xref: /openbmc/linux/fs/f2fs/super.c (revision 4d67490498acb4ffcef5ba7bc44990d46e66a44c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 #include "iostat.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/f2fs.h>
40 
41 static struct kmem_cache *f2fs_inode_cachep;
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 
45 const char *f2fs_fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_KVMALLOC]	= "kvmalloc",
48 	[FAULT_PAGE_ALLOC]	= "page alloc",
49 	[FAULT_PAGE_GET]	= "page get",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_READ_IO]		= "read IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 	[FAULT_WRITE_IO]	= "write IO error",
60 	[FAULT_SLAB_ALLOC]	= "slab alloc",
61 };
62 
63 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
64 							unsigned int type)
65 {
66 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
67 
68 	if (rate) {
69 		atomic_set(&ffi->inject_ops, 0);
70 		ffi->inject_rate = rate;
71 	}
72 
73 	if (type)
74 		ffi->inject_type = type;
75 
76 	if (!rate && !type)
77 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
78 }
79 #endif
80 
81 /* f2fs-wide shrinker description */
82 static struct shrinker f2fs_shrinker_info = {
83 	.scan_objects = f2fs_shrink_scan,
84 	.count_objects = f2fs_shrink_count,
85 	.seeks = DEFAULT_SEEKS,
86 };
87 
88 enum {
89 	Opt_gc_background,
90 	Opt_disable_roll_forward,
91 	Opt_norecovery,
92 	Opt_discard,
93 	Opt_nodiscard,
94 	Opt_noheap,
95 	Opt_heap,
96 	Opt_user_xattr,
97 	Opt_nouser_xattr,
98 	Opt_acl,
99 	Opt_noacl,
100 	Opt_active_logs,
101 	Opt_disable_ext_identify,
102 	Opt_inline_xattr,
103 	Opt_noinline_xattr,
104 	Opt_inline_xattr_size,
105 	Opt_inline_data,
106 	Opt_inline_dentry,
107 	Opt_noinline_dentry,
108 	Opt_flush_merge,
109 	Opt_noflush_merge,
110 	Opt_nobarrier,
111 	Opt_fastboot,
112 	Opt_extent_cache,
113 	Opt_noextent_cache,
114 	Opt_noinline_data,
115 	Opt_data_flush,
116 	Opt_reserve_root,
117 	Opt_resgid,
118 	Opt_resuid,
119 	Opt_mode,
120 	Opt_io_size_bits,
121 	Opt_fault_injection,
122 	Opt_fault_type,
123 	Opt_lazytime,
124 	Opt_nolazytime,
125 	Opt_quota,
126 	Opt_noquota,
127 	Opt_usrquota,
128 	Opt_grpquota,
129 	Opt_prjquota,
130 	Opt_usrjquota,
131 	Opt_grpjquota,
132 	Opt_prjjquota,
133 	Opt_offusrjquota,
134 	Opt_offgrpjquota,
135 	Opt_offprjjquota,
136 	Opt_jqfmt_vfsold,
137 	Opt_jqfmt_vfsv0,
138 	Opt_jqfmt_vfsv1,
139 	Opt_whint,
140 	Opt_alloc,
141 	Opt_fsync,
142 	Opt_test_dummy_encryption,
143 	Opt_inlinecrypt,
144 	Opt_checkpoint_disable,
145 	Opt_checkpoint_disable_cap,
146 	Opt_checkpoint_disable_cap_perc,
147 	Opt_checkpoint_enable,
148 	Opt_checkpoint_merge,
149 	Opt_nocheckpoint_merge,
150 	Opt_compress_algorithm,
151 	Opt_compress_log_size,
152 	Opt_compress_extension,
153 	Opt_nocompress_extension,
154 	Opt_compress_chksum,
155 	Opt_compress_mode,
156 	Opt_compress_cache,
157 	Opt_atgc,
158 	Opt_gc_merge,
159 	Opt_nogc_merge,
160 	Opt_discard_unit,
161 	Opt_err,
162 };
163 
164 static match_table_t f2fs_tokens = {
165 	{Opt_gc_background, "background_gc=%s"},
166 	{Opt_disable_roll_forward, "disable_roll_forward"},
167 	{Opt_norecovery, "norecovery"},
168 	{Opt_discard, "discard"},
169 	{Opt_nodiscard, "nodiscard"},
170 	{Opt_noheap, "no_heap"},
171 	{Opt_heap, "heap"},
172 	{Opt_user_xattr, "user_xattr"},
173 	{Opt_nouser_xattr, "nouser_xattr"},
174 	{Opt_acl, "acl"},
175 	{Opt_noacl, "noacl"},
176 	{Opt_active_logs, "active_logs=%u"},
177 	{Opt_disable_ext_identify, "disable_ext_identify"},
178 	{Opt_inline_xattr, "inline_xattr"},
179 	{Opt_noinline_xattr, "noinline_xattr"},
180 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
181 	{Opt_inline_data, "inline_data"},
182 	{Opt_inline_dentry, "inline_dentry"},
183 	{Opt_noinline_dentry, "noinline_dentry"},
184 	{Opt_flush_merge, "flush_merge"},
185 	{Opt_noflush_merge, "noflush_merge"},
186 	{Opt_nobarrier, "nobarrier"},
187 	{Opt_fastboot, "fastboot"},
188 	{Opt_extent_cache, "extent_cache"},
189 	{Opt_noextent_cache, "noextent_cache"},
190 	{Opt_noinline_data, "noinline_data"},
191 	{Opt_data_flush, "data_flush"},
192 	{Opt_reserve_root, "reserve_root=%u"},
193 	{Opt_resgid, "resgid=%u"},
194 	{Opt_resuid, "resuid=%u"},
195 	{Opt_mode, "mode=%s"},
196 	{Opt_io_size_bits, "io_bits=%u"},
197 	{Opt_fault_injection, "fault_injection=%u"},
198 	{Opt_fault_type, "fault_type=%u"},
199 	{Opt_lazytime, "lazytime"},
200 	{Opt_nolazytime, "nolazytime"},
201 	{Opt_quota, "quota"},
202 	{Opt_noquota, "noquota"},
203 	{Opt_usrquota, "usrquota"},
204 	{Opt_grpquota, "grpquota"},
205 	{Opt_prjquota, "prjquota"},
206 	{Opt_usrjquota, "usrjquota=%s"},
207 	{Opt_grpjquota, "grpjquota=%s"},
208 	{Opt_prjjquota, "prjjquota=%s"},
209 	{Opt_offusrjquota, "usrjquota="},
210 	{Opt_offgrpjquota, "grpjquota="},
211 	{Opt_offprjjquota, "prjjquota="},
212 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
213 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
214 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
215 	{Opt_whint, "whint_mode=%s"},
216 	{Opt_alloc, "alloc_mode=%s"},
217 	{Opt_fsync, "fsync_mode=%s"},
218 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
219 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
220 	{Opt_inlinecrypt, "inlinecrypt"},
221 	{Opt_checkpoint_disable, "checkpoint=disable"},
222 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
223 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
224 	{Opt_checkpoint_enable, "checkpoint=enable"},
225 	{Opt_checkpoint_merge, "checkpoint_merge"},
226 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
227 	{Opt_compress_algorithm, "compress_algorithm=%s"},
228 	{Opt_compress_log_size, "compress_log_size=%u"},
229 	{Opt_compress_extension, "compress_extension=%s"},
230 	{Opt_nocompress_extension, "nocompress_extension=%s"},
231 	{Opt_compress_chksum, "compress_chksum"},
232 	{Opt_compress_mode, "compress_mode=%s"},
233 	{Opt_compress_cache, "compress_cache"},
234 	{Opt_atgc, "atgc"},
235 	{Opt_gc_merge, "gc_merge"},
236 	{Opt_nogc_merge, "nogc_merge"},
237 	{Opt_discard_unit, "discard_unit=%s"},
238 	{Opt_err, NULL},
239 };
240 
241 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
242 {
243 	struct va_format vaf;
244 	va_list args;
245 	int level;
246 
247 	va_start(args, fmt);
248 
249 	level = printk_get_level(fmt);
250 	vaf.fmt = printk_skip_level(fmt);
251 	vaf.va = &args;
252 	printk("%c%cF2FS-fs (%s): %pV\n",
253 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
254 
255 	va_end(args);
256 }
257 
258 #ifdef CONFIG_UNICODE
259 static const struct f2fs_sb_encodings {
260 	__u16 magic;
261 	char *name;
262 	char *version;
263 } f2fs_sb_encoding_map[] = {
264 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
265 };
266 
267 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
268 				 const struct f2fs_sb_encodings **encoding,
269 				 __u16 *flags)
270 {
271 	__u16 magic = le16_to_cpu(sb->s_encoding);
272 	int i;
273 
274 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
275 		if (magic == f2fs_sb_encoding_map[i].magic)
276 			break;
277 
278 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
279 		return -EINVAL;
280 
281 	*encoding = &f2fs_sb_encoding_map[i];
282 	*flags = le16_to_cpu(sb->s_encoding_flags);
283 
284 	return 0;
285 }
286 
287 struct kmem_cache *f2fs_cf_name_slab;
288 static int __init f2fs_create_casefold_cache(void)
289 {
290 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
291 							F2FS_NAME_LEN);
292 	if (!f2fs_cf_name_slab)
293 		return -ENOMEM;
294 	return 0;
295 }
296 
297 static void f2fs_destroy_casefold_cache(void)
298 {
299 	kmem_cache_destroy(f2fs_cf_name_slab);
300 }
301 #else
302 static int __init f2fs_create_casefold_cache(void) { return 0; }
303 static void f2fs_destroy_casefold_cache(void) { }
304 #endif
305 
306 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
307 {
308 	block_t limit = min((sbi->user_block_count << 1) / 1000,
309 			sbi->user_block_count - sbi->reserved_blocks);
310 
311 	/* limit is 0.2% */
312 	if (test_opt(sbi, RESERVE_ROOT) &&
313 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
314 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
315 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
316 			  F2FS_OPTION(sbi).root_reserved_blocks);
317 	}
318 	if (!test_opt(sbi, RESERVE_ROOT) &&
319 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
320 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
321 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
322 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
323 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
324 			  from_kuid_munged(&init_user_ns,
325 					   F2FS_OPTION(sbi).s_resuid),
326 			  from_kgid_munged(&init_user_ns,
327 					   F2FS_OPTION(sbi).s_resgid));
328 }
329 
330 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
331 {
332 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
333 		return;
334 
335 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
336 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
337 	else
338 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
339 					F2FS_OPTION(sbi).unusable_cap_perc;
340 
341 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
342 			F2FS_OPTION(sbi).unusable_cap,
343 			F2FS_OPTION(sbi).unusable_cap_perc);
344 }
345 
346 static void init_once(void *foo)
347 {
348 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
349 
350 	inode_init_once(&fi->vfs_inode);
351 }
352 
353 #ifdef CONFIG_QUOTA
354 static const char * const quotatypes[] = INITQFNAMES;
355 #define QTYPE2NAME(t) (quotatypes[t])
356 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
357 							substring_t *args)
358 {
359 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
360 	char *qname;
361 	int ret = -EINVAL;
362 
363 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
364 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
365 		return -EINVAL;
366 	}
367 	if (f2fs_sb_has_quota_ino(sbi)) {
368 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
369 		return 0;
370 	}
371 
372 	qname = match_strdup(args);
373 	if (!qname) {
374 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
375 		return -ENOMEM;
376 	}
377 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
378 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
379 			ret = 0;
380 		else
381 			f2fs_err(sbi, "%s quota file already specified",
382 				 QTYPE2NAME(qtype));
383 		goto errout;
384 	}
385 	if (strchr(qname, '/')) {
386 		f2fs_err(sbi, "quotafile must be on filesystem root");
387 		goto errout;
388 	}
389 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
390 	set_opt(sbi, QUOTA);
391 	return 0;
392 errout:
393 	kfree(qname);
394 	return ret;
395 }
396 
397 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
400 
401 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
402 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
403 		return -EINVAL;
404 	}
405 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
406 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
407 	return 0;
408 }
409 
410 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
411 {
412 	/*
413 	 * We do the test below only for project quotas. 'usrquota' and
414 	 * 'grpquota' mount options are allowed even without quota feature
415 	 * to support legacy quotas in quota files.
416 	 */
417 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
418 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
419 		return -1;
420 	}
421 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
422 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
423 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
424 		if (test_opt(sbi, USRQUOTA) &&
425 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
426 			clear_opt(sbi, USRQUOTA);
427 
428 		if (test_opt(sbi, GRPQUOTA) &&
429 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
430 			clear_opt(sbi, GRPQUOTA);
431 
432 		if (test_opt(sbi, PRJQUOTA) &&
433 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
434 			clear_opt(sbi, PRJQUOTA);
435 
436 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
437 				test_opt(sbi, PRJQUOTA)) {
438 			f2fs_err(sbi, "old and new quota format mixing");
439 			return -1;
440 		}
441 
442 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
443 			f2fs_err(sbi, "journaled quota format not specified");
444 			return -1;
445 		}
446 	}
447 
448 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
449 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
450 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
451 	}
452 	return 0;
453 }
454 #endif
455 
456 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
457 					  const char *opt,
458 					  const substring_t *arg,
459 					  bool is_remount)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
462 #ifdef CONFIG_FS_ENCRYPTION
463 	int err;
464 
465 	if (!f2fs_sb_has_encrypt(sbi)) {
466 		f2fs_err(sbi, "Encrypt feature is off");
467 		return -EINVAL;
468 	}
469 
470 	/*
471 	 * This mount option is just for testing, and it's not worthwhile to
472 	 * implement the extra complexity (e.g. RCU protection) that would be
473 	 * needed to allow it to be set or changed during remount.  We do allow
474 	 * it to be specified during remount, but only if there is no change.
475 	 */
476 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
477 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
478 		return -EINVAL;
479 	}
480 	err = fscrypt_set_test_dummy_encryption(
481 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
482 	if (err) {
483 		if (err == -EEXIST)
484 			f2fs_warn(sbi,
485 				  "Can't change test_dummy_encryption on remount");
486 		else if (err == -EINVAL)
487 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
488 				  opt);
489 		else
490 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
491 				  opt, err);
492 		return -EINVAL;
493 	}
494 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
495 #else
496 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
497 #endif
498 	return 0;
499 }
500 
501 #ifdef CONFIG_F2FS_FS_COMPRESSION
502 /*
503  * 1. The same extension name cannot not appear in both compress and non-compress extension
504  * at the same time.
505  * 2. If the compress extension specifies all files, the types specified by the non-compress
506  * extension will be treated as special cases and will not be compressed.
507  * 3. Don't allow the non-compress extension specifies all files.
508  */
509 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
510 {
511 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
512 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
513 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
514 
515 	ext = F2FS_OPTION(sbi).extensions;
516 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
517 	noext = F2FS_OPTION(sbi).noextensions;
518 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
519 
520 	if (!noext_cnt)
521 		return 0;
522 
523 	for (no_index = 0; no_index < noext_cnt; no_index++) {
524 		if (!strcasecmp("*", noext[no_index])) {
525 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
526 			return -EINVAL;
527 		}
528 		for (index = 0; index < ext_cnt; index++) {
529 			if (!strcasecmp(ext[index], noext[no_index])) {
530 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
531 						ext[index]);
532 				return -EINVAL;
533 			}
534 		}
535 	}
536 	return 0;
537 }
538 
539 #ifdef CONFIG_F2FS_FS_LZ4
540 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
541 {
542 #ifdef CONFIG_F2FS_FS_LZ4HC
543 	unsigned int level;
544 #endif
545 
546 	if (strlen(str) == 3) {
547 		F2FS_OPTION(sbi).compress_level = 0;
548 		return 0;
549 	}
550 
551 #ifdef CONFIG_F2FS_FS_LZ4HC
552 	str += 3;
553 
554 	if (str[0] != ':') {
555 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
556 		return -EINVAL;
557 	}
558 	if (kstrtouint(str + 1, 10, &level))
559 		return -EINVAL;
560 
561 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
562 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
563 		return -EINVAL;
564 	}
565 
566 	F2FS_OPTION(sbi).compress_level = level;
567 	return 0;
568 #else
569 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
570 	return -EINVAL;
571 #endif
572 }
573 #endif
574 
575 #ifdef CONFIG_F2FS_FS_ZSTD
576 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
577 {
578 	unsigned int level;
579 	int len = 4;
580 
581 	if (strlen(str) == len) {
582 		F2FS_OPTION(sbi).compress_level = 0;
583 		return 0;
584 	}
585 
586 	str += len;
587 
588 	if (str[0] != ':') {
589 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
590 		return -EINVAL;
591 	}
592 	if (kstrtouint(str + 1, 10, &level))
593 		return -EINVAL;
594 
595 	if (!level || level > ZSTD_maxCLevel()) {
596 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
597 		return -EINVAL;
598 	}
599 
600 	F2FS_OPTION(sbi).compress_level = level;
601 	return 0;
602 }
603 #endif
604 #endif
605 
606 static int parse_options(struct super_block *sb, char *options, bool is_remount)
607 {
608 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
609 	substring_t args[MAX_OPT_ARGS];
610 #ifdef CONFIG_F2FS_FS_COMPRESSION
611 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
612 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
613 	int ext_cnt, noext_cnt;
614 #endif
615 	char *p, *name;
616 	int arg = 0;
617 	kuid_t uid;
618 	kgid_t gid;
619 	int ret;
620 
621 	if (!options)
622 		goto default_check;
623 
624 	while ((p = strsep(&options, ",")) != NULL) {
625 		int token;
626 
627 		if (!*p)
628 			continue;
629 		/*
630 		 * Initialize args struct so we know whether arg was
631 		 * found; some options take optional arguments.
