1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 enum { 43 Opt_gc_background, 44 Opt_disable_roll_forward, 45 Opt_norecovery, 46 Opt_discard, 47 Opt_noheap, 48 Opt_user_xattr, 49 Opt_nouser_xattr, 50 Opt_acl, 51 Opt_noacl, 52 Opt_active_logs, 53 Opt_disable_ext_identify, 54 Opt_inline_xattr, 55 Opt_inline_data, 56 Opt_inline_dentry, 57 Opt_flush_merge, 58 Opt_nobarrier, 59 Opt_fastboot, 60 Opt_extent_cache, 61 Opt_noinline_data, 62 Opt_err, 63 }; 64 65 static match_table_t f2fs_tokens = { 66 {Opt_gc_background, "background_gc=%s"}, 67 {Opt_disable_roll_forward, "disable_roll_forward"}, 68 {Opt_norecovery, "norecovery"}, 69 {Opt_discard, "discard"}, 70 {Opt_noheap, "no_heap"}, 71 {Opt_user_xattr, "user_xattr"}, 72 {Opt_nouser_xattr, "nouser_xattr"}, 73 {Opt_acl, "acl"}, 74 {Opt_noacl, "noacl"}, 75 {Opt_active_logs, "active_logs=%u"}, 76 {Opt_disable_ext_identify, "disable_ext_identify"}, 77 {Opt_inline_xattr, "inline_xattr"}, 78 {Opt_inline_data, "inline_data"}, 79 {Opt_inline_dentry, "inline_dentry"}, 80 {Opt_flush_merge, "flush_merge"}, 81 {Opt_nobarrier, "nobarrier"}, 82 {Opt_fastboot, "fastboot"}, 83 {Opt_extent_cache, "extent_cache"}, 84 {Opt_noinline_data, "noinline_data"}, 85 {Opt_err, NULL}, 86 }; 87 88 /* Sysfs support for f2fs */ 89 enum { 90 GC_THREAD, /* struct f2fs_gc_thread */ 91 SM_INFO, /* struct f2fs_sm_info */ 92 NM_INFO, /* struct f2fs_nm_info */ 93 F2FS_SBI, /* struct f2fs_sb_info */ 94 }; 95 96 struct f2fs_attr { 97 struct attribute attr; 98 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 99 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 100 const char *, size_t); 101 int struct_type; 102 int offset; 103 }; 104 105 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 106 { 107 if (struct_type == GC_THREAD) 108 return (unsigned char *)sbi->gc_thread; 109 else if (struct_type == SM_INFO) 110 return (unsigned char *)SM_I(sbi); 111 else if (struct_type == NM_INFO) 112 return (unsigned char *)NM_I(sbi); 113 else if (struct_type == F2FS_SBI) 114 return (unsigned char *)sbi; 115 return NULL; 116 } 117 118 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 119 struct f2fs_sb_info *sbi, char *buf) 120 { 121 unsigned char *ptr = NULL; 122 unsigned int *ui; 123 124 ptr = __struct_ptr(sbi, a->struct_type); 125 if (!ptr) 126 return -EINVAL; 127 128 ui = (unsigned int *)(ptr + a->offset); 129 130 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 131 } 132 133 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 134 struct f2fs_sb_info *sbi, 135 const char *buf, size_t count) 136 { 137 unsigned char *ptr; 138 unsigned long t; 139 unsigned int *ui; 140 ssize_t ret; 141 142 ptr = __struct_ptr(sbi, a->struct_type); 143 if (!ptr) 144 return -EINVAL; 145 146 ui = (unsigned int *)(ptr + a->offset); 147 148 ret = kstrtoul(skip_spaces(buf), 0, &t); 149 if (ret < 0) 150 return ret; 151 *ui = t; 152 return count; 153 } 154 155 static ssize_t f2fs_attr_show(struct kobject *kobj, 156 struct attribute *attr, char *buf) 157 { 158 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 159 s_kobj); 160 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 161 162 return a->show ? a->show(a, sbi, buf) : 0; 163 } 164 165 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 166 const char *buf, size_t len) 167 { 168 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 169 s_kobj); 170 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 171 172 return a->store ? a->store(a, sbi, buf, len) : 0; 173 } 174 175 static void f2fs_sb_release(struct kobject *kobj) 176 { 177 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 178 s_kobj); 179 complete(&sbi->s_kobj_unregister); 180 } 181 182 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 183 static struct f2fs_attr f2fs_attr_##_name = { \ 184 .attr = {.name = __stringify(_name), .mode = _mode }, \ 185 .show = _show, \ 186 .store = _store, \ 187 .struct_type = _struct_type, \ 188 .offset = _offset \ 189 } 190 191 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 192 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 193 f2fs_sbi_show, f2fs_sbi_store, \ 194 offsetof(struct struct_name, elname)) 195 196 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 197 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 198 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 199 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 201 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 202 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 203 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 204 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 205 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 206 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 207 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 208 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 