1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint_disable, 140 Opt_checkpoint_disable_cap, 141 Opt_checkpoint_disable_cap_perc, 142 Opt_checkpoint_enable, 143 Opt_err, 144 }; 145 146 static match_table_t f2fs_tokens = { 147 {Opt_gc_background, "background_gc=%s"}, 148 {Opt_disable_roll_forward, "disable_roll_forward"}, 149 {Opt_norecovery, "norecovery"}, 150 {Opt_discard, "discard"}, 151 {Opt_nodiscard, "nodiscard"}, 152 {Opt_noheap, "no_heap"}, 153 {Opt_heap, "heap"}, 154 {Opt_user_xattr, "user_xattr"}, 155 {Opt_nouser_xattr, "nouser_xattr"}, 156 {Opt_acl, "acl"}, 157 {Opt_noacl, "noacl"}, 158 {Opt_active_logs, "active_logs=%u"}, 159 {Opt_disable_ext_identify, "disable_ext_identify"}, 160 {Opt_inline_xattr, "inline_xattr"}, 161 {Opt_noinline_xattr, "noinline_xattr"}, 162 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 163 {Opt_inline_data, "inline_data"}, 164 {Opt_inline_dentry, "inline_dentry"}, 165 {Opt_noinline_dentry, "noinline_dentry"}, 166 {Opt_flush_merge, "flush_merge"}, 167 {Opt_noflush_merge, "noflush_merge"}, 168 {Opt_nobarrier, "nobarrier"}, 169 {Opt_fastboot, "fastboot"}, 170 {Opt_extent_cache, "extent_cache"}, 171 {Opt_noextent_cache, "noextent_cache"}, 172 {Opt_noinline_data, "noinline_data"}, 173 {Opt_data_flush, "data_flush"}, 174 {Opt_reserve_root, "reserve_root=%u"}, 175 {Opt_resgid, "resgid=%u"}, 176 {Opt_resuid, "resuid=%u"}, 177 {Opt_mode, "mode=%s"}, 178 {Opt_io_size_bits, "io_bits=%u"}, 179 {Opt_fault_injection, "fault_injection=%u"}, 180 {Opt_fault_type, "fault_type=%u"}, 181 {Opt_lazytime, "lazytime"}, 182 {Opt_nolazytime, "nolazytime"}, 183 {Opt_quota, "quota"}, 184 {Opt_noquota, "noquota"}, 185 {Opt_usrquota, "usrquota"}, 186 {Opt_grpquota, "grpquota"}, 187 {Opt_prjquota, "prjquota"}, 188 {Opt_usrjquota, "usrjquota=%s"}, 189 {Opt_grpjquota, "grpjquota=%s"}, 190 {Opt_prjjquota, "prjjquota=%s"}, 191 {Opt_offusrjquota, "usrjquota="}, 192 {Opt_offgrpjquota, "grpjquota="}, 193 {Opt_offprjjquota, "prjjquota="}, 194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 197 {Opt_whint, "whint_mode=%s"}, 198 {Opt_alloc, "alloc_mode=%s"}, 199 {Opt_fsync, "fsync_mode=%s"}, 200 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 201 {Opt_checkpoint_disable, "checkpoint=disable"}, 202 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 203 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 204 {Opt_checkpoint_enable, "checkpoint=enable"}, 205 {Opt_err, NULL}, 206 }; 207 208 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 209 { 210 struct va_format vaf; 211 va_list args; 212 213 va_start(args, fmt); 214 vaf.fmt = fmt; 215 vaf.va = &args; 216 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 217 va_end(args); 218 } 219 220 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 221 { 222 block_t limit = min((sbi->user_block_count << 1) / 1000, 223 sbi->user_block_count - sbi->reserved_blocks); 224 225 /* limit is 0.2% */ 226 if (test_opt(sbi, RESERVE_ROOT) && 227 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 228 F2FS_OPTION(sbi).root_reserved_blocks = limit; 229 f2fs_msg(sbi->sb, KERN_INFO, 230 "Reduce reserved blocks for root = %u", 231 F2FS_OPTION(sbi).root_reserved_blocks); 232 } 233 if (!test_opt(sbi, RESERVE_ROOT) && 234 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 235 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 236 !gid_eq(F2FS_OPTION(sbi).s_resgid, 237 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 238 f2fs_msg(sbi->sb, KERN_INFO, 239 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 240 from_kuid_munged(&init_user_ns, 241 F2FS_OPTION(sbi).s_resuid), 242 from_kgid_munged(&init_user_ns, 243 F2FS_OPTION(sbi).s_resgid)); 244 } 245 246 static void init_once(void *foo) 247 { 248 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 249 250 inode_init_once(&fi->vfs_inode); 251 } 252 253 #ifdef CONFIG_QUOTA 254 static const char * const quotatypes[] = INITQFNAMES; 255 #define QTYPE2NAME(t) (quotatypes[t]) 256 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 257 substring_t *args) 258 { 259 struct f2fs_sb_info *sbi = F2FS_SB(sb); 260 char *qname; 261 int ret = -EINVAL; 262 263 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 264 f2fs_msg(sb, KERN_ERR, 265 "Cannot change journaled " 266 "quota options when quota turned on"); 267 return -EINVAL; 268 } 269 if (f2fs_sb_has_quota_ino(sbi)) { 270 f2fs_msg(sb, KERN_INFO, 271 "QUOTA feature is enabled, so ignore qf_name"); 272 return 0; 273 } 274 275 qname = match_strdup(args); 276 if (!qname) { 277 f2fs_msg(sb, KERN_ERR, 278 "Not enough memory for storing quotafile name"); 279 return -ENOMEM; 280 } 281 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 282 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 283 ret = 0; 284 else 285 f2fs_msg(sb, KERN_ERR, 286 "%s quota file already specified", 287 QTYPE2NAME(qtype)); 288 goto errout; 289 } 290 if (strchr(qname, '/')) { 291 f2fs_msg(sb, KERN_ERR, 292 "quotafile must be on filesystem root"); 293 goto errout; 294 } 295 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 296 set_opt(sbi, QUOTA); 297 return 0; 298 errout: 299 kvfree(qname); 300 return ret; 301 } 302 303 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 304 { 305 struct f2fs_sb_info *sbi = F2FS_SB(sb); 306 307 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 308 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 309 " when quota turned on"); 310 return -EINVAL; 311 } 312 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 313 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 314 return 0; 315 } 316 317 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 318 { 319 /* 320 * We do the test below only for project quotas. 'usrquota' and 321 * 'grpquota' mount options are allowed even without quota feature 322 * to support legacy quotas in quota files. 323 */ 324 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 325 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 326 "Cannot enable project quota enforcement."); 327 return -1; 328 } 329 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 330 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 331 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 332 if (test_opt(sbi, USRQUOTA) && 333 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 334 clear_opt(sbi, USRQUOTA); 335 336 if (test_opt(sbi, GRPQUOTA) && 337 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 338 clear_opt(sbi, GRPQUOTA); 339 340 if (test_opt(sbi, PRJQUOTA) && 341 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 342 clear_opt(sbi, PRJQUOTA); 343 344 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 345 test_opt(sbi, PRJQUOTA)) { 346 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 347 "format mixing"); 348 return -1; 349 } 350 351 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 353 "not specified"); 354 return -1; 355 } 356 } 357 358 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 359 f2fs_msg(sbi->sb, KERN_INFO, 360 "QUOTA feature is enabled, so ignore jquota_fmt"); 361 F2FS_OPTION(sbi).s_jquota_fmt = 0; 362 } 363 return 0; 364 } 365 #endif 366 367 static int parse_options(struct super_block *sb, char *options) 368 { 369 struct f2fs_sb_info *sbi = F2FS_SB(sb); 370 substring_t args[MAX_OPT_ARGS]; 371 char *p, *name; 372 int arg = 0; 373 kuid_t uid; 374 kgid_t gid; 375 #ifdef CONFIG_QUOTA 376 int ret; 377 #endif 378 379 if (!options) 380 return 0; 381 382 while ((p = strsep(&options, ",")) != NULL) { 383 int token; 384 if (!*p) 385 continue; 386 /* 387 * Initialize args struct so we know whether arg was 388 * found; some options take optional arguments. 389 */ 390 args[0].to = args[0].from = NULL; 391 token = match_token(p, f2fs_tokens, args); 392 393 switch (token) { 394 case Opt_gc_background: 395 name = match_strdup(&args[0]); 396 397 if (!name) 398 return -ENOMEM; 399 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 400 set_opt(sbi, BG_GC); 401 clear_opt(sbi, FORCE_FG_GC); 402 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 403 clear_opt(sbi, BG_GC); 404 clear_opt(sbi, FORCE_FG_GC); 405 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 406 set_opt(sbi, BG_GC); 407 set_opt(sbi, FORCE_FG_GC); 408 } else { 409 kvfree(name); 410 return -EINVAL; 411 } 412 kvfree(name); 413 break; 414 case Opt_disable_roll_forward: 415 set_opt(sbi, DISABLE_ROLL_FORWARD); 416 break; 417 case Opt_norecovery: 418 /* this option mounts f2fs with ro */ 419 set_opt(sbi, DISABLE_ROLL_FORWARD); 420 if (!f2fs_readonly(sb)) 421 return -EINVAL; 422 break; 423 case Opt_discard: 424 set_opt(sbi, DISCARD); 425 break; 426 case Opt_nodiscard: 427 if (f2fs_sb_has_blkzoned(sbi)) { 428 f2fs_msg(sb, KERN_WARNING, 429 "discard is required for zoned block devices"); 430 return -EINVAL; 431 } 432 clear_opt(sbi, DISCARD); 433 break; 434 case Opt_noheap: 435 set_opt(sbi, NOHEAP); 436 break; 437 case Opt_heap: 438 clear_opt(sbi, NOHEAP); 439 break; 440 #ifdef CONFIG_F2FS_FS_XATTR 441 case Opt_user_xattr: 442 set_opt(sbi, XATTR_USER); 443 break; 444 case Opt_nouser_xattr: 445 clear_opt(sbi, XATTR_USER); 446 break; 447 case Opt_inline_xattr: 448 set_opt(sbi, INLINE_XATTR); 449 break; 450 case Opt_noinline_xattr: 451 clear_opt(sbi, INLINE_XATTR); 452 break; 453 case Opt_inline_xattr_size: 454 if (args->from && match_int(args, &arg)) 455 return -EINVAL; 456 set_opt(sbi, INLINE_XATTR_SIZE); 457 F2FS_OPTION(sbi).inline_xattr_size = arg; 458 break; 459 #else 460 case Opt_user_xattr: 461 f2fs_msg(sb, KERN_INFO, 462 "user_xattr options not supported"); 463 break; 464 case Opt_nouser_xattr: 465 f2fs_msg(sb, KERN_INFO, 466 "nouser_xattr options not supported"); 467 break; 468 case Opt_inline_xattr: 469 f2fs_msg(sb, KERN_INFO, 470 "inline_xattr options not supported"); 471 break; 472 case Opt_noinline_xattr: 473 f2fs_msg(sb, KERN_INFO, 474 "noinline_xattr options not supported"); 475 break; 476 #endif 477 #ifdef CONFIG_F2FS_FS_POSIX_ACL 478 case Opt_acl: 479 set_opt(sbi, POSIX_ACL); 480 break; 481 case Opt_noacl: 482 clear_opt(sbi, POSIX_ACL); 483 break; 484 #else 485 case Opt_acl: 486 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 487 break; 488 case Opt_noacl: 489 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 490 break; 491 #endif 492 case Opt_active_logs: 493 if (args->from && match_int(args, &arg)) 494 return -EINVAL; 495 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 496 return -EINVAL; 497 F2FS_OPTION(sbi).active_logs = arg; 498 break; 499 case Opt_disable_ext_identify: 500 set_opt(sbi, DISABLE_EXT_IDENTIFY); 501 break; 502 case Opt_inline_data: 503 set_opt(sbi, INLINE_DATA); 504 break; 505 case Opt_inline_dentry: 506 set_opt(sbi, INLINE_DENTRY); 507 break; 508 case Opt_noinline_dentry: 509 clear_opt(sbi, INLINE_DENTRY); 510 break; 511 case Opt_flush_merge: 512 set_opt(sbi, FLUSH_MERGE); 513 break; 514 case Opt_noflush_merge: 515 clear_opt(sbi, FLUSH_MERGE); 516 break; 517 case Opt_nobarrier: 518 set_opt(sbi, NOBARRIER); 519 break; 520 case Opt_fastboot: 521 set_opt(sbi, FASTBOOT); 522 break; 523 case Opt_extent_cache: 524 set_opt(sbi, EXTENT_CACHE); 525 break; 526 case Opt_noextent_cache: 527 clear_opt(sbi, EXTENT_CACHE); 528 break; 529 case Opt_noinline_data: 530 clear_opt(sbi, INLINE_DATA); 531 break; 532 case Opt_data_flush: 533 set_opt(sbi, DATA_FLUSH); 534 break; 535 case Opt_reserve_root: 536 if (args->from && match_int(args, &arg)) 537 return -EINVAL; 538 if (test_opt(sbi, RESERVE_ROOT)) { 539 f2fs_msg(sb, KERN_INFO, 540 "Preserve previous reserve_root=%u", 541 F2FS_OPTION(sbi).root_reserved_blocks); 542 } else { 543 F2FS_OPTION(sbi).root_reserved_blocks = arg; 544 set_opt(sbi, RESERVE_ROOT); 545 } 546 break; 547 case Opt_resuid: 548 if (args->from && match_int(args, &arg)) 549 return -EINVAL; 550 uid = make_kuid(current_user_ns(), arg); 551 if (!uid_valid(uid)) { 552 f2fs_msg(sb, KERN_ERR, 553 "Invalid uid value %d", arg); 554 return -EINVAL; 555 } 556 F2FS_OPTION(sbi).s_resuid = uid; 557 break; 558 case Opt_resgid: 559 if (args->from && match_int(args, &arg)) 560 return -EINVAL; 561 gid = make_kgid(current_user_ns(), arg); 562 if (!gid_valid(gid)) { 563 f2fs_msg(sb, KERN_ERR, 564 "Invalid gid value %d", arg); 565 return -EINVAL; 566 } 567 F2FS_OPTION(sbi).s_resgid = gid; 568 break; 569 case Opt_mode: 570 name = match_strdup(&args[0]); 571 572 if (!name) 573 return -ENOMEM; 574 if (strlen(name) == 8 && 575 !strncmp(name, "adaptive", 8)) { 576 if (f2fs_sb_has_blkzoned(sbi)) { 577 f2fs_msg(sb, KERN_WARNING, 578 "adaptive mode is not allowed with " 579 "zoned block device feature"); 580 kvfree(name); 581 return -EINVAL; 582 } 583 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 584 } else if (strlen(name) == 3 && 585 !strncmp(name, "lfs", 3)) { 586 set_opt_mode(sbi, F2FS_MOUNT_LFS); 587 } else { 588 kvfree(name); 589 return -EINVAL; 590 } 591 kvfree(name); 592 break; 593 case Opt_io_size_bits: 594 if (args->from && match_int(args, &arg)) 595 return -EINVAL; 596 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 