || 1524 le32_to_cpu(raw_super->root_ino) != 3) { 1525 f2fs_msg(sb, KERN_INFO, 1526 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1527 le32_to_cpu(raw_super->node_ino), 1528 le32_to_cpu(raw_super->meta_ino), 1529 le32_to_cpu(raw_super->root_ino)); 1530 return 1; 1531 } 1532 1533 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) { 1534 f2fs_msg(sb, KERN_INFO, 1535 "Invalid segment count (%u)", 1536 le32_to_cpu(raw_super->segment_count)); 1537 return 1; 1538 } 1539 1540 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1541 if (sanity_check_area_boundary(sbi, bh)) 1542 return 1; 1543 1544 return 0; 1545 } 1546 1547 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1548 { 1549 unsigned int total, fsmeta; 1550 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1551 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1552 unsigned int ovp_segments, reserved_segments; 1553 unsigned int main_segs, blocks_per_seg; 1554 int i; 1555 1556 total = le32_to_cpu(raw_super->segment_count); 1557 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1558 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1559 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1560 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1561 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1562 1563 if (unlikely(fsmeta >= total)) 1564 return 1; 1565 1566 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1567 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1568 1569 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 1570 ovp_segments == 0 || reserved_segments == 0)) { 1571 f2fs_msg(sbi->sb, KERN_ERR, 1572 "Wrong layout: check mkfs.f2fs version"); 1573 return 1; 1574 } 1575 1576 main_segs = le32_to_cpu(raw_super->segment_count_main); 1577 blocks_per_seg = sbi->blocks_per_seg; 1578 1579 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1580 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 1581 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 1582 return 1; 1583 } 1584 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1585 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 1586 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 1587 return 1; 1588 } 1589 1590 if (unlikely(f2fs_cp_error(sbi))) { 1591 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1592 return 1; 1593 } 1594 return 0; 1595 } 1596 1597 static void init_sb_info(struct f2fs_sb_info *sbi) 1598 { 1599 struct f2fs_super_block *raw_super = sbi->raw_super; 1600 int i, j; 1601 1602 sbi->log_sectors_per_block = 1603 le32_to_cpu(raw_super->log_sectors_per_block); 1604 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1605 sbi->blocksize = 1 << sbi->log_blocksize; 1606 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1607 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1608 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1609 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1610 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1611 sbi->total_node_count = 1612 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1613 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1614 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1615 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1616 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1617 sbi->cur_victim_sec = NULL_SECNO; 1618 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1619 1620 sbi->dir_level = DEF_DIR_LEVEL; 1621 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1622 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1623 