1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/backing-dev.h>
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/swap.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/pagevec.h>
11 #include <linux/task_io_accounting_ops.h>
12 #include <linux/signal.h>
13 #include <linux/iversion.h>
14 #include <linux/ktime.h>
15 #include <linux/netfs.h>
16
17 #include "super.h"
18 #include "mds_client.h"
19 #include "cache.h"
20 #include "metric.h"
21 #include "crypto.h"
22 #include <linux/ceph/osd_client.h>
23 #include <linux/ceph/striper.h>
24
25 /*
26 * Ceph address space ops.
27 *
28 * There are a few funny things going on here.
29 *
30 * The page->private field is used to reference a struct
31 * ceph_snap_context for _every_ dirty page. This indicates which
32 * snapshot the page was logically dirtied in, and thus which snap
33 * context needs to be associated with the osd write during writeback.
34 *
35 * Similarly, struct ceph_inode_info maintains a set of counters to
36 * count dirty pages on the inode. In the absence of snapshots,
37 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
38 *
39 * When a snapshot is taken (that is, when the client receives
40 * notification that a snapshot was taken), each inode with caps and
41 * with dirty pages (dirty pages implies there is a cap) gets a new
42 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
43 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is
44 * moved to capsnap->dirty. (Unless a sync write is currently in
45 * progress. In that case, the capsnap is said to be "pending", new
46 * writes cannot start, and the capsnap isn't "finalized" until the
47 * write completes (or fails) and a final size/mtime for the inode for
48 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0.
49 *
50 * On writeback, we must submit writes to the osd IN SNAP ORDER. So,
51 * we look for the first capsnap in i_cap_snaps and write out pages in
52 * that snap context _only_. Then we move on to the next capsnap,
53 * eventually reaching the "live" or "head" context (i.e., pages that
54 * are not yet snapped) and are writing the most recently dirtied
55 * pages.
56 *
57 * Invalidate and so forth must take care to ensure the dirty page
58 * accounting is preserved.
59 */
60
61 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
62 #define CONGESTION_OFF_THRESH(congestion_kb) \
63 (CONGESTION_ON_THRESH(congestion_kb) - \
64 (CONGESTION_ON_THRESH(congestion_kb) >> 2))
65
66 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
67 struct folio **foliop, void **_fsdata);
68
page_snap_context(struct page * page)69 static inline struct ceph_snap_context *page_snap_context(struct page *page)
70 {
71 if (PagePrivate(page))
72 return (void *)page->private;
73 return NULL;
74 }
75
76 /*
77 * Dirty a page. Optimistically adjust accounting, on the assumption
78 * that we won't race with invalidate. If we do, readjust.
79 */
ceph_dirty_folio(struct address_space * mapping,struct folio * folio)80 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
81 {
82 struct inode *inode;
83 struct ceph_inode_info *ci;
84 struct ceph_snap_context *snapc;
85
86 if (folio_test_dirty(folio)) {
87 dout("%p dirty_folio %p idx %lu -- already dirty\n",
88 mapping->host, folio, folio->index);
89 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio);
90 return false;
91 }
92
93 inode = mapping->host;
94 ci = ceph_inode(inode);
95
96 /* dirty the head */
97 spin_lock(&ci->i_ceph_lock);
98 if (__ceph_have_pending_cap_snap(ci)) {
99 struct ceph_cap_snap *capsnap =
100 list_last_entry(&ci->i_cap_snaps,
101 struct ceph_cap_snap,
102 ci_item);
103 snapc = ceph_get_snap_context(capsnap->context);
104 capsnap->dirty_pages++;
105 } else {
106 BUG_ON(!ci->i_head_snapc);
107 snapc = ceph_get_snap_context(ci->i_head_snapc);
108 ++ci->i_wrbuffer_ref_head;
109 }
110 if (ci->i_wrbuffer_ref == 0)
111 ihold(inode);
112 ++ci->i_wrbuffer_ref;
113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
114 "snapc %p seq %lld (%d snaps)\n",
115 mapping->host, folio, folio->index,
116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
118 snapc, snapc->seq, snapc->num_snaps);
119 spin_unlock(&ci->i_ceph_lock);
120
121 /*
122 * Reference snap context in folio->private. Also set
123 * PagePrivate so that we get invalidate_folio callback.
124 */
125 VM_WARN_ON_FOLIO(folio->private, folio);
126 folio_attach_private(folio, snapc);
127
128 return ceph_fscache_dirty_folio(mapping, folio);
129 }
130
131 /*
132 * If we are truncating the full folio (i.e. offset == 0), adjust the
133 * dirty folio counters appropriately. Only called if there is private
134 * data on the folio.
135 */
ceph_invalidate_folio(struct folio * folio,size_t offset,size_t length)136 static void ceph_invalidate_folio(struct folio *folio, size_t offset,
137 size_t length)
138 {
139 struct inode *inode;
140 struct ceph_inode_info *ci;
141 struct ceph_snap_context *snapc;
142
143 inode = folio->mapping->host;
144 ci = ceph_inode(inode);
145
146 if (offset != 0 || length != folio_size(folio)) {
147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
148 inode, folio->index, offset, length);
149 return;
150 }
151
152 WARN_ON(!folio_test_locked(folio));
153 if (folio_test_private(folio)) {
154 dout("%p invalidate_folio idx %lu full dirty page\n",
155 inode, folio->index);
156
157 snapc = folio_detach_private(folio);
158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
159 ceph_put_snap_context(snapc);
160 }
161
162 folio_wait_fscache(folio);
163 }
164
ceph_release_folio(struct folio * folio,gfp_t gfp)165 static bool ceph_release_folio(struct folio *folio, gfp_t gfp)
166 {
167 struct inode *inode = folio->mapping->host;
168
169 dout("%llx:%llx release_folio idx %lu (%sdirty)\n",
170 ceph_vinop(inode),
171 folio->index, folio_test_dirty(folio) ? "" : "not ");
172
173 if (folio_test_private(folio))
174 return false;
175
176 if (folio_test_fscache(folio)) {
177 if (current_is_kswapd() || !(gfp & __GFP_FS))
178 return false;
179 folio_wait_fscache(folio);
180 }
181 ceph_fscache_note_page_release(inode);
182 return true;
183 }
184
ceph_netfs_expand_readahead(struct netfs_io_request * rreq)185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
186 {
187 struct inode *inode = rreq->inode;
188 struct ceph_inode_info *ci = ceph_inode(inode);
189 struct ceph_file_layout *lo = &ci->i_layout;
190 unsigned long max_pages = inode->i_sb->s_bdi->ra_pages;
191 loff_t end = rreq->start + rreq->len, new_end;
192 struct ceph_netfs_request_data *priv = rreq->netfs_priv;
193 unsigned long max_len;
194 u32 blockoff;
195
196 if (priv) {
197 /* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */
198 if (priv->file_ra_disabled)
199 max_pages = 0;
200 else
201 max_pages = priv->file_ra_pages;
202
203 }
204
205 /* Readahead is disabled */
206 if (!max_pages)
207 return;
208
209 max_len = max_pages << PAGE_SHIFT;
210
211 /*
212 * Try to expand the length forward by rounding up it to the next
213 * block, but do not exceed the file size, unless the original
214 * request already exceeds it.