597 f2fs_msg(sb, KERN_WARNING, 598 "Not support %d, larger than %d", 599 1 << arg, BIO_MAX_PAGES); 600 return -EINVAL; 601 } 602 F2FS_OPTION(sbi).write_io_size_bits = arg; 603 break; 604 #ifdef CONFIG_F2FS_FAULT_INJECTION 605 case Opt_fault_injection: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 609 set_opt(sbi, FAULT_INJECTION); 610 break; 611 612 case Opt_fault_type: 613 if (args->from && match_int(args, &arg)) 614 return -EINVAL; 615 f2fs_build_fault_attr(sbi, 0, arg); 616 set_opt(sbi, FAULT_INJECTION); 617 break; 618 #else 619 case Opt_fault_injection: 620 f2fs_msg(sb, KERN_INFO, 621 "fault_injection options not supported"); 622 break; 623 624 case Opt_fault_type: 625 f2fs_msg(sb, KERN_INFO, 626 "fault_type options not supported"); 627 break; 628 #endif 629 case Opt_lazytime: 630 sb->s_flags |= SB_LAZYTIME; 631 break; 632 case Opt_nolazytime: 633 sb->s_flags &= ~SB_LAZYTIME; 634 break; 635 #ifdef CONFIG_QUOTA 636 case Opt_quota: 637 case Opt_usrquota: 638 set_opt(sbi, USRQUOTA); 639 break; 640 case Opt_grpquota: 641 set_opt(sbi, GRPQUOTA); 642 break; 643 case Opt_prjquota: 644 set_opt(sbi, PRJQUOTA); 645 break; 646 case Opt_usrjquota: 647 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 648 if (ret) 649 return ret; 650 break; 651 case Opt_grpjquota: 652 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 653 if (ret) 654 return ret; 655 break; 656 case Opt_prjjquota: 657 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 658 if (ret) 659 return ret; 660 break; 661 case Opt_offusrjquota: 662 ret = f2fs_clear_qf_name(sb, USRQUOTA); 663 if (ret) 664 return ret; 665 break; 666 case Opt_offgrpjquota: 667 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 668 if (ret) 669 return ret; 670 break; 671 case Opt_offprjjquota: 672 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 673 if (ret) 674 return ret; 675 break; 676 case Opt_jqfmt_vfsold: 677 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 678 break; 679 case Opt_jqfmt_vfsv0: 680 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 681 break; 682 case Opt_jqfmt_vfsv1: 683 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 684 break; 685 case Opt_noquota: 686 clear_opt(sbi, QUOTA); 687 clear_opt(sbi, USRQUOTA); 688 clear_opt(sbi, GRPQUOTA); 689 clear_opt(sbi, PRJQUOTA); 690 break; 691 #else 692 case Opt_quota: 693 case Opt_usrquota: 694 case Opt_grpquota: 695 case Opt_prjquota: 696 case Opt_usrjquota: 697 case Opt_grpjquota: 698 case Opt_prjjquota: 699 case Opt_offusrjquota: 700 case Opt_offgrpjquota: 701 case Opt_offprjjquota: 702 case Opt_jqfmt_vfsold: 703 case Opt_jqfmt_vfsv0: 704 case Opt_jqfmt_vfsv1: 705 case Opt_noquota: 706 f2fs_msg(sb, KERN_INFO, 707 "quota operations not supported"); 708 break; 709 #endif 710 case Opt_whint: 711 name = match_strdup(&args[0]); 712 if (!name) 713 return -ENOMEM; 714 if (strlen(name) == 10 && 715 !strncmp(name, "user-based", 10)) { 716 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 717 } else if (strlen(name) == 3 && 718 !strncmp(name, "off", 3)) { 719 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 720 } else if (strlen(name) == 8 && 721 !strncmp(name, "fs-based", 8)) { 722 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 723 } else { 724 kvfree(name); 725 return -EINVAL; 726 } 727 kvfree(name); 728 break; 729 case Opt_alloc: 730 name = match_strdup(&args[0]); 731 if (!name) 732 return -ENOMEM; 733 734 if (strlen(name) == 7 && 735 !strncmp(name, "default", 7)) { 736 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 737 } else if (strlen(name) == 5 && 738 !strncmp(name, "reuse", 5)) { 739 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 740 } else { 741 kvfree(name); 742 return -EINVAL; 743 } 744 kvfree(name); 745 break; 746 case Opt_fsync: 747 name = match_strdup(&args[0]); 748 if (!name) 749 return -ENOMEM; 750 if (strlen(name) == 5 && 751 !strncmp(name, "posix", 5)) { 752 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 753 } else if (strlen(name) == 6 && 754 !strncmp(name, "strict", 6)) { 755 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 756 } else if (strlen(name) == 9 && 757 !strncmp(name, "nobarrier", 9)) { 758 F2FS_OPTION(sbi).fsync_mode = 759 FSYNC_MODE_NOBARRIER; 760 } else { 761 kvfree(name); 762 return -EINVAL; 763 } 764 kvfree(name); 765 break; 766 case Opt_test_dummy_encryption: 767 #ifdef CONFIG_FS_ENCRYPTION 768 if (!f2fs_sb_has_encrypt(sbi)) { 769 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 770 return -EINVAL; 771 } 772 773 F2FS_OPTION(sbi).test_dummy_encryption = true; 774 f2fs_msg(sb, KERN_INFO, 775 "Test dummy encryption mode enabled"); 776 #else 777 f2fs_msg(sb, KERN_INFO, 778 "Test dummy encryption mount option ignored"); 779 #endif 780 break; 781 case Opt_checkpoint_disable_cap_perc: 782 if (args->from && match_int(args, &arg)) 783 return -EINVAL; 784 if (arg < 0 || arg > 100) 785 return -EINVAL; 786 if (arg == 100) 787 F2FS_OPTION(sbi).unusable_cap = 788 sbi->user_block_count; 789 else 790 F2FS_OPTION(sbi).unusable_cap = 791 (sbi->user_block_count / 100) * arg; 792 set_opt(sbi, DISABLE_CHECKPOINT); 793 break; 794 case Opt_checkpoint_disable_cap: 795 if (args->from && match_int(args, &arg)) 796 return -EINVAL; 797 F2FS_OPTION(sbi).unusable_cap = arg; 798 set_opt(sbi, DISABLE_CHECKPOINT); 799 break; 800 case Opt_checkpoint_disable: 801 set_opt(sbi, DISABLE_CHECKPOINT); 802 break; 803 case Opt_checkpoint_enable: 804 clear_opt(sbi, DISABLE_CHECKPOINT); 805 break; 806 default: 807 f2fs_msg(sb, KERN_ERR, 808 "Unrecognized mount option \"%s\" or missing value", 809 p); 810 return -EINVAL; 811 } 812 } 813 #ifdef CONFIG_QUOTA 814 if (f2fs_check_quota_options(sbi)) 815 return -EINVAL; 816 #else 817 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 818 f2fs_msg(sbi->sb, KERN_INFO, 819 "Filesystem with quota feature cannot be mounted RDWR " 820 "without CONFIG_QUOTA"); 821 return -EINVAL; 822 } 823 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 824 f2fs_msg(sb, KERN_ERR, 825 "Filesystem with project quota feature cannot be " 826 "mounted RDWR without CONFIG_QUOTA"); 827 return -EINVAL; 828 } 829 #endif 830 831 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 832 f2fs_msg(sb, KERN_ERR, 833 "Should set mode=lfs with %uKB-sized IO", 834 F2FS_IO_SIZE_KB(sbi)); 835 return -EINVAL; 836 } 837 838 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 839 int min_size, max_size; 840 841 if (!f2fs_sb_has_extra_attr(sbi) || 842 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 843 f2fs_msg(sb, KERN_ERR, 844 "extra_attr or flexible_inline_xattr " 845 "feature is off"); 846 return -EINVAL; 847 } 848 if (!test_opt(sbi, INLINE_XATTR)) { 849 f2fs_msg(sb, KERN_ERR, 850 "inline_xattr_size option should be " 851 "set with inline_xattr option"); 852 return -EINVAL; 853 } 854 855 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 856 max_size = MAX_INLINE_XATTR_SIZE; 857 858 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 859 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 860 f2fs_msg(sb, KERN_ERR, 861 "inline xattr size is out of range: %d ~ %d", 862 min_size, max_size); 863 return -EINVAL; 864 } 865 } 866 867 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 868 f2fs_msg(sb, KERN_ERR, 869 "LFS not compatible with checkpoint=disable\n"); 870 return -EINVAL; 871 } 872 873 /* Not pass down write hints if the number of active logs is lesser 874 * than NR_CURSEG_TYPE. 875 */ 876 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 877 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 878 return 0; 879 } 880 881 static struct inode *f2fs_alloc_inode(struct super_block *sb) 882 { 883 struct f2fs_inode_info *fi; 884 885 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 886 if (!fi) 887 return NULL; 888 889 init_once((void *) fi); 890 891 /* Initialize f2fs-specific inode info */ 892 atomic_set(&fi->dirty_pages, 0); 893 init_rwsem(&fi->i_sem); 894 INIT_LIST_HEAD(&fi->dirty_list); 895 INIT_LIST_HEAD(&fi->gdirty_list); 896 INIT_LIST_HEAD(&fi->inmem_ilist); 897 INIT_LIST_HEAD(&fi->inmem_pages); 898 mutex_init(&fi->inmem_lock); 899 init_rwsem(&fi->i_gc_rwsem[READ]); 900 init_rwsem(&fi->i_gc_rwsem[WRITE]); 901 init_rwsem(&fi->i_mmap_sem); 902 init_rwsem(&fi->i_xattr_sem); 903 904 /* Will be used by directory only */ 905 fi->i_dir_level = F2FS_SB(sb)->dir_level; 906 907 return &fi->vfs_inode; 908 } 909 910 static int f2fs_drop_inode(struct inode *inode) 911 { 912 int ret; 913 /* 914 * This is to avoid a deadlock condition like below. 915 * writeback_single_inode(inode) 916 * - f2fs_write_data_page 917 * - f2fs_gc -> iput -> evict 918 * - inode_wait_for_writeback(inode) 919 */ 920 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 921 if (!inode->i_nlink && !is_bad_inode(inode)) { 922 /* to avoid evict_inode call simultaneously */ 923 atomic_inc(&inode->i_count); 924 spin_unlock(&inode->i_lock); 925 926 /* some remained atomic pages should discarded */ 927 if (f2fs_is_atomic_file(inode)) 928 f2fs_drop_inmem_pages(inode); 929 930 /* should remain fi->extent_tree for writepage */ 931 f2fs_destroy_extent_node(inode); 932 933 sb_start_intwrite(inode->i_sb); 934 f2fs_i_size_write(inode, 0); 935 936 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 937 inode, NULL, 0, DATA); 938 truncate_inode_pages_final(inode->i_mapping); 939 940 if (F2FS_HAS_BLOCKS(inode)) 941 f2fs_truncate(inode); 942 943 sb_end_intwrite(inode->i_sb); 944 945 spin_lock(&inode->i_lock); 946 atomic_dec(&inode->i_count); 947 } 948 trace_f2fs_drop_inode(inode, 0); 949 return 0; 950 } 951 ret = generic_drop_inode(inode); 952 trace_f2fs_drop_inode(inode, ret); 953 return ret; 954 } 955 956 int f2fs_inode_dirtied(struct inode *inode, bool sync) 957 { 958 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 959 int ret = 0; 960 961 spin_lock(&sbi->inode_lock[DIRTY_META]); 962 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 963 ret = 1; 964 } else { 965 set_inode_flag(inode, FI_DIRTY_INODE); 966 stat_inc_dirty_inode(sbi, DIRTY_META); 967 } 968 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 969 list_add_tail(&F2FS_I(inode)->gdirty_list, 970 &sbi->inode_list[DIRTY_META]); 971 inc_page_count(sbi, F2FS_DIRTY_IMETA); 972 } 973 spin_unlock(&sbi->inode_lock[DIRTY_META]); 974 return ret; 975 } 976 977 void f2fs_inode_synced(struct inode *inode) 978 { 979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 980 981 spin_lock(&sbi->inode_lock[DIRTY_META]); 982 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 983 spin_unlock(&sbi->inode_lock[DIRTY_META]); 984 return; 985 } 986 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 987 list_del_init(&F2FS_I(inode)->gdirty_list); 988 dec_page_count(sbi, F2FS_DIRTY_IMETA); 989 } 990 clear_inode_flag(inode, FI_DIRTY_INODE); 991 clear_inode_flag(inode, FI_AUTO_RECOVER); 992 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 993 spin_unlock(&sbi->inode_lock[DIRTY_META]); 994 } 995 996 /* 997 * f2fs_dirty_inode() is called from __mark_inode_dirty() 998 * 999 * We should call set_dirty_inode to write the dirty inode through write_inode. 1000 */ 1001 static void f2fs_dirty_inode(struct inode *inode, int flags) 1002 { 1003 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1004 1005 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1006 inode->i_ino == F2FS_META_INO(sbi)) 1007 return; 1008 1009 if (flags == I_DIRTY_TIME) 1010 return; 1011 1012 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1013 clear_inode_flag(inode, FI_AUTO_RECOVER); 1014 1015 f2fs_inode_dirtied(inode, false); 1016 } 1017 1018 static void f2fs_free_inode(struct inode *inode) 1019 { 1020 fscrypt_free_inode(inode); 1021 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1022 } 1023 1024 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1025 { 1026 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1027 percpu_counter_destroy(&sbi->total_valid_inode_count); 1028 } 1029 1030 static void destroy_device_list(struct f2fs_sb_info *sbi) 1031 { 1032 int i; 1033 1034 for (i = 0; i < sbi->s_ndevs; i++) { 1035 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1036 #ifdef CONFIG_BLK_DEV_ZONED 1037 kvfree(FDEV(i).blkz_seq); 1038 #endif 1039 } 1040 kvfree(sbi->devs); 1041 } 1042 1043 static void f2fs_put_super(struct super_block *sb) 1044 { 1045 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1046 int i; 1047 bool dropped; 1048 1049 f2fs_quota_off_umount(sb); 1050 1051 /* prevent remaining shrinker jobs */ 1052 mutex_lock(&sbi->umount_mutex); 1053 1054 /* 1055 * We don't need to do checkpoint when superblock is clean. 1056 * But, the previous checkpoint was not done by umount, it needs to do 1057 * clean checkpoint again. 