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1624 1625 for (i = 0; i < NR_COUNT_TYPE; i++) 1626 atomic_set(&sbi->nr_pages[i], 0); 1627 1628 atomic_set(&sbi->wb_sync_req, 0); 1629 1630 INIT_LIST_HEAD(&sbi->s_list); 1631 mutex_init(&sbi->umount_mutex); 1632 for (i = 0; i < NR_PAGE_TYPE - 1; i++) 1633 for (j = HOT; j < NR_TEMP_TYPE; j++) 1634 mutex_init(&sbi->wio_mutex[i][j]); 1635 spin_lock_init(&sbi->cp_lock); 1636 } 1637 1638 static int init_percpu_info(struct f2fs_sb_info *sbi) 1639 { 1640 int err; 1641 1642 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1643 if (err) 1644 return err; 1645 1646 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1647 GFP_KERNEL); 1648 } 1649 1650 #ifdef CONFIG_BLK_DEV_ZONED 1651 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 1652 { 1653 struct block_device *bdev = FDEV(devi).bdev; 1654 sector_t nr_sectors = bdev->bd_part->nr_sects; 1655 sector_t sector = 0; 1656 struct blk_zone *zones; 1657 unsigned int i, nr_zones; 1658 unsigned int n = 0; 1659 int err = -EIO; 1660 1661 if (!f2fs_sb_mounted_blkzoned(sbi->sb)) 1662 return 0; 1663 1664 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 1665 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 1666 return -EINVAL; 1667 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 1668 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 1669 __ilog2_u32(sbi->blocks_per_blkz)) 1670 return -EINVAL; 1671 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 1672 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 1673 sbi->log_blocks_per_blkz; 1674 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 1675 FDEV(devi).nr_blkz++; 1676 1677 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); 1678 if (!FDEV(devi).blkz_type) 1679 return -ENOMEM; 1680 1681 #define F2FS_REPORT_NR_ZONES 4096 1682 1683 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), 1684 GFP_KERNEL); 1685 if (!zones) 1686 return -ENOMEM; 1687 1688 /* Get block zones type */ 1689 while (zones && sector < nr_sectors) { 1690 1691 nr_zones = F2FS_REPORT_NR_ZONES; 1692 err = blkdev_report_zones(bdev, sector, 1693 zones, &nr_zones, 1694 GFP_KERNEL); 1695 if (err) 1696 break; 1697 if (!nr_zones) { 1698 err = -EIO; 1699 break; 1700 } 1701 1702 for (i = 0; i < nr_zones; i++) { 1703 FDEV(devi).blkz_type[n] = zones[i].type; 1704 sector += zones[i].len; 1705 n++; 1706 } 1707 } 1708 1709 kfree(zones); 1710 1711 return err; 1712 } 1713 #endif 1714 1715 /* 1716 * Read f2fs raw super block. 1717 * Because we have two copies of super block, so read both of them 1718 * to get the first valid one. If any one of them is broken, we pass 1719 * them recovery flag back to the caller. 1720 */ 1721 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1722 struct f2fs_super_block **raw_super, 1723 int *valid_super_block, int *recovery) 1724 { 1725 struct super_block *sb = sbi->sb; 1726 int block; 1727 struct buffer_head *bh; 1728 struct f2fs_super_block *super; 1729 int err = 0; 1730 1731 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1732 if (!super) 1733 return -ENOMEM; 1734 1735 for (block = 0; block < 2; block++) { 1736 bh = sb_bread(sb, block); 1737 if (!bh) { 1738 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1739 block + 1); 1740 err = -EIO; 1741 continue; 1742 } 1743 1744 /* sanity checking of raw super */ 1745 if (sanity_check_raw_super(sbi, bh)) { 1746 f2fs_msg(sb, KERN_ERR, 1747 "Can't find valid F2FS filesystem in %dth superblock", 1748 block + 1); 1749 err = -EINVAL; 1750 brelse(bh); 1751 continue; 1752 } 1753 1754 if (!