215 */
216 new_end = min(round_up(end, lo->stripe_unit), rreq->i_size);
217 if (new_end > end && new_end <= rreq->start + max_len)
218 rreq->len = new_end - rreq->start;
219
220 /* Try to expand the start downward */
221 div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
222 if (rreq->len + blockoff <= max_len) {
223 rreq->start -= blockoff;
224 rreq->len += blockoff;
225 }
226 }
227
ceph_netfs_clamp_length(struct netfs_io_subrequest * subreq)228 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
229 {
230 struct inode *inode = subreq->rreq->inode;
231 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
232 struct ceph_inode_info *ci = ceph_inode(inode);
233 u64 objno, objoff;
234 u32 xlen;
235
236 /* Truncate the extent at the end of the current block */
237 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
238 &objno, &objoff, &xlen);
239 subreq->len = min(xlen, fsc->mount_options->rsize);
240 return true;
241 }
242
finish_netfs_read(struct ceph_osd_request * req)243 static void finish_netfs_read(struct ceph_osd_request *req)
244 {
245 struct inode *inode = req->r_inode;
246 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
247 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
248 struct netfs_io_subrequest *subreq = req->r_priv;
249 struct ceph_osd_req_op *op = &req->r_ops[0];
250 int err = req->r_result;
251 bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ);
252
253 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
254 req->r_end_latency, osd_data->length, err);
255
256 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
257 subreq->len, i_size_read(req->r_inode));
258
259 /* no object means success but no data */
260 if (err == -ENOENT)
261 err = 0;
262 else if (err == -EBLOCKLISTED)
263 fsc->blocklisted = true;
264
265 if (err >= 0) {
266 if (sparse && err > 0)
267 err = ceph_sparse_ext_map_end(op);
268 if (err < subreq->len)
269 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
270 if (IS_ENCRYPTED(inode) && err > 0) {
271 err = ceph_fscrypt_decrypt_extents(inode,
272 osd_data->pages, subreq->start,
273 op->extent.sparse_ext,
274 op->extent.sparse_ext_cnt);
275 if (err > subreq->len)
276 err = subreq->len;
277 }
278 }
279
280 if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) {
281 ceph_put_page_vector(osd_data->pages,
282 calc_pages_for(osd_data->alignment,
283 osd_data->length), false);
284 }
285 netfs_subreq_terminated(subreq, err, false);
286 iput(req->r_inode);
287 ceph_dec_osd_stopping_blocker(fsc->mdsc);
288 }
289
ceph_netfs_issue_op_inline(struct netfs_io_subrequest * subreq)290 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
291 {
292 struct netfs_io_request *rreq = subreq->rreq;
293 struct inode *inode = rreq->inode;
294 struct ceph_mds_reply_info_parsed *rinfo;
295 struct ceph_mds_reply_info_in *iinfo;
296 struct ceph_mds_request *req;
297 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
298 struct ceph_inode_info *ci = ceph_inode(inode);
299 struct iov_iter iter;
300 ssize_t err = 0;
301 size_t len;
302 int mode;
303
304 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
305 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
306
307 if (subreq->start >= inode->i_size)
308 goto out;
309
310 /* We need to fetch the inline data. */
311 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA);
312 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode);
313 if (IS_ERR(req)) {
314 err = PTR_ERR(req);
315 goto out;
316 }
317 req->r_ino1 = ci->i_vino;
318 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
319 req->r_num_caps = 2;
320
321 err = ceph_mdsc_do_request(mdsc, NULL, req);
322 if (err < 0)
323 goto out;
324
325 rinfo = &req->r_reply_info;
326 iinfo = &rinfo->targeti;
327 if (iinfo->inline_version == CEPH_INLINE_NONE) {
328 /* The data got uninlined */
329 ceph_mdsc_put_request(req);
330 return false;
331 }
332
333 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
334 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
335 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
336 if (err == 0)
337 err = -EFAULT;
338
339 ceph_mdsc_put_request(req);
340 out:
341 netfs_subreq_terminated(subreq, err, false);
342 return true;
343 }
344
ceph_netfs_issue_read(struct netfs_io_subrequest * subreq)345 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
346 {
347 struct netfs_io_request *rreq = subreq->rreq;
348 struct inode *inode = rreq->inode;
349 struct ceph_inode_info *ci = ceph_inode(inode);
350 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
351 struct ceph_osd_request *req = NULL;
352 struct ceph_vino vino = ceph_vino(inode);
353 struct iov_iter iter;
354 int err = 0;
355 u64 len = subreq->len;
356 bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD);
357 u64 off = subreq->start;
358 int extent_cnt;
359
360 if (ceph_inode_is_shutdown(inode)) {
361 err = -EIO;
362 goto out;
363 }
364
365 if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq))
366 return;
367
368 ceph_fscrypt_adjust_off_and_len(inode, &off, &len);
369
370 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino,
371 off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ,
372 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
373 NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
374 if (IS_ERR(req)) {
375 err = PTR_ERR(req);
376 req = NULL;
377 goto out;
378 }
379
380 if (sparse) {
381 extent_cnt = __ceph_sparse_read_ext_count(inode, len);
382 err = ceph_alloc_sparse_ext_map(&req->r_ops[0], extent_cnt);
383 if (err)
384 goto out;
385 }
386
387 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
388
389 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
390
391 /*
392 * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for
393 * encrypted inodes. We'd need infrastructure that handles an iov_iter
394 * instead of page arrays, and we don't have that as of yet. Once the
395 * dust settles on the write helpers and encrypt/decrypt routines for
396 * netfs, we should be able to rework this.