1058 */ 1059 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1060 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1061 struct cp_control cpc = { 1062 .reason = CP_UMOUNT, 1063 }; 1064 f2fs_write_checkpoint(sbi, &cpc); 1065 } 1066 1067 /* be sure to wait for any on-going discard commands */ 1068 dropped = f2fs_issue_discard_timeout(sbi); 1069 1070 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1071 !sbi->discard_blks && !dropped) { 1072 struct cp_control cpc = { 1073 .reason = CP_UMOUNT | CP_TRIMMED, 1074 }; 1075 f2fs_write_checkpoint(sbi, &cpc); 1076 } 1077 1078 /* 1079 * normally superblock is clean, so we need to release this. 1080 * In addition, EIO will skip do checkpoint, we need this as well. 1081 */ 1082 f2fs_release_ino_entry(sbi, true); 1083 1084 f2fs_leave_shrinker(sbi); 1085 mutex_unlock(&sbi->umount_mutex); 1086 1087 /* our cp_error case, we can wait for any writeback page */ 1088 f2fs_flush_merged_writes(sbi); 1089 1090 f2fs_wait_on_all_pages_writeback(sbi); 1091 1092 f2fs_bug_on(sbi, sbi->fsync_node_num); 1093 1094 iput(sbi->node_inode); 1095 sbi->node_inode = NULL; 1096 1097 iput(sbi->meta_inode); 1098 sbi->meta_inode = NULL; 1099 1100 /* 1101 * iput() can update stat information, if f2fs_write_checkpoint() 1102 * above failed with error. 1103 */ 1104 f2fs_destroy_stats(sbi); 1105 1106 /* destroy f2fs internal modules */ 1107 f2fs_destroy_node_manager(sbi); 1108 f2fs_destroy_segment_manager(sbi); 1109 1110 kvfree(sbi->ckpt); 1111 1112 f2fs_unregister_sysfs(sbi); 1113 1114 sb->s_fs_info = NULL; 1115 if (sbi->s_chksum_driver) 1116 crypto_free_shash(sbi->s_chksum_driver); 1117 kvfree(sbi->raw_super); 1118 1119 destroy_device_list(sbi); 1120 mempool_destroy(sbi->write_io_dummy); 1121 #ifdef CONFIG_QUOTA 1122 for (i = 0; i < MAXQUOTAS; i++) 1123 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1124 #endif 1125 destroy_percpu_info(sbi); 1126 for (i = 0; i < NR_PAGE_TYPE; i++) 1127 kvfree(sbi->write_io[i]); 1128 kvfree(sbi); 1129 } 1130 1131 int f2fs_sync_fs(struct super_block *sb, int sync) 1132 { 1133 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1134 int err = 0; 1135 1136 if (unlikely(f2fs_cp_error(sbi))) 1137 return 0; 1138 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1139 return 0; 1140 1141 trace_f2fs_sync_fs(sb, sync); 1142 1143 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1144 return -EAGAIN; 1145 1146 if (sync) { 1147 struct cp_control cpc; 1148 1149 cpc.reason = __get_cp_reason(sbi); 1150 1151 mutex_lock(&sbi->gc_mutex); 1152 err = f2fs_write_checkpoint(sbi, &cpc); 1153 mutex_unlock(&sbi->gc_mutex); 1154 } 1155 f2fs_trace_ios(NULL, 1); 1156 1157 return err; 1158 } 1159 1160 static int f2fs_freeze(struct super_block *sb) 1161 { 1162 if (f2fs_readonly(sb)) 1163 return 0; 1164 1165 /* IO error happened before */ 1166 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1167 return -EIO; 1168 1169 /* must be clean, since sync_filesystem() was already called */ 1170 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1171 return -EINVAL; 1172 return 0; 1173 } 1174 1175 static int f2fs_unfreeze(struct super_block *sb) 1176 { 1177 return 0; 1178 } 1179 1180 #ifdef CONFIG_QUOTA 1181 static int f2fs_statfs_project(struct super_block *sb, 1182 kprojid_t projid, struct kstatfs *buf) 1183 { 1184 struct kqid qid; 1185 struct dquot *dquot; 1186 u64 limit; 1187 u64 curblock; 1188 1189 qid = make_kqid_projid(projid); 1190 dquot = dqget(sb, qid); 1191 if (IS_ERR(dquot)) 1192 return PTR_ERR(dquot); 1193 spin_lock(&dquot->dq_dqb_lock); 1194 1195 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1196 dquot->dq_dqb.dqb_bsoftlimit : 1197 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1198 if (limit && buf->f_blocks > limit) { 1199 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1200 buf->f_blocks = limit; 1201 buf->f_bfree = buf->f_bavail = 1202 (buf->f_blocks > curblock) ? 1203 (buf->f_blocks - curblock) : 0; 1204 } 1205 1206 limit = dquot->dq_dqb.dqb_isoftlimit ? 1207 dquot->dq_dqb.dqb_isoftlimit : 1208 dquot->dq_dqb.dqb_ihardlimit; 1209 if (limit && buf->f_files > limit) { 1210 buf->f_files = limit; 1211 buf->f_ffree = 1212 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1213 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1214 } 1215 1216 spin_unlock(&dquot->dq_dqb_lock); 1217 dqput(dquot); 1218 return 0; 1219 } 1220 #endif 1221 1222 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1223 { 1224 struct super_block *sb = dentry->d_sb; 1225 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1226 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1227 block_t total_count, user_block_count, start_count; 1228 u64 avail_node_count; 1229 1230 total_count = le64_to_cpu(sbi->raw_super->block_count); 1231 user_block_count = sbi->user_block_count; 1232 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1233 buf->f_type = F2FS_SUPER_MAGIC; 1234 buf->f_bsize = sbi->blocksize; 1235 1236 buf->f_blocks = total_count - start_count; 1237 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1238 sbi->current_reserved_blocks; 1239 1240 spin_lock(&sbi->stat_lock); 1241 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1242 buf->f_bfree = 0; 1243 else 1244 buf->f_bfree -= sbi->unusable_block_count; 1245 spin_unlock(&sbi->stat_lock); 1246 1247 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1248 buf->f_bavail = buf->f_bfree - 1249 F2FS_OPTION(sbi).root_reserved_blocks; 1250 else 1251 buf->f_bavail = 0; 1252 1253 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1254 F2FS_RESERVED_NODE_NUM; 1255 1256 if (avail_node_count > user_block_count) { 1257 buf->f_files = user_block_count; 1258 buf->f_ffree = buf->f_bavail; 1259 } else { 1260 buf->f_files = avail_node_count; 1261 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1262 buf->f_bavail); 1263 } 1264 1265 buf->f_namelen = F2FS_NAME_LEN; 1266 buf->f_fsid.val[0] = (u32)id; 1267 buf->f_fsid.val[1] = (u32)(id >> 32); 1268 1269 #ifdef CONFIG_QUOTA 1270 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1271 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1272 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1273 } 1274 #endif 1275 return 0; 1276 } 1277 1278 static inline void f2fs_show_quota_options(struct seq_file *seq, 1279 struct super_block *sb) 1280 { 1281 #ifdef CONFIG_QUOTA 1282 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1283 1284 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1285 char *fmtname = ""; 1286 1287 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1288 case QFMT_VFS_OLD: 1289 fmtname = "vfsold"; 1290 break; 1291 case QFMT_VFS_V0: 1292 fmtname = "vfsv0"; 1293 break; 1294 case QFMT_VFS_V1: 1295 fmtname = "vfsv1"; 1296 break; 1297 } 1298 seq_printf(seq, ",jqfmt=%s", fmtname); 1299 } 1300 1301 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1302 seq_show_option(seq, "usrjquota", 1303 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1304 1305 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1306 seq_show_option(seq, "grpjquota", 1307 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1308 1309 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1310 seq_show_option(seq, "prjjquota", 1311 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1312 #endif 1313 } 1314 1315 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1316 { 1317 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1318 1319 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1320 if (test_opt(sbi, FORCE_FG_GC)) 1321 seq_printf(seq, ",background_gc=%s", "sync"); 1322 else 1323 seq_printf(seq, ",background_gc=%s", "on"); 1324 } else { 1325 seq_printf(seq, ",background_gc=%s", "off"); 1326 } 1327 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1328 seq_puts(seq, ",disable_roll_forward"); 1329 if (test_opt(sbi, DISCARD)) 1330 seq_puts(seq, ",discard"); 1331 else 1332 seq_puts(seq, ",nodiscard"); 1333 if (test_opt(sbi, NOHEAP)) 1334 seq_puts(seq, ",no_heap"); 1335 else 1336 seq_puts(seq, ",heap"); 1337 #ifdef CONFIG_F2FS_FS_XATTR 1338 if (test_opt(sbi, XATTR_USER)) 1339 seq_puts(seq, ",user_xattr"); 1340 else 1341 seq_puts(seq, ",nouser_xattr"); 1342 if (test_opt(sbi, INLINE_XATTR)) 1343 seq_puts(seq, ",inline_xattr"); 1344 else 1345 seq_puts(seq, ",noinline_xattr"); 1346 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1347 seq_printf(seq, ",inline_xattr_size=%u", 1348 F2FS_OPTION(sbi).inline_xattr_size); 1349 #endif 1350 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1351 if (test_opt(sbi, POSIX_ACL)) 1352 seq_puts(seq, ",acl"); 1353 else 1354 seq_puts(seq, ",noacl"); 1355 #endif 1356 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1357 seq_puts(seq, ",disable_ext_identify"); 1358 if (test_opt(sbi, INLINE_DATA)) 1359 seq_puts(seq, ",inline_data"); 1360 else 1361 seq_puts(seq, ",noinline_data"); 1362 if (test_opt(sbi, INLINE_DENTRY)) 1363 seq_puts(seq, ",inline_dentry"); 1364 else 1365 seq_puts(seq, ",noinline_dentry"); 1366 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1367 seq_puts(seq, ",flush_merge"); 1368 if (test_opt(sbi, NOBARRIER)) 1369 seq_puts(seq, ",nobarrier"); 1370 if (test_opt(sbi, FASTBOOT)) 1371 seq_puts(seq, ",fastboot"); 1372 if (test_opt(sbi, EXTENT_CACHE)) 1373 seq_puts(seq, ",extent_cache"); 1374 else 1375 seq_puts(seq, ",noextent_cache"); 1376 if (test_opt(sbi, DATA_FLUSH)) 1377 seq_puts(seq, ",data_flush"); 1378 1379 seq_puts(seq, ",mode="); 1380 if (test_opt(sbi, ADAPTIVE)) 1381 seq_puts(seq, "adaptive"); 1382 else if (test_opt(sbi, LFS)) 1383 seq_puts(seq, "lfs"); 1384 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1385 if (test_opt(sbi, RESERVE_ROOT)) 1386 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1387 F2FS_OPTION(sbi).root_reserved_blocks, 1388 from_kuid_munged(&init_user_ns, 1389 F2FS_OPTION(sbi).s_resuid), 1390 from_kgid_munged(&init_user_ns, 1391 F2FS_OPTION(sbi).s_resgid)); 1392 if (F2FS_IO_SIZE_BITS(sbi)) 1393 seq_printf(seq, ",io_bits=%u", 1394 F2FS_OPTION(sbi).write_io_size_bits); 1395 #ifdef CONFIG_F2FS_FAULT_INJECTION 1396 if (test_opt(sbi, FAULT_INJECTION)) { 1397 seq_printf(seq, ",fault_injection=%u", 1398 F2FS_OPTION(sbi).fault_info.inject_rate); 1399 seq_printf(seq, ",fault_type=%u", 1400 F2FS_OPTION(sbi).fault_info.inject_type); 1401 } 1402 #endif 1403 #ifdef CONFIG_QUOTA 1404 if (test_opt(sbi, QUOTA)) 1405 seq_puts(seq, ",quota"); 1406 if (test_opt(sbi, USRQUOTA)) 1407 seq_puts(seq, ",usrquota"); 1408 if (test_opt(sbi, GRPQUOTA)) 1409 seq_puts(seq, ",grpquota"); 1410 if (test_opt(sbi, PRJQUOTA)) 1411 seq_puts(seq, ",prjquota"); 1412 #endif 1413 f2fs_show_quota_options(seq, sbi->sb); 1414 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1415 seq_printf(seq, ",whint_mode=%s", "user-based"); 1416 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1417 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1418 #ifdef CONFIG_FS_ENCRYPTION 1419 if (F2FS_OPTION(sbi).test_dummy_encryption) 1420 seq_puts(seq, ",test_dummy_encryption"); 1421 #endif 1422 1423 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1424 seq_printf(seq, ",alloc_mode=%s", "default"); 1425 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1426 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1427 1428 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1429 seq_printf(seq, ",checkpoint=disable:%u", 1430 F2FS_OPTION(sbi).unusable_cap); 1431 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1432 seq_printf(seq, ",fsync_mode=%s", "posix"); 1433 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1434 seq_printf(seq, ",fsync_mode=%s", "strict"); 1435 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1436 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1437 return 0; 1438 } 1439 1440 static void default_options(struct f2fs_sb_info *sbi) 1441 { 1442 /* init some FS parameters */ 1443 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1444 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1445 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1446 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1447 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1448 F2FS_OPTION(sbi).test_dummy_encryption = false; 1449 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1450 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1451 1452 set_opt(sbi, BG_GC); 1453 set_opt(sbi, INLINE_XATTR); 1454 set_opt(sbi, INLINE_DATA); 1455 set_opt(sbi, INLINE_DENTRY); 1456 set_opt(sbi, EXTENT_CACHE); 1457 set_opt(sbi, NOHEAP); 1458 clear_opt(sbi, DISABLE_CHECKPOINT); 1459 F2FS_OPTION(sbi).unusable_cap = 0; 1460 sbi->sb->s_flags |= SB_LAZYTIME; 1461 set_opt(sbi, FLUSH_MERGE); 1462 set_opt(sbi, DISCARD); 1463 if (f2fs_sb_has_blkzoned(sbi)) 1464 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1465 else 1466 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1467 1468 #ifdef CONFIG_F2FS_FS_XATTR 1469 set_opt(sbi, XATTR_USER); 1470 #endif 1471 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1472 set_opt(sbi, POSIX_ACL); 1473 #endif 1474 1475 f2fs_build_fault_attr(sbi, 0, 0); 1476 } 1477 1478 #ifdef CONFIG_QUOTA 1479 static int f2fs_enable_quotas(struct super_block *sb); 1480 #endif 1481 1482 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1483 { 1484 unsigned int s_flags = sbi->sb->s_flags; 1485 struct