209 210 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 211 static struct attribute *f2fs_attrs[] = { 212 ATTR_LIST(gc_min_sleep_time), 213 ATTR_LIST(gc_max_sleep_time), 214 ATTR_LIST(gc_no_gc_sleep_time), 215 ATTR_LIST(gc_idle), 216 ATTR_LIST(reclaim_segments), 217 ATTR_LIST(max_small_discards), 218 ATTR_LIST(batched_trim_sections), 219 ATTR_LIST(ipu_policy), 220 ATTR_LIST(min_ipu_util), 221 ATTR_LIST(min_fsync_blocks), 222 ATTR_LIST(max_victim_search), 223 ATTR_LIST(dir_level), 224 ATTR_LIST(ram_thresh), 225 NULL, 226 }; 227 228 static const struct sysfs_ops f2fs_attr_ops = { 229 .show = f2fs_attr_show, 230 .store = f2fs_attr_store, 231 }; 232 233 static struct kobj_type f2fs_ktype = { 234 .default_attrs = f2fs_attrs, 235 .sysfs_ops = &f2fs_attr_ops, 236 .release = f2fs_sb_release, 237 }; 238 239 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 240 { 241 struct va_format vaf; 242 va_list args; 243 244 va_start(args, fmt); 245 vaf.fmt = fmt; 246 vaf.va = &args; 247 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 248 va_end(args); 249 } 250 251 static void init_once(void *foo) 252 { 253 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 254 255 inode_init_once(&fi->vfs_inode); 256 } 257 258 static int parse_options(struct super_block *sb, char *options) 259 { 260 struct f2fs_sb_info *sbi = F2FS_SB(sb); 261 substring_t args[MAX_OPT_ARGS]; 262 char *p, *name; 263 int arg = 0; 264 265 if (!options) 266 return 0; 267 268 while ((p = strsep(&options, ",")) != NULL) { 269 int token; 270 if (!*p) 271 continue; 272 /* 273 * Initialize args struct so we know whether arg was 274 * found; some options take optional arguments. 275 */ 276 args[0].to = args[0].from = NULL; 277 token = match_token(p, f2fs_tokens, args); 278 279 switch (token) { 280 case Opt_gc_background: 281 name = match_strdup(&args[0]); 282 283 if (!name) 284 return -ENOMEM; 285 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 286 set_opt(sbi, BG_GC); 287 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 288 clear_opt(sbi, BG_GC); 289 else { 290 kfree(name); 291 return -EINVAL; 292 } 293 kfree(name); 294 break; 295 case Opt_disable_roll_forward: 296 set_opt(sbi, DISABLE_ROLL_FORWARD); 297 break; 298 case Opt_norecovery: 299 /* this option mounts f2fs with ro */ 300 set_opt(sbi, DISABLE_ROLL_FORWARD); 301 if (!f2fs_readonly(sb)) 302 return -EINVAL; 303 break; 304 case Opt_discard: 305 set_opt(sbi, DISCARD); 306 break; 307 case Opt_noheap: 308 set_opt(sbi, NOHEAP); 309 break; 310 #ifdef CONFIG_F2FS_FS_XATTR 311 case Opt_user_xattr: 312 set_opt(sbi, XATTR_USER); 313 break; 314 case Opt_nouser_xattr: 315 clear_opt(sbi, XATTR_USER); 316 break; 317 case Opt_inline_xattr: 318 set_opt(sbi, INLINE_XATTR); 319 break; 320 #else 321 case Opt_user_xattr: 322 f2fs_msg(sb, KERN_INFO, 323 "user_xattr options not supported"); 324 break; 325 case Opt_nouser_xattr: 326 f2fs_msg(sb, KERN_INFO, 327 "nouser_xattr options not supported"); 328 break; 329 case Opt_inline_xattr: 330 f2fs_msg(sb, KERN_INFO, 331 "inline_xattr options not supported"); 332 break; 333 #endif 334 #ifdef CONFIG_F2FS_FS_POSIX_ACL 335 case Opt_acl: 336 set_opt(sbi, POSIX_ACL); 337 break; 338 case Opt_noacl: 339 clear_opt(sbi, POSIX_ACL); 340 break; 341 #else 342 case Opt_acl: 343 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 344 break; 345 case Opt_noacl: 346 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 347 break; 348 #endif 349 case Opt_active_logs: 350 if (args->from && match_int(args, &arg)) 351 return -EINVAL; 352 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 353 return -EINVAL; 354 sbi->active_logs = arg; 355 break; 356 case Opt_disable_ext_identify: 357 set_opt(sbi, DISABLE_EXT_IDENTIFY); 358 break; 359 case Opt_inline_data: 360 set_opt(sbi, INLINE_DATA); 361 break; 362 case Opt_inline_dentry: 363 set_opt(sbi, INLINE_DENTRY); 364 break; 365 case Opt_flush_merge: 366 set_opt(sbi, FLUSH_MERGE); 367 break; 368 case Opt_nobarrier: 369 set_opt(sbi, NOBARRIER); 370 break; 371 case Opt_fastboot: 372 set_opt(sbi, FASTBOOT); 373 break; 374 case Opt_extent_cache: 375 set_opt(sbi, EXTENT_CACHE); 376 break; 377 case Opt_noinline_data: 378 clear_opt(sbi, INLINE_DATA); 379 break; 380 default: 381 f2fs_msg(sb, KERN_ERR, 382 "Unrecognized mount option \"%s\" or missing value", 383 p); 384 return -EINVAL; 385 } 386 } 387 return 0; 388 } 389 390 static struct inode *f2fs_alloc_inode(struct super_block *sb) 391 { 392 struct f2fs_inode_info *fi; 393 394 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 395 if (!fi) 396 return NULL; 397 398 init_once((void *) fi); 399 400 /* Initialize f2fs-specific inode info */ 401 fi->vfs_inode.i_version = 1; 402 atomic_set(&fi->dirty_pages, 0); 403 fi->i_current_depth = 1; 404 fi->i_advise = 0; 405 rwlock_init(&fi->ext_lock); 406 init_rwsem(&fi->i_sem); 407 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS); 408 INIT_LIST_HEAD(&fi->inmem_pages); 409 mutex_init(&fi->inmem_lock); 410 411 set_inode_flag(fi, FI_NEW_INODE); 412 413 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 414 set_inode_flag(fi, FI_INLINE_XATTR); 415 416 /* Will be used by directory only */ 417 fi->i_dir_level = F2FS_SB(sb)->dir_level; 418 419 #ifdef CONFIG_F2FS_FS_ENCRYPTION 420 fi->i_crypt_info = NULL; 421 #endif 422 return &fi->vfs_inode; 423 } 424 425 static int f2fs_drop_inode(struct inode *inode) 426 { 427 /* 428 * This is to avoid a deadlock condition like below. 