397 */
398 if (IS_ENCRYPTED(inode)) {
399 struct page **pages;
400 size_t page_off;
401
402 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off);
403 if (err < 0) {
404 dout("%s: iov_ter_get_pages_alloc returned %d\n",
405 __func__, err);
406 goto out;
407 }
408
409 /* should always give us a page-aligned read */
410 WARN_ON_ONCE(page_off);
411 len = err;
412 err = 0;
413
414 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false,
415 false);
416 } else {
417 osd_req_op_extent_osd_iter(req, 0, &iter);
418 }
419 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) {
420 err = -EIO;
421 goto out;
422 }
423 req->r_callback = finish_netfs_read;
424 req->r_priv = subreq;
425 req->r_inode = inode;
426 ihold(inode);
427
428 ceph_osdc_start_request(req->r_osdc, req);
429 out:
430 ceph_osdc_put_request(req);
431 if (err)
432 netfs_subreq_terminated(subreq, err, false);
433 dout("%s: result %d\n", __func__, err);
434 }
435
ceph_init_request(struct netfs_io_request * rreq,struct file * file)436 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
437 {
438 struct inode *inode = rreq->inode;
439 int got = 0, want = CEPH_CAP_FILE_CACHE;
440 struct ceph_netfs_request_data *priv;
441 int ret = 0;
442
443 if (rreq->origin != NETFS_READAHEAD)
444 return 0;
445
446 priv = kzalloc(sizeof(*priv), GFP_NOFS);
447 if (!priv)
448 return -ENOMEM;
449
450 if (file) {
451 struct ceph_rw_context *rw_ctx;
452 struct ceph_file_info *fi = file->private_data;
453
454 priv->file_ra_pages = file->f_ra.ra_pages;
455 priv->file_ra_disabled = file->f_mode & FMODE_RANDOM;
456
457 rw_ctx = ceph_find_rw_context(fi);
458 if (rw_ctx) {
459 rreq->netfs_priv = priv;
460 return 0;
461 }
462 }
463
464 /*
465 * readahead callers do not necessarily hold Fcb caps
466 * (e.g. fadvise, madvise).
467 */
468 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
469 if (ret < 0) {
470 dout("start_read %p, error getting cap\n", inode);
471 goto out;
472 }
473
474 if (!(got & want)) {
475 dout("start_read %p, no cache cap\n", inode);
476 ret = -EACCES;
477 goto out;
478 }
479 if (ret == 0) {
480 ret = -EACCES;
481 goto out;
482 }
483
484 priv->caps = got;
485 rreq->netfs_priv = priv;
486
487 out:
488 if (ret < 0) {
489 if (got)
490 ceph_put_cap_refs(ceph_inode(inode), got);
491 kfree(priv);
492 }
493
494 return ret;
495 }
496
ceph_netfs_free_request(struct netfs_io_request * rreq)497 static void ceph_netfs_free_request(struct netfs_io_request *rreq)
498 {
499 struct ceph_netfs_request_data *priv = rreq->netfs_priv;
500
501 if (!priv)
502 return;
503
504 if (priv->caps)
505 ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps);
506 kfree(priv);
507 rreq->netfs_priv = NULL;
508 }
509
510 const struct netfs_request_ops ceph_netfs_ops = {
511 .init_request = ceph_init_request,
512 .free_request = ceph_netfs_free_request,
513 .begin_cache_operation = ceph_begin_cache_operation,
514 .issue_read = ceph_netfs_issue_read,
515 .expand_readahead = ceph_netfs_expand_readahead,
516 .clamp_length = ceph_netfs_clamp_length,
517 .check_write_begin = ceph_netfs_check_write_begin,
518 };
519
520 #ifdef CONFIG_CEPH_FSCACHE
ceph_set_page_fscache(struct page * page)521 static void ceph_set_page_fscache(struct page *page)
522 {
523 set_page_fscache(page);
524 }
525
ceph_fscache_write_terminated(void * priv,ssize_t error,bool was_async)526 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
527 {
528 struct inode *inode = priv;
529
530 if (IS_ERR_VALUE(error) && error != -ENOBUFS)
531 ceph_fscache_invalidate(inode, false);
532 }
533
ceph_fscache_write_to_cache(struct inode * inode,u64 off,u64 len,bool caching)534 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
535 {
536 struct ceph_inode_info *ci = ceph_inode(inode);
537 struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
538
539 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
540 ceph_fscache_write_terminated, inode, caching);
541 }
542 #else
ceph_set_page_fscache(struct page * page)543 static inline void ceph_set_page_fscache(struct page *page)
544 {
545 }
546
ceph_fscache_write_to_cache(struct inode * inode,u64 off,u64 len,bool caching)547 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
548 {
549 }
550 #endif /* CONFIG_CEPH_FSCACHE */
551
552 struct ceph_writeback_ctl
553 {
554 loff_t i_size;
555 u64 truncate_size;
556 u32 truncate_seq;
557 bool size_stable;
558 bool head_snapc;
559 };
560
561 /*
562 * Get ref for the oldest snapc for an inode with dirty data... that is, the
563 * only snap context we are allowed to write back.