632 		 */
633 		args[0].to = args[0].from = NULL;
634 		token = match_token(p, f2fs_tokens, args);
635 
636 		switch (token) {
637 		case Opt_gc_background:
638 			name = match_strdup(&args[0]);
639 
640 			if (!name)
641 				return -ENOMEM;
642 			if (!strcmp(name, "on")) {
643 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
644 			} else if (!strcmp(name, "off")) {
645 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
646 			} else if (!strcmp(name, "sync")) {
647 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
648 			} else {
649 				kfree(name);
650 				return -EINVAL;
651 			}
652 			kfree(name);
653 			break;
654 		case Opt_disable_roll_forward:
655 			set_opt(sbi, DISABLE_ROLL_FORWARD);
656 			break;
657 		case Opt_norecovery:
658 			/* this option mounts f2fs with ro */
659 			set_opt(sbi, NORECOVERY);
660 			if (!f2fs_readonly(sb))
661 				return -EINVAL;
662 			break;
663 		case Opt_discard:
664 			set_opt(sbi, DISCARD);
665 			break;
666 		case Opt_nodiscard:
667 			if (f2fs_sb_has_blkzoned(sbi)) {
668 				f2fs_warn(sbi, "discard is required for zoned block devices");
669 				return -EINVAL;
670 			}
671 			clear_opt(sbi, DISCARD);
672 			break;
673 		case Opt_noheap:
674 			set_opt(sbi, NOHEAP);
675 			break;
676 		case Opt_heap:
677 			clear_opt(sbi, NOHEAP);
678 			break;
679 #ifdef CONFIG_F2FS_FS_XATTR
680 		case Opt_user_xattr:
681 			set_opt(sbi, XATTR_USER);
682 			break;
683 		case Opt_nouser_xattr:
684 			clear_opt(sbi, XATTR_USER);
685 			break;
686 		case Opt_inline_xattr:
687 			set_opt(sbi, INLINE_XATTR);
688 			break;
689 		case Opt_noinline_xattr:
690 			clear_opt(sbi, INLINE_XATTR);
691 			break;
692 		case Opt_inline_xattr_size:
693 			if (args->from && match_int(args, &arg))
694 				return -EINVAL;
695 			set_opt(sbi, INLINE_XATTR_SIZE);
696 			F2FS_OPTION(sbi).inline_xattr_size = arg;
697 			break;
698 #else
699 		case Opt_user_xattr:
700 			f2fs_info(sbi, "user_xattr options not supported");
701 			break;
702 		case Opt_nouser_xattr:
703 			f2fs_info(sbi, "nouser_xattr options not supported");
704 			break;
705 		case Opt_inline_xattr:
706 			f2fs_info(sbi, "inline_xattr options not supported");
707 			break;
708 		case Opt_noinline_xattr:
709 			f2fs_info(sbi, "noinline_xattr options not supported");
710 			break;
711 #endif
712 #ifdef CONFIG_F2FS_FS_POSIX_ACL
713 		case Opt_acl:
714 			set_opt(sbi, POSIX_ACL);
715 			break;
716 		case Opt_noacl:
717 			clear_opt(sbi, POSIX_ACL);
718 			break;
719 #else
720 		case Opt_acl:
721 			f2fs_info(sbi, "acl options not supported");
722 			break;
723 		case Opt_noacl:
724 			f2fs_info(sbi, "noacl options not supported");
725 			break;
726 #endif
727 		case Opt_active_logs:
728 			if (args->from && match_int(args, &arg))
729 				return -EINVAL;
730 			if (arg != 2 && arg != 4 &&
731 				arg != NR_CURSEG_PERSIST_TYPE)
732 				return -EINVAL;
733 			F2FS_OPTION(sbi).active_logs = arg;
734 			break;
735 		case Opt_disable_ext_identify:
736 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
737 			break;
738 		case Opt_inline_data:
739 			set_opt(sbi, INLINE_DATA);
740 			break;
741 		case Opt_inline_dentry:
742 			set_opt(sbi, INLINE_DENTRY);
743 			break;
744 		case Opt_noinline_dentry:
745 			clear_opt(sbi, INLINE_DENTRY);
746 			break;
747 		case Opt_flush_merge:
748 			set_opt(sbi, FLUSH_MERGE);
749 			break;
750 		case Opt_noflush_merge:
751 			clear_opt(sbi, FLUSH_MERGE);
752 			break;
753 		case Opt_nobarrier:
754 			set_opt(sbi, NOBARRIER);
755 			break;
756 		case Opt_fastboot:
757 			set_opt(sbi, FASTBOOT);
758 			break;
759 		case Opt_extent_cache:
760 			set_opt(sbi, EXTENT_CACHE);
761 			break;
762 		case Opt_noextent_cache:
763 			clear_opt(sbi, EXTENT_CACHE);
764 			break;
765 		case Opt_noinline_data:
766 			clear_opt(sbi, INLINE_DATA);
767 			break;
768 		case Opt_data_flush:
769 			set_opt(sbi, DATA_FLUSH);
770 			break;
771 		case Opt_reserve_root:
772 			if (args->from && match_int(args, &arg))
773 				return -EINVAL;
774 			if (test_opt(sbi, RESERVE_ROOT)) {
775 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
776 					  F2FS_OPTION(sbi).root_reserved_blocks);
777 			} else {
778 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
779 				set_opt(sbi, RESERVE_ROOT);
780 			}
781 			break;
782 		case Opt_resuid:
783 			if (args->from && match_int(args, &arg))
784 				return -EINVAL;
785 			uid = make_kuid(current_user_ns(), arg);
786 			if (!uid_valid(uid)) {
787 				f2fs_err(sbi, "Invalid uid value %d", arg);
788 				return -EINVAL;
789 			}
790 			F2FS_OPTION(sbi).s_resuid = uid;
791 			break;
792 		case Opt_resgid:
793 			if (args->from && match_int(args, &arg))
794 				return -EINVAL;
795 			gid = make_kgid(current_user_ns(), arg);
796 			if (!gid_valid(gid)) {
797 				f2fs_err(sbi, "Invalid gid value %d", arg);
798 				return -EINVAL;
799 			}
800 			F2FS_OPTION(sbi).s_resgid = gid;
801 			break;
802 		case Opt_mode:
803 			name = match_strdup(&args[0]);
804 
805 			if (!name)
806 				return -ENOMEM;
807 			if (!strcmp(name, "adaptive")) {
808 				if (f2fs_sb_has_blkzoned(sbi)) {
809 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
810 					kfree(name);
811 					return -EINVAL;
812 				}
813 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
814 			} else if (!strcmp(name, "lfs")) {
815 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
816 			} else {
817 				kfree(name);
818 				return -EINVAL;
819 			}
820 			kfree(name);
821 			break;
822 		case Opt_io_size_bits:
823 			if (args->from && match_int(args, &arg))
824 				return -EINVAL;
825 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
826 				f2fs_warn(sbi, "Not support %d, larger than %d",
827 					  1 << arg, BIO_MAX_VECS);
828 				return -EINVAL;
829 			}
830 			F2FS_OPTION(sbi).write_io_size_bits = arg;
831 			break;
832 #ifdef CONFIG_F2FS_FAULT_INJECTION
833 		case Opt_fault_injection:
834 			if (args->from && match_int(args, &arg))
835 				return -EINVAL;
836 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
837 			set_opt(sbi, FAULT_INJECTION);
838 			break;
839 
840 		case Opt_fault_type:
841 			if (args->from && match_int(args, &arg))
842 				return -EINVAL;
843 			f2fs_build_fault_attr(sbi, 0, arg);
844 			set_opt(sbi, FAULT_INJECTION);
845 			break;
846 #else
847 		case Opt_fault_injection:
848 			f2fs_info(sbi, "fault_injection options not supported");
849 			break;
850 
851 		case Opt_fault_type:
852 			f2fs_info(sbi, "fault_type options not supported");
853 			break;
854 #endif
855 		case Opt_lazytime:
856 			sb->s_flags |= SB_LAZYTIME;
857 			break;
858 		case Opt_nolazytime:
859 			sb->s_flags &= ~SB_LAZYTIME;
860 			break;
861 #ifdef CONFIG_QUOTA
862 		case Opt_quota:
863 		case Opt_usrquota:
864 			set_opt(sbi, USRQUOTA);
865 			break;
866 		case Opt_grpquota:
867 			set_opt(sbi, GRPQUOTA);
868 			break;
869 		case Opt_prjquota:
870 			set_opt(sbi, PRJQUOTA);
871 			break;
872 		case Opt_usrjquota:
873 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
874 			if (ret)
875 				return ret;
876 			break;
877 		case Opt_grpjquota:
878 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
879 			if (ret)
880 				return ret;
881 			break;
882 		case Opt_prjjquota:
883 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
884 			if (ret)
885 				return ret;
886 			break;
887 		case Opt_offusrjquota:
888 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
889 			if (ret)
890 				return ret;
891 			break;
892 		case Opt_offgrpjquota:
893 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
894 			if (ret)
895 				return ret;
896 			break;
897 		case Opt_offprjjquota:
898 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
899 			if (ret)
900 				return ret;
901 			break;
902 		case Opt_jqfmt_vfsold:
903 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
904 			break;
905 		case Opt_jqfmt_vfsv0:
906 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
907 			break;
908 		case Opt_jqfmt_vfsv1:
909 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
910 			break;
911 		case Opt_noquota:
912 			clear_opt(sbi, QUOTA);
913 			clear_opt(sbi, USRQUOTA);
914 			clear_opt(sbi, GRPQUOTA);
915 			clear_opt(sbi, PRJQUOTA);
916 			break;
917 #else
918 		case Opt_quota:
919 		case Opt_usrquota:
920 		case Opt_grpquota:
921 		case Opt_prjquota:
922 		case Opt_usrjquota:
923 		case Opt_grpjquota:
924 		case Opt_prjjquota:
925 		case Opt_offusrjquota:
926 		case Opt_offgrpjquota:
927 		case Opt_offprjjquota:
928 		case Opt_jqfmt_vfsold:
929 		case Opt_jqfmt_vfsv0:
930 		case Opt_jqfmt_vfsv1:
931 		case Opt_noquota:
932 			f2fs_info(sbi, "quota operations not supported");
933 			break;
934 #endif
935 		case Opt_whint:
936 			name = match_strdup(&args[0]);
937 			if (!name)
938 				return -ENOMEM;
939 			if (!strcmp(name, "user-based")) {
940 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
941 			} else if (!strcmp(name, "off")) {
942 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
943 			} else if (!strcmp(name, "fs-based")) {
944 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
945 			} else {
946 				kfree(name);
947 				return -EINVAL;
948 			}
949 			kfree(name);
950 			break;
951 		case Opt_alloc:
952 			name = match_strdup(&args[0]);
953 			if (!name)
954 				return -ENOMEM;
955 
956 			if (!strcmp(name, "default")) {
957 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
958 			} else if (!strcmp(name, "reuse")) {
959 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
960 			} else {
961 				kfree(name);
962 				return -EINVAL;
963 			}
964 			kfree(name);
965 			break;
966 		case Opt_fsync:
967 			name = match_strdup(&args[0]);
968 			if (!name)
969 				return -ENOMEM;
970 			if (!strcmp(name, "posix")) {
971 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
972 			} else if (!strcmp(name, "strict")) {
973 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
974 			} else if (!strcmp(name, "nobarrier")) {
975 				F2FS_OPTION(sbi).fsync_mode =
976 							FSYNC_MODE_NOBARRIER;
977 			} else {
978 				kfree(name);
979 				return -EINVAL;
980 			}
981 			kfree(name);
982 			break;
983 		case Opt_test_dummy_encryption:
984 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
985 							     is_remount);
986 			if (ret)
987 				return ret;
988 			break;
989 		case Opt_inlinecrypt:
990 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
991 			sb->s_flags |= SB_INLINECRYPT;
992 #else
993 			f2fs_info(sbi, "inline encryption not supported");
994 #endif
995 			break;
996 		case Opt_checkpoint_disable_cap_perc:
997 			if (args->from && match_int(args, &arg))
998 				return -EINVAL;
999 			if (arg < 0 || arg > 100)
1000 				return -EINVAL;
1001 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1002 			set_opt(sbi, DISABLE_CHECKPOINT);
1003 			break;
1004 		case Opt_checkpoint_disable_cap:
1005 			if (args->from && match_int(args, &arg))
1006 				return -EINVAL;
1007 			F2FS_OPTION(sbi).unusable_cap = arg;
1008 			set_opt(sbi, DISABLE_CHECKPOINT);
1009 			break;
1010 		case Opt_checkpoint_disable:
1011 			set_opt(sbi, DISABLE_CHECKPOINT);
1012 			break;
1013 		case Opt_checkpoint_enable:
1014 			clear_opt(sbi, DISABLE_CHECKPOINT);
1015 			break;
1016 		case Opt_checkpoint_merge:
1017 			set_opt(sbi, MERGE_CHECKPOINT);
1018 			break;
1019 		case Opt_nocheckpoint_merge:
1020 			clear_opt(sbi, MERGE_CHECKPOINT);
1021 			break;
1022 #ifdef CONFIG_F2FS_FS_COMPRESSION
1023 		case Opt_compress_algorithm:
1024 			if (!f2fs_sb_has_compression(sbi)) {
1025 				f2fs_info(sbi, "Image doesn't support compression");
1026 				break;
1027 			}
1028 			name = match_strdup(&args[0]);
1029 			if (!name)
1030 				return -ENOMEM;
1031 			if (!strcmp(name, "lzo")) {
1032 #ifdef CONFIG_F2FS_FS_LZO
1033 				F2FS_OPTION(sbi).compress_level = 0;
1034 				F2FS_OPTION(sbi).compress_algorithm =
1035 								COMPRESS_LZO;
1036 #else
1037 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1038 #endif
1039 			} else if (!strncmp(name, "lz4", 3)) {
1040 #ifdef CONFIG_F2FS_FS_LZ4
1041 				ret = f2fs_set_lz4hc_level(sbi, name);
1042 				if (ret) {
1043 					kfree(name);
1044 					return -EINVAL;
1045 				}
1046 				F2FS_OPTION(sbi).compress_algorithm =
1047 								COMPRESS_LZ4;
1048 #else
1049 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1050 #endif
1051 			} else if (!strncmp(name, "zstd", 4)) {
1052 #ifdef CONFIG_F2FS_FS_ZSTD
1053 				ret = f2fs_set_zstd_level(sbi, name);
1054 				if (ret) {
1055 					kfree(name);
1056 					return -EINVAL;
1057 				}
1058 				F2FS_OPTION(sbi).compress_algorithm =
1059 								COMPRESS_ZSTD;
1060 #else
1061 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1062 #endif
1063 			} else if (!strcmp(name, "lzo-rle")) {
1064 #ifdef CONFIG_F2FS_FS_LZORLE
1065 				F2FS_OPTION(sbi).compress_level = 0;
1066 				F2FS_OPTION(sbi).compress_algorithm =
1067 								COMPRESS_LZORLE;
1068 #else
1069 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1070 #endif
1071 			} else {
1072 				kfree(name);
1073 				return -EINVAL;
1074 			}
1075 			kfree(name);
1076 			break;
1077 		case Opt_compress_log_size:
1078 			if (!f2fs_sb_has_compression(sbi)) {
1079 				f2fs_info(sbi, "Image doesn't support compression");
1080 				break;
1081 			}
1082 			if (args->from && match_int(args, &arg))
1083 				return -EINVAL;
1084 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1085 				arg > MAX_COMPRESS_LOG_SIZE) {
1086 				f2fs_err(sbi,
1087 					"Compress cluster log size is out of range");
1088 				return -EINVAL;
1089 			}
1090 			F2FS_OPTION(sbi).compress_log_size = arg;
1091 			break;
1092 		case Opt_compress_extension:
1093 			if (!f2fs_sb_has_compression(sbi)) {
1094 				f2fs_info(sbi, "Image doesn't support compression");
1095 				break;
1096 			}
1097 			name = match_strdup(&args[0]);
1098 			if (!name)
1099 				return -ENOMEM;
1100 
1101 			ext = F2FS_OPTION(sbi).extensions;
1102 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1103 
1104 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1105 				ext_cnt >= COMPRESS_EXT_NUM) {
1106 				f2fs_err(sbi,
1107 					"invalid extension length/number");
1108 				kfree(name);
1109 				return -EINVAL;
1110 			}
1111 
1112 			strcpy(ext[ext_cnt], name);
1113 			F2FS_OPTION(sbi).compress_ext_cnt++;
1114 			kfree(name);
1115 			break;
1116 		case Opt_nocompress_extension:
1117 			if (!f2fs_sb_has_compression(sbi)) {
1118 				f2fs_info(sbi, "Image doesn't support compression");
1119 				break;
1120 			}
1121 			name = match_strdup(&args[0]);
1122 			if (!name)
1123 				return -ENOMEM;
1124 
1125 			noext = F2FS_OPTION(sbi).noextensions;
1126 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1127 
1128 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1129 				noext_cnt >= COMPRESS_EXT_NUM) {
1130 				f2fs_err(sbi,
1131 					"invalid extension length/number");
1132 				kfree(name);
1133 				return -EINVAL;
1134 			}
1135 
1136 			strcpy(noext[noext_cnt], name);
1137 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1138 			kfree(name);
1139 			break;
1140 		case Opt_compress_chksum:
1141 			F2FS_OPTION(sbi).compress_chksum = true;
1142 			break;
1143 		case Opt_compress_mode:
1144 			name = match_strdup(&args[0]);
1145 			if (!name)
1146 				return -ENOMEM;
1147 			if (!strcmp(name, "fs")) {
1148 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1149 			} else if (!strcmp(name, "user")) {
1150 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1151 			} else {
1152 				kfree(name);
1153 				return -EINVAL;
1154 			}
1155 			kfree(name);
1156 			break;
1157 		case Opt_compress_cache:
1158 			set_opt(sbi, COMPRESS_CACHE);
1159 			break;
1160 #else
1161 		case Opt_compress_algorithm:
1162 		case Opt_compress_log_size:
1163 		case Opt_compress_extension:
1164 		case Opt_nocompress_extension:
1165 		case Opt_compress_chksum:
1166 		case Opt_compress_mode:
1167 		case Opt_compress_cache:
1168 			f2fs_info(sbi, "compression options not supported");
1169 			break;
1170 #endif
1171 		case Opt_atgc:
1172 			set_opt(sbi, ATGC);
1173 			break;
1174 		case Opt_gc_merge:
1175 			set_opt(sbi, GC_MERGE);
1176 			break;
1177 		case Opt_nogc_merge:
1178 			clear_opt(sbi, GC_MERGE);
1179 			break;
1180 		case Opt_discard_unit:
1181 			name = match_strdup(&args[0]);
1182 			if (!name)
1183 				return -ENOMEM;
1184 			if (!strcmp(name, "block")) {
1185 				F2FS_OPTION(sbi).discard_unit =
1186 						DISCARD_UNIT_BLOCK;
1187 			} else if (!strcmp(name, "segment")) {
1188 				F2FS_OPTION(sbi).discard_unit =
1189 						DISCARD_UNIT_SEGMENT;
1190 			} else if (!strcmp(name, "section")) {
1191 				F2FS_OPTION(sbi).discard_unit =
1192 						DISCARD_UNIT_SECTION;
1193 			} else {
1194 				kfree(name);
1195 				return -EINVAL;
1196 			}
1197 			kfree(name);
1198 			break;
1199 		default:
1200 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1201 				 p);
1202 			return -EINVAL;
1203 		}
1204 	}
1205 default_check:
1206 #ifdef CONFIG_QUOTA
1207 	if (f2fs_check_quota_options(sbi))
1208 		return -EINVAL;
1209 #else
1210 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1211 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1212 		return -EINVAL;
1213 	}
1214 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1215 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1216 		return -EINVAL;
1217 	}
1218 #endif
1219 #ifndef CONFIG_UNICODE
1220 	if (f2fs_sb_has_casefold(sbi)) {
1221 		f2fs_err(sbi,
1222 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1223 		return -EINVAL;
1224 	}
1225 #endif
1226 	/*
1227 	 * The BLKZONED feature indicates that the drive was formatted with
1228 	 * zone alignment optimization. This is optional for host-aware
1229 	 * devices, but mandatory for host-managed zoned block devices.