429 * writeback_single_inode(inode) 430 * - f2fs_write_data_page 431 * - f2fs_gc -> iput -> evict 432 * - inode_wait_for_writeback(inode) 433 */ 434 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) { 435 if (!inode->i_nlink && !is_bad_inode(inode)) { 436 spin_unlock(&inode->i_lock); 437 438 /* some remained atomic pages should discarded */ 439 if (f2fs_is_atomic_file(inode)) 440 commit_inmem_pages(inode, true); 441 442 sb_start_intwrite(inode->i_sb); 443 i_size_write(inode, 0); 444 445 if (F2FS_HAS_BLOCKS(inode)) 446 f2fs_truncate(inode); 447 448 sb_end_intwrite(inode->i_sb); 449 450 #ifdef CONFIG_F2FS_FS_ENCRYPTION 451 if (F2FS_I(inode)->i_crypt_info) 452 f2fs_free_encryption_info(inode, 453 F2FS_I(inode)->i_crypt_info); 454 #endif 455 spin_lock(&inode->i_lock); 456 } 457 return 0; 458 } 459 return generic_drop_inode(inode); 460 } 461 462 /* 463 * f2fs_dirty_inode() is called from __mark_inode_dirty() 464 * 465 * We should call set_dirty_inode to write the dirty inode through write_inode. 466 */ 467 static void f2fs_dirty_inode(struct inode *inode, int flags) 468 { 469 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 470 } 471 472 static void f2fs_i_callback(struct rcu_head *head) 473 { 474 struct inode *inode = container_of(head, struct inode, i_rcu); 475 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 476 } 477 478 static void f2fs_destroy_inode(struct inode *inode) 479 { 480 call_rcu(&inode->i_rcu, f2fs_i_callback); 481 } 482 483 static void f2fs_put_super(struct super_block *sb) 484 { 485 struct f2fs_sb_info *sbi = F2FS_SB(sb); 486 487 if (sbi->s_proc) { 488 remove_proc_entry("segment_info", sbi->s_proc); 489 remove_proc_entry(sb->s_id, f2fs_proc_root); 490 } 491 kobject_del(&sbi->s_kobj); 492 493 f2fs_destroy_stats(sbi); 494 stop_gc_thread(sbi); 495 496 /* 497 * We don't need to do checkpoint when superblock is clean. 498 * But, the previous checkpoint was not done by umount, it needs to do 499 * clean checkpoint again. 500 */ 501 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 502 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 503 struct cp_control cpc = { 504 .reason = CP_UMOUNT, 505 }; 506 write_checkpoint(sbi, &cpc); 507 } 508 509 /* 510 * normally superblock is clean, so we need to release this. 511 * In addition, EIO will skip do checkpoint, we need this as well. 512 */ 513 release_dirty_inode(sbi); 514 release_discard_addrs(sbi); 515 516 iput(sbi->node_inode); 517 iput(sbi->meta_inode); 518 519 /* destroy f2fs internal modules */ 520 destroy_node_manager(sbi); 521 destroy_segment_manager(sbi); 522 523 kfree(sbi->ckpt); 524 kobject_put(&sbi->s_kobj); 525 wait_for_completion(&sbi->s_kobj_unregister); 526 527 sb->s_fs_info = NULL; 528 brelse(sbi->raw_super_buf); 529 kfree(sbi); 530 } 531 532 int f2fs_sync_fs(struct super_block *sb, int sync) 533 { 534 struct f2fs_sb_info *sbi = F2FS_SB(sb); 535 536 trace_f2fs_sync_fs(sb, sync); 537 538 if (sync) { 539 struct cp_control cpc; 540 541 cpc.reason = __get_cp_reason(sbi); 542 543 mutex_lock(&sbi->gc_mutex); 544 write_checkpoint(sbi, &cpc); 545 mutex_unlock(&sbi->gc_mutex); 546 } else { 547 f2fs_balance_fs(sbi); 548 } 549 f2fs_trace_ios(NULL, 1); 550 551 return 0; 552 } 553 554 static int f2fs_freeze(struct super_block *sb) 555 { 556 int err; 557 558 if (f2fs_readonly(sb)) 559 return 0; 560 561 err = f2fs_sync_fs(sb, 1); 562 return err; 563 } 564 565 static int f2fs_unfreeze(struct super_block *sb) 566 { 567 return 0; 568 } 569 570 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 571 { 572 struct super_block *sb = dentry->d_sb; 573 struct f2fs_sb_info *sbi = F2FS_SB(sb); 574 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 575 block_t total_count, user_block_count, start_count, ovp_count; 576 577 total_count = le64_to_cpu(sbi->raw_super->block_count); 578 user_block_count = sbi->user_block_count; 579 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 580 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 581 buf->f_type = F2FS_SUPER_MAGIC; 582 buf->f_bsize = sbi->blocksize; 583 584 buf->f_blocks = total_count - start_count; 585 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 586 