564 */
565 static struct ceph_snap_context *
get_oldest_context(struct inode * inode,struct ceph_writeback_ctl * ctl,struct ceph_snap_context * page_snapc)566 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
567 struct ceph_snap_context *page_snapc)
568 {
569 struct ceph_inode_info *ci = ceph_inode(inode);
570 struct ceph_snap_context *snapc = NULL;
571 struct ceph_cap_snap *capsnap = NULL;
572
573 spin_lock(&ci->i_ceph_lock);
574 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
575 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
576 capsnap->context, capsnap->dirty_pages);
577 if (!capsnap->dirty_pages)
578 continue;
579
580 /* get i_size, truncate_{seq,size} for page_snapc? */
581 if (snapc && capsnap->context != page_snapc)
582 continue;
583
584 if (ctl) {
585 if (capsnap->writing) {
586 ctl->i_size = i_size_read(inode);
587 ctl->size_stable = false;
588 } else {
589 ctl->i_size = capsnap->size;
590 ctl->size_stable = true;
591 }
592 ctl->truncate_size = capsnap->truncate_size;
593 ctl->truncate_seq = capsnap->truncate_seq;
594 ctl->head_snapc = false;
595 }
596
597 if (snapc)
598 break;
599
600 snapc = ceph_get_snap_context(capsnap->context);
601 if (!page_snapc ||
602 page_snapc == snapc ||
603 page_snapc->seq > snapc->seq)
604 break;
605 }
606 if (!snapc && ci->i_wrbuffer_ref_head) {
607 snapc = ceph_get_snap_context(ci->i_head_snapc);
608 dout(" head snapc %p has %d dirty pages\n",
609 snapc, ci->i_wrbuffer_ref_head);
610 if (ctl) {
611 ctl->i_size = i_size_read(inode);
612 ctl->truncate_size = ci->i_truncate_size;
613 ctl->truncate_seq = ci->i_truncate_seq;
614 ctl->size_stable = false;
615 ctl->head_snapc = true;
616 }
617 }
618 spin_unlock(&ci->i_ceph_lock);
619 return snapc;
620 }
621
get_writepages_data_length(struct inode * inode,struct page * page,u64 start)622 static u64 get_writepages_data_length(struct inode *inode,
623 struct page *page, u64 start)
624 {
625 struct ceph_inode_info *ci = ceph_inode(inode);
626 struct ceph_snap_context *snapc;
627 struct ceph_cap_snap *capsnap = NULL;
628 u64 end = i_size_read(inode);
629 u64 ret;
630
631 snapc = page_snap_context(ceph_fscrypt_pagecache_page(page));
632 if (snapc != ci->i_head_snapc) {
633 bool found = false;
634 spin_lock(&ci->i_ceph_lock);
635 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
636 if (capsnap->context == snapc) {
637 if (!capsnap->writing)
638 end = capsnap->size;
639 found = true;
640 break;
641 }
642 }
643 spin_unlock(&ci->i_ceph_lock);
644 WARN_ON(!found);
645 }
646 if (end > ceph_fscrypt_page_offset(page) + thp_size(page))
647 end = ceph_fscrypt_page_offset(page) + thp_size(page);
648 ret = end > start ? end - start : 0;
649 if (ret && fscrypt_is_bounce_page(page))
650 ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE);
651 return ret;
652 }
653
654 /*
655 * Write a single page, but leave the page locked.
656 *
657 * If we get a write error, mark the mapping for error, but still adjust the
658 * dirty page accounting (i.e., page is no longer dirty).
659 */
writepage_nounlock(struct page * page,struct writeback_control * wbc)660 static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
661 {
662 struct folio *folio = page_folio(page);
663 struct inode *inode = page->mapping->host;
664 struct ceph_inode_info *ci = ceph_inode(inode);
665 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
666 struct ceph_snap_context *snapc, *oldest;
667 loff_t page_off = page_offset(page);
668 int err;
669 loff_t len = thp_size(page);
670 loff_t wlen;
671 struct ceph_writeback_ctl ceph_wbc;
672 struct ceph_osd_client *osdc = &fsc->client->osdc;
673 struct ceph_osd_request *req;
674 bool caching = ceph_is_cache_enabled(inode);
675 struct page *bounce_page = NULL;
676
677 dout("writepage %p idx %lu\n", page, page->index);
678
679 if (ceph_inode_is_shutdown(inode))
680 return -EIO;
681
682 /* verify this is a writeable snap context */
683 snapc = page_snap_context(page);
684 if (!snapc) {
685 dout("writepage %p page %p not dirty?\n", inode, page);
686 return 0;
687 }
688 oldest = get_oldest_context(inode, &ceph_wbc, snapc);
689 if (snapc->seq > oldest->seq) {
690 dout("writepage %p page %p snapc %p not writeable - noop\n",
691 inode, page, snapc);
692 /* we should only noop if called by kswapd */
693 WARN_ON(!(current->flags & PF_MEMALLOC));
694 ceph_put_snap_context(oldest);
695 redirty_page_for_writepage(wbc, page);
696 return 0;
697 }
698 ceph_put_snap_context(oldest);
699
700 /* is this a partial page at end of file? */
701 if (page_off >= ceph_wbc.i_size) {
702 dout("folio at %lu beyond eof %llu\n", folio->index,
703 ceph_wbc.i_size);
704 folio_invalidate(folio, 0, folio_size(folio));
705 return 0;
706 }
707
708 if (ceph_wbc.i_size < page_off + len)
709 len = ceph_wbc.i_size - page_off;
710
711 wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len;
712 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
713 inode, page, page->index, page_off, wlen, snapc, snapc->seq);
714
715 if (atomic_long_inc_return(&fsc->writeback_count) >
716 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
717 fsc->write_congested = true;
718
719 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode),
720 page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE,
721 CEPH_OSD_FLAG_WRITE, snapc,
722 ceph_wbc.truncate_seq,
723 ceph_wbc.truncate_size, true);
724 if (IS_ERR(req)) {
725 redirty_page_for_writepage(wbc, page);
726 return PTR_ERR(req);
727 }
728
729 if (wlen < len)
730 len = wlen;
731
732 set_page_writeback(page);
733 if (caching)
734 ceph_set_page_fscache(page);
735 ceph_fscache_write_to_cache(inode, page_off, len, caching);
736
737 if (IS_ENCRYPTED(inode)) {
738 bounce_page = fscrypt_encrypt_pagecache_blocks(page,
739 CEPH_FSCRYPT_BLOCK_SIZE, 0,
740 GFP_NOFS);
741 if (IS_ERR(bounce_page)) {
742 redirty_page_for_writepage(wbc, page);
743 end_page_writeback(page);
744 ceph_osdc_put_request(req);
745 return PTR_ERR(bounce_page);
746 }
747 }
748
749 /* it may be a short write due to an object boundary */
750 WARN_ON_ONCE(len > thp_size(page));
751 osd_req_op_extent_osd_data_pages(req, 0,
752 bounce_page ? &bounce_page : &page, wlen, 0,
753 false, false);
754 dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n",
755 page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not ");
756
757 req->r_mtime = inode->i_mtime;
758 ceph_osdc_start_request(osdc, req);
759 err = ceph_osdc_wait_request(osdc, req);
760
761 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
762 req->r_end_latency, len, err);
763 fscrypt_free_bounce_page(bounce_page);
764 ceph_osdc_put_request(req);
765 if (err == 0)
766 err = len;
767
768 if (err < 0) {
769 struct writeback_control tmp_wbc;
770 if (!wbc)
771 wbc = &tmp_wbc;
772 if (err == -ERESTARTSYS) {
773 /* killed by SIGKILL */
774 dout("writepage interrupted page %p\n", page);
775 redirty_page_for_writepage(wbc, page);
776 end_page_writeback(page);
777 return err;
778 }
779 if (err == -EBLOCKLISTED)
780 fsc->blocklisted = true;
781 dout("writepage setting page/mapping error %d %p\n",
782 err, page);
783 mapping_set_error(&inode->i_data, err);
784 wbc->pages_skipped++;
785 } else {
786 dout("writepage cleaned page %p\n", page);
787 err = 0; /* vfs expects us to return 0 */
788 }
789 oldest = detach_page_private(page);
790 WARN_ON_ONCE(oldest != snapc);
791 end_page_writeback(page);
792 ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
793 ceph_put_snap_context(snapc); /* page's reference */
794
795 if (atomic_long_dec_return(&fsc->writeback_count) <
796 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
797 fsc->write_congested = false;
798
799 return err;
800 }
801
ceph_writepage(struct page * page,struct writeback_control * wbc)802 static int ceph_writepage(struct page *page, struct writeback_control *wbc)
803 {
804 int err;
805 struct inode *inode = page->mapping->host;
806 BUG_ON(!inode);
807 ihold(inode);
808
809 if (wbc->sync_mode == WB_SYNC_NONE &&
810 ceph_inode_to_fs_client(inode)->write_congested) {
811 redirty_page_for_writepage(wbc, page);
812 return AOP_WRITEPAGE_ACTIVATE;
813 }
814
815 wait_on_page_fscache(page);
816
817 err = writepage_nounlock(page, wbc);
818 if (err == -ERESTARTSYS) {
819 /* direct memory reclaimer was killed by SIGKILL. return 0
820 * to prevent caller from setting mapping/page error */
821 err = 0;
822 }
823 unlock_page(page);
824 iput(inode);
825 return err;
826 }
827
828 /*
829 * async writeback completion handler.