cp_control cpc; 1486 int err = 0; 1487 int ret; 1488 block_t unusable; 1489 1490 if (s_flags & SB_RDONLY) { 1491 f2fs_msg(sbi->sb, KERN_ERR, 1492 "checkpoint=disable on readonly fs"); 1493 return -EINVAL; 1494 } 1495 sbi->sb->s_flags |= SB_ACTIVE; 1496 1497 f2fs_update_time(sbi, DISABLE_TIME); 1498 1499 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1500 mutex_lock(&sbi->gc_mutex); 1501 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1502 if (err == -ENODATA) { 1503 err = 0; 1504 break; 1505 } 1506 if (err && err != -EAGAIN) 1507 break; 1508 } 1509 1510 ret = sync_filesystem(sbi->sb); 1511 if (ret || err) { 1512 err = ret ? ret: err; 1513 goto restore_flag; 1514 } 1515 1516 unusable = f2fs_get_unusable_blocks(sbi); 1517 if (f2fs_disable_cp_again(sbi, unusable)) { 1518 err = -EAGAIN; 1519 goto restore_flag; 1520 } 1521 1522 mutex_lock(&sbi->gc_mutex); 1523 cpc.reason = CP_PAUSE; 1524 set_sbi_flag(sbi, SBI_CP_DISABLED); 1525 err = f2fs_write_checkpoint(sbi, &cpc); 1526 if (err) 1527 goto out_unlock; 1528 1529 spin_lock(&sbi->stat_lock); 1530 sbi->unusable_block_count = unusable; 1531 spin_unlock(&sbi->stat_lock); 1532 1533 out_unlock: 1534 mutex_unlock(&sbi->gc_mutex); 1535 restore_flag: 1536 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1537 return err; 1538 } 1539 1540 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1541 { 1542 mutex_lock(&sbi->gc_mutex); 1543 f2fs_dirty_to_prefree(sbi); 1544 1545 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1546 set_sbi_flag(sbi, SBI_IS_DIRTY); 1547 mutex_unlock(&sbi->gc_mutex); 1548 1549 f2fs_sync_fs(sbi->sb, 1); 1550 } 1551 1552 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1553 { 1554 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1555 struct f2fs_mount_info org_mount_opt; 1556 unsigned long old_sb_flags; 1557 int err; 1558 bool need_restart_gc = false; 1559 bool need_stop_gc = false; 1560 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1561 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1562 bool checkpoint_changed; 1563 #ifdef CONFIG_QUOTA 1564 int i, j; 1565 #endif 1566 1567 /* 1568 * Save the old mount options in case we 1569 * need to restore them. 1570 */ 1571 org_mount_opt = sbi->mount_opt; 1572 old_sb_flags = sb->s_flags; 1573 1574 #ifdef CONFIG_QUOTA 1575 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1576 for (i = 0; i < MAXQUOTAS; i++) { 1577 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1578 org_mount_opt.s_qf_names[i] = 1579 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1580 GFP_KERNEL); 1581 if (!org_mount_opt.s_qf_names[i]) { 1582 for (j = 0; j < i; j++) 1583 kvfree(org_mount_opt.s_qf_names[j]); 1584 return -ENOMEM; 1585 } 1586 } else { 1587 org_mount_opt.s_qf_names[i] = NULL; 1588 } 1589 } 1590 #endif 1591 1592 /* recover superblocks we couldn't write due to previous RO mount */ 1593 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1594 err = f2fs_commit_super(sbi, false); 1595 f2fs_msg(sb, KERN_INFO, 1596 "Try to recover all the superblocks, ret: %d", err); 1597 if (!err) 1598 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1599 } 1600 1601 default_options(sbi); 1602 1603 /* parse mount options */ 1604 err = parse_options(sb, data); 1605 if (err) 1606 goto restore_opts; 1607 checkpoint_changed = 1608 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1609 1610 /* 1611 * Previous and new state of filesystem is RO, 1612 * so skip checking GC and FLUSH_MERGE conditions. 1613 */ 1614 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1615 goto skip; 1616 1617 #ifdef CONFIG_QUOTA 1618 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1619 err = dquot_suspend(sb, -1); 1620 if (err < 0) 1621 goto restore_opts; 1622 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1623 /* dquot_resume needs RW */ 1624 sb->s_flags &= ~SB_RDONLY; 1625 if (sb_any_quota_suspended(sb)) { 1626 dquot_resume(sb, -1); 1627 } else if (f2fs_sb_has_quota_ino(sbi)) { 1628 err = f2fs_enable_quotas(sb); 1629 if (err) 1630 goto restore_opts; 1631 } 1632 } 1633 #endif 1634 /* disallow enable/disable extent_cache dynamically */ 1635 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1636 err = -EINVAL; 1637 f2fs_msg(sbi->sb, KERN_WARNING, 1638 "switch extent_cache option is not allowed"); 1639 goto restore_opts; 1640 } 1641 1642 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1643 err = -EINVAL; 1644 f2fs_msg(sbi->sb, KERN_WARNING, 1645 "disabling checkpoint not compatible with read-only"); 1646 goto restore_opts; 1647 } 1648 1649 /* 1650 * We stop the GC thread if FS is mounted as RO 1651 * or if background_gc = off is passed in mount 1652 * option. Also sync the filesystem. 1653 */ 1654 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1655 if (sbi->gc_thread) { 1656 f2fs_stop_gc_thread(sbi); 1657 need_restart_gc = true; 1658 } 1659 } else if (!sbi->gc_thread) { 1660 err = f2fs_start_gc_thread(sbi); 1661 if (err) 1662 goto restore_opts; 1663 need_stop_gc = true; 1664 } 1665 1666 if (*flags & SB_RDONLY || 1667 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1668 writeback_inodes_sb(sb, WB_REASON_SYNC); 1669 sync_inodes_sb(sb); 1670 1671 set_sbi_flag(sbi, SBI_IS_DIRTY); 1672 set_sbi_flag(sbi, SBI_IS_CLOSE); 1673 f2fs_sync_fs(sb, 1); 1674 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1675 } 1676 1677 if (checkpoint_changed) { 1678 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1679 err = f2fs_disable_checkpoint(sbi); 1680 if (err) 1681 goto restore_gc; 1682 } else { 1683 f2fs_enable_checkpoint(sbi); 1684 } 1685 } 1686 1687 /* 1688 * We stop issue flush thread if FS is mounted as RO 1689 * or if flush_merge is not passed in mount option. 1690 */ 1691 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1692 clear_opt(sbi, FLUSH_MERGE); 1693 f2fs_destroy_flush_cmd_control(sbi, false); 1694 } else { 1695 err = f2fs_create_flush_cmd_control(sbi); 1696 if (err) 1697 goto restore_gc; 1698 } 1699 skip: 1700 #ifdef CONFIG_QUOTA 1701 /* Release old quota file names */ 1702 for (i = 0; i < MAXQUOTAS; i++) 1703 kvfree(org_mount_opt.s_qf_names[i]); 1704 #endif 1705 /* Update the POSIXACL Flag */ 1706 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1707 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1708 1709 limit_reserve_root(sbi); 1710 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1711 return 0; 1712 restore_gc: 1713 if (need_restart_gc) { 1714 if (f2fs_start_gc_thread(sbi)) 1715 f2fs_msg(sbi->sb, KERN_WARNING, 1716 "background gc thread has stopped"); 1717 } else if (need_stop_gc) { 1718 f2fs_stop_gc_thread(sbi); 1719 } 1720 restore_opts: 1721 #ifdef CONFIG_QUOTA 1722 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1723 for (i = 0; i < MAXQUOTAS; i++) { 1724 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1725 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1726 } 1727 #endif 1728 sbi->mount_opt = org_mount_opt; 1729 sb->s_flags = old_sb_flags; 1730 return err; 1731 } 1732 1733 #ifdef CONFIG_QUOTA 1734 /* Read data from quotafile */ 1735 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1736 size_t len, loff_t off) 1737 { 1738 struct inode *inode = sb_dqopt(sb)->files[type]; 1739 struct address_space *mapping = inode->i_mapping; 1740 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1741 int offset = off & (sb->s_blocksize - 1); 1742 int tocopy; 1743 size_t toread; 1744 loff_t i_size = i_size_read(inode); 1745 struct page *page; 1746 char *kaddr; 1747 1748 if (off > i_size) 1749 return 0; 1750 1751 if (off + len > i_size) 1752 len = i_size - off; 1753 toread = len; 1754 while (toread > 0) { 1755 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1756 repeat: 1757 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1758 if (IS_ERR(page)) { 1759 if (PTR_ERR(page) == -ENOMEM) { 1760 congestion_wait(BLK_RW_ASYNC, HZ/50); 1761 goto repeat; 1762 } 1763 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1764 return PTR_ERR(page); 1765 } 1766 1767 lock_page(page); 1768 1769 if (unlikely(page->mapping != mapping)) { 1770 f2fs_put_page(page, 1); 1771 goto repeat; 1772 } 1773 if (unlikely(!PageUptodate(page))) { 1774 f2fs_put_page(page, 1); 1775 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1776 return -EIO; 1777 } 1778 1779 kaddr = kmap_atomic(page); 1780 memcpy(data, kaddr + offset, tocopy); 1781 kunmap_atomic(kaddr); 1782 f2fs_put_page(page, 1); 1783 1784 offset = 0; 1785 toread -= tocopy; 1786 data += tocopy; 1787 blkidx++; 1788 } 1789 return len; 1790 } 1791 1792 /* Write to quotafile */ 1793 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1794 const char *data, size_t len, loff_t off) 1795 { 1796 struct inode *inode = sb_dqopt(sb)->files[type]; 1797 struct address_space *mapping = inode->i_mapping; 1798 const struct address_space_operations *a_ops = mapping->a_ops; 1799 int offset = off & (sb->s_blocksize - 1); 1800 size_t towrite = len; 1801 struct page *page; 1802 char *kaddr; 1803 int err = 0; 1804 int tocopy; 1805 1806 while (towrite > 0) { 1807 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1808 towrite); 1809 retry: 1810 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1811 &page, NULL); 1812 if (unlikely(err)) { 1813 if (err == -ENOMEM) { 1814 congestion_wait(BLK_RW_ASYNC, HZ/50); 1815 goto retry; 1816 } 1817 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1818 break; 1819 } 1820 1821 kaddr = kmap_atomic(page); 1822 memcpy(kaddr + offset, data, tocopy); 1823 kunmap_atomic(kaddr); 1824 flush_dcache_page(page); 1825 1826 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1827 page, NULL); 1828 offset = 0; 1829 towrite -= tocopy; 1830 off += tocopy; 1831 data += tocopy; 1832 cond_resched(); 1833 } 1834 1835 if (len == towrite) 1836 return err; 1837 inode->i_mtime = inode->i_ctime = current_time(inode); 1838 f2fs_mark_inode_dirty_sync(inode, false); 1839 return len - towrite; 1840 } 1841 1842 static struct dquot **f2fs_get_dquots(struct inode *inode) 1843 { 1844 return F2FS_I(inode)->i_dquot; 1845 } 1846 1847 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1848 { 1849 return &F2FS_I(inode)->i_reserved_quota; 1850 } 1851 1852 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1853 { 1854 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1855 f2fs_msg(sbi->sb, KERN_ERR, 1856 "quota sysfile may be corrupted, skip loading it"); 1857 return 0; 1858 } 1859 1860 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1861 F2FS_OPTION(sbi).s_jquota_fmt, type); 1862 } 1863 1864 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1865 { 1866 int enabled = 0; 1867 int i, err; 1868 1869 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1870 err = f2fs_enable_quotas(sbi->sb); 1871 if (err) { 1872 f2fs_msg(sbi->sb, KERN_ERR, 1873 "Cannot turn on quota_ino: %d", err); 1874 return 0; 1875 } 1876 return 1; 1877 } 1878 1879 for (i = 0; i < MAXQUOTAS; i++) { 1880 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1881 err = f2fs_quota_on_mount(sbi, i); 1882 if (!err) { 1883 enabled = 1; 1884 continue; 1885 } 1886 f2fs_msg(sbi->sb, KERN_ERR, 1887 "Cannot turn on quotas: %d on %d", err, i); 1888 } 1889 } 1890 return enabled; 1891 } 1892 1893 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1894 unsigned int flags) 1895 { 1896 struct inode *qf_inode; 1897 unsigned long qf_inum; 1898 int err; 1899 1900 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1901 1902 qf_inum = f2fs_qf_ino(sb, type); 1903 if (!qf_inum) 1904 return -EPERM; 1905 1906 qf_inode = f2fs_iget(sb, qf_inum); 1907 if (IS_ERR(qf_inode)) { 1908 f2fs_msg(sb, KERN_ERR, 1909 "Bad quota inode %u:%lu", type, qf_inum); 1910 return PTR_ERR(qf_inode); 1911 } 1912 1913 /* Don't account quota for quota files to avoid recursion */ 1914 qf_inode->i_flags |= S_NOQUOTA; 1915 err = dquot_enable(qf_inode, type, format_id, flags); 1916 iput(qf_inode); 1917 return err; 1918 } 1919 1920 static int f2fs_enable_quotas(struct super_block *sb) 1921 { 1922 int type, err = 0; 1923 unsigned long qf_inum; 1924 bool quota_mopt[MAXQUOTAS] = { 1925 test_opt(F2FS_SB(sb), USRQUOTA), 1926 test_opt(F2FS_SB(sb), GRPQUOTA), 1927 test_opt(F2FS_SB(sb), PRJQUOTA), 1928 }; 1929 1930 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1931 f2fs_msg(sb, KERN_ERR, 1932 "quota file may be corrupted, skip loading it"); 1933 return 0; 1934 } 1935 1936 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1937 1938 for (type = 0; type < MAXQUOTAS; type++) { 1939 qf_inum = f2fs_qf_ino(sb, type); 1940 if (qf_inum) { 1941 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1942 DQUOT_USAGE_ENABLED | 1943 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1944 if (err) { 1945 f2fs_msg(sb, KERN_ERR, 1946 "Failed to enable quota tracking " 1947 "(type=%d, err=%d). Please run " 1948 "fsck to fix.", type, err); 1949 for (type--; type >= 0; type--) 1950 dquot_quota_off(sb, type); 1951 set_sbi_flag(F2FS_SB(sb), 1952 SBI_QUOTA_NEED_REPAIR); 1953 return err; 1954 } 1955 } 1956 } 1957 return 0; 1958 } 1959 1960 int f2fs_quota_sync(struct super_block *sb, int type) 1961 { 1962 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1963 struct quota_info *dqopt = sb_dqopt(sb); 1964 int cnt; 1965 int ret; 1966 1967 ret = dquot_writeback_dquots(sb, type); 1968 if (ret) 1969 goto out; 1970 1971 /* 1972 * Now when everything is written we can discard the pagecache so 1973 * that userspace sees the changes. 