1230 	 */
1231 #ifndef CONFIG_BLK_DEV_ZONED
1232 	if (f2fs_sb_has_blkzoned(sbi)) {
1233 		f2fs_err(sbi, "Zoned block device support is not enabled");
1234 		return -EINVAL;
1235 	}
1236 #endif
1237 	if (f2fs_sb_has_blkzoned(sbi)) {
1238 		if (F2FS_OPTION(sbi).discard_unit !=
1239 						DISCARD_UNIT_SECTION) {
1240 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1241 			F2FS_OPTION(sbi).discard_unit =
1242 					DISCARD_UNIT_SECTION;
1243 		}
1244 	}
1245 
1246 #ifdef CONFIG_F2FS_FS_COMPRESSION
1247 	if (f2fs_test_compress_extension(sbi)) {
1248 		f2fs_err(sbi, "invalid compress or nocompress extension");
1249 		return -EINVAL;
1250 	}
1251 #endif
1252 
1253 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1254 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1255 			 F2FS_IO_SIZE_KB(sbi));
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1260 		int min_size, max_size;
1261 
1262 		if (!f2fs_sb_has_extra_attr(sbi) ||
1263 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1264 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1265 			return -EINVAL;
1266 		}
1267 		if (!test_opt(sbi, INLINE_XATTR)) {
1268 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1269 			return -EINVAL;
1270 		}
1271 
1272 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1273 		max_size = MAX_INLINE_XATTR_SIZE;
1274 
1275 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1276 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1277 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1278 				 min_size, max_size);
1279 			return -EINVAL;
1280 		}
1281 	}
1282 
1283 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1284 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1285 		return -EINVAL;
1286 	}
1287 
1288 	/* Not pass down write hints if the number of active logs is lesser
1289 	 * than NR_CURSEG_PERSIST_TYPE.
1290 	 */
1291 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1292 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1293 
1294 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1295 		f2fs_err(sbi, "Allow to mount readonly mode only");
1296 		return -EROFS;
1297 	}
1298 	return 0;
1299 }
1300 
1301 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1302 {
1303 	struct f2fs_inode_info *fi;
1304 
1305 	fi = f2fs_kmem_cache_alloc(f2fs_inode_cachep,
1306 				GFP_F2FS_ZERO, false, F2FS_SB(sb));
1307 	if (!fi)
1308 		return NULL;
1309 
1310 	init_once((void *) fi);
1311 
1312 	/* Initialize f2fs-specific inode info */
1313 	atomic_set(&fi->dirty_pages, 0);
1314 	atomic_set(&fi->i_compr_blocks, 0);
1315 	init_rwsem(&fi->i_sem);
1316 	spin_lock_init(&fi->i_size_lock);
1317 	INIT_LIST_HEAD(&fi->dirty_list);
1318 	INIT_LIST_HEAD(&fi->gdirty_list);
1319 	INIT_LIST_HEAD(&fi->inmem_ilist);
1320 	INIT_LIST_HEAD(&fi->inmem_pages);
1321 	mutex_init(&fi->inmem_lock);
1322 	init_rwsem(&fi->i_gc_rwsem[READ]);
1323 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1324 	init_rwsem(&fi->i_mmap_sem);
1325 	init_rwsem(&fi->i_xattr_sem);
1326 
1327 	/* Will be used by directory only */
1328 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1329 
1330 	return &fi->vfs_inode;
1331 }
1332 
1333 static int f2fs_drop_inode(struct inode *inode)
1334 {
1335 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1336 	int ret;
1337 
1338 	/*
1339 	 * during filesystem shutdown, if checkpoint is disabled,
1340 	 * drop useless meta/node dirty pages.
1341 	 */
1342 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1343 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1344 			inode->i_ino == F2FS_META_INO(sbi)) {
1345 			trace_f2fs_drop_inode(inode, 1);
1346 			return 1;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * This is to avoid a deadlock condition like below.
1352 	 * writeback_single_inode(inode)
1353 	 *  - f2fs_write_data_page
1354 	 *    - f2fs_gc -> iput -> evict
1355 	 *       - inode_wait_for_writeback(inode)
1356 	 */
1357 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1358 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1359 			/* to avoid evict_inode call simultaneously */
1360 			atomic_inc(&inode->i_count);
1361 			spin_unlock(&inode->i_lock);
1362 
1363 			/* some remained atomic pages should discarded */
1364 			if (f2fs_is_atomic_file(inode))
1365 				f2fs_drop_inmem_pages(inode);
1366 
1367 			/* should remain fi->extent_tree for writepage */
1368 			f2fs_destroy_extent_node(inode);
1369 
1370 			sb_start_intwrite(inode->i_sb);
1371 			f2fs_i_size_write(inode, 0);
1372 
1373 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1374 					inode, NULL, 0, DATA);
1375 			truncate_inode_pages_final(inode->i_mapping);
1376 
1377 			if (F2FS_HAS_BLOCKS(inode))
1378 				f2fs_truncate(inode);
1379 
1380 			sb_end_intwrite(inode->i_sb);
1381 
1382 			spin_lock(&inode->i_lock);
1383 			atomic_dec(&inode->i_count);
1384 		}
1385 		trace_f2fs_drop_inode(inode, 0);
1386 		return 0;
1387 	}
1388 	ret = generic_drop_inode(inode);
1389 	if (!ret)
1390 		ret = fscrypt_drop_inode(inode);
1391 	trace_f2fs_drop_inode(inode, ret);
1392 	return ret;
1393 }
1394 
1395 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1396 {
1397 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1398 	int ret = 0;
1399 
1400 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1401 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1402 		ret = 1;
1403 	} else {
1404 		set_inode_flag(inode, FI_DIRTY_INODE);
1405 		stat_inc_dirty_inode(sbi, DIRTY_META);
1406 	}
1407 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1408 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1409 				&sbi->inode_list[DIRTY_META]);
1410 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1411 	}
1412 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1413 	return ret;
1414 }
1415 
1416 void f2fs_inode_synced(struct inode *inode)
1417 {
1418 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1419 
1420 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1421 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1422 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1423 		return;
1424 	}
1425 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1426 		list_del_init(&F2FS_I(inode)->gdirty_list);
1427 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1428 	}
1429 	clear_inode_flag(inode, FI_DIRTY_INODE);
1430 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1431 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1432 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1433 }
1434 
1435 /*
1436  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1437  *
1438  * We should call set_dirty_inode to write the dirty inode through write_inode.
1439  */
1440 static void f2fs_dirty_inode(struct inode *inode, int flags)
1441 {
1442 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1443 
1444 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1445 			inode->i_ino == F2FS_META_INO(sbi))
1446 		return;
1447 
1448 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1449 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1450 
1451 	f2fs_inode_dirtied(inode, false);
1452 }
1453 
1454 static void f2fs_free_inode(struct inode *inode)
1455 {
1456 	fscrypt_free_inode(inode);
1457 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1458 }
1459 
1460 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1461 {
1462 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1463 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1464 }
1465 
1466 static void destroy_device_list(struct f2fs_sb_info *sbi)
1467 {
1468 	int i;
1469 
1470 	for (i = 0; i < sbi->s_ndevs; i++) {
1471 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1472 #ifdef CONFIG_BLK_DEV_ZONED
1473 		kvfree(FDEV(i).blkz_seq);
1474 		kfree(FDEV(i).zone_capacity_blocks);
1475 #endif
1476 	}
1477 	kvfree(sbi->devs);
1478 }
1479 
1480 static void f2fs_put_super(struct super_block *sb)
1481 {
1482 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1483 	int i;
1484 	bool dropped;
1485 
1486 	/* unregister procfs/sysfs entries in advance to avoid race case */
1487 	f2fs_unregister_sysfs(sbi);
1488 
1489 	f2fs_quota_off_umount(sb);
1490 
1491 	/* prevent remaining shrinker jobs */
1492 	mutex_lock(&sbi->umount_mutex);
1493 
1494 	/*
1495 	 * flush all issued checkpoints and stop checkpoint issue thread.
1496 	 * after then, all checkpoints should be done by each process context.
1497 	 */
1498 	f2fs_stop_ckpt_thread(sbi);
1499 
1500 	/*
1501 	 * We don't need to do checkpoint when superblock is clean.
1502 	 * But, the previous checkpoint was not done by umount, it needs to do
1503 	 * clean checkpoint again.
1504 	 */
1505 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1506 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1507 		struct cp_control cpc = {
1508 			.reason = CP_UMOUNT,
1509 		};
1510 		f2fs_write_checkpoint(sbi, &cpc);
1511 	}
1512 
1513 	/* be sure to wait for any on-going discard commands */
1514 	dropped = f2fs_issue_discard_timeout(sbi);
1515 
1516 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1517 					!sbi->discard_blks && !dropped) {
1518 		struct cp_control cpc = {
1519 			.reason = CP_UMOUNT | CP_TRIMMED,
1520 		};
1521 		f2fs_write_checkpoint(sbi, &cpc);
1522 	}
1523 
1524 	/*
1525 	 * normally superblock is clean, so we need to release this.
1526 	 * In addition, EIO will skip do checkpoint, we need this as well.
1527 	 */
1528 	f2fs_release_ino_entry(sbi, true);
1529 
1530 	f2fs_leave_shrinker(sbi);
1531 	mutex_unlock(&sbi->umount_mutex);
1532 
1533 	/* our cp_error case, we can wait for any writeback page */
1534 	f2fs_flush_merged_writes(sbi);
1535 
1536 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1537 
1538 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1539 
1540 	f2fs_destroy_compress_inode(sbi);
1541 
1542 	iput(sbi->node_inode);
1543 	sbi->node_inode = NULL;
1544 
1545 	iput(sbi->meta_inode);
1546 	sbi->meta_inode = NULL;
1547 
1548 	/*
1549 	 * iput() can update stat information, if f2fs_write_checkpoint()
1550 	 * above failed with error.
1551 	 */
1552 	f2fs_destroy_stats(sbi);
1553 
1554 	/* destroy f2fs internal modules */
1555 	f2fs_destroy_node_manager(sbi);
1556 	f2fs_destroy_segment_manager(sbi);
1557 
1558 	f2fs_destroy_post_read_wq(sbi);
1559 
1560 	kvfree(sbi->ckpt);
1561 
1562 	sb->s_fs_info = NULL;
1563 	if (sbi->s_chksum_driver)
1564 		crypto_free_shash(sbi->s_chksum_driver);
1565 	kfree(sbi->raw_super);
1566 
1567 	destroy_device_list(sbi);
1568 	f2fs_destroy_page_array_cache(sbi);
1569 	f2fs_destroy_xattr_caches(sbi);
1570 	mempool_destroy(sbi->write_io_dummy);
1571 #ifdef CONFIG_QUOTA
1572 	for (i = 0; i < MAXQUOTAS; i++)
1573 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1574 #endif
1575 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1576 	destroy_percpu_info(sbi);
1577 	f2fs_destroy_iostat(sbi);
1578 	for (i = 0; i < NR_PAGE_TYPE; i++)
1579 		kvfree(sbi->write_io[i]);
1580 #ifdef CONFIG_UNICODE
1581 	utf8_unload(sb->s_encoding);
1582 #endif
1583 	kfree(sbi);
1584 }
1585 
1586 int f2fs_sync_fs(struct super_block *sb, int sync)
1587 {
1588 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1589 	int err = 0;
1590 
1591 	if (unlikely(f2fs_cp_error(sbi)))
1592 		return 0;
1593 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1594 		return 0;
1595 
1596 	trace_f2fs_sync_fs(sb, sync);
1597 
1598 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1599 		return -EAGAIN;
1600 
1601 	if (sync)
1602 		err = f2fs_issue_checkpoint(sbi);
1603 
1604 	return err;
1605 }
1606 
1607 static int f2fs_freeze(struct super_block *sb)
1608 {
1609 	if (f2fs_readonly(sb))
1610 		return 0;
1611 
1612 	/* IO error happened before */
1613 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1614 		return -EIO;
1615 
1616 	/* must be clean, since sync_filesystem() was already called */
1617 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1618 		return -EINVAL;
1619 
1620 	/* ensure no checkpoint required */
1621 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1622 		return -EINVAL;
1623 	return 0;
1624 }
1625 
1626 static int f2fs_unfreeze(struct super_block *sb)
1627 {
1628 	return 0;
1629 }
1630 
1631 #ifdef CONFIG_QUOTA
1632 static int f2fs_statfs_project(struct super_block *sb,
1633 				kprojid_t projid, struct kstatfs *buf)
1634 {
1635 	struct kqid qid;
1636 	struct dquot *dquot;
1637 	u64 limit;
1638 	u64 curblock;
1639 
1640 	qid = make_kqid_projid(projid);
1641 	dquot = dqget(sb, qid);
1642 	if (IS_ERR(dquot))
1643 		return PTR_ERR(dquot);
1644 	spin_lock(&dquot->dq_dqb_lock);
1645 
1646 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1647 					dquot->dq_dqb.dqb_bhardlimit);
1648 	if (limit)
1649 		limit >>= sb->s_blocksize_bits;
1650 
1651 	if (limit && buf->f_blocks > limit) {
1652 		curblock = (dquot->dq_dqb.dqb_curspace +
1653 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1654 		buf->f_blocks = limit;
1655 		buf->f_bfree = buf->f_bavail =
1656 			(buf->f_blocks > curblock) ?