830 *
831 * If we get an error, set the mapping error bit, but not the individual
832 * page error bits.
833 */
writepages_finish(struct ceph_osd_request * req)834 static void writepages_finish(struct ceph_osd_request *req)
835 {
836 struct inode *inode = req->r_inode;
837 struct ceph_inode_info *ci = ceph_inode(inode);
838 struct ceph_osd_data *osd_data;
839 struct page *page;
840 int num_pages, total_pages = 0;
841 int i, j;
842 int rc = req->r_result;
843 struct ceph_snap_context *snapc = req->r_snapc;
844 struct address_space *mapping = inode->i_mapping;
845 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
846 unsigned int len = 0;
847 bool remove_page;
848
849 dout("writepages_finish %p rc %d\n", inode, rc);
850 if (rc < 0) {
851 mapping_set_error(mapping, rc);
852 ceph_set_error_write(ci);
853 if (rc == -EBLOCKLISTED)
854 fsc->blocklisted = true;
855 } else {
856 ceph_clear_error_write(ci);
857 }
858
859 /*
860 * We lost the cache cap, need to truncate the page before
861 * it is unlocked, otherwise we'd truncate it later in the
862 * page truncation thread, possibly losing some data that
863 * raced its way in
864 */
865 remove_page = !(ceph_caps_issued(ci) &
866 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
867
868 /* clean all pages */
869 for (i = 0; i < req->r_num_ops; i++) {
870 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) {
871 pr_warn("%s incorrect op %d req %p index %d tid %llu\n",
872 __func__, req->r_ops[i].op, req, i, req->r_tid);
873 break;
874 }
875
876 osd_data = osd_req_op_extent_osd_data(req, i);
877 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
878 len += osd_data->length;
879 num_pages = calc_pages_for((u64)osd_data->alignment,
880 (u64)osd_data->length);
881 total_pages += num_pages;
882 for (j = 0; j < num_pages; j++) {
883 page = osd_data->pages[j];
884 if (fscrypt_is_bounce_page(page)) {
885 page = fscrypt_pagecache_page(page);
886 fscrypt_free_bounce_page(osd_data->pages[j]);
887 osd_data->pages[j] = page;
888 }
889 BUG_ON(!page);
890 WARN_ON(!PageUptodate(page));
891
892 if (atomic_long_dec_return(&fsc->writeback_count) <
893 CONGESTION_OFF_THRESH(
894 fsc->mount_options->congestion_kb))
895 fsc->write_congested = false;
896
897 ceph_put_snap_context(detach_page_private(page));
898 end_page_writeback(page);
899 dout("unlocking %p\n", page);
900
901 if (remove_page)
902 generic_error_remove_page(inode->i_mapping,
903 page);
904
905 unlock_page(page);
906 }
907 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
908 inode, osd_data->length, rc >= 0 ? num_pages : 0);
909
910 release_pages(osd_data->pages, num_pages);
911 }
912
913 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
914 req->r_end_latency, len, rc);
915
916 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
917
918 osd_data = osd_req_op_extent_osd_data(req, 0);
919 if (osd_data->pages_from_pool)
920 mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
921 else
922 kfree(osd_data->pages);
923 ceph_osdc_put_request(req);
924 ceph_dec_osd_stopping_blocker(fsc->mdsc);
925 }
926
927 /*
928 * initiate async writeback
929 */
ceph_writepages_start(struct address_space * mapping,struct writeback_control * wbc)930 static int ceph_writepages_start(struct address_space *mapping,
931 struct writeback_control *wbc)
932 {
933 struct inode *inode = mapping->host;
934 struct ceph_inode_info *ci = ceph_inode(inode);
935 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
936 struct ceph_vino vino = ceph_vino(inode);
937 pgoff_t index, start_index, end = -1;
938 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
939 struct folio_batch fbatch;
940 int rc = 0;
941 unsigned int wsize = i_blocksize(inode);
942 struct ceph_osd_request *req = NULL;
943 struct ceph_writeback_ctl ceph_wbc;
944 bool should_loop, range_whole = false;
945 bool done = false;
946 bool caching = ceph_is_cache_enabled(inode);
947 xa_mark_t tag;
948
949 if (wbc->sync_mode == WB_SYNC_NONE &&
950 fsc->write_congested)
951 return 0;
952
953 dout("writepages_start %p (mode=%s)\n", inode,
954 wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
955 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
956
957 if (ceph_inode_is_shutdown(inode)) {
958 if (ci->i_wrbuffer_ref > 0) {
959 pr_warn_ratelimited(
960 "writepage_start %p %lld forced umount\n",
961 inode, ceph_ino(inode));
962 }
963 mapping_set_error(mapping, -EIO);
964 return -EIO; /* we're in a forced umount, don't write! */
965 }
966 if (fsc->mount_options->wsize < wsize)
967 wsize = fsc->mount_options->wsize;
968
969 folio_batch_init(&fbatch);
970
971 start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
972 index = start_index;
973
974 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
975 tag = PAGECACHE_TAG_TOWRITE;
976 } else {
977 tag = PAGECACHE_TAG_DIRTY;
978 }
979 retry:
980 /* find oldest snap context with dirty data */
981 snapc = get_oldest_context(inode, &ceph_wbc, NULL);
982 if (!snapc) {
983 /* hmm, why does writepages get called when there
984 is no dirty data? */
985 dout(" no snap context with dirty data?\n");
986 goto out;
987 }
988 dout(" oldest snapc is %p seq %lld (%d snaps)\n",
989 snapc, snapc->seq, snapc->num_snaps);
990
991 should_loop = false;
992 if (ceph_wbc.head_snapc && snapc != last_snapc) {
993 /* where to start/end? */
994 if (wbc->range_cyclic) {
995 index = start_index;
996 end = -1;
997 if (index > 0)
998 should_loop = true;
999 dout(" cyclic, start at %lu\n", index);
1000 } else {
1001 index = wbc->range_start >> PAGE_SHIFT;
1002 end = wbc->range_end >> PAGE_SHIFT;
1003 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1004 range_whole = true;
1005 dout(" not cyclic, %lu to %lu\n", index, end);
1006 }
1007 } else if (!ceph_wbc.head_snapc) {
1008 /* Do not respect wbc->range_{start,end}. Dirty pages
1009 * in that range can be associated with newer snapc.