1974 */ 1975 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1976 struct address_space *mapping; 1977 1978 if (type != -1 && cnt != type) 1979 continue; 1980 if (!sb_has_quota_active(sb, cnt)) 1981 continue; 1982 1983 mapping = dqopt->files[cnt]->i_mapping; 1984 1985 ret = filemap_fdatawrite(mapping); 1986 if (ret) 1987 goto out; 1988 1989 /* if we are using journalled quota */ 1990 if (is_journalled_quota(sbi)) 1991 continue; 1992 1993 ret = filemap_fdatawait(mapping); 1994 if (ret) 1995 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1996 1997 inode_lock(dqopt->files[cnt]); 1998 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1999 inode_unlock(dqopt->files[cnt]); 2000 } 2001 out: 2002 if (ret) 2003 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2004 return ret; 2005 } 2006 2007 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2008 const struct path *path) 2009 { 2010 struct inode *inode; 2011 int err; 2012 2013 err = f2fs_quota_sync(sb, type); 2014 if (err) 2015 return err; 2016 2017 err = dquot_quota_on(sb, type, format_id, path); 2018 if (err) 2019 return err; 2020 2021 inode = d_inode(path->dentry); 2022 2023 inode_lock(inode); 2024 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2025 f2fs_set_inode_flags(inode); 2026 inode_unlock(inode); 2027 f2fs_mark_inode_dirty_sync(inode, false); 2028 2029 return 0; 2030 } 2031 2032 static int f2fs_quota_off(struct super_block *sb, int type) 2033 { 2034 struct inode *inode = sb_dqopt(sb)->files[type]; 2035 int err; 2036 2037 if (!inode || !igrab(inode)) 2038 return dquot_quota_off(sb, type); 2039 2040 err = f2fs_quota_sync(sb, type); 2041 if (err) 2042 goto out_put; 2043 2044 err = dquot_quota_off(sb, type); 2045 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2046 goto out_put; 2047 2048 inode_lock(inode); 2049 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2050 f2fs_set_inode_flags(inode); 2051 inode_unlock(inode); 2052 f2fs_mark_inode_dirty_sync(inode, false); 2053 out_put: 2054 iput(inode); 2055 return err; 2056 } 2057 2058 void f2fs_quota_off_umount(struct super_block *sb) 2059 { 2060 int type; 2061 int err; 2062 2063 for (type = 0; type < MAXQUOTAS; type++) { 2064 err = f2fs_quota_off(sb, type); 2065 if (err) { 2066 int ret = dquot_quota_off(sb, type); 2067 2068 f2fs_msg(sb, KERN_ERR, 2069 "Fail to turn off disk quota " 2070 "(type: %d, err: %d, ret:%d), Please " 2071 "run fsck to fix it.", type, err, ret); 2072 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2073 } 2074 } 2075 /* 2076 * In case of checkpoint=disable, we must flush quota blocks. 2077 * This can cause NULL exception for node_inode in end_io, since 2078 * put_super already dropped it. 2079 */ 2080 sync_filesystem(sb); 2081 } 2082 2083 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2084 { 2085 struct quota_info *dqopt = sb_dqopt(sb); 2086 int type; 2087 2088 for (type = 0; type < MAXQUOTAS; type++) { 2089 if (!dqopt->files[type]) 2090 continue; 2091 f2fs_inode_synced(dqopt->files[type]); 2092 } 2093 } 2094 2095 static int f2fs_dquot_commit(struct dquot *dquot) 2096 { 2097 int ret; 2098 2099 ret = dquot_commit(dquot); 2100 if (ret < 0) 2101 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2102 return ret; 2103 } 2104 2105 static int f2fs_dquot_acquire(struct dquot *dquot) 2106 { 2107 int ret; 2108 2109 ret = dquot_acquire(dquot); 2110 if (ret < 0) 2111 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2112 2113 return ret; 2114 } 2115 2116 static int f2fs_dquot_release(struct dquot *dquot) 2117 { 2118 int ret; 2119 2120 ret = dquot_release(dquot); 2121 if (ret < 0) 2122 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2123 return ret; 2124 } 2125 2126 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2127 { 2128 struct super_block *sb = dquot->dq_sb; 2129 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2130 int ret; 2131 2132 ret = dquot_mark_dquot_dirty(dquot); 2133 2134 /* if we are using journalled quota */ 2135 if (is_journalled_quota(sbi)) 2136 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2137 2138 return ret; 2139 } 2140 2141 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2142 { 2143 int ret; 2144 2145 ret = dquot_commit_info(sb, type); 2146 if (ret < 0) 2147 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2148 return ret; 2149 } 2150 2151 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2152 { 2153 *projid = F2FS_I(inode)->i_projid; 2154 return 0; 2155 } 2156 2157 static const struct dquot_operations f2fs_quota_operations = { 2158 .get_reserved_space = f2fs_get_reserved_space, 2159 .write_dquot = f2fs_dquot_commit, 2160 .acquire_dquot = f2fs_dquot_acquire, 2161 .release_dquot = f2fs_dquot_release, 2162 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2163 .write_info = f2fs_dquot_commit_info, 2164 .alloc_dquot = dquot_alloc, 2165 .destroy_dquot = dquot_destroy, 2166 .get_projid = f2fs_get_projid, 2167 .get_next_id = dquot_get_next_id, 2168 }; 2169 2170 static const struct quotactl_ops f2fs_quotactl_ops = { 2171 .quota_on = f2fs_quota_on, 2172 .quota_off = f2fs_quota_off, 2173 .quota_sync = f2fs_quota_sync, 2174 .get_state = dquot_get_state, 2175 .set_info = dquot_set_dqinfo, 2176 .get_dqblk = dquot_get_dqblk, 2177 .set_dqblk = dquot_set_dqblk, 2178 .get_nextdqblk = dquot_get_next_dqblk, 2179 }; 2180 #else 2181 int f2fs_quota_sync(struct super_block *sb, int type) 2182 { 2183 return 0; 2184 } 2185 2186 void f2fs_quota_off_umount(struct super_block *sb) 2187 { 2188 } 2189 #endif 2190 2191 static const struct super_operations f2fs_sops = { 2192 .alloc_inode = f2fs_alloc_inode, 2193 .free_inode = f2fs_free_inode, 2194 .drop_inode = f2fs_drop_inode, 2195 .write_inode = f2fs_write_inode, 2196 .dirty_inode = f2fs_dirty_inode, 2197 .show_options = f2fs_show_options, 2198 #ifdef CONFIG_QUOTA 2199 .quota_read = f2fs_quota_read, 2200 .quota_write = f2fs_quota_write, 2201 .get_dquots = f2fs_get_dquots, 2202 #endif 2203 .evict_inode = f2fs_evict_inode, 2204 .put_super = f2fs_put_super, 2205 .sync_fs = f2fs_sync_fs, 2206 .freeze_fs = f2fs_freeze, 2207 .unfreeze_fs = f2fs_unfreeze, 2208 .statfs = f2fs_statfs, 2209 .remount_fs = f2fs_remount, 2210 }; 2211 2212 #ifdef CONFIG_FS_ENCRYPTION 2213 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2214 { 2215 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2216 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2217 ctx, len, NULL); 2218 } 2219 2220 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2221 void *fs_data) 2222 { 2223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2224 2225 /* 2226 * Encrypting the root directory is not allowed because fsck 2227 * expects lost+found directory to exist and remain unencrypted 2228 * if LOST_FOUND feature is enabled. 2229 * 2230 */ 2231 if (f2fs_sb_has_lost_found(sbi) && 2232 inode->i_ino == F2FS_ROOT_INO(sbi)) 2233 return -EPERM; 2234 2235 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2236 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2237 ctx, len, fs_data, XATTR_CREATE); 2238 } 2239 2240 static bool f2fs_dummy_context(struct inode *inode) 2241 { 2242 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2243 } 2244 2245 static const struct fscrypt_operations f2fs_cryptops = { 2246 .key_prefix = "f2fs:", 2247 .get_context = f2fs_get_context, 2248 .set_context = f2fs_set_context, 2249 .dummy_context = f2fs_dummy_context, 2250 .empty_dir = f2fs_empty_dir, 2251 .max_namelen = F2FS_NAME_LEN, 2252 }; 2253 #endif 2254 2255 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2256 u64 ino, u32 generation) 2257 { 2258 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2259 struct inode *inode; 2260 2261 if (f2fs_check_nid_range(sbi, ino)) 2262 return ERR_PTR(-ESTALE); 2263 2264 /* 2265 * f2fs_iget isn't quite right if the inode is currently unallocated! 2266 * However f2fs_iget currently does appropriate checks to handle stale 2267 * inodes so everything is OK. 2268 */ 2269 inode = f2fs_iget(sb, ino); 2270 if (IS_ERR(inode)) 2271 return ERR_CAST(inode); 2272 if (unlikely(generation && inode->i_generation != generation)) { 2273 /* we didn't find the right inode.. */ 2274 iput(inode); 2275 return ERR_PTR(-ESTALE); 2276 } 2277 return inode; 2278 } 2279 2280 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2281 int fh_len, int fh_type) 2282 { 2283 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2284 f2fs_nfs_get_inode); 2285 } 2286 2287 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2288 int fh_len, int fh_type) 2289 { 2290 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2291 f2fs_nfs_get_inode); 2292 } 2293 2294 static const struct export_operations f2fs_export_ops = { 2295 .fh_to_dentry = f2fs_fh_to_dentry, 2296 .fh_to_parent = f2fs_fh_to_parent, 2297 .get_parent = f2fs_get_parent, 2298 }; 2299 2300 static loff_t max_file_blocks(void) 2301 { 2302 loff_t result = 0; 2303 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2304 2305 /* 2306 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2307 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2308 * space in inode.i_addr, it will be more safe to reassign 2309 * result as zero. 2310 */ 2311 2312 /* two direct node blocks */ 2313 result += (leaf_count * 2); 2314 2315 /* two indirect node blocks */ 2316 leaf_count *= NIDS_PER_BLOCK; 2317 result += (leaf_count * 2); 2318 2319 /* one double indirect node block */ 2320 leaf_count *= NIDS_PER_BLOCK; 2321 result += leaf_count; 2322 2323 return result; 2324 } 2325 2326 static int __f2fs_commit_super(struct buffer_head *bh, 2327 struct f2fs_super_block *super) 2328 { 2329 lock_buffer(bh); 2330 if (super) 2331 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2332 set_buffer_dirty(bh); 2333 unlock_buffer(bh); 2334 2335 /* it's rare case, we can do fua all the time */ 2336 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2337 } 2338 2339 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2340 struct buffer_head *bh) 2341 { 2342 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2343 (bh->b_data + F2FS_SUPER_OFFSET); 2344 struct super_block *sb = sbi->sb; 2345 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2346 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2347 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2348 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2349 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2350 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2351 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2352 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2353 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2354 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2355 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2356 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2357 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2358 u64 main_end_blkaddr = main_blkaddr + 2359 (segment_count_main << log_blocks_per_seg); 2360 u64 seg_end_blkaddr = segment0_blkaddr + 2361 (segment_count << log_blocks_per_seg); 2362 2363 if (segment0_blkaddr != cp_blkaddr) { 2364 f2fs_msg(sb, KERN_INFO, 2365 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2366 segment0_blkaddr, cp_blkaddr); 2367 return true; 2368 } 2369 2370 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2371 sit_blkaddr) { 2372 f2fs_msg(sb, KERN_INFO, 2373 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2374 cp_blkaddr, sit_blkaddr, 2375 segment_count_ckpt << log_blocks_per_seg); 2376 return true; 2377 } 2378 2379 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2380 nat_blkaddr) { 2381 f2fs_msg(sb, KERN_INFO, 2382 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2383 sit_blkaddr, nat_blkaddr, 2384 segment_count_sit << log_blocks_per_seg); 2385 return true; 2386 } 2387 2388 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2389 ssa_blkaddr) { 2390 f2fs_msg(sb, KERN_INFO, 2391 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2392 nat_blkaddr, ssa_blkaddr, 2393 segment_count_nat << log_blocks_per_seg); 2394 return true; 2395 } 2396 2397 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2398 main_blkaddr) { 2399 f2fs_msg(sb, KERN_INFO, 2400 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2401 ssa_blkaddr, main_blkaddr, 2402 segment_count_ssa << log_blocks_per_seg); 2403 return true; 2404 } 2405 2406 if (main_end_blkaddr > seg_end_blkaddr) { 2407 f2fs_msg(sb, KERN_INFO, 2408 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2409 main_blkaddr, 2410 segment0_blkaddr + 2411 (segment_count << log_blocks_per_seg), 2412 segment_count_main << log_blocks_per_seg); 