1657 			 (buf->f_blocks - curblock) : 0;
1658 	}
1659 
1660 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1661 					dquot->dq_dqb.dqb_ihardlimit);
1662 
1663 	if (limit && buf->f_files > limit) {
1664 		buf->f_files = limit;
1665 		buf->f_ffree =
1666 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1667 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1668 	}
1669 
1670 	spin_unlock(&dquot->dq_dqb_lock);
1671 	dqput(dquot);
1672 	return 0;
1673 }
1674 #endif
1675 
1676 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1677 {
1678 	struct super_block *sb = dentry->d_sb;
1679 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1680 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1681 	block_t total_count, user_block_count, start_count;
1682 	u64 avail_node_count;
1683 
1684 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1685 	user_block_count = sbi->user_block_count;
1686 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1687 	buf->f_type = F2FS_SUPER_MAGIC;
1688 	buf->f_bsize = sbi->blocksize;
1689 
1690 	buf->f_blocks = total_count - start_count;
1691 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1692 						sbi->current_reserved_blocks;
1693 
1694 	spin_lock(&sbi->stat_lock);
1695 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1696 		buf->f_bfree = 0;
1697 	else
1698 		buf->f_bfree -= sbi->unusable_block_count;
1699 	spin_unlock(&sbi->stat_lock);
1700 
1701 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1702 		buf->f_bavail = buf->f_bfree -
1703 				F2FS_OPTION(sbi).root_reserved_blocks;
1704 	else
1705 		buf->f_bavail = 0;
1706 
1707 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1708 
1709 	if (avail_node_count > user_block_count) {
1710 		buf->f_files = user_block_count;
1711 		buf->f_ffree = buf->f_bavail;
1712 	} else {
1713 		buf->f_files = avail_node_count;
1714 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1715 					buf->f_bavail);
1716 	}
1717 
1718 	buf->f_namelen = F2FS_NAME_LEN;
1719 	buf->f_fsid    = u64_to_fsid(id);
1720 
1721 #ifdef CONFIG_QUOTA
1722 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1723 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1724 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1725 	}
1726 #endif
1727 	return 0;
1728 }
1729 
1730 static inline void f2fs_show_quota_options(struct seq_file *seq,
1731 					   struct super_block *sb)
1732 {
1733 #ifdef CONFIG_QUOTA
1734 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1735 
1736 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1737 		char *fmtname = "";
1738 
1739 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1740 		case QFMT_VFS_OLD:
1741 			fmtname = "vfsold";
1742 			break;
1743 		case QFMT_VFS_V0:
1744 			fmtname = "vfsv0";
1745 			break;
1746 		case QFMT_VFS_V1:
1747 			fmtname = "vfsv1";
1748 			break;
1749 		}
1750 		seq_printf(seq, ",jqfmt=%s", fmtname);
1751 	}
1752 
1753 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1754 		seq_show_option(seq, "usrjquota",
1755 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1756 
1757 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1758 		seq_show_option(seq, "grpjquota",
1759 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1760 
1761 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1762 		seq_show_option(seq, "prjjquota",
1763 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1764 #endif
1765 }
1766 
1767 #ifdef CONFIG_F2FS_FS_COMPRESSION
1768 static inline void f2fs_show_compress_options(struct seq_file *seq,
1769 							struct super_block *sb)
1770 {
1771 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1772 	char *algtype = "";
1773 	int i;
1774 
1775 	if (!f2fs_sb_has_compression(sbi))
1776 		return;
1777 
1778 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1779 	case COMPRESS_LZO:
1780 		algtype = "lzo";
1781 		break;
1782 	case COMPRESS_LZ4:
1783 		algtype = "lz4";
1784 		break;
1785 	case COMPRESS_ZSTD:
1786 		algtype = "zstd";
1787 		break;
1788 	case COMPRESS_LZORLE:
1789 		algtype = "lzo-rle";
1790 		break;
1791 	}
1792 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1793 
1794 	if (F2FS_OPTION(sbi).compress_level)
1795 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1796 
1797 	seq_printf(seq, ",compress_log_size=%u",
1798 			F2FS_OPTION(sbi).compress_log_size);
1799 
1800 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1801 		seq_printf(seq, ",compress_extension=%s",
1802 			F2FS_OPTION(sbi).extensions[i]);
1803 	}
1804 
1805 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1806 		seq_printf(seq, ",nocompress_extension=%s",
1807 			F2FS_OPTION(sbi).noextensions[i]);
1808 	}
1809 
1810 	if (F2FS_OPTION(sbi).compress_chksum)
1811 		seq_puts(seq, ",compress_chksum");
1812 
1813 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1814 		seq_printf(seq, ",compress_mode=%s", "fs");
1815 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1816 		seq_printf(seq, ",compress_mode=%s", "user");
1817 
1818 	if (test_opt(sbi, COMPRESS_CACHE))
1819 		seq_puts(seq, ",compress_cache");
1820 }
1821 #endif
1822 
1823 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1824 {
1825 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1826 
1827 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1828 		seq_printf(seq, ",background_gc=%s", "sync");
1829 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1830 		seq_printf(seq, ",background_gc=%s", "on");
1831 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1832 		seq_printf(seq, ",background_gc=%s", "off");
1833 
1834 	if (test_opt(sbi, GC_MERGE))
1835 		seq_puts(seq, ",gc_merge");
1836 
1837 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1838 		seq_puts(seq, ",disable_roll_forward");
1839 	if (test_opt(sbi, NORECOVERY))
1840 		seq_puts(seq, ",norecovery");
1841 	if (test_opt(sbi, DISCARD))
1842 		seq_puts(seq, ",discard");
1843 	else
1844 		seq_puts(seq, ",nodiscard");
1845 	if (test_opt(sbi, NOHEAP))
1846 		seq_puts(seq, ",no_heap");
1847 	else
1848 		seq_puts(seq, ",heap");
1849 #ifdef CONFIG_F2FS_FS_XATTR
1850 	if (test_opt(sbi, XATTR_USER))
1851 		seq_puts(seq, ",user_xattr");
1852 	else
1853 		seq_puts(seq, ",nouser_xattr");
1854 	if (test_opt(sbi, INLINE_XATTR))
1855 		seq_puts(seq, ",inline_xattr");
1856 	else
1857 		seq_puts(seq, ",noinline_xattr");
1858 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1859 		seq_printf(seq, ",inline_xattr_size=%u",
1860 					F2FS_OPTION(sbi).inline_xattr_size);
1861 #endif
1862 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1863 	if (test_opt(sbi, POSIX_ACL))
1864 		seq_puts(seq, ",acl");
1865 	else
1866 		seq_puts(seq, ",noacl");
1867 #endif
1868 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1869 		seq_puts(seq, ",disable_ext_identify");
1870 	if (test_opt(sbi, INLINE_DATA))
1871 		seq_puts(seq, ",inline_data");
1872 	else
1873 		seq_puts(seq, ",noinline_data");
1874 	if (test_opt(sbi, INLINE_DENTRY))
1875 		seq_puts(seq, ",inline_dentry");
1876 	else
1877 		seq_puts(seq, ",noinline_dentry");
1878 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1879 		seq_puts(seq, ",flush_merge");
1880 	if (test_opt(sbi, NOBARRIER))
1881 		seq_puts(seq, ",nobarrier");
1882 	if (test_opt(sbi, FASTBOOT))
1883 		seq_puts(seq, ",fastboot");
1884 	if (test_opt(sbi, EXTENT_CACHE))
1885 		seq_puts(seq, ",extent_cache");
1886 	else
1887 		seq_puts(seq, ",noextent_cache");
1888 	if (test_opt(sbi, DATA_FLUSH))
1889 		seq_puts(seq, ",data_flush");
1890 
1891 	seq_puts(seq, ",mode=");
1892 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1893 		seq_puts(seq, "adaptive");
1894 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1895 		seq_puts(seq, "lfs");
1896 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1897 	if (test_opt(sbi, RESERVE_ROOT))
1898 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1899 				F2FS_OPTION(sbi).root_reserved_blocks,
1900 				from_kuid_munged(&init_user_ns,
1901 					F2FS_OPTION(sbi).s_resuid),
1902 				from_kgid_munged(&init_user_ns,
1903 					F2FS_OPTION(sbi).s_resgid));
1904 	if (F2FS_IO_SIZE_BITS(sbi))
1905 		seq_printf(seq, ",io_bits=%u",
1906 				F2FS_OPTION(sbi).write_io_size_bits);
1907 #ifdef CONFIG_F2FS_FAULT_INJECTION
1908 	if (test_opt(sbi, FAULT_INJECTION)) {
1909 		seq_printf(seq, ",fault_injection=%u",
1910 				F2FS_OPTION(sbi).fault_info.inject_rate);
1911 		seq_printf(seq, ",fault_type=%u",
1912 				F2FS_OPTION(sbi).fault_info.inject_type);
1913 	}
1914 #endif
1915 #ifdef CONFIG_QUOTA
1916 	if (test_opt(sbi, QUOTA))
1917 		seq_puts(seq, ",quota");
1918 	if (test_opt(sbi, USRQUOTA))
1919 		seq_puts(seq, ",usrquota");
1920 	if (test_opt(sbi, GRPQUOTA))
1921 		seq_puts(seq, ",grpquota");
1922 	if (test_opt(sbi, PRJQUOTA))
1923 		seq_puts(seq, ",prjquota");
1924 #endif
1925 	f2fs_show_quota_options(seq, sbi->sb);
1926 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1927 		seq_printf(seq, ",whint_mode=%s", "user-based");
1928 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1929 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1930 
1931 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1932 
1933 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1934 		seq_puts(seq, ",inlinecrypt");
1935 
1936 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1937 		seq_printf(seq, ",alloc_mode=%s", "default");
1938 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1939 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1940 
1941 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1942 		seq_printf(seq, ",checkpoint=disable:%u",
1943 				F2FS_OPTION(sbi).unusable_cap);
1944 	if (test_opt(sbi, MERGE_CHECKPOINT))
1945 		seq_puts(seq, ",checkpoint_merge");
1946 	else
1947 		seq_puts(seq, ",nocheckpoint_merge");
1948 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1949 		seq_printf(seq, ",fsync_mode=%s", "posix");
1950 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1951 		seq_printf(seq, ",fsync_mode=%s", "strict");
1952 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1953 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1954 
1955 #ifdef CONFIG_F2FS_FS_COMPRESSION
1956 	f2fs_show_compress_options(seq, sbi->sb);
1957 #endif
1958 
1959 	if (test_opt(sbi, ATGC))
1960 		seq_puts(seq, ",atgc");
1961 
1962 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1963 		seq_printf(seq, ",discard_unit=%s", "block");
1964 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1965 		seq_printf(seq, ",discard_unit=%s", "segment");
1966 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1967 		seq_printf(seq, ",discard_unit=%s", "section");
1968 
1969 	return 0;
1970 }
1971 
1972 static void default_options(struct f2fs_sb_info *sbi)
1973 {
1974 	/* init some FS parameters */
1975 	if (f2fs_sb_has_readonly(sbi))
1976 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1977 	else
1978 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1979 
1980 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1981 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1982 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1983 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1984 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1985 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1986 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1987 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1988 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1989 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1990 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1991 
1992 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1993 
1994 	set_opt(sbi, INLINE_XATTR);
1995 	set_opt(sbi, INLINE_DATA);
1996 	set_opt(sbi, INLINE_DENTRY);
1997 	set_opt(sbi, EXTENT_CACHE);
1998 	set_opt(sbi, NOHEAP);
1999 	clear_opt(sbi, DISABLE_CHECKPOINT);
2000 	set_opt(sbi, MERGE_CHECKPOINT);
2001 	F2FS_OPTION(sbi).unusable_cap = 0;
2002 	sbi->sb->s_flags |= SB_LAZYTIME;
2003 	set_opt(sbi, FLUSH_MERGE);
2004 	set_opt(sbi, DISCARD);
2005 	if (f2fs_sb_has_blkzoned(sbi)) {
2006 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2007 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2008 	} else {
2009 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2010 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2011 	}
2012 
2013 #ifdef CONFIG_F2FS_FS_XATTR
2014 	set_opt(sbi, XATTR_USER);
2015 #endif
2016 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2017 	set_opt(sbi, POSIX_ACL);
2018 #endif
2019 
2020 	f2fs_build_fault_attr(sbi, 0, 0);
2021 }
2022 
2023 #ifdef CONFIG_QUOTA
2024 static int f2fs_enable_quotas(struct super_block *sb);
2025 #endif
2026 
2027 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2028 {
2029 	unsigned int s_flags = sbi->sb->s_flags;
2030 	struct cp_control cpc;
2031 	int err = 0;
2032 	int ret;
2033 	block_t unusable;
2034 
2035 	if (s_flags & SB_RDONLY) {
2036 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2037 		return -EINVAL;
2038 	}
2039 	sbi->sb->s_flags |= SB_ACTIVE;
2040 
2041 	f2fs_update_time(sbi, DISABLE_TIME);
2042 
2043 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2044 		down_write(&sbi->gc_lock);
2045 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2046 		if (err == -ENODATA) {
2047 			err = 0;
2048 			break;
2049 		}
2050 		if (err && err != -EAGAIN)
2051 			break;
2052 	}
2053 
2054 	ret = sync_filesystem(sbi->sb);
2055 	if (ret || err) {
2056 		err = ret ? ret : err;
2057 		goto restore_flag;
2058 	}
2059 
2060 	unusable = f2fs_get_unusable_blocks(sbi);
2061 	if (f2fs_disable_cp_again(sbi, unusable)) {
2062 		err = -EAGAIN;
2063 		goto restore_flag;
2064 	}
2065 
2066 	down_write(&sbi->gc_lock);
2067 	cpc.reason = CP_PAUSE;
2068 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2069 	err = f2fs_write_checkpoint(sbi, &cpc);
2070 	if (err)
2071 		goto out_unlock;
2072 
2073 	spin_lock(&sbi->stat_lock);
2074 	sbi->unusable_block_count = unusable;
2075 	spin_unlock(&sbi->stat_lock);
2076 
2077 out_unlock:
2078 	up_write(&sbi->gc_lock);
2079 restore_flag:
2080 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2081 	return err;
2082 }
2083 
2084 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2085 {
2086 	/* we should flush all the data to keep data consistency */
2087 	sync_inodes_sb(sbi->sb);
2088 
2089 	down_write(&sbi->gc_lock);
2090 	f2fs_dirty_to_prefree(sbi);
2091 
2092 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2093 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2094 	up_write(&sbi->gc_lock);
2095 
2096 	f2fs_sync_fs(sbi->sb, 1);
2097 }
2098 
2099 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2100 {
2101 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2102 	struct f2fs_mount_info org_mount_opt;
2103 	unsigned long old_sb_flags;
2104 	int err;
2105 	bool need_restart_gc = false, need_stop_gc = false;
2106 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2107 	bool need_restart_flush = false, need_stop_flush = false;
2108 	bool need_restart_discard = false, need_stop_discard = false;
2109 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2110 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2111 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2112 	bool no_atgc = !test_opt(sbi, ATGC);
2113 	bool no_discard = !test_opt(sbi, DISCARD);
2114 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2115 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2116 	struct discard_cmd_control *dcc;
2117 #ifdef CONFIG_QUOTA
2118 	int i, j;
2119 #endif
2120 
2121 	/*
2122 	 * Save the old mount options in case we
2123 	 * need to restore them.
2124 	 */
2125 	org_mount_opt = sbi->mount_opt;
2126 	old_sb_flags = sb->s_flags;
2127 
2128 #ifdef CONFIG_QUOTA
2129 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2130 	for (i = 0; i < MAXQUOTAS; i++) {
2131 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2132 			org_mount_opt.s_qf_names[i] =
2133 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2134 				GFP_KERNEL);
2135 			if (!org_mount_opt.s_qf_names[i]) {
2136 				for (j = 0; j < i; j++)
2137 					kfree(org_mount_opt.s_qf_names[j]);
2138 				return -ENOMEM;
2139 			}
2140 		} else {
2141 			org_mount_opt.s_qf_names[i] = NULL;
2142 		}
2143 	}
2144 #endif
2145 
2146 	/* recover superblocks we couldn't write due to previous RO mount */
2147 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2148 		err = f2fs_commit_super(sbi, false);
2149 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2150 			  err);
2151 		if (!err)
2152 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2153 	}
2154 
2155 	default_options(sbi);
2156 
2157 	/* parse mount options */
2158 	err = parse_options(sb, data, true);
2159 	if (err)
2160 		goto restore_opts;
2161 
2162 	/*
2163 	 * Previous and new state of filesystem is RO,
2164 	 * so skip checking GC and FLUSH_MERGE conditions.
2165 	 */
2166 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2167 		goto skip;
2168 
2169 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2170 		err = -EROFS;
2171 		goto restore_opts;
2172 	}
2173 
2174 #ifdef CONFIG_QUOTA
2175 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2176 		err = dquot_suspend(sb, -1);
2177 		if (err < 0)
2178 			goto restore_opts;
2179 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2180 		/* dquot_resume needs RW */
2181 		sb->s_flags &= ~SB_RDONLY;
2182 		if (sb_any_quota_suspended(sb)) {
2183 			dquot_resume(sb, -1);
2184 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2185 			err = f2fs_enable_quotas(sb);
2186 			if (err)
2187 				goto restore_opts;
2188 		}
2189 	}
2190 #endif
2191 	/* disallow enable atgc dynamically */
2192 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2193 		err = -EINVAL;
2194 		f2fs_warn(sbi, "switch atgc option is not allowed");
2195 		goto restore_opts;
2196 	}
2197 
2198 	/* disallow enable/disable extent_cache dynamically */
2199 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2200 		err = -EINVAL;
2201 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2202 		goto restore_opts;
2203 	}
2204 
2205 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2206 		err = -EINVAL;
2207 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2208 		goto restore_opts;
2209 	}
2210 
2211 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2212 		err = -EINVAL;
2213 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2214 		goto restore_opts;
2215 	}
2216 
2217 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2218 		err = -EINVAL;
2219 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2220 		goto restore_opts;
2221 	}
2222 
2223 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2224 		err = -EINVAL;
2225 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2226 		goto restore_opts;
2227 	}
2228 
2229 	/*
2230 	 * We stop the GC thread if FS is mounted as RO
2231 	 * or if background_gc = off is passed in mount
2232 	 * option. Also sync the filesystem.
2233 	 */
2234 	if ((*flags & SB_RDONLY) ||
2235 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2236 			!test_opt(sbi, GC_MERGE))) {
2237 		if (sbi->gc_thread) {
2238 			f2fs_stop_gc_thread(sbi);
2239 			need_restart_gc = true;
2240 		}
2241 	} else if (!sbi->gc_thread) {
2242 		err = f2fs_start_gc_thread(sbi);
2243 		if (err)
2244 			goto restore_opts;
2245 		need_stop_gc = true;
2246 	}
2247 
2248 	if (*flags & SB_RDONLY ||
2249 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2250 		sync_inodes_sb(sb);
2251 
2252 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2253 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2254 		f2fs_sync_fs(sb, 1);
2255 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2256 	}
2257 
2258 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2259 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2260 		f2fs_stop_ckpt_thread(sbi);
2261 		need_restart_ckpt = true;
2262 	} else {
2263 		err = f2fs_start_ckpt_thread(sbi);
2264 		if (err) {
2265 			f2fs_err(sbi,
2266 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2267 			    err);
2268 			goto restore_gc;
2269 		}
2270 		need_stop_ckpt = true;
2271 	}
2272 
2273 	/*
2274 	 * We stop issue flush thread if FS is mounted as RO
2275 	 * or if flush_merge is not passed in mount option.