*raw_super) { 1755 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1756 sizeof(*super)); 1757 *valid_super_block = block; 1758 *raw_super = super; 1759 } 1760 brelse(bh); 1761 } 1762 1763 /* Fail to read any one of the superblocks*/ 1764 if (err < 0) 1765 *recovery = 1; 1766 1767 /* No valid superblock */ 1768 if (!*raw_super) 1769 kfree(super); 1770 else 1771 err = 0; 1772 1773 return err; 1774 } 1775 1776 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1777 { 1778 struct buffer_head *bh; 1779 int err; 1780 1781 if ((recover && f2fs_readonly(sbi->sb)) || 1782 bdev_read_only(sbi->sb->s_bdev)) { 1783 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1784 return -EROFS; 1785 } 1786 1787 /* write back-up superblock first */ 1788 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1789 if (!bh) 1790 return -EIO; 1791 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1792 brelse(bh); 1793 1794 /* if we are in recovery path, skip writing valid superblock */ 1795 if (recover || err) 1796 return err; 1797 1798 /* write current valid superblock */ 1799 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1800 if (!bh) 1801 return -EIO; 1802 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1803 brelse(bh); 1804 return err; 1805 } 1806 1807 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 1808 { 1809 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1810 unsigned int max_devices = MAX_DEVICES; 1811 int i; 1812 1813 /* Initialize single device information */ 1814 if (!RDEV(0).path[0]) { 1815 if (!bdev_is_zoned(sbi->sb->s_bdev)) 1816 return 0; 1817 max_devices = 1; 1818 } 1819 1820 /* 1821 * Initialize multiple devices information, or single 1822 * zoned block device information. 1823 */ 1824 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info), 1825 GFP_KERNEL); 1826 if (!sbi->devs) 1827 return -ENOMEM; 1828 1829 for (i = 0; i < max_devices; i++) { 1830 1831 if (i > 0 && !RDEV(i).path[0]) 1832 break; 1833 1834 if (max_devices == 1) { 1835 /* Single zoned block device mount */ 1836 FDEV(0).bdev = 1837 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 1838 sbi->sb->s_mode, sbi->sb->s_type); 1839 } else { 1840 /* Multi-device mount */ 1841 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 1842 FDEV(i).total_segments = 1843 le32_to_cpu(RDEV(i).total_segments); 1844 if (i == 0) { 1845 FDEV(i).start_blk = 0; 1846 FDEV(i).end_blk = FDEV(i).start_blk + 1847 (FDEV(i).total_segments << 1848 sbi->log_blocks_per_seg) - 1 + 1849 le32_to_cpu(raw_super->segment0_blkaddr); 1850 } else { 1851 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 1852 FDEV(i).end_blk = FDEV(i).start_blk + 1853 (FDEV(i).total_segments << 1854 sbi->log_blocks_per_seg) - 1; 1855 } 1856 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 1857 sbi->sb->s_mode, sbi->sb->s_type); 1858 } 1859 if (IS_ERR(FDEV(i).bdev)) 1860 return PTR_ERR(FDEV(i).bdev); 1861 1862 /* to release errored devices */ 1863 sbi->s_ndevs = i + 1; 1864 1865 #ifdef CONFIG_BLK_DEV_ZONED 1866 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 1867 !f2fs_sb_mounted_blkzoned(sbi->sb)) { 1868 f2fs_msg(sbi->sb, KERN_ERR, 1869 "Zoned block device feature not enabled\n"); 1870 return -EINVAL; 1871 } 1872 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 1873 if (init_blkz_info(sbi, i)) { 1874 f2fs_msg(sbi->sb, KERN_ERR, 1875 "Failed to initialize F2FS blkzone information"); 1876 return -EINVAL; 1877 } 1878 if (max_devices == 1) 1879 break; 1880 f2fs_msg(sbi->sb, KERN_INFO, 1881 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 1882 i, FDEV(i).path, 1883 