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 587 588 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 589 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 590 591 buf->f_namelen = F2FS_NAME_LEN; 592 buf->f_fsid.val[0] = (u32)id; 593 buf->f_fsid.val[1] = (u32)(id >> 32); 594 595 return 0; 596 } 597 598 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 599 { 600 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 601 602 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 603 seq_printf(seq, ",background_gc=%s", "on"); 604 else 605 seq_printf(seq, ",background_gc=%s", "off"); 606 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 607 seq_puts(seq, ",disable_roll_forward"); 608 if (test_opt(sbi, DISCARD)) 609 seq_puts(seq, ",discard"); 610 if (test_opt(sbi, NOHEAP)) 611 seq_puts(seq, ",no_heap_alloc"); 612 #ifdef CONFIG_F2FS_FS_XATTR 613 if (test_opt(sbi, XATTR_USER)) 614 seq_puts(seq, ",user_xattr"); 615 else 616 seq_puts(seq, ",nouser_xattr"); 617 if (test_opt(sbi, INLINE_XATTR)) 618 seq_puts(seq, ",inline_xattr"); 619 #endif 620 #ifdef CONFIG_F2FS_FS_POSIX_ACL 621 if (test_opt(sbi, POSIX_ACL)) 622 seq_puts(seq, ",acl"); 623 else 624 seq_puts(seq, ",noacl"); 625 #endif 626 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 627 seq_puts(seq, ",disable_ext_identify"); 628 if (test_opt(sbi, INLINE_DATA)) 629 seq_puts(seq, ",inline_data"); 630 else 631 seq_puts(seq, ",noinline_data"); 632 if (test_opt(sbi, INLINE_DENTRY)) 633 seq_puts(seq, ",inline_dentry"); 634 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 635 seq_puts(seq, ",flush_merge"); 636 if (test_opt(sbi, NOBARRIER)) 637 seq_puts(seq, ",nobarrier"); 638 if (test_opt(sbi, FASTBOOT)) 639 seq_puts(seq, ",fastboot"); 640 if (test_opt(sbi, EXTENT_CACHE)) 641 seq_puts(seq, ",extent_cache"); 642 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 643 644 return 0; 645 } 646 647 static int segment_info_seq_show(struct seq_file *seq, void *offset) 648 { 649 struct super_block *sb = seq->private; 650 struct f2fs_sb_info *sbi = F2FS_SB(sb); 651 unsigned int total_segs = 652 le32_to_cpu(sbi->raw_super->segment_count_main); 653 int i; 654 655 seq_puts(seq, "format: segment_type|valid_blocks\n" 656 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 657 658 for (i = 0; i < total_segs; i++) { 659 struct seg_entry *se = get_seg_entry(sbi, i); 660 661 if ((i % 10) == 0) 662 seq_printf(seq, "%-5d", i); 663 seq_printf(seq, "%d|%-3u", se->type, 664 get_valid_blocks(sbi, i, 1)); 665 if ((i % 10) == 9 || i == (total_segs - 1)) 666 seq_putc(seq, '\n'); 667 else 668 seq_putc(seq, ' '); 669 } 670 671 return 0; 672 } 673 674 static int segment_info_open_fs(struct inode *inode, struct file *file) 675 { 676 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 677 } 678 679 static const struct file_operations f2fs_seq_segment_info_fops = { 680 .owner = THIS_MODULE, 681 .open = segment_info_open_fs, 682 .read = seq_read, 683 .llseek = seq_lseek, 684 .release = single_release, 685 }; 686 687 static void default_options(struct f2fs_sb_info *sbi) 688 { 689 /* init some FS parameters */ 690 sbi->active_logs = NR_CURSEG_TYPE; 691 692 set_opt(sbi, BG_GC); 693 set_opt(sbi, INLINE_DATA); 694 695 #ifdef CONFIG_F2FS_FS_XATTR 696 set_opt(sbi, XATTR_USER); 697 #endif 698 #ifdef CONFIG_F2FS_FS_POSIX_ACL 699 set_opt(sbi, POSIX_ACL); 700 #endif 701 } 702 703 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 704 { 705 struct f2fs_sb_info *sbi = F2FS_SB(sb); 706 struct f2fs_mount_info org_mount_opt; 707 int err, active_logs; 708 bool need_restart_gc = false; 709 bool need_stop_gc = false; 710 711 sync_filesystem(sb); 712 713 /* 714 * Save the old mount options in case we 715 * need to restore them. 716 */ 717 org_mount_opt = sbi->mount_opt; 718 active_logs = sbi->active_logs; 719 720 sbi->mount_opt.opt = 0; 721 default_options(sbi); 722 723 /* parse mount options */ 724 err = parse_options(sb, data); 725 if (err) 726 goto restore_opts; 727 728 /* 729 * Previous and new state of filesystem is RO, 730 * so skip checking GC and FLUSH_MERGE conditions. 731 */ 732 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 733 goto skip; 734 735 /* 736 * We stop the GC thread if FS is mounted as RO 737 * or if background_gc = off is passed in mount 738 * option. Also sync the filesystem. 739 */ 740 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 741 if (sbi->gc_thread) { 742 stop_gc_thread(sbi); 743 f2fs_sync_fs(sb, 1); 744 need_restart_gc = true; 745 } 746 } else if (!sbi->gc_thread) { 747 err = start_gc_thread(sbi); 748 if (err) 749 goto restore_opts; 750 need_stop_gc = true; 751 } 752 753 /* 754 * We stop issue flush thread if FS is mounted as RO 755 * or if flush_merge is not passed in mount option. 