2276 	 */
2277 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2278 		clear_opt(sbi, FLUSH_MERGE);
2279 		f2fs_destroy_flush_cmd_control(sbi, false);
2280 		need_restart_flush = true;
2281 	} else {
2282 		err = f2fs_create_flush_cmd_control(sbi);
2283 		if (err)
2284 			goto restore_ckpt;
2285 		need_stop_flush = true;
2286 	}
2287 
2288 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2289 		if (test_opt(sbi, DISCARD)) {
2290 			err = f2fs_start_discard_thread(sbi);
2291 			if (err)
2292 				goto restore_flush;
2293 			need_stop_discard = true;
2294 		} else {
2295 			dcc = SM_I(sbi)->dcc_info;
2296 			f2fs_stop_discard_thread(sbi);
2297 			if (atomic_read(&dcc->discard_cmd_cnt))
2298 				f2fs_issue_discard_timeout(sbi);
2299 			need_restart_discard = true;
2300 		}
2301 	}
2302 
2303 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2304 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2305 			err = f2fs_disable_checkpoint(sbi);
2306 			if (err)
2307 				goto restore_discard;
2308 		} else {
2309 			f2fs_enable_checkpoint(sbi);
2310 		}
2311 	}
2312 
2313 skip:
2314 #ifdef CONFIG_QUOTA
2315 	/* Release old quota file names */
2316 	for (i = 0; i < MAXQUOTAS; i++)
2317 		kfree(org_mount_opt.s_qf_names[i]);
2318 #endif
2319 	/* Update the POSIXACL Flag */
2320 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2321 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2322 
2323 	limit_reserve_root(sbi);
2324 	adjust_unusable_cap_perc(sbi);
2325 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2326 	return 0;
2327 restore_discard:
2328 	if (need_restart_discard) {
2329 		if (f2fs_start_discard_thread(sbi))
2330 			f2fs_warn(sbi, "discard has been stopped");
2331 	} else if (need_stop_discard) {
2332 		f2fs_stop_discard_thread(sbi);
2333 	}
2334 restore_flush:
2335 	if (need_restart_flush) {
2336 		if (f2fs_create_flush_cmd_control(sbi))
2337 			f2fs_warn(sbi, "background flush thread has stopped");
2338 	} else if (need_stop_flush) {
2339 		clear_opt(sbi, FLUSH_MERGE);
2340 		f2fs_destroy_flush_cmd_control(sbi, false);
2341 	}
2342 restore_ckpt:
2343 	if (need_restart_ckpt) {
2344 		if (f2fs_start_ckpt_thread(sbi))
2345 			f2fs_warn(sbi, "background ckpt thread has stopped");
2346 	} else if (need_stop_ckpt) {
2347 		f2fs_stop_ckpt_thread(sbi);
2348 	}
2349 restore_gc:
2350 	if (need_restart_gc) {
2351 		if (f2fs_start_gc_thread(sbi))
2352 			f2fs_warn(sbi, "background gc thread has stopped");
2353 	} else if (need_stop_gc) {
2354 		f2fs_stop_gc_thread(sbi);
2355 	}
2356 restore_opts:
2357 #ifdef CONFIG_QUOTA
2358 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2359 	for (i = 0; i < MAXQUOTAS; i++) {
2360 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2361 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2362 	}
2363 #endif
2364 	sbi->mount_opt = org_mount_opt;
2365 	sb->s_flags = old_sb_flags;
2366 	return err;
2367 }
2368 
2369 #ifdef CONFIG_QUOTA
2370 /* Read data from quotafile */
2371 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2372 			       size_t len, loff_t off)
2373 {
2374 	struct inode *inode = sb_dqopt(sb)->files[type];
2375 	struct address_space *mapping = inode->i_mapping;
2376 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2377 	int offset = off & (sb->s_blocksize - 1);
2378 	int tocopy;
2379 	size_t toread;
2380 	loff_t i_size = i_size_read(inode);
2381 	struct page *page;
2382 	char *kaddr;
2383 
2384 	if (off > i_size)
2385 		return 0;
2386 
2387 	if (off + len > i_size)
2388 		len = i_size - off;
2389 	toread = len;
2390 	while (toread > 0) {
2391 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2392 repeat:
2393 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2394 		if (IS_ERR(page)) {
2395 			if (PTR_ERR(page) == -ENOMEM) {
2396 				congestion_wait(BLK_RW_ASYNC,
2397 						DEFAULT_IO_TIMEOUT);
2398 				goto repeat;
2399 			}
2400 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2401 			return PTR_ERR(page);
2402 		}
2403 
2404 		lock_page(page);
2405 
2406 		if (unlikely(page->mapping != mapping)) {
2407 			f2fs_put_page(page, 1);
2408 			goto repeat;
2409 		}
2410 		if (unlikely(!PageUptodate(page))) {
2411 			f2fs_put_page(page, 1);
2412 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2413 			return -EIO;
2414 		}
2415 
2416 		kaddr = kmap_atomic(page);
2417 		memcpy(data, kaddr + offset, tocopy);
2418 		kunmap_atomic(kaddr);
2419 		f2fs_put_page(page, 1);
2420 
2421 		offset = 0;
2422 		toread -= tocopy;
2423 		data += tocopy;
2424 		blkidx++;
2425 	}
2426 	return len;
2427 }
2428 
2429 /* Write to quotafile */
2430 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2431 				const char *data, size_t len, loff_t off)
2432 {
2433 	struct inode *inode = sb_dqopt(sb)->files[type];
2434 	struct address_space *mapping = inode->i_mapping;
2435 	const struct address_space_operations *a_ops = mapping->a_ops;
2436 	int offset = off & (sb->s_blocksize - 1);
2437 	size_t towrite = len;
2438 	struct page *page;
2439 	void *fsdata = NULL;
2440 	char *kaddr;
2441 	int err = 0;
2442 	int tocopy;
2443 
2444 	while (towrite > 0) {
2445 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2446 								towrite);
2447 retry:
2448 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2449 							&page, &fsdata);
2450 		if (unlikely(err)) {
2451 			if (err == -ENOMEM) {
2452 				congestion_wait(BLK_RW_ASYNC,
2453 						DEFAULT_IO_TIMEOUT);
2454 				goto retry;
2455 			}
2456 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2457 			break;
2458 		}
2459 
2460 		kaddr = kmap_atomic(page);
2461 		memcpy(kaddr + offset, data, tocopy);
2462 		kunmap_atomic(kaddr);
2463 		flush_dcache_page(page);
2464 
2465 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2466 						page, fsdata);
2467 		offset = 0;
2468 		towrite -= tocopy;
2469 		off += tocopy;
2470 		data += tocopy;
2471 		cond_resched();
2472 	}
2473 
2474 	if (len == towrite)
2475 		return err;
2476 	inode->i_mtime = inode->i_ctime = current_time(inode);
2477 	f2fs_mark_inode_dirty_sync(inode, false);
2478 	return len - towrite;
2479 }
2480 
2481 static struct dquot **f2fs_get_dquots(struct inode *inode)
2482 {
2483 	return F2FS_I(inode)->i_dquot;
2484 }
2485 
2486 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2487 {
2488 	return &F2FS_I(inode)->i_reserved_quota;
2489 }
2490 
2491 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2492 {
2493 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2494 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2495 		return 0;
2496 	}
2497 
2498 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2499 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2500 }
2501 
2502 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2503 {
2504 	int enabled = 0;
2505 	int i, err;
2506 
2507 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2508 		err = f2fs_enable_quotas(sbi->sb);
2509 		if (err) {
2510 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2511 			return 0;
2512 		}
2513 		return 1;
2514 	}
2515 
2516 	for (i = 0; i < MAXQUOTAS; i++) {
2517 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2518 			err = f2fs_quota_on_mount(sbi, i);
2519 			if (!err) {
2520 				enabled = 1;
2521 				continue;
2522 			}
2523 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2524 				 err, i);
2525 		}
2526 	}
2527 	return enabled;
2528 }
2529 
2530 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2531 			     unsigned int flags)
2532 {
2533 	struct inode *qf_inode;
2534 	unsigned long qf_inum;
2535 	int err;
2536 
2537 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2538 
2539 	qf_inum = f2fs_qf_ino(sb, type);
2540 	if (!qf_inum)
2541 		return -EPERM;
2542 
2543 	qf_inode = f2fs_iget(sb, qf_inum);
2544 	if (IS_ERR(qf_inode)) {
2545 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2546 		return PTR_ERR(qf_inode);
2547 	}
2548 
2549 	/* Don't account quota for quota files to avoid recursion */
2550 	qf_inode->i_flags |= S_NOQUOTA;
2551 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2552 	iput(qf_inode);
2553 	return err;
2554 }
2555 
2556 static int f2fs_enable_quotas(struct super_block *sb)
2557 {
2558 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2559 	int type, err = 0;
2560 	unsigned long qf_inum;
2561 	bool quota_mopt[MAXQUOTAS] = {
2562 		test_opt(sbi, USRQUOTA),
2563 		test_opt(sbi, GRPQUOTA),
2564 		test_opt(sbi, PRJQUOTA),
2565 	};
2566 
2567 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2568 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2569 		return 0;
2570 	}
2571 
2572 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2573 
2574 	for (type = 0; type < MAXQUOTAS; type++) {
2575 		qf_inum = f2fs_qf_ino(sb, type);
2576 		if (qf_inum) {
2577 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2578 				DQUOT_USAGE_ENABLED |
2579 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2580 			if (err) {
2581 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2582 					 type, err);
2583 				for (type--; type >= 0; type--)
2584 					dquot_quota_off(sb, type);
2585 				set_sbi_flag(F2FS_SB(sb),
2586 						SBI_QUOTA_NEED_REPAIR);
2587 				return err;
2588 			}
2589 		}
2590 	}
2591 	return 0;
2592 }
2593 
2594 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2595 {
2596 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2597 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2598 	int ret = 0;
2599 
2600 	ret = dquot_writeback_dquots(sbi->sb, type);
2601 	if (ret)
2602 		goto out;
2603 
2604 	ret = filemap_fdatawrite(mapping);
2605 	if (ret)
2606 		goto out;
2607 
2608 	/* if we are using journalled quota */
2609 	if (is_journalled_quota(sbi))
2610 		goto out;
2611 
2612 	ret = filemap_fdatawait(mapping);
2613 
2614 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2615 out:
2616 	if (ret)
2617 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2618 	return ret;
2619 }
2620 
2621 int f2fs_quota_sync(struct super_block *sb, int type)
2622 {
2623 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2624 	struct quota_info *dqopt = sb_dqopt(sb);
2625 	int cnt;
2626 	int ret;
2627 
2628 	/*
2629 	 * Now when everything is written we can discard the pagecache so
2630 	 * that userspace sees the changes.
2631 	 */
2632 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2633 
2634 		if (type != -1 && cnt != type)
2635 			continue;
2636 
2637 		if (!sb_has_quota_active(sb, type))
2638 			return 0;
2639 
2640 		inode_lock(dqopt->files[cnt]);
2641 
2642 		/*
2643 		 * do_quotactl
2644 		 *  f2fs_quota_sync
2645 		 *  down_read(quota_sem)
2646 		 *  dquot_writeback_dquots()
2647 		 *  f2fs_dquot_commit
2648 		 *			      block_operation
2649 		 *			      down_read(quota_sem)
2650 		 */
2651 		f2fs_lock_op(sbi);
2652 		down_read(&sbi->quota_sem);
2653 
2654 		ret = f2fs_quota_sync_file(sbi, cnt);
2655 
2656 		up_read(&sbi->quota_sem);
2657 		f2fs_unlock_op(sbi);
2658 
2659 		inode_unlock(dqopt->files[cnt]);
2660 
2661 		if (ret)
2662 			break;
2663 	}
2664 	return ret;
2665 }
2666 
2667 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2668 							const struct path *path)
2669 {
2670 	struct inode *inode;
2671 	int err;
2672 
2673 	/* if quota sysfile exists, deny enabling quota with specific file */
2674 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2675 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2676 		return -EBUSY;
2677 	}
2678 
2679 	err = f2fs_quota_sync(sb, type);
2680 	if (err)
2681 		return err;
2682 
2683 	err = dquot_quota_on(sb, type, format_id, path);
2684 	if (err)
2685 		return err;
2686 
2687 	inode = d_inode(path->dentry);
2688 
2689 	inode_lock(inode);
2690 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2691 	f2fs_set_inode_flags(inode);
2692 	inode_unlock(inode);
2693 	f2fs_mark_inode_dirty_sync(inode, false);
2694 
2695 	return 0;
2696 }
2697 
2698 static int __f2fs_quota_off(struct super_block *sb, int type)
2699 {
2700 	struct inode *inode = sb_dqopt(sb)->files[type];
2701 	int err;
2702 
2703 	if (!inode || !igrab(inode))
2704 		return dquot_quota_off(sb, type);
2705 
2706 	err = f2fs_quota_sync(sb, type);
2707 	if (err)
2708 		goto out_put;
2709 
2710 	err = dquot_quota_off(sb, type);
2711 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2712 		goto out_put;
2713 
2714 	inode_lock(inode);
2715 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2716 	f2fs_set_inode_flags(inode);
2717 	inode_unlock(inode);
2718 	f2fs_mark_inode_dirty_sync(inode, false);
2719 out_put:
2720 	iput(inode);
2721 	return err;
2722 }
2723 
2724 static int f2fs_quota_off(struct super_block *sb, int type)
2725 {
2726 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2727 	int err;
2728 
2729 	err = __f2fs_quota_off(sb, type);
2730 
2731 	/*
2732 	 * quotactl can shutdown journalled quota, result in inconsistence
2733 	 * between quota record and fs data by following updates, tag the
2734 	 * flag to let fsck be aware of it.
2735 	 */
2736 	if (is_journalled_quota(sbi))
2737 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2738 	return err;
2739 }
2740 
2741 void f2fs_quota_off_umount(struct super_block *sb)
2742 {
2743 	int type;
2744 	int err;
2745 
2746 	for (type = 0; type < MAXQUOTAS; type++) {
2747 		err = __f2fs_quota_off(sb, type);
2748 		if (err) {
2749 			int ret = dquot_quota_off(sb, type);
2750 
2751 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2752 				 type, err, ret);
2753 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2754 		}
2755 	}
2756 	/*
2757 	 * In case of checkpoint=disable, we must flush quota blocks.
2758 	 * This can cause NULL exception for node_inode in end_io, since
2759 	 * put_super already dropped it.
2760 	 */
2761 	sync_filesystem(sb);
2762 }
2763 
2764 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2765 {
2766 	struct quota_info *dqopt = sb_dqopt(sb);
2767 	int type;
2768 
2769 	for (type = 0; type < MAXQUOTAS; type++) {
2770 		if (!dqopt->files[type])
2771 			continue;
2772 		f2fs_inode_synced(dqopt->files[type]);
2773 	}
2774 }
2775 
2776 static int f2fs_dquot_commit(struct dquot *dquot)
2777 {
2778 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2779 	int ret;
2780 
2781 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2782 	ret = dquot_commit(dquot);
2783 	if (ret < 0)
2784 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2785 	up_read(&sbi->quota_sem);
2786 	return ret;
2787 }
2788 
2789 static int f2fs_dquot_acquire(struct dquot *dquot)
2790 {
2791 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2792 	int ret;
2793 
2794 	down_read(&sbi->quota_sem);
2795 	ret = dquot_acquire(dquot);
2796 	if (ret < 0)
2797 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2798 	up_read(&sbi->quota_sem);
2799 	return ret;
2800 }
2801 
2802 static int f2fs_dquot_release(struct dquot *dquot)
2803 {
2804 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2805 	int ret = dquot_release(dquot);
2806 
2807 	if (ret < 0)
2808 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2809 	return ret;
2810 }
2811 
2812 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2813 {
2814 	struct super_block *sb = dquot->dq_sb;
2815 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2816 	int ret = dquot_mark_dquot_dirty(dquot);
2817 
2818 	/* if we are using journalled quota */
2819 	if (is_journalled_quota(sbi))
2820 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2821 
2822 	return ret;
2823 }
2824 
2825 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2826 {
2827 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2828 	int ret = dquot_commit_info(sb, type);
2829 
2830 	if (ret < 0)
2831 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2832 	return ret;
2833 }
2834 
2835 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2836 {
2837 	*projid = F2FS_I(inode)->i_projid;
2838 	return 0;
2839 }
2840 
2841 static const struct dquot_operations f2fs_quota_operations = {
2842 	.get_reserved_space = f2fs_get_reserved_space,
2843 	.write_dquot	= f2fs_dquot_commit,
2844 	.acquire_dquot	= f2fs_dquot_acquire,
2845 	.release_dquot	= f2fs_dquot_release,
2846 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2847 	.write_info	= f2fs_dquot_commit_info,
2848 	.alloc_dquot	= dquot_alloc,
2849 	.destroy_dquot	= dquot_destroy,
2850 	.get_projid	= f2fs_get_projid,
2851 	.get_next_id	= dquot_get_next_id,
2852 };
2853 
2854 static const struct quotactl_ops f2fs_quotactl_ops = {
2855 	.quota_on	= f2fs_quota_on,
2856 	.quota_off	= f2fs_quota_off,
2857 	.quota_sync	= f2fs_quota_sync,
2858 	.get_state	= dquot_get_state,
2859 	.set_info	= dquot_set_dqinfo,
2860 	.get_dqblk	= dquot_get_dqblk,
2861 	.set_dqblk	= dquot_set_dqblk,
2862 	.get_nextdqblk	= dquot_get_next_dqblk,
2863 };
2864 #else
2865 int f2fs_quota_sync(struct super_block *sb, int type)
2866 {
2867 	return 0;
2868 }
2869 
2870 void f2fs_quota_off_umount(struct super_block *sb)
2871 {
2872 }
2873 #endif
2874 
2875 static const struct super_operations f2fs_sops = {
2876 	.alloc_inode	= f2fs_alloc_inode,
2877 	.free_inode	= f2fs_free_inode,
2878 	.drop_inode	= f2fs_drop_inode,
2879 	.write_inode	= f2fs_write_inode,
2880 	.dirty_inode	= f2fs_dirty_inode,
2881 	.show_options	= f2fs_show_options,
2882 #ifdef CONFIG_QUOTA
2883 	.quota_read	= f2fs_quota_read,
2884 	.quota_write	= f2fs_quota_write,
2885 	.get_dquots	= f2fs_get_dquots,
2886 #endif
2887 	.evict_inode	= f2fs_evict_inode,
2888 	.put_super	= f2fs_put_super,
2889 	.sync_fs	= f2fs_sync_fs,
2890 	.freeze_fs	= f2fs_freeze,
2891 	.unfreeze_fs	= f2fs_unfreeze,
2892 	.statfs		= f2fs_statfs,
2893 	.remount_fs	= f2fs_remount,
2894 };
2895 
2896 #ifdef CONFIG_FS_ENCRYPTION
2897 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2898 {
2899 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2900 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2901 				ctx, len, NULL);
2902 }
2903 
2904 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2905 							void *fs_data)
2906 {
2907 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2908 
2909 	/*
2910 	 * Encrypting the root directory is not allowed because fsck
2911 	 * expects lost+found directory to exist and remain unencrypted
2912 	 * if LOST_FOUND feature is enabled.