FDEV(i).total_segments, 1884 FDEV(i).start_blk, FDEV(i).end_blk, 1885 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 1886 "Host-aware" : "Host-managed"); 1887 continue; 1888 } 1889 #endif 1890 f2fs_msg(sbi->sb, KERN_INFO, 1891 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 1892 i, FDEV(i).path, 1893 FDEV(i).total_segments, 1894 FDEV(i).start_blk, FDEV(i).end_blk); 1895 } 1896 f2fs_msg(sbi->sb, KERN_INFO, 1897 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 1898 return 0; 1899 } 1900 1901 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1902 { 1903 struct f2fs_sb_info *sbi; 1904 struct f2fs_super_block *raw_super; 1905 struct inode *root; 1906 int err; 1907 bool retry = true, need_fsck = false; 1908 char *options = NULL; 1909 int recovery, i, valid_super_block; 1910 struct curseg_info *seg_i; 1911 1912 try_onemore: 1913 err = -EINVAL; 1914 raw_super = NULL; 1915 valid_super_block = -1; 1916 recovery = 0; 1917 1918 /* allocate memory for f2fs-specific super block info */ 1919 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1920 if (!sbi) 1921 return -ENOMEM; 1922 1923 sbi->sb = sb; 1924 1925 /* Load the checksum driver */ 1926 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1927 if (IS_ERR(sbi->s_chksum_driver)) { 1928 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1929 err = PTR_ERR(sbi->s_chksum_driver); 1930 sbi->s_chksum_driver = NULL; 1931 goto free_sbi; 1932 } 1933 1934 /* set a block size */ 1935 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1936 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1937 goto free_sbi; 1938 } 1939 1940 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1941 &recovery); 1942 if (err) 1943 goto free_sbi; 1944 1945 sb->s_fs_info = sbi; 1946 sbi->raw_super = raw_super; 1947 1948 /* 1949 * The BLKZONED feature indicates that the drive was formatted with 1950 * zone alignment optimization. This is optional for host-aware 1951 * devices, but mandatory for host-managed zoned block devices. 1952 */ 1953 #ifndef CONFIG_BLK_DEV_ZONED 1954 if (f2fs_sb_mounted_blkzoned(sb)) { 1955 f2fs_msg(sb, KERN_ERR, 1956 "Zoned block device support is not enabled\n"); 1957 err = -EOPNOTSUPP; 1958 goto free_sb_buf; 1959 } 1960 #endif 1961 default_options(sbi); 1962 /* parse mount options */ 1963 options = kstrdup((const char *)data, GFP_KERNEL); 1964 if (data && !options) { 1965 err = -ENOMEM; 1966 goto free_sb_buf; 1967 } 1968 1969 err = parse_options(sb, options); 1970 if (err) 1971 goto free_options; 1972 1973 sbi->max_file_blocks = max_file_blocks(); 1974 sb->s_maxbytes = sbi->max_file_blocks << 1975 le32_to_cpu(raw_super->log_blocksize); 1976 sb->s_max_links = F2FS_LINK_MAX; 1977 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1978 1979 #ifdef CONFIG_QUOTA 1980 sb->dq_op = &f2fs_quota_operations; 1981 sb->s_qcop = &f2fs_quotactl_ops; 1982 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1983 #endif 1984 1985 sb->s_op = &f2fs_sops; 1986 sb->s_cop = &f2fs_cryptops; 1987 sb->s_xattr = f2fs_xattr_handlers; 1988 sb->s_export_op = &f2fs_export_ops; 1989 sb->s_magic = F2FS_SUPER_MAGIC; 1990 sb->s_time_gran = 1; 1991 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1992 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1993 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1994 1995 /* init f2fs-specific super block info */ 1996 sbi->valid_super_block = valid_super_block; 1997 mutex_init(&sbi->gc_mutex); 1998 mutex_init(&sbi->cp_mutex); 1999 init_rwsem(&sbi->node_write); 2000 init_rwsem(&sbi->node_change); 2001 2002 /* disallow all the data/node/meta page writes */ 2003 set_sbi_flag(sbi, SBI_POR_DOING); 2004 spin_lock_init(&sbi->stat_lock); 2005 2006 for (i = 0; i < NR_PAGE_TYPE; i++) { 2007 int n = (i == META) ? 