756 */ 757 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 758 destroy_flush_cmd_control(sbi); 759 } else if (!SM_I(sbi)->cmd_control_info) { 760 err = create_flush_cmd_control(sbi); 761 if (err) 762 goto restore_gc; 763 } 764 skip: 765 /* Update the POSIXACL Flag */ 766 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 767 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 768 return 0; 769 restore_gc: 770 if (need_restart_gc) { 771 if (start_gc_thread(sbi)) 772 f2fs_msg(sbi->sb, KERN_WARNING, 773 "background gc thread has stopped"); 774 } else if (need_stop_gc) { 775 stop_gc_thread(sbi); 776 } 777 restore_opts: 778 sbi->mount_opt = org_mount_opt; 779 sbi->active_logs = active_logs; 780 return err; 781 } 782 783 static struct super_operations f2fs_sops = { 784 .alloc_inode = f2fs_alloc_inode, 785 .drop_inode = f2fs_drop_inode, 786 .destroy_inode = f2fs_destroy_inode, 787 .write_inode = f2fs_write_inode, 788 .dirty_inode = f2fs_dirty_inode, 789 .show_options = f2fs_show_options, 790 .evict_inode = f2fs_evict_inode, 791 .put_super = f2fs_put_super, 792 .sync_fs = f2fs_sync_fs, 793 .freeze_fs = f2fs_freeze, 794 .unfreeze_fs = f2fs_unfreeze, 795 .statfs = f2fs_statfs, 796 .remount_fs = f2fs_remount, 797 }; 798 799 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 800 u64 ino, u32 generation) 801 { 802 struct f2fs_sb_info *sbi = F2FS_SB(sb); 803 struct inode *inode; 804 805 if (check_nid_range(sbi, ino)) 806 return ERR_PTR(-ESTALE); 807 808 /* 809 * f2fs_iget isn't quite right if the inode is currently unallocated! 810 * However f2fs_iget currently does appropriate checks to handle stale 811 * inodes so everything is OK. 812 */ 813 inode = f2fs_iget(sb, ino); 814 if (IS_ERR(inode)) 815 return ERR_CAST(inode); 816 if (unlikely(generation && inode->i_generation != generation)) { 817 /* we didn't find the right inode.. */ 818 iput(inode); 819 return ERR_PTR(-ESTALE); 820 } 821 return inode; 822 } 823 824 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 825 int fh_len, int fh_type) 826 { 827 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 828 f2fs_nfs_get_inode); 829 } 830 831 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 832 int fh_len, int fh_type) 833 { 834 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 835 f2fs_nfs_get_inode); 836 } 837 838 static const struct export_operations f2fs_export_ops = { 839 .fh_to_dentry = f2fs_fh_to_dentry, 840 .fh_to_parent = f2fs_fh_to_parent, 841 .get_parent = f2fs_get_parent, 842 }; 843 844 static loff_t max_file_size(unsigned bits) 845 { 846 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 847 loff_t leaf_count = ADDRS_PER_BLOCK; 848 849 /* two direct node blocks */ 850 result += (leaf_count * 2); 851 852 /* two indirect node blocks */ 853 leaf_count *= NIDS_PER_BLOCK; 854 result += (leaf_count * 2); 855 856 /* one double indirect node block */ 857 leaf_count *= NIDS_PER_BLOCK; 858 result += leaf_count; 859 860 result <<= bits; 861 return result; 862 } 863 864 static int sanity_check_raw_super(struct super_block *sb, 865 struct f2fs_super_block *raw_super) 866 { 867 unsigned int blocksize; 868 869 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 870 f2fs_msg(sb, KERN_INFO, 871 "Magic Mismatch, valid(0x%x) - read(0x%x)", 872 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 873 return 1; 874 } 875 876 /* Currently, support only 4KB page cache size */ 877 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 878 f2fs_msg(sb, KERN_INFO, 879 "Invalid page_cache_size (%lu), supports only 4KB\n", 880 PAGE_CACHE_SIZE); 881 return 1; 882 } 883 884 /* Currently, support only 4KB block size */ 885 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 886 if (blocksize != F2FS_BLKSIZE) { 887 f2fs_msg(sb, KERN_INFO, 888 "Invalid blocksize (%u), supports only 4KB\n", 889 blocksize); 890 return 1; 891 } 892 893 /* Currently, support 512/1024/2048/4096 bytes sector size */ 894 if (le32_to_cpu(raw_super->log_sectorsize) > 895 F2FS_MAX_LOG_SECTOR_SIZE || 896 le32_to_cpu(raw_super->log_sectorsize) < 897 F2FS_MIN_LOG_SECTOR_SIZE) { 898 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 899 le32_to_cpu(raw_super->log_sectorsize)); 900 return 1; 901 } 902 if (le32_to_cpu(raw_super->log_sectors_per_block) + 903 le32_to_cpu(raw_super->log_sectorsize) != 904 F2FS_MAX_LOG_SECTOR_SIZE) { 905 f2fs_msg(sb, KERN_INFO, 906 "Invalid log sectors per block(%u) log sectorsize(%u)", 907 le32_to_cpu(raw_super->log_sectors_per_block), 908 le32_to_cpu(raw_super->log_sectorsize)); 909 return 1; 910 } 911 return 0; 912 } 913 914 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 915 { 916 unsigned int total, fsmeta; 917 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 918 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 919 920 total = le32_to_cpu(raw_super->segment_count); 921 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 922 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 