2913 	 *
2914 	 */
2915 	if (f2fs_sb_has_lost_found(sbi) &&
2916 			inode->i_ino == F2FS_ROOT_INO(sbi))
2917 		return -EPERM;
2918 
2919 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2920 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2921 				ctx, len, fs_data, XATTR_CREATE);
2922 }
2923 
2924 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2925 {
2926 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2927 }
2928 
2929 static bool f2fs_has_stable_inodes(struct super_block *sb)
2930 {
2931 	return true;
2932 }
2933 
2934 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2935 				       int *ino_bits_ret, int *lblk_bits_ret)
2936 {
2937 	*ino_bits_ret = 8 * sizeof(nid_t);
2938 	*lblk_bits_ret = 8 * sizeof(block_t);
2939 }
2940 
2941 static int f2fs_get_num_devices(struct super_block *sb)
2942 {
2943 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2944 
2945 	if (f2fs_is_multi_device(sbi))
2946 		return sbi->s_ndevs;
2947 	return 1;
2948 }
2949 
2950 static void f2fs_get_devices(struct super_block *sb,
2951 			     struct request_queue **devs)
2952 {
2953 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2954 	int i;
2955 
2956 	for (i = 0; i < sbi->s_ndevs; i++)
2957 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2958 }
2959 
2960 static const struct fscrypt_operations f2fs_cryptops = {
2961 	.key_prefix		= "f2fs:",
2962 	.get_context		= f2fs_get_context,
2963 	.set_context		= f2fs_set_context,
2964 	.get_dummy_policy	= f2fs_get_dummy_policy,
2965 	.empty_dir		= f2fs_empty_dir,
2966 	.max_namelen		= F2FS_NAME_LEN,
2967 	.has_stable_inodes	= f2fs_has_stable_inodes,
2968 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2969 	.get_num_devices	= f2fs_get_num_devices,
2970 	.get_devices		= f2fs_get_devices,
2971 };
2972 #endif
2973 
2974 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2975 		u64 ino, u32 generation)
2976 {
2977 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2978 	struct inode *inode;
2979 
2980 	if (f2fs_check_nid_range(sbi, ino))
2981 		return ERR_PTR(-ESTALE);
2982 
2983 	/*
2984 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2985 	 * However f2fs_iget currently does appropriate checks to handle stale
2986 	 * inodes so everything is OK.
2987 	 */
2988 	inode = f2fs_iget(sb, ino);
2989 	if (IS_ERR(inode))
2990 		return ERR_CAST(inode);
2991 	if (unlikely(generation && inode->i_generation != generation)) {
2992 		/* we didn't find the right inode.. */
2993 		iput(inode);
2994 		return ERR_PTR(-ESTALE);
2995 	}
2996 	return inode;
2997 }
2998 
2999 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3000 		int fh_len, int fh_type)
3001 {
3002 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3003 				    f2fs_nfs_get_inode);
3004 }
3005 
3006 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3007 		int fh_len, int fh_type)
3008 {
3009 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3010 				    f2fs_nfs_get_inode);
3011 }
3012 
3013 static const struct export_operations f2fs_export_ops = {
3014 	.fh_to_dentry = f2fs_fh_to_dentry,
3015 	.fh_to_parent = f2fs_fh_to_parent,
3016 	.get_parent = f2fs_get_parent,
3017 };
3018 
3019 loff_t max_file_blocks(struct inode *inode)
3020 {
3021 	loff_t result = 0;
3022 	loff_t leaf_count;
3023 
3024 	/*
3025 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3026 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3027 	 * space in inode.i_addr, it will be more safe to reassign
3028 	 * result as zero.
3029 	 */
3030 
3031 	if (inode && f2fs_compressed_file(inode))
3032 		leaf_count = ADDRS_PER_BLOCK(inode);
3033 	else
3034 		leaf_count = DEF_ADDRS_PER_BLOCK;
3035 
3036 	/* two direct node blocks */
3037 	result += (leaf_count * 2);
3038 
3039 	/* two indirect node blocks */
3040 	leaf_count *= NIDS_PER_BLOCK;
3041 	result += (leaf_count * 2);
3042 
3043 	/* one double indirect node block */
3044 	leaf_count *= NIDS_PER_BLOCK;
3045 	result += leaf_count;
3046 
3047 	return result;
3048 }
3049 
3050 static int __f2fs_commit_super(struct buffer_head *bh,
3051 			struct f2fs_super_block *super)
3052 {
3053 	lock_buffer(bh);
3054 	if (super)
3055 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3056 	set_buffer_dirty(bh);
3057 	unlock_buffer(bh);
3058 
3059 	/* it's rare case, we can do fua all the time */
3060 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3061 }
3062 
3063 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3064 					struct buffer_head *bh)
3065 {
3066 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3067 					(bh->b_data + F2FS_SUPER_OFFSET);
3068 	struct super_block *sb = sbi->sb;
3069 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3070 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3071 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3072 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3073 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3074 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3075 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3076 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3077 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3078 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3079 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3080 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3081 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3082 	u64 main_end_blkaddr = main_blkaddr +
3083 				(segment_count_main << log_blocks_per_seg);
3084 	u64 seg_end_blkaddr = segment0_blkaddr +
3085 				(segment_count << log_blocks_per_seg);
3086 
3087 	if (segment0_blkaddr != cp_blkaddr) {
3088 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3089 			  segment0_blkaddr, cp_blkaddr);
3090 		return true;
3091 	}
3092 
3093 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3094 							sit_blkaddr) {
3095 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3096 			  cp_blkaddr, sit_blkaddr,
3097 			  segment_count_ckpt << log_blocks_per_seg);
3098 		return true;
3099 	}
3100 
3101 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3102 							nat_blkaddr) {
3103 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3104 			  sit_blkaddr, nat_blkaddr,
3105 			  segment_count_sit << log_blocks_per_seg);
3106 		return true;
3107 	}
3108 
3109 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3110 							ssa_blkaddr) {
3111 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3112 			  nat_blkaddr, ssa_blkaddr,
3113 			  segment_count_nat << log_blocks_per_seg);
3114 		return true;
3115 	}
3116 
3117 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3118 							main_blkaddr) {
3119 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3120 			  ssa_blkaddr, main_blkaddr,
3121 			  segment_count_ssa << log_blocks_per_seg);
3122 		return true;
3123 	}
3124 
3125 	if (main_end_blkaddr > seg_end_blkaddr) {
3126 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3127 			  main_blkaddr, seg_end_blkaddr,
3128 			  segment_count_main << log_blocks_per_seg);
3129 		return true;
3130 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3131 		int err = 0;
3132 		char *res;
3133 
3134 		/* fix in-memory information all the time */
3135 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3136 				segment0_blkaddr) >> log_blocks_per_seg);
3137 
3138 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3139 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3140 			res = "internally";
3141 		} else {
3142 			err = __f2fs_commit_super(bh, NULL);
3143 			res = err ? "failed" : "done";
3144 		}
3145 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3146 			  res, main_blkaddr, seg_end_blkaddr,
3147 			  segment_count_main << log_blocks_per_seg);
3148 		if (err)
3149 			return true;
3150 	}
3151 	return false;
3152 }
3153 
3154 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3155 				struct buffer_head *bh)
3156 {
3157 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3158 	block_t total_sections, blocks_per_seg;
3159 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3160 					(bh->b_data + F2FS_SUPER_OFFSET);
3161 	size_t crc_offset = 0;
3162 	__u32 crc = 0;
3163 
3164 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3165 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3166 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3167 		return -EINVAL;
3168 	}
3169 
3170 	/* Check checksum_offset and crc in superblock */
3171 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3172 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3173 		if (crc_offset !=
3174 			offsetof(struct f2fs_super_block, crc)) {
3175 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3176 				  crc_offset);
3177 			return -EFSCORRUPTED;
3178 		}
3179 		crc = le32_to_cpu(raw_super->crc);
3180 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3181 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3182 			return -EFSCORRUPTED;
3183 		}
3184 	}
3185 
3186 	/* Currently, support only 4KB block size */
3187 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3188 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3189 			  le32_to_cpu(raw_super->log_blocksize),
3190 			  F2FS_BLKSIZE_BITS);
3191 		return -EFSCORRUPTED;
3192 	}
3193 
3194 	/* check log blocks per segment */
3195 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3196 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3197 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3198 		return -EFSCORRUPTED;
3199 	}
3200 
3201 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3202 	if (le32_to_cpu(raw_super->log_sectorsize) >
3203 				F2FS_MAX_LOG_SECTOR_SIZE ||
3204 		le32_to_cpu(raw_super->log_sectorsize) <
3205 				F2FS_MIN_LOG_SECTOR_SIZE) {
3206 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3207 			  le32_to_cpu(raw_super->log_sectorsize));
3208 		return -EFSCORRUPTED;
3209 	}
3210 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3211 		le32_to_cpu(raw_super->log_sectorsize) !=
3212 			F2FS_MAX_LOG_SECTOR_SIZE) {
3213 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3214 			  le32_to_cpu(raw_super->log_sectors_per_block),
3215 			  le32_to_cpu(raw_super->log_sectorsize));
3216 		return -EFSCORRUPTED;
3217 	}
3218 
3219 	segment_count = le32_to_cpu(raw_super->segment_count);
3220 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3221 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3222 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3223 	total_sections = le32_to_cpu(raw_super->section_count);
3224 
3225 	/* blocks_per_seg should be 512, given the above check */
3226 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3227 
3228 	if (segment_count > F2FS_MAX_SEGMENT ||
3229 				segment_count < F2FS_MIN_SEGMENTS) {
3230 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3231 		return -EFSCORRUPTED;
3232 	}
3233 
3234 	if (total_sections > segment_count_main || total_sections < 1 ||
3235 			segs_per_sec > segment_count || !segs_per_sec) {
3236 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3237 			  segment_count, total_sections, segs_per_sec);
3238 		return -EFSCORRUPTED;
3239 	}
3240 
3241 	if (segment_count_main != total_sections * segs_per_sec) {
3242 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3243 			  segment_count_main, total_sections, segs_per_sec);
3244 		return -EFSCORRUPTED;
3245 	}
3246 
3247 	if ((segment_count / segs_per_sec) < total_sections) {
3248 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3249 			  segment_count, segs_per_sec, total_sections);
3250 		return -EFSCORRUPTED;
3251 	}
3252 
3253 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3254 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3255 			  segment_count, le64_to_cpu(raw_super->block_count));
3256 		return -EFSCORRUPTED;
3257 	}
3258 
3259 	if (RDEV(0).path[0]) {
3260 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3261 		int i = 1;
3262 
3263 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3264 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3265 			i++;
3266 		}
3267 		if (segment_count != dev_seg_count) {
3268 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3269 					segment_count, dev_seg_count);
3270 			return -EFSCORRUPTED;
3271 		}
3272 	} else {
3273 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3274 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3275 			f2fs_info(sbi, "Zoned block device path is missing");
3276 			return -EFSCORRUPTED;
3277 		}
3278 	}
3279 
3280 	if (secs_per_zone > total_sections || !secs_per_zone) {
3281 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3282 			  secs_per_zone, total_sections);
3283 		return -EFSCORRUPTED;
3284 	}
3285 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3286 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3287 			(le32_to_cpu(raw_super->extension_count) +
3288 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3289 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3290 			  le32_to_cpu(raw_super->extension_count),
3291 			  raw_super->hot_ext_count,
3292 			  F2FS_MAX_EXTENSION);
3293 		return -EFSCORRUPTED;
3294 	}
3295 
3296 	if (le32_to_cpu(raw_super->cp_payload) >=
3297 				(blocks_per_seg - F2FS_CP_PACKS -
3298 				NR_CURSEG_PERSIST_TYPE)) {
3299 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3300 			  le32_to_cpu(raw_super->cp_payload),
3301 			  blocks_per_seg - F2FS_CP_PACKS -
3302 			  NR_CURSEG_PERSIST_TYPE);
3303 		return -EFSCORRUPTED;
3304 	}
3305 
3306 	/* check reserved ino info */
3307 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3308 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3309 		le32_to_cpu(raw_super->root_ino) != 3) {
3310 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3311 			  le32_to_cpu(raw_super->node_ino),
3312 			  le32_to_cpu(raw_super->meta_ino),
3313 			  le32_to_cpu(raw_super->root_ino));
3314 		return -EFSCORRUPTED;
3315 	}
3316 
3317 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3318 	if (sanity_check_area_boundary(sbi, bh))
3319 		return -EFSCORRUPTED;
3320 
3321 	return 0;
3322 }
3323 
3324 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3325 {
3326 	unsigned int total, fsmeta;
3327 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3328 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3329 	unsigned int ovp_segments, reserved_segments;
3330 	unsigned int main_segs, blocks_per_seg;
3331 	unsigned int sit_segs, nat_segs;
3332 	unsigned int sit_bitmap_size, nat_bitmap_size;
3333 	unsigned int log_blocks_per_seg;
3334 	unsigned int segment_count_main;
3335 	unsigned int cp_pack_start_sum, cp_payload;
3336 	block_t user_block_count, valid_user_blocks;
3337 	block_t avail_node_count, valid_node_count;
3338 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3339 	int i, j;
3340 
3341 	total = le32_to_cpu(raw_super->segment_count);
3342 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3343 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3344 	fsmeta += sit_segs;
3345 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3346 	fsmeta += nat_segs;
3347 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3348 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3349 
3350 	if (unlikely(fsmeta >= total))
3351 		return 1;
3352 
3353 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3354 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3355 
3356 	if (!f2fs_sb_has_readonly(sbi) &&
3357 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3358 			ovp_segments == 0 || reserved_segments == 0)) {
3359 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3360 		return 1;
3361 	}
3362 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3363 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3364 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3365 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3366 	if (!user_block_count || user_block_count >=
3367 			segment_count_main << log_blocks_per_seg) {
3368 		f2fs_err(sbi, "Wrong user_block_count: %u",
3369 			 user_block_count);
3370 		return 1;
3371 	}
3372 
3373 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3374 	if (valid_user_blocks > user_block_count) {
3375 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3376 			 valid_user_blocks, user_block_count);
3377 		return 1;
3378 	}
3379 
3380 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3381 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3382 	if (valid_node_count > avail_node_count) {
3383 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3384 			 valid_node_count, avail_node_count);
3385 		return 1;
3386 	}
3387 
3388 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3389 	blocks_per_seg = sbi->blocks_per_seg;
3390 
3391 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3392 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3393 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3394 			return 1;
3395 
3396 		if (f2fs_sb_has_readonly(sbi))
3397 			goto check_data;
3398 
3399 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3400 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3401 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3402 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3403 					 i, j,
3404 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3405 				return 1;
3406 			}
3407 		}
3408 	}
3409 check_data:
3410 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3411 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3412 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3413 			return 1;
3414 
3415 		if (f2fs_sb_has_readonly(sbi))
3416 			goto skip_cross;
3417 
3418 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3419 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3420 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3421 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3422 					 i, j,
3423 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3424 				return 1;
3425 			}
3426 		}
3427 	}
3428 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3429 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3430 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3431 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3432 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3433 					 i, j,
3434 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3435 				return 1;
3436 			}
3437 		}
3438 	}
3439 skip_cross:
3440 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3441 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3442 
3443 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3444 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3445 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3446 			 sit_bitmap_size, nat_bitmap_size);
3447 		return 1;
3448 	}
3449 
3450 	cp_pack_start_sum = __start_sum_addr(sbi);
3451 	cp_payload = __cp_payload(sbi);
3452 	if (cp_pack_start_sum < cp_payload + 1 ||
3453 		cp_pack_start_sum > blocks_per_seg - 1 -
3454 			NR_CURSEG_PERSIST_TYPE) {
3455 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3456 			 cp_pack_start_sum);
3457 		return 1;
3458 	}
3459 
3460 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3461 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3462 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3463 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3464 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3465 			  le32_to_cpu(ckpt->checksum_offset));
3466 		return 1;
3467 	}
3468 
3469 	nat_blocks = nat_segs << log_blocks_per_seg;
3470 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3471 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3472 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3473 		(cp_payload + F2FS_CP_PACKS +
3474 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3475 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3476 			  cp_payload, nat_bits_blocks);
3477 		return -EFSCORRUPTED;
3478 	}
3479 
3480 	if (unlikely(f2fs_cp_error(sbi))) {
3481 		f2fs_err(sbi, "A bug case: need to run fsck");
3482 		return 1;
3483 	}
3484 	return 0;
3485 }
3486 
3487 static void init_sb_info(struct f2fs_sb_info *sbi)
3488 {
3489 	struct f2fs_super_block *raw_super = sbi->raw_super;
3490 	int i;
3491 
3492 	sbi->log_sectors_per_block =
3493 		le32_to_cpu(raw_super->log_sectors_per_block);
3494 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3495 	sbi->blocksize = 1 << sbi->log_blocksize;
3496 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3497 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3498 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3499 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3500 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3501 	sbi->total_node_count =
3502 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3503 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3504 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3505 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3506 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3507 	sbi->cur_victim_sec = NULL_SECNO;
3508 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3509 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3510 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3511 	sbi->migration_granularity = sbi->segs_per_sec;
3512 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3513 
3514 	sbi->dir_level = DEF_DIR_LEVEL;
3515 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3516 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3517 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3518 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3519 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3520 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3521 				DEF_UMOUNT_DISCARD_TIMEOUT;
3522 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3523 
3524 	for (i = 0; i < NR_COUNT_TYPE; i++)
3525 		atomic_set(&sbi->nr_pages[i], 0);
3526 
3527 	for (i = 0; i < META; i++)
3528 		atomic_set(&sbi->wb_sync_req[i], 0);
3529 
3530 	INIT_LIST_HEAD(&sbi->s_list);
3531 	mutex_init(&sbi->umount_mutex);
3532 	init_rwsem(&sbi->io_order_lock);
3533 	spin_lock_init(&sbi->cp_lock);
3534 
3535 	sbi->dirty_device = 0;
3536 	spin_lock_init(&sbi->dev_lock);
3537 
3538 	init_rwsem(&sbi->sb_lock);
3539 	init_rwsem(&sbi->pin_sem);
3540 }
3541 
3542 static int init_percpu_info(struct f2fs_sb_info *sbi)
3543 {
3544 	int err;
3545 
3546 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3547 	if (err)
3548 		return err;
3549 
3550 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3551 								GFP_KERNEL);
3552 	if (err)
3553 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3554 
3555 	return err;
3556 }
3557 
3558 #ifdef CONFIG_BLK_DEV_ZONED
3559 
3560 struct f2fs_report_zones_args {
3561 	struct f2fs_dev_info *dev;
3562 	bool zone_cap_mismatch;
3563 };
3564 
3565 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3566 			      void *data)
3567 {
3568 	struct f2fs_report_zones_args *rz_args = data;
3569 
3570 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3571 		return 0;
3572 
3573 	set_bit(idx, rz_args->dev->blkz_seq);
3574 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3575 						F2FS_LOG_SECTORS_PER_BLOCK;
3576 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3577 		rz_args->zone_cap_mismatch = true;
3578 
3579 	return 0;
3580 }
3581 
3582 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3583 {
3584 	struct block_device *bdev = FDEV(devi).bdev;
3585 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3586 	struct f2fs_report_zones_args rep_zone_arg;
3587 	int ret;
3588 
3589 	if (!f2fs_sb_has_blkzoned(sbi))
3590 		return 0;
3591 
3592 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3593 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3594 		return -EINVAL;
3595 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3596 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3597 				__ilog2_u32(sbi->blocks_per_blkz))
3598 		return -EINVAL;
3599 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3600 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3601 					sbi->log_blocks_per_blkz;
3602 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3603 		FDEV(devi).nr_blkz++;
3604 
3605 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3606 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3607 					* sizeof(unsigned long),
3608 					GFP_KERNEL);
3609 	if (!FDEV(devi).blkz_seq)
3610 		return -ENOMEM;
3611 
3612 	/* Get block zones type and zone-capacity */
3613 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3614 					FDEV(devi).nr_blkz * sizeof(block_t),
3615 					GFP_KERNEL);
3616 	if (!FDEV(devi).zone_capacity_blocks)
3617 		return -ENOMEM;
3618 
3619 	rep_zone_arg.dev = &FDEV(devi);
3620 	rep_zone_arg.zone_cap_mismatch = false;
3621 
3622 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3623 				  &rep_zone_arg);
3624 	if (ret < 0)
3625 		return ret;
3626 
3627 	if (!rep_zone_arg.zone_cap_mismatch) {
3628 		kfree(FDEV(devi).zone_capacity_blocks);
3629 		FDEV(devi).zone_capacity_blocks = NULL;
3630 	}
3631 
3632 	return 0;
3633 }
3634 #endif
3635 
3636 /*
3637  * Read f2fs raw super block.