1: NR_TEMP_TYPE; 2008 int j; 2009 2010 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info), 2011 GFP_KERNEL); 2012 if (!sbi->write_io[i]) { 2013 err = -ENOMEM; 2014 goto free_options; 2015 } 2016 2017 for (j = HOT; j < n; j++) { 2018 init_rwsem(&sbi->write_io[i][j].io_rwsem); 2019 sbi->write_io[i][j].sbi = sbi; 2020 sbi->write_io[i][j].bio = NULL; 2021 spin_lock_init(&sbi->write_io[i][j].io_lock); 2022 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 2023 } 2024 } 2025 2026 init_rwsem(&sbi->cp_rwsem); 2027 init_waitqueue_head(&sbi->cp_wait); 2028 init_sb_info(sbi); 2029 2030 err = init_percpu_info(sbi); 2031 if (err) 2032 goto free_options; 2033 2034 if (F2FS_IO_SIZE(sbi) > 1) { 2035 sbi->write_io_dummy = 2036 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 2037 if (!sbi->write_io_dummy) { 2038 err = -ENOMEM; 2039 goto free_options; 2040 } 2041 } 2042 2043 /* get an inode for meta space */ 2044 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 2045 if (IS_ERR(sbi->meta_inode)) { 2046 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 2047 err = PTR_ERR(sbi->meta_inode); 2048 goto free_io_dummy; 2049 } 2050 2051 err = get_valid_checkpoint(sbi); 2052 if (err) { 2053 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 2054 goto free_meta_inode; 2055 } 2056 2057 /* Initialize device list */ 2058 err = f2fs_scan_devices(sbi); 2059 if (err) { 2060 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 2061 goto free_devices; 2062 } 2063 2064 sbi->total_valid_node_count = 2065 le32_to_cpu(sbi->ckpt->valid_node_count); 2066 percpu_counter_set(&sbi->total_valid_inode_count, 2067 le32_to_cpu(sbi->ckpt->valid_inode_count)); 2068 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 2069 sbi->total_valid_block_count = 2070 le64_to_cpu(sbi->ckpt->valid_block_count); 2071 sbi->last_valid_block_count = sbi->total_valid_block_count; 2072 sbi->reserved_blocks = 0; 2073 2074 for (i = 0; i < NR_INODE_TYPE; i++) { 2075 INIT_LIST_HEAD(&sbi->inode_list[i]); 2076 spin_lock_init(&sbi->inode_lock[i]); 2077 } 2078 2079 init_extent_cache_info(sbi); 2080 2081 init_ino_entry_info(sbi); 2082 2083 /* setup f2fs internal modules */ 2084 err = build_segment_manager(sbi); 2085 if (err) { 2086 f2fs_msg(sb, KERN_ERR, 2087 "Failed to initialize F2FS segment manager"); 2088 goto free_sm; 2089 } 2090 err = build_node_manager(sbi); 2091 if (err) { 2092 f2fs_msg(sb, KERN_ERR, 2093 "Failed to initialize F2FS node manager"); 2094 goto free_nm; 2095 } 2096 2097 /* For write statistics */ 2098 if (sb->s_bdev->bd_part) 2099 sbi->sectors_written_start = 2100 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 2101 2102 /* Read accumulated write IO statistics if exists */ 2103 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2104 if (__exist_node_summaries(sbi)) 2105 sbi->kbytes_written = 2106 le64_to_cpu(seg_i->journal->info.kbytes_written); 2107 2108 build_gc_manager(sbi); 2109 2110 /* get an inode for node space */ 2111 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2112 if (IS_ERR(sbi->node_inode)) { 2113 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2114 err = PTR_ERR(sbi->node_inode); 2115 goto free_nm; 2116 } 2117 2118 f2fs_join_shrinker(sbi); 2119 2120 err = f2fs_build_stats(sbi); 2121 if (err) 2122 goto free_nm; 2123 2124 /* if there are nt orphan nodes free them */ 2125 err = recover_orphan_inodes(sbi); 2126 if (err) 2127 goto free_node_inode; 2128 2129 /* read root inode and dentry */ 2130 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2131 if (IS_ERR(root)) { 2132 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2133 err = PTR_ERR(root); 2134 goto free_node_inode; 2135 } 2136 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2137 iput(root); 2138 err = -EINVAL; 2139 goto free_node_inode; 2140 } 2141 2142 sb->s_root = d_make_root(root); /* allocate root dentry */ 2143 if (!sb->s_root) { 2144 err = -ENOMEM; 2145 goto free_root_inode; 2146 } 2147 2148 err = f2fs_init_sysfs(sbi); 2149 if (err) 2150 goto free_root_inode; 2151 2152 /* recover fsynced data */ 2153 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2154 /* 2155 * mount should be failed, when device has readonly mode, and 2156 * previous checkpoint was not done by clean system shutdown. 2157 */ 2158 if (bdev_read_only(sb->s_bdev) && 2159 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2160 err = -EROFS; 2161 goto free_sysfs; 2162 } 2163 2164 if (need_fsck) 2165 set_sbi_flag(sbi, SBI_NEED_FSCK); 2166 2167 if (!retry) 2168 goto skip_recovery; 2169 2170 err = recover_fsync_data(sbi, false); 2171 if (err < 0) { 2172 need_fsck = true; 2173 f2fs_msg(sb, KERN_ERR, 2174 "Cannot recover all fsync data errno=%d", err); 2175 goto free_sysfs; 2176 } 2177 } else { 2178 err = recover_fsync_data(sbi, true); 2179 2180 if (!f2fs_readonly(sb) && err > 0) { 2181 err = -EINVAL; 2182 f2fs_msg(sb, KERN_ERR, 2183 "Need to recover fsync data"); 2184 goto free_sysfs; 2185 } 2186 } 2187 skip_recovery: 2188 /* recover_fsync_data() cleared this already */ 2189 clear_sbi_flag(sbi, SBI_POR_DOING); 2190 2191 /* 2192 * If filesystem is not mounted as read-only then 2193 * do start the gc_thread. 2194 */ 2195 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2196 /* After POR, we can run background GC thread.*/ 2197 err = start_gc_thread(sbi); 2198 if (err) 2199 goto free_sysfs; 2200 } 2201 kfree(options); 2202 2203 /* recover broken superblock */ 2204 if (recovery) { 2205 err = f2fs_commit_super(sbi, true); 2206 f2fs_msg(sb, KERN_INFO, 2207 "Try to recover %dth superblock, ret: %d", 2208 sbi->valid_super_block ? 1 : 2, err); 2209 } 2210 2211 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 2212 cur_cp_version(F2FS_CKPT(sbi))); 2213 f2fs_update_time(sbi, CP_TIME); 2214 f2fs_update_time(sbi, REQ_TIME); 2215 return 0; 2216 2217 free_sysfs: 2218 f2fs_sync_inode_meta(sbi); 2219 f2fs_exit_sysfs(sbi); 2220 free_root_inode: 2221 dput(sb->s_root); 2222 sb->s_root = NULL; 2223 free_node_inode: 2224 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2225 mutex_lock(&sbi->umount_mutex); 2226 release_ino_entry(sbi, true); 2227 f2fs_leave_shrinker(sbi); 2228 /* 2229 * Some dirty meta pages can be produced by recover_orphan_inodes() 2230 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2231 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2232 * falls into an infinite loop in sync_meta_pages(). 2233 */ 2234 truncate_inode_pages_final(META_MAPPING(sbi)); 2235 iput(sbi->node_inode); 2236 mutex_unlock(&sbi->umount_mutex); 2237 f2fs_destroy_stats(sbi); 2238 free_nm: 2239 destroy_node_manager(sbi); 2240 free_sm: 2241 destroy_segment_manager(sbi); 2242 free_devices: 2243 destroy_device_list(sbi); 2244 kfree(sbi->ckpt); 2245 free_meta_inode: 2246 make_bad_inode(sbi->meta_inode); 2247 iput(sbi->meta_inode); 2248 free_io_dummy: 2249 mempool_destroy(sbi->write_io_dummy); 2250 free_options: 2251 for (i = 0; i < NR_PAGE_TYPE; i++) 2252 kfree(sbi->write_io[i]); 2253 