1010 * They are not writeable until we write all dirty pages
1011 * associated with 'snapc' get written */
1012 if (index > 0)
1013 should_loop = true;
1014 dout(" non-head snapc, range whole\n");
1015 }
1016
1017 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1018 tag_pages_for_writeback(mapping, index, end);
1019
1020 ceph_put_snap_context(last_snapc);
1021 last_snapc = snapc;
1022
1023 while (!done && index <= end) {
1024 int num_ops = 0, op_idx;
1025 unsigned i, nr_folios, max_pages, locked_pages = 0;
1026 struct page **pages = NULL, **data_pages;
1027 struct page *page;
1028 pgoff_t strip_unit_end = 0;
1029 u64 offset = 0, len = 0;
1030 bool from_pool = false;
1031
1032 max_pages = wsize >> PAGE_SHIFT;
1033
1034 get_more_pages:
1035 nr_folios = filemap_get_folios_tag(mapping, &index,
1036 end, tag, &fbatch);
1037 dout("pagevec_lookup_range_tag got %d\n", nr_folios);
1038 if (!nr_folios && !locked_pages)
1039 break;
1040 for (i = 0; i < nr_folios && locked_pages < max_pages; i++) {
1041 page = &fbatch.folios[i]->page;
1042 dout("? %p idx %lu\n", page, page->index);
1043 if (locked_pages == 0)
1044 lock_page(page); /* first page */
1045 else if (!trylock_page(page))
1046 break;
1047
1048 /* only dirty pages, or our accounting breaks */
1049 if (unlikely(!PageDirty(page)) ||
1050 unlikely(page->mapping != mapping)) {
1051 dout("!dirty or !mapping %p\n", page);
1052 unlock_page(page);
1053 continue;
1054 }
1055 /* only if matching snap context */
1056 pgsnapc = page_snap_context(page);
1057 if (pgsnapc != snapc) {
1058 dout("page snapc %p %lld != oldest %p %lld\n",
1059 pgsnapc, pgsnapc->seq, snapc, snapc->seq);
1060 if (!should_loop &&
1061 !ceph_wbc.head_snapc &&
1062 wbc->sync_mode != WB_SYNC_NONE)
1063 should_loop = true;
1064 unlock_page(page);
1065 continue;
1066 }
1067 if (page_offset(page) >= ceph_wbc.i_size) {
1068 struct folio *folio = page_folio(page);
1069
1070 dout("folio at %lu beyond eof %llu\n",
1071 folio->index, ceph_wbc.i_size);
1072 if ((ceph_wbc.size_stable ||
1073 folio_pos(folio) >= i_size_read(inode)) &&
1074 folio_clear_dirty_for_io(folio))
1075 folio_invalidate(folio, 0,
1076 folio_size(folio));
1077 folio_unlock(folio);
1078 continue;
1079 }
1080 if (strip_unit_end && (page->index > strip_unit_end)) {
1081 dout("end of strip unit %p\n", page);
1082 unlock_page(page);
1083 break;
1084 }
1085 if (PageWriteback(page) || PageFsCache(page)) {
1086 if (wbc->sync_mode == WB_SYNC_NONE) {
1087 dout("%p under writeback\n", page);
1088 unlock_page(page);
1089 continue;
1090 }
1091 dout("waiting on writeback %p\n", page);
1092 wait_on_page_writeback(page);
1093 wait_on_page_fscache(page);
1094 }
1095
1096 if (!clear_page_dirty_for_io(page)) {
1097 dout("%p !clear_page_dirty_for_io\n", page);
1098 unlock_page(page);
1099 continue;
1100 }
1101
1102 /*
1103 * We have something to write. If this is
1104 * the first locked page this time through,
1105 * calculate max possinle write size and
1106 * allocate a page array
1107 */
1108 if (locked_pages == 0) {
1109 u64 objnum;
1110 u64 objoff;
1111 u32 xlen;
1112
1113 /* prepare async write request */
1114 offset = (u64)page_offset(page);
1115 ceph_calc_file_object_mapping(&ci->i_layout,
1116 offset, wsize,
1117 &objnum, &objoff,
1118 &xlen);
1119 len = xlen;
1120
1121 num_ops = 1;
1122 strip_unit_end = page->index +
1123 ((len - 1) >> PAGE_SHIFT);
1124
1125 BUG_ON(pages);
1126 max_pages = calc_pages_for(0, (u64)len);
1127 pages = kmalloc_array(max_pages,
1128 sizeof(*pages),
1129 GFP_NOFS);
1130 if (!pages) {
1131 from_pool = true;
1132 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1133 BUG_ON(!pages);
1134 }
1135
1136 len = 0;
1137 } else if (page->index !=
1138 (offset + len) >> PAGE_SHIFT) {
1139 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS :
1140 CEPH_OSD_MAX_OPS)) {
1141 redirty_page_for_writepage(wbc, page);
1142 unlock_page(page);
1143 break;
1144 }
1145
1146 num_ops++;
1147 offset = (u64)page_offset(page);
1148 len = 0;
1149 }
1150
1151 /* note position of first page in fbatch */
1152 dout("%p will write page %p idx %lu\n",
1153 inode, page, page->index);
1154
1155 if (atomic_long_inc_return(&fsc->writeback_count) >
1156 CONGESTION_ON_THRESH(
1157 fsc->mount_options->congestion_kb))
1158 fsc->write_congested = true;
1159
1160 if (IS_ENCRYPTED(inode)) {
1161 pages[locked_pages] =
1162 fscrypt_encrypt_pagecache_blocks(page,
1163 PAGE_SIZE, 0,
1164 locked_pages ? GFP_NOWAIT : GFP_NOFS);
1165 if (IS_ERR(pages[locked_pages])) {
1166 if (PTR_ERR(pages[locked_pages]) == -EINVAL)
1167 pr_err("%s: inode->i_blkbits=%hhu\n",
1168 __func__, inode->i_blkbits);
1169 /* better not fail on first page! */
1170 BUG_ON(locked_pages == 0);
1171 pages[locked_pages] = NULL;
1172 redirty_page_for_writepage(wbc, page);
1173 unlock_page(page);
1174 break;
1175 }
1176 ++locked_pages;
1177 } else {
1178 pages[locked_pages++] = page;
1179 }
1180
1181 fbatch.folios[i] = NULL;
1182 len += thp_size(page);