3638  * Because we have two copies of super block, so read both of them
3639  * to get the first valid one. If any one of them is broken, we pass
3640  * them recovery flag back to the caller.
3641  */
3642 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3643 			struct f2fs_super_block **raw_super,
3644 			int *valid_super_block, int *recovery)
3645 {
3646 	struct super_block *sb = sbi->sb;
3647 	int block;
3648 	struct buffer_head *bh;
3649 	struct f2fs_super_block *super;
3650 	int err = 0;
3651 
3652 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3653 	if (!super)
3654 		return -ENOMEM;
3655 
3656 	for (block = 0; block < 2; block++) {
3657 		bh = sb_bread(sb, block);
3658 		if (!bh) {
3659 			f2fs_err(sbi, "Unable to read %dth superblock",
3660 				 block + 1);
3661 			err = -EIO;
3662 			*recovery = 1;
3663 			continue;
3664 		}
3665 
3666 		/* sanity checking of raw super */
3667 		err = sanity_check_raw_super(sbi, bh);
3668 		if (err) {
3669 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3670 				 block + 1);
3671 			brelse(bh);
3672 			*recovery = 1;
3673 			continue;
3674 		}
3675 
3676 		if (!*raw_super) {
3677 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3678 							sizeof(*super));
3679 			*valid_super_block = block;
3680 			*raw_super = super;
3681 		}
3682 		brelse(bh);
3683 	}
3684 
3685 	/* No valid superblock */
3686 	if (!*raw_super)
3687 		kfree(super);
3688 	else
3689 		err = 0;
3690 
3691 	return err;
3692 }
3693 
3694 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3695 {
3696 	struct buffer_head *bh;
3697 	__u32 crc = 0;
3698 	int err;
3699 
3700 	if ((recover && f2fs_readonly(sbi->sb)) ||
3701 				bdev_read_only(sbi->sb->s_bdev)) {
3702 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3703 		return -EROFS;
3704 	}
3705 
3706 	/* we should update superblock crc here */
3707 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3708 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3709 				offsetof(struct f2fs_super_block, crc));
3710 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3711 	}
3712 
3713 	/* write back-up superblock first */
3714 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3715 	if (!bh)
3716 		return -EIO;
3717 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3718 	brelse(bh);
3719 
3720 	/* if we are in recovery path, skip writing valid superblock */
3721 	if (recover || err)
3722 		return err;
3723 
3724 	/* write current valid superblock */
3725 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3726 	if (!bh)
3727 		return -EIO;
3728 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3729 	brelse(bh);
3730 	return err;
3731 }
3732 
3733 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3734 {
3735 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3736 	unsigned int max_devices = MAX_DEVICES;
3737 	int i;
3738 
3739 	/* Initialize single device information */
3740 	if (!RDEV(0).path[0]) {
3741 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3742 			return 0;
3743 		max_devices = 1;
3744 	}
3745 
3746 	/*
3747 	 * Initialize multiple devices information, or single
3748 	 * zoned block device information.
3749 	 */
3750 	sbi->devs = f2fs_kzalloc(sbi,
3751 				 array_size(max_devices,
3752 					    sizeof(struct f2fs_dev_info)),
3753 				 GFP_KERNEL);
3754 	if (!sbi->devs)
3755 		return -ENOMEM;
3756 
3757 	for (i = 0; i < max_devices; i++) {
3758 
3759 		if (i > 0 && !RDEV(i).path[0])
3760 			break;
3761 
3762 		if (max_devices == 1) {
3763 			/* Single zoned block device mount */
3764 			FDEV(0).bdev =
3765 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3766 					sbi->sb->s_mode, sbi->sb->s_type);
3767 		} else {
3768 			/* Multi-device mount */
3769 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3770 			FDEV(i).total_segments =
3771 				le32_to_cpu(RDEV(i).total_segments);
3772 			if (i == 0) {
3773 				FDEV(i).start_blk = 0;
3774 				FDEV(i).end_blk = FDEV(i).start_blk +
3775 				    (FDEV(i).total_segments <<
3776 				    sbi->log_blocks_per_seg) - 1 +
3777 				    le32_to_cpu(raw_super->segment0_blkaddr);
3778 			} else {
3779 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3780 				FDEV(i).end_blk = FDEV(i).start_blk +
3781 					(FDEV(i).total_segments <<
3782 					sbi->log_blocks_per_seg) - 1;
3783 			}
3784 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3785 					sbi->sb->s_mode, sbi->sb->s_type);
3786 		}
3787 		if (IS_ERR(FDEV(i).bdev))
3788 			return PTR_ERR(FDEV(i).bdev);
3789 
3790 		/* to release errored devices */
3791 		sbi->s_ndevs = i + 1;
3792 
3793 #ifdef CONFIG_BLK_DEV_ZONED
3794 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3795 				!f2fs_sb_has_blkzoned(sbi)) {
3796 			f2fs_err(sbi, "Zoned block device feature not enabled");
3797 			return -EINVAL;
3798 		}
3799 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3800 			if (init_blkz_info(sbi, i)) {
3801 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3802 				return -EINVAL;
3803 			}
3804 			if (max_devices == 1)
3805 				break;
3806 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3807 				  i, FDEV(i).path,
3808 				  FDEV(i).total_segments,
3809 				  FDEV(i).start_blk, FDEV(i).end_blk,
3810 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3811 				  "Host-aware" : "Host-managed");
3812 			continue;
3813 		}
3814 #endif
3815 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3816 			  i, FDEV(i).path,
3817 			  FDEV(i).total_segments,
3818 			  FDEV(i).start_blk, FDEV(i).end_blk);
3819 	}
3820 	f2fs_info(sbi,
3821 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3822 	return 0;
3823 }
3824 
3825 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3826 {
3827 #ifdef CONFIG_UNICODE
3828 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3829 		const struct f2fs_sb_encodings *encoding_info;
3830 		struct unicode_map *encoding;
3831 		__u16 encoding_flags;
3832 
3833 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3834 					  &encoding_flags)) {
3835 			f2fs_err(sbi,
3836 				 "Encoding requested by superblock is unknown");
3837 			return -EINVAL;
3838 		}
3839 
3840 		encoding = utf8_load(encoding_info->version);
3841 		if (IS_ERR(encoding)) {
3842 			f2fs_err(sbi,
3843 				 "can't mount with superblock charset: %s-%s "
3844 				 "not supported by the kernel. flags: 0x%x.",
3845 				 encoding_info->name, encoding_info->version,
3846 				 encoding_flags);
3847 			return PTR_ERR(encoding);
3848 		}
3849 		f2fs_info(sbi, "Using encoding defined by superblock: "
3850 			 "%s-%s with flags 0x%hx", encoding_info->name,
3851 			 encoding_info->version?:"\b", encoding_flags);
3852 
3853 		sbi->sb->s_encoding = encoding;
3854 		sbi->sb->s_encoding_flags = encoding_flags;
3855 	}
3856 #else
3857 	if (f2fs_sb_has_casefold(sbi)) {
3858 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3859 		return -EINVAL;
3860 	}
3861 #endif
3862 	return 0;
3863 }
3864 
3865 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3866 {
3867 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3868 
3869 	/* adjust parameters according to the volume size */
3870 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3871 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3872 		if (f2fs_block_unit_discard(sbi))
3873 			sm_i->dcc_info->discard_granularity = 1;
3874 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3875 	}
3876 
3877 	sbi->readdir_ra = 1;
3878 }
3879 
3880 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3881 {
3882 	struct f2fs_sb_info *sbi;
3883 	struct f2fs_super_block *raw_super;
3884 	struct inode *root;
3885 	int err;
3886 	bool skip_recovery = false, need_fsck = false;
3887 	char *options = NULL;
3888 	int recovery, i, valid_super_block;
3889 	struct curseg_info *seg_i;
3890 	int retry_cnt = 1;
3891 
3892 try_onemore:
3893 	err = -EINVAL;
3894 	raw_super = NULL;
3895 	valid_super_block = -1;
3896 	recovery = 0;
3897 
3898 	/* allocate memory for f2fs-specific super block info */
3899 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3900 	if (!sbi)
3901 		return -ENOMEM;
3902 
3903 	sbi->sb = sb;
3904 
3905 	/* Load the checksum driver */
3906 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3907 	if (IS_ERR(sbi->s_chksum_driver)) {
3908 		f2fs_err(sbi, "Cannot load crc32 driver.");
3909 		err = PTR_ERR(sbi->s_chksum_driver);
3910 		sbi->s_chksum_driver = NULL;
3911 		goto free_sbi;
3912 	}
3913 
3914 	/* set a block size */
3915 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3916 		f2fs_err(sbi, "unable to set blocksize");
3917 		goto free_sbi;
3918 	}
3919 
3920 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3921 								&recovery);
3922 	if (err)
3923 		goto free_sbi;
3924 
3925 	sb->s_fs_info = sbi;
3926 	sbi->raw_super = raw_super;
3927 
3928 	/* precompute checksum seed for metadata */
3929 	if (f2fs_sb_has_inode_chksum(sbi))
3930 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3931 						sizeof(raw_super->uuid));
3932 
3933 	default_options(sbi);
3934 	/* parse mount options */
3935 	options = kstrdup((const char *)data, GFP_KERNEL);
3936 	if (data && !options) {
3937 		err = -ENOMEM;
3938 		goto free_sb_buf;
3939 	}
3940 
3941 	err = parse_options(sb, options, false);
3942 	if (err)
3943 		goto free_options;
3944 
3945 	sb->s_maxbytes = max_file_blocks(NULL) <<
3946 				le32_to_cpu(raw_super->log_blocksize);
3947 	sb->s_max_links = F2FS_LINK_MAX;
3948 
3949 	err = f2fs_setup_casefold(sbi);
3950 	if (err)
3951 		goto free_options;
3952 
3953 #ifdef CONFIG_QUOTA
3954 	sb->dq_op = &f2fs_quota_operations;
3955 	sb->s_qcop = &f2fs_quotactl_ops;
3956 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3957 
3958 	if (f2fs_sb_has_quota_ino(sbi)) {
3959 		for (i = 0; i < MAXQUOTAS; i++) {
3960 			if (f2fs_qf_ino(sbi->sb, i))
3961 				sbi->nquota_files++;
3962 		}
3963 	}
3964 #endif
3965 
3966 	sb->s_op = &f2fs_sops;
3967 #ifdef CONFIG_FS_ENCRYPTION
3968 	sb->s_cop = &f2fs_cryptops;
3969 #endif
3970 #ifdef CONFIG_FS_VERITY
3971 	sb->s_vop = &f2fs_verityops;
3972 #endif
3973 	sb->s_xattr = f2fs_xattr_handlers;
3974 	sb->s_export_op = &f2fs_export_ops;
3975 	sb->s_magic = F2FS_SUPER_MAGIC;
3976 	sb->s_time_gran = 1;
3977 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3978 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3979 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3980 	sb->s_iflags |= SB_I_CGROUPWB;
3981 
3982 	/* init f2fs-specific super block info */
3983 	sbi->valid_super_block = valid_super_block;
3984 	init_rwsem(&sbi->gc_lock);
3985 	mutex_init(&sbi->writepages);
3986 	init_rwsem(&sbi->cp_global_sem);
3987 	init_rwsem(&sbi->node_write);
3988 	init_rwsem(&sbi->node_change);
3989 
3990 	/* disallow all the data/node/meta page writes */
3991 	set_sbi_flag(sbi, SBI_POR_DOING);
3992 	spin_lock_init(&sbi->stat_lock);
3993 
3994 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3995 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
3996 		int j;
3997 
3998 		sbi->write_io[i] =
3999 			f2fs_kmalloc(sbi,
4000 				     array_size(n,
4001 						sizeof(struct f2fs_bio_info)),
4002 				     GFP_KERNEL);
4003 		if (!sbi->write_io[i]) {
4004 			err = -ENOMEM;
4005 			goto free_bio_info;
4006 		}
4007 
4008 		for (j = HOT; j < n; j++) {
4009 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
4010 			sbi->write_io[i][j].sbi = sbi;
4011 			sbi->write_io[i][j].bio = NULL;
4012 			spin_lock_init(&sbi->write_io[i][j].io_lock);
4013 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
4014 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
4015 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
4016 		}
4017 	}
4018 
4019 	init_rwsem(&sbi->cp_rwsem);
4020 	init_rwsem(&sbi->quota_sem);
4021 	init_waitqueue_head(&sbi->cp_wait);
4022 	init_sb_info(sbi);
4023 
4024 	err = f2fs_init_iostat(sbi);
4025 	if (err)
4026 		goto free_bio_info;
4027 
4028 	err = init_percpu_info(sbi);
4029 	if (err)
4030 		goto free_iostat;
4031 
4032 	if (F2FS_IO_ALIGNED(sbi)) {
4033 		sbi->write_io_dummy =
4034 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4035 		if (!sbi->write_io_dummy) {
4036 			err = -ENOMEM;
4037 			goto free_percpu;
4038 		}
4039 	}
4040 
4041 	/* init per sbi slab cache */
4042 	err = f2fs_init_xattr_caches(sbi);
4043 	if (err)
4044 		goto free_io_dummy;
4045 	err = f2fs_init_page_array_cache(sbi);
4046 	if (err)
4047 		goto free_xattr_cache;
4048 
4049 	/* get an inode for meta space */
4050 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4051 	if (IS_ERR(sbi->meta_inode)) {
4052 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4053 		err = PTR_ERR(sbi->meta_inode);
4054 		goto free_page_array_cache;
4055 	}
4056 
4057 	err = f2fs_get_valid_checkpoint(sbi);
4058 	if (err) {
4059 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4060 		goto free_meta_inode;
4061 	}
4062 
4063 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4064 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4065 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4066 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4067 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4068 	}
4069 
4070 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4071 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4072 
4073 	/* Initialize device list */
4074 	err = f2fs_scan_devices(sbi);
4075 	if (err) {
4076 		f2fs_err(sbi, "Failed to find devices");
4077 		goto free_devices;
4078 	}
4079 
4080 	err = f2fs_init_post_read_wq(sbi);
4081 	if (err) {
4082 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4083 		goto free_devices;
4084 	}
4085 
4086 	sbi->total_valid_node_count =
4087 				le32_to_cpu(sbi->ckpt->valid_node_count);
4088 	percpu_counter_set(&sbi->total_valid_inode_count,
4089 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4090 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4091 	sbi->total_valid_block_count =
4092 				le64_to_cpu(sbi->ckpt->valid_block_count);
4093 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4094 	sbi->reserved_blocks = 0;
4095 	sbi->current_reserved_blocks = 0;
4096 	limit_reserve_root(sbi);
4097 	adjust_unusable_cap_perc(sbi);
4098 
4099 	for (i = 0; i < NR_INODE_TYPE; i++) {
4100 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4101 		spin_lock_init(&sbi->inode_lock[i]);
4102 	}
4103 	mutex_init(&sbi->flush_lock);
4104 
4105 	f2fs_init_extent_cache_info(sbi);
4106 
4107 	f2fs_init_ino_entry_info(sbi);
4108 
4109 	f2fs_init_fsync_node_info(sbi);
4110 
4111 	/* setup checkpoint request control and start checkpoint issue thread */
4112 	f2fs_init_ckpt_req_control(sbi);
4113 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4114 			test_opt(sbi, MERGE_CHECKPOINT)) {
4115 		err = f2fs_start_ckpt_thread(sbi);
4116 		if (err) {
4117 			f2fs_err(sbi,
4118 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4119 			    err);
4120 			goto stop_ckpt_thread;
4121 		}
4122 	}
4123 
4124 	/* setup f2fs internal modules */
4125 	err = f2fs_build_segment_manager(sbi);
4126 	if (err) {
4127 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4128 			 err);
4129 		goto free_sm;
4130 	}
4131 	err = f2fs_build_node_manager(sbi);
4132 	if (err) {
4133 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4134 			 err);
4135 		goto free_nm;
4136 	}
4137 
4138 	/* For write statistics */
4139 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4140 
4141 	/* Read accumulated write IO statistics if exists */
4142 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4143 	if (__exist_node_summaries(sbi))
4144 		sbi->kbytes_written =
4145 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4146 
4147 	f2fs_build_gc_manager(sbi);
4148 
4149 	err = f2fs_build_stats(sbi);
4150 	if (err)
4151 		goto free_nm;
4152 
4153 	/* get an inode for node space */
4154 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4155 	if (IS_ERR(sbi->node_inode)) {
4156 		f2fs_err(sbi, "Failed to read node inode");
4157 		err = PTR_ERR(sbi->node_inode);
4158 		goto free_stats;
4159 	}
4160 
4161 	/* read root inode and dentry */
4162 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4163 	if (IS_ERR(root)) {
4164 		f2fs_err(sbi, "Failed to read root inode");
4165 		err = PTR_ERR(root);
4166 		goto free_node_inode;
4167 	}
4168 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4169 			!root->i_size || !root->i_nlink) {
4170 		iput(root);
4171 		err = -EINVAL;
4172 		goto free_node_inode;
4173 	}
4174 
4175 	sb->s_root = d_make_root(root); /* allocate root dentry */
4176 	if (!sb->s_root) {
4177 		err = -ENOMEM;
4178 		goto free_node_inode;
4179 	}
4180 
4181 	err = f2fs_init_compress_inode(sbi);
4182 	if (err)
4183 		goto free_root_inode;
4184 
4185 	err = f2fs_register_sysfs(sbi);
4186 	if (err)
4187 		goto free_compress_inode;
4188 
4189 #ifdef CONFIG_QUOTA
4190 	/* Enable quota usage during mount */
4191 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4192 		err = f2fs_enable_quotas(sb);
4193 		if (err)
4194 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4195 	}
4196 #endif
4197 	/* if there are any orphan inodes, free them */
4198 	err = f2fs_recover_orphan_inodes(sbi);
4199 	if (err)
4200 		goto free_meta;
4201 
4202 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4203 		goto reset_checkpoint;
4204 
4205 	/* recover fsynced data */
4206 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4207 			!test_opt(sbi, NORECOVERY)) {
4208 		/*
4209 		 * mount should be failed, when device has readonly mode, and
4210 		 * previous checkpoint was not done by clean system shutdown.