2413 return true; 2414 } else if (main_end_blkaddr < seg_end_blkaddr) { 2415 int err = 0; 2416 char *res; 2417 2418 /* fix in-memory information all the time */ 2419 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2420 segment0_blkaddr) >> log_blocks_per_seg); 2421 2422 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2423 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2424 res = "internally"; 2425 } else { 2426 err = __f2fs_commit_super(bh, NULL); 2427 res = err ? "failed" : "done"; 2428 } 2429 f2fs_msg(sb, KERN_INFO, 2430 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2431 res, main_blkaddr, 2432 segment0_blkaddr + 2433 (segment_count << log_blocks_per_seg), 2434 segment_count_main << log_blocks_per_seg); 2435 if (err) 2436 return true; 2437 } 2438 return false; 2439 } 2440 2441 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2442 struct buffer_head *bh) 2443 { 2444 block_t segment_count, segs_per_sec, secs_per_zone; 2445 block_t total_sections, blocks_per_seg; 2446 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2447 (bh->b_data + F2FS_SUPER_OFFSET); 2448 struct super_block *sb = sbi->sb; 2449 unsigned int blocksize; 2450 size_t crc_offset = 0; 2451 __u32 crc = 0; 2452 2453 /* Check checksum_offset and crc in superblock */ 2454 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2455 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2456 if (crc_offset != 2457 offsetof(struct f2fs_super_block, crc)) { 2458 f2fs_msg(sb, KERN_INFO, 2459 "Invalid SB checksum offset: %zu", 2460 crc_offset); 2461 return 1; 2462 } 2463 crc = le32_to_cpu(raw_super->crc); 2464 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2465 f2fs_msg(sb, KERN_INFO, 2466 "Invalid SB checksum value: %u", crc); 2467 return 1; 2468 } 2469 } 2470 2471 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2472 f2fs_msg(sb, KERN_INFO, 2473 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2474 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2475 return 1; 2476 } 2477 2478 /* Currently, support only 4KB page cache size */ 2479 if (F2FS_BLKSIZE != PAGE_SIZE) { 2480 f2fs_msg(sb, KERN_INFO, 2481 "Invalid page_cache_size (%lu), supports only 4KB", 2482 PAGE_SIZE); 2483 return 1; 2484 } 2485 2486 /* Currently, support only 4KB block size */ 2487 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2488 if (blocksize != F2FS_BLKSIZE) { 2489 f2fs_msg(sb, KERN_INFO, 2490 "Invalid blocksize (%u), supports only 4KB", 2491 blocksize); 2492 return 1; 2493 } 2494 2495 /* check log blocks per segment */ 2496 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2497 f2fs_msg(sb, KERN_INFO, 2498 "Invalid log blocks per segment (%u)", 2499 le32_to_cpu(raw_super->log_blocks_per_seg)); 2500 return 1; 2501 } 2502 2503 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2504 if (le32_to_cpu(raw_super->log_sectorsize) > 2505 F2FS_MAX_LOG_SECTOR_SIZE || 2506 le32_to_cpu(raw_super->log_sectorsize) < 2507 F2FS_MIN_LOG_SECTOR_SIZE) { 2508 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2509 le32_to_cpu(raw_super->log_sectorsize)); 2510 return 1; 2511 } 2512 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2513 le32_to_cpu(raw_super->log_sectorsize) != 2514 F2FS_MAX_LOG_SECTOR_SIZE) { 2515 f2fs_msg(sb, KERN_INFO, 2516 "Invalid log sectors per block(%u) log sectorsize(%u)", 2517 le32_to_cpu(raw_super->log_sectors_per_block), 2518 le32_to_cpu(raw_super->log_sectorsize)); 2519 return 1; 2520 } 2521 2522 segment_count = le32_to_cpu(raw_super->segment_count); 2523 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2524 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2525 total_sections = le32_to_cpu(raw_super->section_count); 2526 2527 /* blocks_per_seg should be 512, given the above check */ 2528 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2529 2530 if (segment_count > F2FS_MAX_SEGMENT || 2531 segment_count < F2FS_MIN_SEGMENTS) { 2532 f2fs_msg(sb, KERN_INFO, 2533 "Invalid segment count (%u)", 2534 segment_count); 2535 return 1; 2536 } 2537 2538 if (total_sections > segment_count || 2539 total_sections < F2FS_MIN_SEGMENTS || 2540 segs_per_sec > segment_count || !segs_per_sec) { 2541 f2fs_msg(sb, KERN_INFO, 2542 "Invalid segment/section count (%u, %u x %u)", 2543 segment_count, total_sections, segs_per_sec); 2544 return 1; 2545 } 2546 2547 if ((segment_count / segs_per_sec) < total_sections) { 2548 f2fs_msg(sb, KERN_INFO, 2549 "Small segment_count (%u < %u * %u)", 2550 segment_count, segs_per_sec, total_sections); 2551 return 1; 2552 } 2553 2554 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2555 f2fs_msg(sb, KERN_INFO, 2556 "Wrong segment_count / block_count (%u > %llu)", 2557 segment_count, le64_to_cpu(raw_super->block_count)); 2558 return 1; 2559 } 2560 2561 if (secs_per_zone > total_sections || !secs_per_zone) { 2562 f2fs_msg(sb, KERN_INFO, 2563 "Wrong secs_per_zone / total_sections (%u, %u)", 2564 secs_per_zone, total_sections); 2565 return 1; 2566 } 2567 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2568 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2569 (le32_to_cpu(raw_super->extension_count) + 2570 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2571 f2fs_msg(sb, KERN_INFO, 2572 "Corrupted extension count (%u + %u > %u)", 2573 le32_to_cpu(raw_super->extension_count), 2574 raw_super->hot_ext_count, 2575 F2FS_MAX_EXTENSION); 2576 return 1; 2577 } 2578 2579 if (le32_to_cpu(raw_super->cp_payload) > 2580 (blocks_per_seg - F2FS_CP_PACKS)) { 2581 f2fs_msg(sb, KERN_INFO, 2582 "Insane cp_payload (%u > %u)", 2583 le32_to_cpu(raw_super->cp_payload), 2584 blocks_per_seg - F2FS_CP_PACKS); 2585 return 1; 2586 } 2587 2588 /* check reserved ino info */ 2589 if (le32_to_cpu(raw_super->node_ino) != 1 || 2590 le32_to_cpu(raw_super->meta_ino) != 2 || 2591 le32_to_cpu(raw_super->root_ino) != 3) { 2592 f2fs_msg(sb, KERN_INFO, 2593 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2594 le32_to_cpu(raw_super->node_ino), 2595 le32_to_cpu(raw_super->meta_ino), 2596 le32_to_cpu(raw_super->root_ino)); 2597 return 1; 2598 } 2599 2600 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2601 if (sanity_check_area_boundary(sbi, bh)) 2602 return 1; 2603 2604 return 0; 2605 } 2606 2607 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2608 { 2609 unsigned int total, fsmeta; 2610 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2611 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2612 unsigned int ovp_segments, reserved_segments; 2613 unsigned int main_segs, blocks_per_seg; 2614 unsigned int sit_segs, nat_segs; 2615 unsigned int sit_bitmap_size, nat_bitmap_size; 2616 unsigned int log_blocks_per_seg; 2617 unsigned int segment_count_main; 2618 unsigned int cp_pack_start_sum, cp_payload; 2619 block_t user_block_count, valid_user_blocks; 2620 block_t avail_node_count, valid_node_count; 2621 int i, j; 2622 2623 total = le32_to_cpu(raw_super->segment_count); 2624 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2625 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2626 fsmeta += sit_segs; 2627 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2628 fsmeta += nat_segs; 2629 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2630 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2631 2632 if (unlikely(fsmeta >= total)) 2633 return 1; 2634 2635 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2636 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2637 2638 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2639 ovp_segments == 0 || reserved_segments == 0)) { 2640 f2fs_msg(sbi->sb, KERN_ERR, 2641 "Wrong layout: check mkfs.f2fs version"); 2642 return 1; 2643 } 2644 2645 user_block_count = le64_to_cpu(ckpt->user_block_count); 2646 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2647 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2648 if (!user_block_count || user_block_count >= 2649 segment_count_main << log_blocks_per_seg) { 2650 f2fs_msg(sbi->sb, KERN_ERR, 2651 "Wrong user_block_count: %u", user_block_count); 2652 return 1; 2653 } 2654 2655 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2656 if (valid_user_blocks > user_block_count) { 2657 f2fs_msg(sbi->sb, KERN_ERR, 2658 "Wrong valid_user_blocks: %u, user_block_count: %u", 2659 valid_user_blocks, user_block_count); 2660 return 1; 2661 } 2662 2663 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2664 avail_node_count = sbi->total_node_count - sbi->nquota_files - 2665 F2FS_RESERVED_NODE_NUM; 2666 if (valid_node_count > avail_node_count) { 2667 f2fs_msg(sbi->sb, KERN_ERR, 2668 "Wrong valid_node_count: %u, avail_node_count: %u", 2669 valid_node_count, avail_node_count); 2670 return 1; 2671 } 2672 2673 main_segs = le32_to_cpu(raw_super->segment_count_main); 2674 blocks_per_seg = sbi->blocks_per_seg; 2675 2676 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2677 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2678 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2679 return 1; 2680 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2681 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2682 le32_to_cpu(ckpt->cur_node_segno[j])) { 2683 f2fs_msg(sbi->sb, KERN_ERR, 2684 "Node segment (%u, %u) has the same " 2685 "segno: %u", i, j, 2686 le32_to_cpu(ckpt->cur_node_segno[i])); 2687 return 1; 2688 } 2689 } 2690 } 2691 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2692 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2693 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2694 return 1; 2695 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2696 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2697 le32_to_cpu(ckpt->cur_data_segno[j])) { 2698 f2fs_msg(sbi->sb, KERN_ERR, 2699 "Data segment (%u, %u) has the same " 2700 "segno: %u", i, j, 2701 le32_to_cpu(ckpt->cur_data_segno[i])); 2702 return 1; 2703 } 2704 } 2705 } 2706 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2707 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2708 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2709 le32_to_cpu(ckpt->cur_data_segno[j])) { 2710 f2fs_msg(sbi->sb, KERN_ERR, 2711 "Data segment (%u) and Data segment (%u)" 2712 " has the same segno: %u", i, j, 2713 le32_to_cpu(ckpt->cur_node_segno[i])); 2714 return 1; 2715 } 2716 } 2717 } 2718 2719 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2720 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2721 2722 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2723 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2724 f2fs_msg(sbi->sb, KERN_ERR, 2725 "Wrong bitmap size: sit: %u, nat:%u", 2726 sit_bitmap_size, nat_bitmap_size); 2727 return 1; 2728 } 2729 2730 cp_pack_start_sum = __start_sum_addr(sbi); 2731 cp_payload = __cp_payload(sbi); 2732 if (cp_pack_start_sum < cp_payload + 1 || 2733 cp_pack_start_sum > blocks_per_seg - 1 - 2734 NR_CURSEG_TYPE) { 2735 f2fs_msg(sbi->sb, KERN_ERR, 2736 "Wrong cp_pack_start_sum: %u", 2737 cp_pack_start_sum); 2738 return 1; 2739 } 2740 2741 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2742 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2743 f2fs_msg(sbi->sb, KERN_WARNING, 2744 "layout of large_nat_bitmap is deprecated, " 2745 "run fsck to repair, chksum_offset: %u", 2746 le32_to_cpu(ckpt->checksum_offset)); 2747 return 1; 2748 } 2749 2750 if (unlikely(f2fs_cp_error(sbi))) { 2751 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2752 return 1; 2753 } 2754 return 0; 2755 } 2756 2757 static void init_sb_info(struct f2fs_sb_info *sbi) 2758 { 2759 struct f2fs_super_block *raw_super = sbi->raw_super; 2760 int i; 2761 2762 sbi->log_sectors_per_block = 2763 le32_to_cpu(raw_super->log_sectors_per_block); 2764 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2765 sbi->blocksize = 1 << sbi->log_blocksize; 2766 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2767 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2768 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2769 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2770 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2771 sbi->total_node_count = 2772 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2773 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2774 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2775 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2776 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2777 sbi->cur_victim_sec = NULL_SECNO; 2778 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2779 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2780 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2781 sbi->migration_granularity = sbi->segs_per_sec; 2782 2783 sbi->dir_level = DEF_DIR_LEVEL; 2784 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2785 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2786 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2787 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2788 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2789 