1183 }
1184
1185 /* did we get anything? */
1186 if (!locked_pages)
1187 goto release_folios;
1188 if (i) {
1189 unsigned j, n = 0;
1190 /* shift unused page to beginning of fbatch */
1191 for (j = 0; j < nr_folios; j++) {
1192 if (!fbatch.folios[j])
1193 continue;
1194 if (n < j)
1195 fbatch.folios[n] = fbatch.folios[j];
1196 n++;
1197 }
1198 fbatch.nr = n;
1199
1200 if (nr_folios && i == nr_folios &&
1201 locked_pages < max_pages) {
1202 dout("reached end fbatch, trying for more\n");
1203 folio_batch_release(&fbatch);
1204 goto get_more_pages;
1205 }
1206 }
1207
1208 new_request:
1209 offset = ceph_fscrypt_page_offset(pages[0]);
1210 len = wsize;
1211
1212 req = ceph_osdc_new_request(&fsc->client->osdc,
1213 &ci->i_layout, vino,
1214 offset, &len, 0, num_ops,
1215 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1216 snapc, ceph_wbc.truncate_seq,
1217 ceph_wbc.truncate_size, false);
1218 if (IS_ERR(req)) {
1219 req = ceph_osdc_new_request(&fsc->client->osdc,
1220 &ci->i_layout, vino,
1221 offset, &len, 0,
1222 min(num_ops,
1223 CEPH_OSD_SLAB_OPS),
1224 CEPH_OSD_OP_WRITE,
1225 CEPH_OSD_FLAG_WRITE,
1226 snapc, ceph_wbc.truncate_seq,
1227 ceph_wbc.truncate_size, true);
1228 BUG_ON(IS_ERR(req));
1229 }
1230 BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) +
1231 thp_size(pages[locked_pages - 1]) - offset);
1232
1233 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) {
1234 rc = -EIO;
1235 goto release_folios;
1236 }
1237 req->r_callback = writepages_finish;
1238 req->r_inode = inode;
1239
1240 /* Format the osd request message and submit the write */
1241 len = 0;
1242 data_pages = pages;
1243 op_idx = 0;
1244 for (i = 0; i < locked_pages; i++) {
1245 struct page *page = ceph_fscrypt_pagecache_page(pages[i]);
1246
1247 u64 cur_offset = page_offset(page);
1248 /*
1249 * Discontinuity in page range? Ceph can handle that by just passing
1250 * multiple extents in the write op.
1251 */
1252 if (offset + len != cur_offset) {
1253 /* If it's full, stop here */
1254 if (op_idx + 1 == req->r_num_ops)
1255 break;
1256
1257 /* Kick off an fscache write with what we have so far. */
1258 ceph_fscache_write_to_cache(inode, offset, len, caching);
1259
1260 /* Start a new extent */
1261 osd_req_op_extent_dup_last(req, op_idx,
1262 cur_offset - offset);
1263 dout("writepages got pages at %llu~%llu\n",
1264 offset, len);
1265 osd_req_op_extent_osd_data_pages(req, op_idx,
1266 data_pages, len, 0,
1267 from_pool, false);
1268 osd_req_op_extent_update(req, op_idx, len);
1269
1270 len = 0;
1271 offset = cur_offset;
1272 data_pages = pages + i;
1273 op_idx++;
1274 }
1275
1276 set_page_writeback(page);
1277 if (caching)
1278 ceph_set_page_fscache(page);
1279 len += thp_size(page);
1280 }
1281 ceph_fscache_write_to_cache(inode, offset, len, caching);
1282
1283 if (ceph_wbc.size_stable) {
1284 len = min(len, ceph_wbc.i_size - offset);
1285 } else if (i == locked_pages) {
1286 /* writepages_finish() clears writeback pages
1287 * according to the data length, so make sure
1288 * data length covers all locked pages */
1289 u64 min_len = len + 1 - thp_size(page);
1290 len = get_writepages_data_length(inode, pages[i - 1],
1291 offset);
1292 len = max(len, min_len);
1293 }
1294 if (IS_ENCRYPTED(inode))
1295 len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE);
1296
1297 dout("writepages got pages at %llu~%llu\n", offset, len);
1298
1299 if (IS_ENCRYPTED(inode) &&
1300 ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK))
1301 pr_warn("%s: bad encrypted write offset=%lld len=%llu\n",
1302 __func__, offset, len);
1303
1304 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
1305 0, from_pool, false);
1306 osd_req_op_extent_update(req, op_idx, len);
1307
1308 BUG_ON(op_idx + 1 != req->r_num_ops);
1309
1310 from_pool = false;
1311 if (i < locked_pages) {
1312 BUG_ON(num_ops <= req->r_num_ops);
1313 num_ops -= req->r_num_ops;
1314 locked_pages -= i;
1315
1316 /* allocate new pages array for next request */
1317 data_pages = pages;
1318 pages = kmalloc_array(locked_pages, sizeof(*pages),
1319 GFP_NOFS);
1320 if (!pages) {
1321 from_pool = true;
1322 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1323 BUG_ON(!pages);
1324 }
1325 memcpy(pages, data_pages + i,
1326 locked_pages * sizeof(*pages));
1327 memset(data_pages + i, 0,
1328 locked_pages * sizeof(*pages));
1329 } else {
1330 BUG_ON(num_ops != req->r_num_ops);
1331 index = pages[i - 1]->index + 1;
1332 /* request message now owns the pages array */
1333 pages = NULL;
1334 }
1335
1336 req->r_mtime = inode->i_mtime;
1337 ceph_osdc_start_request(&fsc->client->osdc, req);
1338 req = NULL;
1339
1340 wbc->nr_to_write -= i;
1341 if (pages)
1342 goto new_request;
1343
1344 /*
1345 * We stop writing back only if we are not doing
1346 * integrity sync. In case of integrity sync we have to
1347 * keep going until we have written all the pages
1348 * we tagged for writeback prior to entering this loop.