destroy_percpu_info(sbi); 2254 kfree(options); 2255 free_sb_buf: 2256 kfree(raw_super); 2257 free_sbi: 2258 if (sbi->s_chksum_driver) 2259 crypto_free_shash(sbi->s_chksum_driver); 2260 kfree(sbi); 2261 2262 /* give only one another chance */ 2263 if (retry) { 2264 retry = false; 2265 shrink_dcache_sb(sb); 2266 goto try_onemore; 2267 } 2268 return err; 2269 } 2270 2271 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 2272 const char *dev_name, void *data) 2273 { 2274 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 2275 } 2276 2277 static void kill_f2fs_super(struct super_block *sb) 2278 { 2279 if (sb->s_root) { 2280 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 2281 stop_gc_thread(F2FS_SB(sb)); 2282 stop_discard_thread(F2FS_SB(sb)); 2283 } 2284 kill_block_super(sb); 2285 } 2286 2287 static struct file_system_type f2fs_fs_type = { 2288 .owner = THIS_MODULE, 2289 .name = "f2fs", 2290 .mount = f2fs_mount, 2291 .kill_sb = kill_f2fs_super, 2292 .fs_flags = FS_REQUIRES_DEV, 2293 }; 2294 MODULE_ALIAS_FS("f2fs"); 2295 2296 static int __init init_inodecache(void) 2297 { 2298 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 2299 sizeof(struct f2fs_inode_info), 0, 2300 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 2301 if (!f2fs_inode_cachep) 2302 return -ENOMEM; 2303 return 0; 2304 } 2305 2306 static void destroy_inodecache(void) 2307 { 2308 /* 2309 * Make sure all delayed rcu free inodes are flushed before we 2310 * destroy cache. 2311 */ 2312 rcu_barrier(); 2313 kmem_cache_destroy(f2fs_inode_cachep); 2314 } 2315 2316 static int __init init_f2fs_fs(void) 2317 { 2318 int err; 2319 2320 f2fs_build_trace_ios(); 2321 2322 err = init_inodecache(); 2323 if (err) 2324 goto fail; 2325 err = create_node_manager_caches(); 2326 if (err) 2327 goto free_inodecache; 2328 err = create_segment_manager_caches(); 2329 if (err) 2330 goto free_node_manager_caches; 2331 err = create_checkpoint_caches(); 2332 if (err) 2333 goto free_segment_manager_caches; 2334 err = create_extent_cache(); 2335 if (err) 2336 goto free_checkpoint_caches; 2337 err = f2fs_register_sysfs(); 2338 if (err) 2339 goto free_extent_cache; 2340 err = register_shrinker(&f2fs_shrinker_info); 2341 if (err) 2342 goto free_sysfs; 2343 err = register_filesystem(&f2fs_fs_type); 2344 if (err) 2345 goto free_shrinker; 2346 err = f2fs_create_root_stats(); 2347 if (err) 2348 goto free_filesystem; 2349 return 0; 2350 2351 free_filesystem: 2352 unregister_filesystem(&f2fs_fs_type); 2353 free_shrinker: 2354 unregister_shrinker(&f2fs_shrinker_info); 2355 free_sysfs: 2356 f2fs_unregister_sysfs(); 2357 free_extent_cache: 2358 destroy_extent_cache(); 2359 free_checkpoint_caches: 2360 destroy_checkpoint_caches(); 2361 free_segment_manager_caches: 2362 destroy_segment_manager_caches(); 2363 free_node_manager_caches: 2364 destroy_node_manager_caches(); 2365 free_inodecache: 2366 destroy_inodecache(); 2367 fail: 2368 return err; 2369 } 2370 2371 static void __exit exit_f2fs_fs(void) 2372 { 2373 f2fs_destroy_root_stats(); 2374 unregister_filesystem(&f2fs_fs_type); 2375 unregister_shrinker(&f2fs_shrinker_info); 2376 f2fs_unregister_sysfs(); 2377 destroy_extent_cache(); 2378 destroy_checkpoint_caches(); 2379 destroy_segment_manager_caches(); 2380 destroy_node_manager_caches(); 2381 destroy_inodecache(); 2382 f2fs_destroy_trace_ios(); 2383 } 2384 2385 module_init(init_f2fs_fs) 2386 module_exit(exit_f2fs_fs) 2387 2388 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2389 MODULE_DESCRIPTION("Flash Friendly File System"); 2390 MODULE_LICENSE("GPL"); 2391 2392