923 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 924 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 925 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 926 927 if (unlikely(fsmeta >= total)) 928 return 1; 929 930 if (unlikely(f2fs_cp_error(sbi))) { 931 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 932 return 1; 933 } 934 return 0; 935 } 936 937 static void init_sb_info(struct f2fs_sb_info *sbi) 938 { 939 struct f2fs_super_block *raw_super = sbi->raw_super; 940 int i; 941 942 sbi->log_sectors_per_block = 943 le32_to_cpu(raw_super->log_sectors_per_block); 944 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 945 sbi->blocksize = 1 << sbi->log_blocksize; 946 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 947 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 948 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 949 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 950 sbi->total_sections = le32_to_cpu(raw_super->section_count); 951 sbi->total_node_count = 952 (le32_to_cpu(raw_super->segment_count_nat) / 2) 953 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 954 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 955 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 956 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 957 sbi->cur_victim_sec = NULL_SECNO; 958 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 959 960 for (i = 0; i < NR_COUNT_TYPE; i++) 961 atomic_set(&sbi->nr_pages[i], 0); 962 963 sbi->dir_level = DEF_DIR_LEVEL; 964 clear_sbi_flag(sbi, SBI_NEED_FSCK); 965 } 966 967 /* 968 * Read f2fs raw super block. 969 * Because we have two copies of super block, so read the first one at first, 970 * if the first one is invalid, move to read the second one. 971 */ 972 static int read_raw_super_block(struct super_block *sb, 973 struct f2fs_super_block **raw_super, 974 struct buffer_head **raw_super_buf, 975 int *recovery) 976 { 977 int block = 0; 978 struct buffer_head *buffer; 979 struct f2fs_super_block *super; 980 int err = 0; 981 982 retry: 983 buffer = sb_bread(sb, block); 984 if (!buffer) { 985 *recovery = 1; 986 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 987 block + 1); 988 if (block == 0) { 989 block++; 990 goto retry; 991 } else { 992 err = -EIO; 993 goto out; 994 } 995 } 996 997 super = (struct f2fs_super_block *) 998 ((char *)(buffer)->b_data + F2FS_SUPER_OFFSET); 999 1000 /* sanity checking of raw super */ 1001 if (sanity_check_raw_super(sb, super)) { 1002 brelse(buffer); 1003 *recovery = 1; 1004 f2fs_msg(sb, KERN_ERR, 1005 "Can't find valid F2FS filesystem in %dth superblock", 1006 block + 1); 1007 if (block == 0) { 1008 block++; 1009 goto retry; 1010 } else { 1011 err = -EINVAL; 1012 goto out; 1013 } 1014 } 1015 1016 if (!*raw_super) { 1017 *raw_super_buf = buffer; 1018 *raw_super = super; 1019 } else { 1020 /* already have a valid superblock */ 1021 brelse(buffer); 1022 } 1023 1024 /* check the validity of the second superblock */ 1025 if (block == 0) { 1026 block++; 1027 goto retry; 1028 } 1029 1030 out: 1031 /* No valid superblock */ 1032 if (!*raw_super) 1033 return err; 1034 1035 return 0; 1036 } 1037 1038 int f2fs_commit_super(struct f2fs_sb_info *sbi) 1039 { 1040 struct buffer_head *sbh = sbi->raw_super_buf; 1041 sector_t block = sbh->b_blocknr; 1042 int err; 1043 1044 /* write back-up superblock first */ 1045 sbh->b_blocknr = block ? 0 : 1; 1046 mark_buffer_dirty(sbh); 1047 err = sync_dirty_buffer(sbh); 1048 1049 sbh->b_blocknr = block; 1050 if (err) 1051 goto out; 1052 1053 /* write current valid superblock */ 1054 mark_buffer_dirty(sbh); 1055 err = sync_dirty_buffer(sbh); 1056 out: 1057 clear_buffer_write_io_error(sbh); 1058 set_buffer_uptodate(sbh); 1059 return err; 1060 } 1061 1062 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1063 { 1064 struct f2fs_sb_info *sbi; 1065 struct f2fs_super_block *raw_super; 1066 struct buffer_head *raw_super_buf; 1067 struct inode *root; 1068 long err; 1069 bool retry = true, need_fsck = false; 1070 char *options = NULL; 1071 int recovery, i; 1072 1073 try_onemore: 1074 err = -EINVAL; 1075 raw_super = NULL; 1076 raw_super_buf = NULL; 1077 recovery = 0; 1078 1079 /* allocate memory for f2fs-specific super block info */ 1080 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1081 if (!sbi) 1082 return -ENOMEM; 1083 1084 /* set a block size */ 1085 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1086 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1087 goto free_sbi; 1088 } 1089 1090 err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery); 1091 if (err) 1092 goto free_sbi; 1093 1094 sb->s_fs_info = sbi; 1095 default_options(sbi); 1096 /* parse mount options */ 1097 options = kstrdup((const char *)data, GFP_KERNEL); 1098 if (data && !options) { 1099 err = -ENOMEM; 1100 goto free_sb_buf; 1101 } 1102 1103 err = parse_options(sb, options); 1104 if (err) 1105 goto free_options; 1106 1107 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 1108 sb->s_max_links = F2FS_LINK_MAX; 1109 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1110 1111 sb->s_op = &f2fs_sops; 1112 sb->s_xattr = f2fs_xattr_handlers; 1113 sb->s_export_op = &f2fs_export_ops; 1114 sb->s_magic = F2FS_SUPER_MAGIC; 1115 sb->s_time_gran = 1; 1116 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1117 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1118 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1119 1120 /* init f2fs-specific super block info */ 1121 sbi->sb = sb; 1122 sbi->raw_super = raw_super; 1123 sbi->raw_super_buf = raw_super_buf; 1124 mutex_init(&sbi->gc_mutex); 1125 mutex_init(&sbi->writepages); 1126 mutex_init(&sbi->cp_mutex); 1127 init_rwsem(&sbi->node_write); 1128 clear_sbi_flag(sbi, SBI_POR_DOING); 1129 spin_lock_init(&sbi->stat_lock); 1130 1131 init_rwsem(&sbi->read_io.io_rwsem); 1132 sbi->read_io.sbi = sbi; 1133 sbi->read_io.bio = NULL; 1134 for (i = 0; i < NR_PAGE_TYPE; i++) { 1135 init_rwsem(&sbi->write_io[i].io_rwsem); 1136 sbi->write_io[i].sbi = sbi; 1137 sbi->write_io[i].bio = NULL; 1138 } 1139 1140 init_rwsem(&sbi->cp_rwsem); 1141 init_waitqueue_head(&sbi->cp_wait); 1142 init_sb_info(sbi); 1143 1144 /* get an inode for meta space */ 1145 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1146 if (IS_ERR(sbi->meta_inode)) { 1147 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1148 err = PTR_ERR(sbi->meta_inode); 1149 goto free_options; 1150 } 1151 1152 err = get_valid_checkpoint(sbi); 1153 if (err) { 1154 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1155 goto free_meta_inode; 1156 } 1157 1158 /* sanity checking of checkpoint */ 1159 err = -EINVAL; 1160 if (sanity_check_ckpt(sbi)) { 1161 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 1162 goto free_cp; 1163 } 1164 1165 sbi->total_valid_node_count = 1166 le32_to_cpu(sbi->ckpt->valid_node_count); 1167 sbi->total_valid_inode_count = 1168 le32_to_cpu(sbi->ckpt->valid_inode_count); 1169 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1170 sbi->total_valid_block_count = 1171 le64_to_cpu(sbi->ckpt->valid_block_count); 1172 sbi->last_valid_block_count = sbi->total_valid_block_count; 1173 sbi->alloc_valid_block_count = 0; 1174 INIT_LIST_HEAD(&sbi->dir_inode_list); 1175 spin_lock_init(&sbi->dir_inode_lock); 1176 1177 init_extent_cache_info(sbi); 1178 1179 init_ino_entry_info(sbi); 1180 1181 /* setup f2fs internal modules */ 1182 err = build_segment_manager(sbi); 1183 if (err) { 1184 f2fs_msg(sb, KERN_ERR, 1185 "Failed to initialize F2FS segment manager"); 1186 goto free_sm; 1187 } 1188 err = build_node_manager(sbi); 1189 if (err) { 1190 f2fs_msg(sb, KERN_ERR, 1191 "Failed to initialize F2FS node manager"); 1192 goto free_nm; 1193 } 1194 1195 build_gc_manager(sbi); 1196 1197 /* get an inode for node space */ 1198 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1199 if (IS_ERR(sbi->node_inode)) { 1200 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1201 err = PTR_ERR(sbi->node_inode); 1202 goto free_nm; 1203 } 1204 1205 /* if there are nt orphan nodes free them */ 1206 recover_orphan_inodes(sbi); 1207 1208 /* read root inode and dentry */ 1209 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1210 if (IS_ERR(root)) { 1211 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1212 err = PTR_ERR(root); 1213 goto free_node_inode; 1214 } 1215 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1216 iput(root); 1217 err = -EINVAL; 1218 goto free_node_inode; 1219 } 1220 1221 sb->s_root = d_make_root(root); /* allocate root dentry */ 1222 if (!sb->s_root) { 1223 err = -ENOMEM; 1224 goto free_root_inode; 1225 } 1226 1227 err = f2fs_build_stats(sbi); 1228 if (err) 1229 goto free_root_inode; 1230 1231 if (f2fs_proc_root) 1232 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1233 1234 if (sbi->s_proc) 1235 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1236 &f2fs_seq_segment_info_fops, sb); 1237 1238 if (test_opt(sbi, DISCARD)) { 1239 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1240 if (!blk_queue_discard(q)) 1241 f2fs_msg(sb, KERN_WARNING, 1242 "mounting with \"discard\" option, but " 1243 "the device does not support discard"); 1244 } 1245 1246 sbi->s_kobj.kset = f2fs_kset; 1247 init_completion(&sbi->s_kobj_unregister); 1248 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1249 "%s", sb->s_id); 1250 if (err) 1251 goto free_proc; 1252 1253 /* recover fsynced data */ 1254 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1255 /* 1256 * mount should be failed, when device has readonly mode, and 1257 * previous checkpoint was not done by clean system shutdown. 