4211 		 */
4212 		if (f2fs_hw_is_readonly(sbi)) {
4213 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4214 				err = f2fs_recover_fsync_data(sbi, true);
4215 				if (err > 0) {
4216 					err = -EROFS;
4217 					f2fs_err(sbi, "Need to recover fsync data, but "
4218 						"write access unavailable, please try "
4219 						"mount w/ disable_roll_forward or norecovery");
4220 				}
4221 				if (err < 0)
4222 					goto free_meta;
4223 			}
4224 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4225 			goto reset_checkpoint;
4226 		}
4227 
4228 		if (need_fsck)
4229 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4230 
4231 		if (skip_recovery)
4232 			goto reset_checkpoint;
4233 
4234 		err = f2fs_recover_fsync_data(sbi, false);
4235 		if (err < 0) {
4236 			if (err != -ENOMEM)
4237 				skip_recovery = true;
4238 			need_fsck = true;
4239 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4240 				 err);
4241 			goto free_meta;
4242 		}
4243 	} else {
4244 		err = f2fs_recover_fsync_data(sbi, true);
4245 
4246 		if (!f2fs_readonly(sb) && err > 0) {
4247 			err = -EINVAL;
4248 			f2fs_err(sbi, "Need to recover fsync data");
4249 			goto free_meta;
4250 		}
4251 	}
4252 
4253 	/*
4254 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4255 	 * check zoned block devices' write pointer consistency.
4256 	 */
4257 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4258 		err = f2fs_check_write_pointer(sbi);
4259 		if (err)
4260 			goto free_meta;
4261 	}
4262 
4263 reset_checkpoint:
4264 	f2fs_init_inmem_curseg(sbi);
4265 
4266 	/* f2fs_recover_fsync_data() cleared this already */
4267 	clear_sbi_flag(sbi, SBI_POR_DOING);
4268 
4269 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4270 		err = f2fs_disable_checkpoint(sbi);
4271 		if (err)
4272 			goto sync_free_meta;
4273 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4274 		f2fs_enable_checkpoint(sbi);
4275 	}
4276 
4277 	/*
4278 	 * If filesystem is not mounted as read-only then
4279 	 * do start the gc_thread.
4280 	 */
4281 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4282 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4283 		/* After POR, we can run background GC thread.*/
4284 		err = f2fs_start_gc_thread(sbi);
4285 		if (err)
4286 			goto sync_free_meta;
4287 	}
4288 	kvfree(options);
4289 
4290 	/* recover broken superblock */
4291 	if (recovery) {
4292 		err = f2fs_commit_super(sbi, true);
4293 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4294 			  sbi->valid_super_block ? 1 : 2, err);
4295 	}
4296 
4297 	f2fs_join_shrinker(sbi);
4298 
4299 	f2fs_tuning_parameters(sbi);
4300 
4301 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4302 		    cur_cp_version(F2FS_CKPT(sbi)));
4303 	f2fs_update_time(sbi, CP_TIME);
4304 	f2fs_update_time(sbi, REQ_TIME);
4305 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4306 	return 0;
4307 
4308 sync_free_meta:
4309 	/* safe to flush all the data */
4310 	sync_filesystem(sbi->sb);
4311 	retry_cnt = 0;
4312 
4313 free_meta:
4314 #ifdef CONFIG_QUOTA
4315 	f2fs_truncate_quota_inode_pages(sb);
4316 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4317 		f2fs_quota_off_umount(sbi->sb);
4318 #endif
4319 	/*
4320 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4321 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4322 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4323 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4324 	 */
4325 	truncate_inode_pages_final(META_MAPPING(sbi));
4326 	/* evict some inodes being cached by GC */
4327 	evict_inodes(sb);
4328 	f2fs_unregister_sysfs(sbi);
4329 free_compress_inode:
4330 	f2fs_destroy_compress_inode(sbi);
4331 free_root_inode:
4332 	dput(sb->s_root);
4333 	sb->s_root = NULL;
4334 free_node_inode:
4335 	f2fs_release_ino_entry(sbi, true);
4336 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4337 	iput(sbi->node_inode);
4338 	sbi->node_inode = NULL;
4339 free_stats:
4340 	f2fs_destroy_stats(sbi);
4341 free_nm:
4342 	f2fs_destroy_node_manager(sbi);
4343 free_sm:
4344 	f2fs_destroy_segment_manager(sbi);
4345 	f2fs_destroy_post_read_wq(sbi);
4346 stop_ckpt_thread:
4347 	f2fs_stop_ckpt_thread(sbi);
4348 free_devices:
4349 	destroy_device_list(sbi);
4350 	kvfree(sbi->ckpt);
4351 free_meta_inode:
4352 	make_bad_inode(sbi->meta_inode);
4353 	iput(sbi->meta_inode);
4354 	sbi->meta_inode = NULL;
4355 free_page_array_cache:
4356 	f2fs_destroy_page_array_cache(sbi);
4357 free_xattr_cache:
4358 	f2fs_destroy_xattr_caches(sbi);
4359 free_io_dummy:
4360 	mempool_destroy(sbi->write_io_dummy);
4361 free_percpu:
4362 	destroy_percpu_info(sbi);
4363 free_iostat:
4364 	f2fs_destroy_iostat(sbi);
4365 free_bio_info:
4366 	for (i = 0; i < NR_PAGE_TYPE; i++)
4367 		kvfree(sbi->write_io[i]);
4368 
4369 #ifdef CONFIG_UNICODE
4370 	utf8_unload(sb->s_encoding);
4371 	sb->s_encoding = NULL;
4372 #endif
4373 free_options:
4374 #ifdef CONFIG_QUOTA
4375 	for (i = 0; i < MAXQUOTAS; i++)
4376 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4377 #endif
4378 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4379 	kvfree(options);
4380 free_sb_buf:
4381 	kfree(raw_super);
4382 free_sbi:
4383 	if (sbi->s_chksum_driver)
4384 		crypto_free_shash(sbi->s_chksum_driver);
4385 	kfree(sbi);
4386 
4387 	/* give only one another chance */
4388 	if (retry_cnt > 0 && skip_recovery) {
4389 		retry_cnt--;
4390 		shrink_dcache_sb(sb);
4391 		goto try_onemore;
4392 	}
4393 	return err;
4394 }
4395 
4396 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4397 			const char *dev_name, void *data)
4398 {
4399 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4400 }
4401 
4402 static void kill_f2fs_super(struct super_block *sb)
4403 {
4404 	if (sb->s_root) {
4405 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4406 
4407 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4408 		f2fs_stop_gc_thread(sbi);
4409 		f2fs_stop_discard_thread(sbi);
4410 
4411 #ifdef CONFIG_F2FS_FS_COMPRESSION
4412 		/*
4413 		 * latter evict_inode() can bypass checking and invalidating
4414 		 * compress inode cache.
4415 		 */
4416 		if (test_opt(sbi, COMPRESS_CACHE))
4417 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4418 #endif
4419 
4420 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4421 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4422 			struct cp_control cpc = {
4423 				.reason = CP_UMOUNT,
4424 			};
4425 			f2fs_write_checkpoint(sbi, &cpc);
4426 		}
4427 
4428 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4429 			sb->s_flags &= ~SB_RDONLY;
4430 	}
4431 	kill_block_super(sb);
4432 }
4433 
4434 static struct file_system_type f2fs_fs_type = {
4435 	.owner		= THIS_MODULE,
4436 	.name		= "f2fs",
4437 	.mount		= f2fs_mount,
4438 	.kill_sb	= kill_f2fs_super,
4439 	.fs_flags	= FS_REQUIRES_DEV,
4440 };
4441 MODULE_ALIAS_FS("f2fs");
4442 
4443 static int __init init_inodecache(void)
4444 {
4445 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4446 			sizeof(struct f2fs_inode_info), 0,
4447 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4448 	if (!f2fs_inode_cachep)
4449 		return -ENOMEM;
4450 	return 0;
4451 }
4452 
4453 static void destroy_inodecache(void)
4454 {
4455 	/*
4456 	 * Make sure all delayed rcu free inodes are flushed before we
4457 	 * destroy cache.
4458 	 */
4459 	rcu_barrier();
4460 	kmem_cache_destroy(f2fs_inode_cachep);
4461 }
4462 
4463 static int __init init_f2fs_fs(void)
4464 {
4465 	int err;
4466 
4467 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4468 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4469 				PAGE_SIZE, F2FS_BLKSIZE);
4470 		return -EINVAL;
4471 	}
4472 
4473 	err = init_inodecache();
4474 	if (err)
4475 		goto fail;
4476 	err = f2fs_create_node_manager_caches();
4477 	if (err)
4478 		goto free_inodecache;
4479 	err = f2fs_create_segment_manager_caches();
4480 	if (err)
4481 		goto free_node_manager_caches;
4482 	err = f2fs_create_checkpoint_caches();
4483 	if (err)
4484 		goto free_segment_manager_caches;
4485 	err = f2fs_create_recovery_cache();
4486 	if (err)
4487 		goto free_checkpoint_caches;
4488 	err = f2fs_create_extent_cache();
4489 	if (err)
4490 		goto free_recovery_cache;
4491 	err = f2fs_create_garbage_collection_cache();
4492 	if (err)
4493 		goto free_extent_cache;
4494 	err = f2fs_init_sysfs();
4495 	if (err)
4496 		goto free_garbage_collection_cache;
4497 	err = register_shrinker(&f2fs_shrinker_info);
4498 	if (err)
4499 		goto free_sysfs;
4500 	err = register_filesystem(&f2fs_fs_type);
4501 	if (err)
4502 		goto free_shrinker;
4503 	f2fs_create_root_stats();
4504 	err = f2fs_init_post_read_processing();
4505 	if (err)
4506 		goto free_root_stats;
4507 	err = f2fs_init_iostat_processing();
4508 	if (err)
4509 		goto free_post_read;
4510 	err = f2fs_init_bio_entry_cache();
4511 	if (err)
4512 		goto free_iostat;
4513 	err = f2fs_init_bioset();
4514 	if (err)
4515 		goto free_bio_enrty_cache;
4516 	err = f2fs_init_compress_mempool();
4517 	if (err)
4518 		goto free_bioset;
4519 	err = f2fs_init_compress_cache();
4520 	if (err)
4521 		goto free_compress_mempool;
4522 	err = f2fs_create_casefold_cache();
4523 	if (err)
4524 		goto free_compress_cache;
4525 	return 0;
4526 free_compress_cache:
4527 	f2fs_destroy_compress_cache();
4528 free_compress_mempool:
4529 	f2fs_destroy_compress_mempool();
4530 free_bioset:
4531 	f2fs_destroy_bioset();
4532 free_bio_enrty_cache:
4533 	f2fs_destroy_bio_entry_cache();
4534 free_iostat:
4535 	f2fs_destroy_iostat_processing();
4536 free_post_read:
4537 	f2fs_destroy_post_read_processing();
4538 free_root_stats:
4539 	f2fs_destroy_root_stats();
4540 	unregister_filesystem(&f2fs_fs_type);
4541 free_shrinker:
4542 	unregister_shrinker(&f2fs_shrinker_info);
4543 free_sysfs:
4544 	f2fs_exit_sysfs();
4545 free_garbage_collection_cache:
4546 	f2fs_destroy_garbage_collection_cache();
4547 free_extent_cache:
4548 	f2fs_destroy_extent_cache();
4549 free_recovery_cache:
4550 	f2fs_destroy_recovery_cache();
4551 free_checkpoint_caches:
4552 	f2fs_destroy_checkpoint_caches();
4553 free_segment_manager_caches:
4554 	f2fs_destroy_segment_manager_caches();
4555 free_node_manager_caches:
4556 	f2fs_destroy_node_manager_caches();
4557 free_inodecache:
4558 	destroy_inodecache();
4559 fail:
4560 	return err;
4561 }
4562 
4563 static void __exit exit_f2fs_fs(void)
4564 {
4565 	f2fs_destroy_casefold_cache();
4566 	f2fs_destroy_compress_cache();
4567 	f2fs_destroy_compress_mempool();
4568 	f2fs_destroy_bioset();
4569 	f2fs_destroy_bio_entry_cache();
4570 	f2fs_destroy_iostat_processing();
4571 	f2fs_destroy_post_read_processing();
4572 	f2fs_destroy_root_stats();
4573 	unregister_filesystem(&f2fs_fs_type);
4574 	unregister_shrinker(&f2fs_shrinker_info);
4575 	f2fs_exit_sysfs();
4576 	f2fs_destroy_garbage_collection_cache();
4577 	f2fs_destroy_extent_cache();
4578 	f2fs_destroy_recovery_cache();
4579 	f2fs_destroy_checkpoint_caches();
4580 	f2fs_destroy_segment_manager_caches();
4581 	f2fs_destroy_node_manager_caches();
4582 	destroy_inodecache();
4583 }
4584 
4585 module_init(init_f2fs_fs)
4586 module_exit(exit_f2fs_fs)
4587 
4588 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4589 MODULE_DESCRIPTION("Flash Friendly File System");
4590 MODULE_LICENSE("GPL");
4591 MODULE_SOFTDEP("pre: crc32");
4592 
4593