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2790 DEF_UMOUNT_DISCARD_TIMEOUT; 2791 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2792 2793 for (i = 0; i < NR_COUNT_TYPE; i++) 2794 atomic_set(&sbi->nr_pages[i], 0); 2795 2796 for (i = 0; i < META; i++) 2797 atomic_set(&sbi->wb_sync_req[i], 0); 2798 2799 INIT_LIST_HEAD(&sbi->s_list); 2800 mutex_init(&sbi->umount_mutex); 2801 init_rwsem(&sbi->io_order_lock); 2802 spin_lock_init(&sbi->cp_lock); 2803 2804 sbi->dirty_device = 0; 2805 spin_lock_init(&sbi->dev_lock); 2806 2807 init_rwsem(&sbi->sb_lock); 2808 } 2809 2810 static int init_percpu_info(struct f2fs_sb_info *sbi) 2811 { 2812 int err; 2813 2814 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2815 if (err) 2816 return err; 2817 2818 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2819 GFP_KERNEL); 2820 if (err) 2821 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2822 2823 return err; 2824 } 2825 2826 #ifdef CONFIG_BLK_DEV_ZONED 2827 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2828 { 2829 struct block_device *bdev = FDEV(devi).bdev; 2830 sector_t nr_sectors = bdev->bd_part->nr_sects; 2831 sector_t sector = 0; 2832 struct blk_zone *zones; 2833 unsigned int i, nr_zones; 2834 unsigned int n = 0; 2835 int err = -EIO; 2836 2837 if (!f2fs_sb_has_blkzoned(sbi)) 2838 return 0; 2839 2840 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2841 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2842 return -EINVAL; 2843 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2844 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2845 __ilog2_u32(sbi->blocks_per_blkz)) 2846 return -EINVAL; 2847 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2848 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2849 sbi->log_blocks_per_blkz; 2850 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2851 FDEV(devi).nr_blkz++; 2852 2853 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2854 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2855 * sizeof(unsigned long), 2856 GFP_KERNEL); 2857 if (!FDEV(devi).blkz_seq) 2858 return -ENOMEM; 2859 2860 #define F2FS_REPORT_NR_ZONES 4096 2861 2862 zones = f2fs_kzalloc(sbi, 2863 array_size(F2FS_REPORT_NR_ZONES, 2864 sizeof(struct blk_zone)), 2865 GFP_KERNEL); 2866 if (!zones) 2867 return -ENOMEM; 2868 2869 /* Get block zones type */ 2870 while (zones && sector < nr_sectors) { 2871 2872 nr_zones = F2FS_REPORT_NR_ZONES; 2873 err = blkdev_report_zones(bdev, sector, 2874 zones, &nr_zones, 2875 GFP_KERNEL); 2876 if (err) 2877 break; 2878 if (!nr_zones) { 2879 err = -EIO; 2880 break; 2881 } 2882 2883 for (i = 0; i < nr_zones; i++) { 2884 if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL) 2885 set_bit(n, FDEV(devi).blkz_seq); 2886 sector += zones[i].len; 2887 n++; 2888 } 2889 } 2890 2891 kvfree(zones); 2892 2893 return err; 2894 } 2895 #endif 2896 2897 /* 2898 * Read f2fs raw super block. 2899 * Because we have two copies of super block, so read both of them 2900 * to get the first valid one. If any one of them is broken, we pass 2901 * them recovery flag back to the caller. 2902 */ 2903 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2904 struct f2fs_super_block **raw_super, 2905 int *valid_super_block, int *recovery) 2906 { 2907 struct super_block *sb = sbi->sb; 2908 int block; 2909 struct buffer_head *bh; 2910 struct f2fs_super_block *super; 2911 int err = 0; 2912 2913 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2914 if (!super) 2915 return -ENOMEM; 2916 2917 for (block = 0; block < 2; block++) { 2918 bh = sb_bread(sb, block); 2919 if (!bh) { 2920 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2921 block + 1); 2922 err = -EIO; 2923 continue; 2924 } 2925 2926 /* sanity checking of raw super */ 2927 if (sanity_check_raw_super(sbi, bh)) { 2928 f2fs_msg(sb, KERN_ERR, 2929 "Can't find valid F2FS filesystem in %dth superblock", 2930 block + 1); 2931 err = -EINVAL; 2932 brelse(bh); 2933 continue; 2934 } 2935 2936 if (!*raw_super) { 2937 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2938 sizeof(*super)); 2939 *valid_super_block = block; 2940 *raw_super = super; 2941 } 2942 brelse(bh); 2943 } 2944 2945 /* Fail to read any one of the superblocks*/ 2946 if (err < 0) 2947 *recovery = 1; 2948 2949 /* No valid superblock */ 2950 if (!*raw_super) 2951 kvfree(super); 2952 else 2953 err = 0; 2954 2955 return err; 2956 } 2957 2958 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2959 { 2960 struct buffer_head *bh; 2961 __u32 crc = 0; 2962 int err; 2963 2964 if ((recover && f2fs_readonly(sbi->sb)) || 2965 bdev_read_only(sbi->sb->s_bdev)) { 2966 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2967 return -EROFS; 2968 } 2969 2970 /* we should update superblock crc here */ 2971 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2972 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2973 offsetof(struct f2fs_super_block, crc)); 2974 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2975 } 2976 2977 /* write back-up superblock first */ 2978 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2979 if (!bh) 2980 return -EIO; 2981 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2982 brelse(bh); 2983 2984 /* if we are in recovery path, skip writing valid superblock */ 2985 if (recover || err) 2986 return err; 2987 2988 /* write current valid superblock */ 2989 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2990 if (!bh) 2991 return -EIO; 2992 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2993 brelse(bh); 2994 return err; 2995 } 2996 2997 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2998 { 2999 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3000 unsigned int max_devices = MAX_DEVICES; 3001 int i; 3002 3003 /* Initialize single device information */ 3004 if (!RDEV(0).path[0]) { 3005 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3006 return 0; 3007 max_devices = 1; 3008 } 3009 3010 /* 3011 * Initialize multiple devices information, or single 3012 * zoned block device information. 3013 */ 3014 sbi->devs = f2fs_kzalloc(sbi, 3015 array_size(max_devices, 3016 sizeof(struct f2fs_dev_info)), 3017 GFP_KERNEL); 3018 if (!sbi->devs) 3019 return -ENOMEM; 3020 3021 for (i = 0; i < max_devices; i++) { 3022 3023 if (i > 0 && !RDEV(i).path[0]) 3024 break; 3025 3026 if (max_devices == 1) { 3027 /* Single zoned block device mount */ 3028 FDEV(0).bdev = 3029 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3030 sbi->sb->s_mode, sbi->sb->s_type); 3031 } else { 3032 /* Multi-device mount */ 3033 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3034 FDEV(i).total_segments = 3035 le32_to_cpu(RDEV(i).total_segments); 3036 if (i == 0) { 3037 FDEV(i).start_blk = 0; 3038 FDEV(i).end_blk = FDEV(i).start_blk + 3039 (FDEV(i).total_segments << 3040 sbi->log_blocks_per_seg) - 1 + 3041 le32_to_cpu(raw_super->segment0_blkaddr); 3042 } else { 3043 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3044 FDEV(i).end_blk = FDEV(i).start_blk + 3045 (FDEV(i).total_segments << 3046 sbi->log_blocks_per_seg) - 1; 3047 } 3048 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3049 sbi->sb->s_mode, sbi->sb->s_type); 3050 } 3051 if (IS_ERR(FDEV(i).bdev)) 3052 return PTR_ERR(FDEV(i).bdev); 3053 3054 /* to release errored devices */ 3055 sbi->s_ndevs = i + 1; 3056 3057 #ifdef CONFIG_BLK_DEV_ZONED 3058 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3059 !f2fs_sb_has_blkzoned(sbi)) { 3060 f2fs_msg(sbi->sb, KERN_ERR, 3061 "Zoned block device feature not enabled\n"); 3062 return -EINVAL; 3063 } 3064 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3065 if (init_blkz_info(sbi, i)) { 3066 f2fs_msg(sbi->sb, KERN_ERR, 3067 "Failed to initialize F2FS blkzone information"); 3068 return -EINVAL; 3069 } 3070 if (max_devices == 1) 3071 break; 3072 f2fs_msg(sbi->sb, KERN_INFO, 3073 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3074 i, FDEV(i).path, 3075 FDEV(i).total_segments, 3076 FDEV(i).start_blk, FDEV(i).end_blk, 3077 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3078 "Host-aware" : "Host-managed"); 3079 continue; 3080 } 3081 #endif 3082 f2fs_msg(sbi->sb, KERN_INFO, 3083 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3084 i, FDEV(i).path, 3085 FDEV(i).total_segments, 3086 FDEV(i).start_blk, FDEV(i).end_blk); 3087 } 3088 f2fs_msg(sbi->sb, KERN_INFO, 3089 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3090 return 0; 3091 } 3092 3093 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3094 { 3095 struct f2fs_sm_info *sm_i = SM_I(sbi); 3096 3097 /* adjust parameters according to the volume size */ 3098 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3099 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3100 sm_i->dcc_info->discard_granularity = 1; 3101 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3102 } 3103 3104 sbi->readdir_ra = 1; 3105 } 3106 3107 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3108 { 3109 struct f2fs_sb_info *sbi; 3110 struct f2fs_super_block *raw_super; 3111 struct inode *root; 3112 int err; 3113 bool skip_recovery = false, need_fsck = false; 3114 char *options = NULL; 3115 int recovery, i, valid_super_block; 3116 struct curseg_info *seg_i; 3117 int retry_cnt = 1; 3118 3119 try_onemore: 3120 err = -EINVAL; 3121 raw_super = NULL; 3122 valid_super_block = -1; 3123 recovery = 0; 3124 3125 /* allocate memory for f2fs-specific super block info */ 3126 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3127 if (!sbi) 3128 return -ENOMEM; 3129 3130 sbi->sb = sb; 3131 3132 /* Load the checksum driver */ 3133 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3134 if (IS_ERR(sbi->s_chksum_driver)) { 3135 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 3136 err = PTR_ERR(sbi->s_chksum_driver); 3137 sbi->s_chksum_driver = NULL; 3138 goto free_sbi; 3139 } 3140 3141 /* set a block size */ 3142 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3143 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 3144 goto free_sbi; 3145 } 3146 3147 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3148 &recovery); 3149 if (err) 3150 goto free_sbi; 3151 3152 sb->s_fs_info = sbi; 3153 sbi->raw_super = raw_super; 3154 3155 /* precompute checksum seed for metadata */ 3156 if (f2fs_sb_has_inode_chksum(sbi)) 3157 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3158 sizeof(raw_super->uuid)); 3159 3160 /* 3161 * The BLKZONED feature indicates that the drive was formatted with 3162 * zone alignment optimization. This is optional for host-aware 3163 * devices, but mandatory for host-managed zoned block devices. 3164 */ 3165 #ifndef CONFIG_BLK_DEV_ZONED 3166 if (f2fs_sb_has_blkzoned(sbi)) { 3167 f2fs_msg(sb, KERN_ERR, 3168 "Zoned block device support is not enabled"); 3169 err = -EOPNOTSUPP; 3170 goto free_sb_buf; 3171 } 3172 #endif 3173 default_options(sbi); 3174 /* parse mount options */ 3175 options = kstrdup((const char *)data, GFP_KERNEL); 3176 if (data && !options) { 3177 err = -ENOMEM; 3178 goto free_sb_buf; 3179 } 3180 3181 err = parse_options(sb, options); 3182 if (err) 3183 goto free_options; 3184 3185 sbi->max_file_blocks = max_file_blocks(); 3186 sb->s_maxbytes = sbi->max_file_blocks << 3187 le32_to_cpu(raw_super->log_blocksize); 3188 sb->s_max_links = F2FS_LINK_MAX; 3189 3190 #ifdef CONFIG_QUOTA 3191 sb->dq_op = &f2fs_quota_operations; 3192 sb->s_qcop = &f2fs_quotactl_ops; 3193 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3194 3195 if (f2fs_sb_has_quota_ino(sbi)) { 3196 for (i = 0; i < MAXQUOTAS; i++) { 3197 if (f2fs_qf_ino(sbi->sb, i)) 3198 sbi->nquota_files++; 3199 } 3200 } 3201 #endif 3202 3203 sb->s_op = &f2fs_sops; 3204 #ifdef CONFIG_FS_ENCRYPTION 3205 sb->s_cop = &f2fs_cryptops; 3206 #endif 3207 sb->s_xattr = f2fs_xattr_handlers; 3208 sb->s_export_op = &f2fs_export_ops; 3209 sb->s_magic = F2FS_SUPER_MAGIC; 3210 sb->s_time_gran = 1; 3211 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3212 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3213 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3214 sb->s_iflags |= SB_I_CGROUPWB; 3215 3216 /* init f2fs-specific super block info */ 3217 sbi->valid_super_block = valid_super_block; 3218 mutex_init(&sbi->gc_mutex); 3219 mutex_init(&sbi->writepages); 3220 mutex_init(&sbi->cp_mutex); 3221 init_rwsem(&sbi->node_write); 3222 init_rwsem(&sbi->node_change); 3223 3224 /* disallow all the data/node/meta page writes */ 3225 set_sbi_flag(sbi, SBI_POR_DOING); 3226 spin_lock_init(&sbi->stat_lock); 3227 3228 /* init iostat info */ 3229 spin_lock_init(&sbi->iostat_lock); 3230 sbi->iostat_enable = false; 3231 3232 for (i = 0; i < NR_PAGE_TYPE; i++) { 3233 int n = (i == META) ? 