1258 */ 1259 if (bdev_read_only(sb->s_bdev) && 1260 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1261 err = -EROFS; 1262 goto free_kobj; 1263 } 1264 1265 if (need_fsck) 1266 set_sbi_flag(sbi, SBI_NEED_FSCK); 1267 1268 err = recover_fsync_data(sbi); 1269 if (err) { 1270 need_fsck = true; 1271 f2fs_msg(sb, KERN_ERR, 1272 "Cannot recover all fsync data errno=%ld", err); 1273 goto free_kobj; 1274 } 1275 } 1276 1277 /* 1278 * If filesystem is not mounted as read-only then 1279 * do start the gc_thread. 1280 */ 1281 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1282 /* After POR, we can run background GC thread.*/ 1283 err = start_gc_thread(sbi); 1284 if (err) 1285 goto free_kobj; 1286 } 1287 kfree(options); 1288 1289 /* recover broken superblock */ 1290 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) { 1291 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock"); 1292 f2fs_commit_super(sbi); 1293 } 1294 1295 return 0; 1296 1297 free_kobj: 1298 kobject_del(&sbi->s_kobj); 1299 free_proc: 1300 if (sbi->s_proc) { 1301 remove_proc_entry("segment_info", sbi->s_proc); 1302 remove_proc_entry(sb->s_id, f2fs_proc_root); 1303 } 1304 f2fs_destroy_stats(sbi); 1305 free_root_inode: 1306 dput(sb->s_root); 1307 sb->s_root = NULL; 1308 free_node_inode: 1309 iput(sbi->node_inode); 1310 free_nm: 1311 destroy_node_manager(sbi); 1312 free_sm: 1313 destroy_segment_manager(sbi); 1314 free_cp: 1315 kfree(sbi->ckpt); 1316 free_meta_inode: 1317 make_bad_inode(sbi->meta_inode); 1318 iput(sbi->meta_inode); 1319 free_options: 1320 kfree(options); 1321 free_sb_buf: 1322 brelse(raw_super_buf); 1323 free_sbi: 1324 kfree(sbi); 1325 1326 /* give only one another chance */ 1327 if (retry) { 1328 retry = false; 1329 shrink_dcache_sb(sb); 1330 goto try_onemore; 1331 } 1332 return err; 1333 } 1334 1335 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1336 const char *dev_name, void *data) 1337 { 1338 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1339 } 1340 1341 static void kill_f2fs_super(struct super_block *sb) 1342 { 1343 if (sb->s_root) 1344 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1345 kill_block_super(sb); 1346 } 1347 1348 static struct file_system_type f2fs_fs_type = { 1349 .owner = THIS_MODULE, 1350 .name = "f2fs", 1351 .mount = f2fs_mount, 1352 .kill_sb = kill_f2fs_super, 1353 .fs_flags = FS_REQUIRES_DEV, 1354 }; 1355 MODULE_ALIAS_FS("f2fs"); 1356 1357 static int __init init_inodecache(void) 1358 { 1359 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1360 sizeof(struct f2fs_inode_info)); 1361 if (!f2fs_inode_cachep) 1362 return -ENOMEM; 1363 return 0; 1364 } 1365 1366 static void destroy_inodecache(void) 1367 { 1368 /* 1369 * Make sure all delayed rcu free inodes are flushed before we 1370 * destroy cache. 1371 */ 1372 rcu_barrier(); 1373 kmem_cache_destroy(f2fs_inode_cachep); 1374 } 1375 1376 static int __init init_f2fs_fs(void) 1377 { 1378 int err; 1379 1380 f2fs_build_trace_ios(); 1381 1382 err = init_inodecache(); 1383 if (err) 1384 goto fail; 1385 err = create_node_manager_caches(); 1386 if (err) 1387 goto free_inodecache; 1388 err = create_segment_manager_caches(); 1389 if (err) 1390 goto free_node_manager_caches; 1391 err = create_checkpoint_caches(); 1392 if (err) 1393 goto free_segment_manager_caches; 1394 err = create_extent_cache(); 1395 if (err) 1396 goto free_checkpoint_caches; 1397 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1398 if (!f2fs_kset) { 1399 err = -ENOMEM; 1400 goto free_extent_cache; 1401 } 1402 err = f2fs_init_crypto(); 1403 if (err) 1404 goto free_kset; 1405 err = register_filesystem(&f2fs_fs_type); 1406 if (err) 1407 goto free_crypto; 1408 f2fs_create_root_stats(); 1409 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1410 return 0; 1411 1412 free_crypto: 1413 f2fs_exit_crypto(); 1414 free_kset: 1415 kset_unregister(f2fs_kset); 1416 free_extent_cache: 1417 destroy_extent_cache(); 1418 free_checkpoint_caches: 1419 destroy_checkpoint_caches(); 1420 free_segment_manager_caches: 1421 destroy_segment_manager_caches(); 1422 free_node_manager_caches: 1423 destroy_node_manager_caches(); 1424 free_inodecache: 1425 destroy_inodecache(); 1426 fail: 1427 return err; 1428 } 1429 1430 static void __exit exit_f2fs_fs(void) 1431 { 1432 remove_proc_entry("fs/f2fs", NULL); 1433 f2fs_destroy_root_stats(); 1434 unregister_filesystem(&f2fs_fs_type); 1435 f2fs_exit_crypto(); 1436 destroy_extent_cache(); 1437 destroy_checkpoint_caches(); 1438 destroy_segment_manager_caches(); 1439 destroy_node_manager_caches(); 1440 destroy_inodecache(); 1441 kset_unregister(f2fs_kset); 1442 f2fs_destroy_trace_ios(); 1443 } 1444 1445 module_init(init_f2fs_fs) 1446 module_exit(exit_f2fs_fs) 1447 1448 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1449 MODULE_DESCRIPTION("Flash Friendly File System"); 1450 MODULE_LICENSE("GPL"); 1451