1: NR_TEMP_TYPE; 3234 int j; 3235 3236 sbi->write_io[i] = 3237 f2fs_kmalloc(sbi, 3238 array_size(n, 3239 sizeof(struct f2fs_bio_info)), 3240 GFP_KERNEL); 3241 if (!sbi->write_io[i]) { 3242 err = -ENOMEM; 3243 goto free_bio_info; 3244 } 3245 3246 for (j = HOT; j < n; j++) { 3247 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3248 sbi->write_io[i][j].sbi = sbi; 3249 sbi->write_io[i][j].bio = NULL; 3250 spin_lock_init(&sbi->write_io[i][j].io_lock); 3251 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3252 } 3253 } 3254 3255 init_rwsem(&sbi->cp_rwsem); 3256 init_waitqueue_head(&sbi->cp_wait); 3257 init_sb_info(sbi); 3258 3259 err = init_percpu_info(sbi); 3260 if (err) 3261 goto free_bio_info; 3262 3263 if (F2FS_IO_SIZE(sbi) > 1) { 3264 sbi->write_io_dummy = 3265 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3266 if (!sbi->write_io_dummy) { 3267 err = -ENOMEM; 3268 goto free_percpu; 3269 } 3270 } 3271 3272 /* get an inode for meta space */ 3273 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3274 if (IS_ERR(sbi->meta_inode)) { 3275 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 3276 err = PTR_ERR(sbi->meta_inode); 3277 goto free_io_dummy; 3278 } 3279 3280 err = f2fs_get_valid_checkpoint(sbi); 3281 if (err) { 3282 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 3283 goto free_meta_inode; 3284 } 3285 3286 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3287 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3288 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3289 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3290 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3291 } 3292 3293 /* Initialize device list */ 3294 err = f2fs_scan_devices(sbi); 3295 if (err) { 3296 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 3297 goto free_devices; 3298 } 3299 3300 sbi->total_valid_node_count = 3301 le32_to_cpu(sbi->ckpt->valid_node_count); 3302 percpu_counter_set(&sbi->total_valid_inode_count, 3303 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3304 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3305 sbi->total_valid_block_count = 3306 le64_to_cpu(sbi->ckpt->valid_block_count); 3307 sbi->last_valid_block_count = sbi->total_valid_block_count; 3308 sbi->reserved_blocks = 0; 3309 sbi->current_reserved_blocks = 0; 3310 limit_reserve_root(sbi); 3311 3312 for (i = 0; i < NR_INODE_TYPE; i++) { 3313 INIT_LIST_HEAD(&sbi->inode_list[i]); 3314 spin_lock_init(&sbi->inode_lock[i]); 3315 } 3316 mutex_init(&sbi->flush_lock); 3317 3318 f2fs_init_extent_cache_info(sbi); 3319 3320 f2fs_init_ino_entry_info(sbi); 3321 3322 f2fs_init_fsync_node_info(sbi); 3323 3324 /* setup f2fs internal modules */ 3325 err = f2fs_build_segment_manager(sbi); 3326 if (err) { 3327 f2fs_msg(sb, KERN_ERR, 3328 "Failed to initialize F2FS segment manager (%d)", err); 3329 goto free_sm; 3330 } 3331 err = f2fs_build_node_manager(sbi); 3332 if (err) { 3333 f2fs_msg(sb, KERN_ERR, 3334 "Failed to initialize F2FS node manager (%d)", err); 3335 goto free_nm; 3336 } 3337 3338 /* For write statistics */ 3339 if (sb->s_bdev->bd_part) 3340 sbi->sectors_written_start = 3341 (u64)part_stat_read(sb->s_bdev->bd_part, 3342 sectors[STAT_WRITE]); 3343 3344 /* Read accumulated write IO statistics if exists */ 3345 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3346 if (__exist_node_summaries(sbi)) 3347 sbi->kbytes_written = 3348 le64_to_cpu(seg_i->journal->info.kbytes_written); 3349 3350 f2fs_build_gc_manager(sbi); 3351 3352 err = f2fs_build_stats(sbi); 3353 if (err) 3354 goto free_nm; 3355 3356 /* get an inode for node space */ 3357 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3358 if (IS_ERR(sbi->node_inode)) { 3359 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 3360 err = PTR_ERR(sbi->node_inode); 3361 goto free_stats; 3362 } 3363 3364 /* read root inode and dentry */ 3365 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3366 if (IS_ERR(root)) { 3367 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 3368 err = PTR_ERR(root); 3369 goto free_node_inode; 3370 } 3371 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3372 !root->i_size || !root->i_nlink) { 3373 iput(root); 3374 err = -EINVAL; 3375 goto free_node_inode; 3376 } 3377 3378 sb->s_root = d_make_root(root); /* allocate root dentry */ 3379 if (!sb->s_root) { 3380 err = -ENOMEM; 3381 goto free_node_inode; 3382 } 3383 3384 err = f2fs_register_sysfs(sbi); 3385 if (err) 3386 goto free_root_inode; 3387 3388 #ifdef CONFIG_QUOTA 3389 /* Enable quota usage during mount */ 3390 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3391 err = f2fs_enable_quotas(sb); 3392 if (err) 3393 f2fs_msg(sb, KERN_ERR, 3394 "Cannot turn on quotas: error %d", err); 3395 } 3396 #endif 3397 /* if there are nt orphan nodes free them */ 3398 err = f2fs_recover_orphan_inodes(sbi); 3399 if (err) 3400 goto free_meta; 3401 3402 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3403 goto reset_checkpoint; 3404 3405 /* recover fsynced data */ 3406 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3407 /* 3408 * mount should be failed, when device has readonly mode, and 3409 * previous checkpoint was not done by clean system shutdown. 3410 */ 3411 if (f2fs_hw_is_readonly(sbi)) { 3412 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3413 err = -EROFS; 3414 f2fs_msg(sb, KERN_ERR, 3415 "Need to recover fsync data, but " 3416 "write access unavailable"); 3417 goto free_meta; 3418 } 3419 f2fs_msg(sbi->sb, KERN_INFO, "write access " 3420 "unavailable, skipping recovery"); 3421 goto reset_checkpoint; 3422 } 3423 3424 if (need_fsck) 3425 set_sbi_flag(sbi, SBI_NEED_FSCK); 3426 3427 if (skip_recovery) 3428 goto reset_checkpoint; 3429 3430 err = f2fs_recover_fsync_data(sbi, false); 3431 if (err < 0) { 3432 if (err != -ENOMEM) 3433 skip_recovery = true; 3434 need_fsck = true; 3435 f2fs_msg(sb, KERN_ERR, 3436 "Cannot recover all fsync data errno=%d", err); 3437 goto free_meta; 3438 } 3439 } else { 3440 err = f2fs_recover_fsync_data(sbi, true); 3441 3442 if (!f2fs_readonly(sb) && err > 0) { 3443 err = -EINVAL; 3444 f2fs_msg(sb, KERN_ERR, 3445 "Need to recover fsync data"); 3446 goto free_meta; 3447 } 3448 } 3449 reset_checkpoint: 3450 /* f2fs_recover_fsync_data() cleared this already */ 3451 clear_sbi_flag(sbi, SBI_POR_DOING); 3452 3453 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3454 err = f2fs_disable_checkpoint(sbi); 3455 if (err) 3456 goto sync_free_meta; 3457 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3458 f2fs_enable_checkpoint(sbi); 3459 } 3460 3461 /* 3462 * If filesystem is not mounted as read-only then 3463 * do start the gc_thread. 3464 */ 3465 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3466 /* After POR, we can run background GC thread.*/ 3467 err = f2fs_start_gc_thread(sbi); 3468 if (err) 3469 goto sync_free_meta; 3470 } 3471 kvfree(options); 3472 3473 /* recover broken superblock */ 3474 if (recovery) { 3475 err = f2fs_commit_super(sbi, true); 3476 f2fs_msg(sb, KERN_INFO, 3477 "Try to recover %dth superblock, ret: %d", 3478 sbi->valid_super_block ? 1 : 2, err); 3479 } 3480 3481 f2fs_join_shrinker(sbi); 3482 3483 f2fs_tuning_parameters(sbi); 3484 3485 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 3486 cur_cp_version(F2FS_CKPT(sbi))); 3487 f2fs_update_time(sbi, CP_TIME); 3488 f2fs_update_time(sbi, REQ_TIME); 3489 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3490 return 0; 3491 3492 sync_free_meta: 3493 /* safe to flush all the data */ 3494 sync_filesystem(sbi->sb); 3495 retry_cnt = 0; 3496 3497 free_meta: 3498 #ifdef CONFIG_QUOTA 3499 f2fs_truncate_quota_inode_pages(sb); 3500 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3501 f2fs_quota_off_umount(sbi->sb); 3502 #endif 3503 /* 3504 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3505 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3506 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3507 * falls into an infinite loop in f2fs_sync_meta_pages(). 3508 */ 3509 truncate_inode_pages_final(META_MAPPING(sbi)); 3510 /* evict some inodes being cached by GC */ 3511 evict_inodes(sb); 3512 f2fs_unregister_sysfs(sbi); 3513 free_root_inode: 3514 dput(sb->s_root); 3515 sb->s_root = NULL; 3516 free_node_inode: 3517 f2fs_release_ino_entry(sbi, true); 3518 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3519 iput(sbi->node_inode); 3520 sbi->node_inode = NULL; 3521 free_stats: 3522 f2fs_destroy_stats(sbi); 3523 free_nm: 3524 f2fs_destroy_node_manager(sbi); 3525 free_sm: 3526 f2fs_destroy_segment_manager(sbi); 3527 free_devices: 3528 destroy_device_list(sbi); 3529 kvfree(sbi->ckpt); 3530 free_meta_inode: 3531 make_bad_inode(sbi->meta_inode); 3532 iput(sbi->meta_inode); 3533 sbi->meta_inode = NULL; 3534 free_io_dummy: 3535 mempool_destroy(sbi->write_io_dummy); 3536 free_percpu: 3537 destroy_percpu_info(sbi); 3538 free_bio_info: 3539 for (i = 0; i < NR_PAGE_TYPE; i++) 3540 kvfree(sbi->write_io[i]); 3541 free_options: 3542 #ifdef CONFIG_QUOTA 3543 for (i = 0; i < MAXQUOTAS; i++) 3544 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3545 #endif 3546 kvfree(options); 3547 free_sb_buf: 3548 kvfree(raw_super); 3549 free_sbi: 3550 if (sbi->s_chksum_driver) 3551 crypto_free_shash(sbi->s_chksum_driver); 3552 kvfree(sbi); 3553 3554 /* give only one another chance */ 3555 if (retry_cnt > 0 && skip_recovery) { 3556 retry_cnt--; 3557 shrink_dcache_sb(sb); 3558 goto try_onemore; 3559 } 3560 return err; 3561 } 3562 3563 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3564 const char *dev_name, void *data) 3565 { 3566 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3567 } 3568 3569 static void kill_f2fs_super(struct super_block *sb) 3570 { 3571 if (sb->s_root) { 3572 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3573 3574 set_sbi_flag(sbi, SBI_IS_CLOSE); 3575 f2fs_stop_gc_thread(sbi); 3576 f2fs_stop_discard_thread(sbi); 3577 3578 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3579 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3580 struct cp_control cpc = { 3581 .reason = CP_UMOUNT, 3582 }; 3583 f2fs_write_checkpoint(sbi, &cpc); 3584 } 3585 3586 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3587 sb->s_flags &= ~SB_RDONLY; 3588 } 3589 kill_block_super(sb); 3590 } 3591 3592 static struct file_system_type f2fs_fs_type = { 3593 .owner = THIS_MODULE, 3594 .name = "f2fs", 3595 .mount = f2fs_mount, 3596 .kill_sb = kill_f2fs_super, 3597 .fs_flags = FS_REQUIRES_DEV, 3598 }; 3599 MODULE_ALIAS_FS("f2fs"); 3600 3601 static int __init init_inodecache(void) 3602 { 3603 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3604 sizeof(struct f2fs_inode_info), 0, 3605 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3606 if (!f2fs_inode_cachep) 3607 return -ENOMEM; 3608 return 0; 3609 } 3610 3611 static void destroy_inodecache(void) 3612 { 3613 /* 3614 * Make sure all delayed rcu free inodes are flushed before we 3615 * destroy cache. 3616 */ 3617 rcu_barrier(); 3618 kmem_cache_destroy(f2fs_inode_cachep); 3619 } 3620 3621 static int __init init_f2fs_fs(void) 3622 { 3623 int err; 3624 3625 if (PAGE_SIZE != F2FS_BLKSIZE) { 3626 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3627 PAGE_SIZE, F2FS_BLKSIZE); 3628 return -EINVAL; 3629 } 3630 3631 f2fs_build_trace_ios(); 3632 3633 err = init_inodecache(); 3634 if (err) 3635 goto fail; 3636 err = f2fs_create_node_manager_caches(); 3637 if (err) 3638 goto free_inodecache; 3639 err = f2fs_create_segment_manager_caches(); 3640 if (err) 3641 goto free_node_manager_caches; 3642 err = f2fs_create_checkpoint_caches(); 3643 if (err) 3644 goto free_segment_manager_caches; 3645 err = f2fs_create_extent_cache(); 3646 if (err) 3647 goto free_checkpoint_caches; 3648 err = f2fs_init_sysfs(); 3649 if (err) 3650 goto free_extent_cache; 3651 err = register_shrinker(&f2fs_shrinker_info); 3652 if (err) 3653 goto free_sysfs; 3654 err = register_filesystem(&f2fs_fs_type); 3655 if (err) 3656 goto free_shrinker; 3657 f2fs_create_root_stats(); 3658 err = f2fs_init_post_read_processing(); 3659 if (err) 3660 goto free_root_stats; 3661 return 0; 3662 3663 free_root_stats: 3664 f2fs_destroy_root_stats(); 3665 unregister_filesystem(&f2fs_fs_type); 3666 free_shrinker: 3667 unregister_shrinker(&f2fs_shrinker_info); 3668 free_sysfs: 3669 f2fs_exit_sysfs(); 3670 free_extent_cache: 3671 f2fs_destroy_extent_cache(); 3672 free_checkpoint_caches: 3673 f2fs_destroy_checkpoint_caches(); 3674 free_segment_manager_caches: 3675 f2fs_destroy_segment_manager_caches(); 3676 free_node_manager_caches: 3677 f2fs_destroy_node_manager_caches(); 3678 free_inodecache: 3679 destroy_inodecache(); 3680 fail: 3681 return err; 3682 } 3683 3684 static void __exit exit_f2fs_fs(void) 3685 { 3686 f2fs_destroy_post_read_processing(); 3687 f2fs_destroy_root_stats(); 3688 unregister_filesystem(&f2fs_fs_type); 3689 unregister_shrinker(&f2fs_shrinker_info); 3690 f2fs_exit_sysfs(); 3691 f2fs_destroy_extent_cache(); 3692 f2fs_destroy_checkpoint_caches(); 3693 f2fs_destroy_segment_manager_caches(); 3694 f2fs_destroy_node_manager_caches(); 3695 destroy_inodecache(); 3696 f2fs_destroy_trace_ios(); 3697 } 3698 3699 module_init(init_f2fs_fs) 3700 module_exit(exit_f2fs_fs) 3701 3702 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3703 MODULE_DESCRIPTION("Flash Friendly File System"); 3704 MODULE_LICENSE("GPL"); 3705 3706