1349 */
1350 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
1351 done = true;
1352
1353 release_folios:
1354 dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr,
1355 fbatch.nr ? fbatch.folios[0] : NULL);
1356 folio_batch_release(&fbatch);
1357 }
1358
1359 if (should_loop && !done) {
1360 /* more to do; loop back to beginning of file */
1361 dout("writepages looping back to beginning of file\n");
1362 end = start_index - 1; /* OK even when start_index == 0 */
1363
1364 /* to write dirty pages associated with next snapc,
1365 * we need to wait until current writes complete */
1366 if (wbc->sync_mode != WB_SYNC_NONE &&
1367 start_index == 0 && /* all dirty pages were checked */
1368 !ceph_wbc.head_snapc) {
1369 struct page *page;
1370 unsigned i, nr;
1371 index = 0;
1372 while ((index <= end) &&
1373 (nr = filemap_get_folios_tag(mapping, &index,
1374 (pgoff_t)-1,
1375 PAGECACHE_TAG_WRITEBACK,
1376 &fbatch))) {
1377 for (i = 0; i < nr; i++) {
1378 page = &fbatch.folios[i]->page;
1379 if (page_snap_context(page) != snapc)
1380 continue;
1381 wait_on_page_writeback(page);
1382 }
1383 folio_batch_release(&fbatch);
1384 cond_resched();
1385 }
1386 }
1387
1388 start_index = 0;
1389 index = 0;
1390 goto retry;
1391 }
1392
1393 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1394 mapping->writeback_index = index;
1395
1396 out:
1397 ceph_osdc_put_request(req);
1398 ceph_put_snap_context(last_snapc);
1399 dout("writepages dend - startone, rc = %d\n", rc);
1400 return rc;
1401 }
1402
1403
1404
1405 /*
1406 * See if a given @snapc is either writeable, or already written.
1407 */
context_is_writeable_or_written(struct inode * inode,struct ceph_snap_context * snapc)1408 static int context_is_writeable_or_written(struct inode *inode,
1409 struct ceph_snap_context *snapc)
1410 {
1411 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
1412 int ret = !oldest || snapc->seq <= oldest->seq;
1413
1414 ceph_put_snap_context(oldest);
1415 return ret;
1416 }
1417
1418 /**
1419 * ceph_find_incompatible - find an incompatible context and return it
1420 * @page: page being dirtied
1421 *
1422 * We are only allowed to write into/dirty a page if the page is
1423 * clean, or already dirty within the same snap context. Returns a
1424 * conflicting context if there is one, NULL if there isn't, or a
1425 * negative error code on other errors.
1426 *
1427 * Must be called with page lock held.
1428 */
1429 static struct ceph_snap_context *
ceph_find_incompatible(struct page * page)1430 ceph_find_incompatible(struct page *page)
1431 {
1432 struct inode *inode = page->mapping->host;
1433 struct ceph_inode_info *ci = ceph_inode(inode);
1434
1435 if (ceph_inode_is_shutdown(inode)) {
1436 dout(" page %p %llx:%llx is shutdown\n", page,
1437 ceph_vinop(inode));
1438 return ERR_PTR(-ESTALE);
1439 }
1440
1441 for (;;) {
1442 struct ceph_snap_context *snapc, *oldest;
1443
1444 wait_on_page_writeback(page);
1445
1446 snapc = page_snap_context(page);
1447 if (!snapc || snapc == ci->i_head_snapc)
1448 break;
1449
1450 /*
1451 * this page is already dirty in another (older) snap
1452 * context! is it writeable now?
1453 */
1454 oldest = get_oldest_context(inode, NULL, NULL);
1455 if (snapc->seq > oldest->seq) {
1456 /* not writeable -- return it for the caller to deal with */
1457 ceph_put_snap_context(oldest);
1458 dout(" page %p snapc %p not current or oldest\n", page, snapc);
1459 return ceph_get_snap_context(snapc);
1460 }
1461 ceph_put_snap_context(oldest);
1462
1463 /* yay, writeable, do it now (without dropping page lock) */
1464 dout(" page %p snapc %p not current, but oldest\n", page, snapc);
1465 if (clear_page_dirty_for_io(page)) {
1466 int r = writepage_nounlock(page, NULL);
1467 if (r < 0)
1468 return ERR_PTR(r);
1469 }
1470 }
1471 return NULL;
1472 }
1473
ceph_netfs_check_write_begin(struct file * file,loff_t pos,unsigned int len,struct folio ** foliop,void ** _fsdata)1474 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
1475 struct folio **foliop, void **_fsdata)
1476 {
1477 struct inode *inode = file_inode(file);
1478 struct ceph_inode_info *ci = ceph_inode(inode);
1479 struct ceph_snap_context *snapc;
1480
1481 snapc = ceph_find_incompatible(folio_page(*foliop, 0));
1482 if (snapc) {
1483 int r;
1484
1485 folio_unlock(*foliop);
1486 folio_put(*foliop);
1487 *foliop = NULL;
1488 if (IS_ERR(snapc))
1489 return PTR_ERR(snapc);
1490
1491 ceph_queue_writeback(inode);
1492 r = wait_event_killable(ci->i_cap_wq,
1493 context_is_writeable_or_written(inode, snapc));
1494 ceph_put_snap_context(snapc);
1495 return r == 0 ? -EAGAIN : r;
1496 }
1497 return 0;
1498 }
1499
1500 /*
1501 * We are only allowed to write into/dirty the page if the page is
1502 * clean, or already dirty within the same snap context.
1503 */
ceph_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1504 static int ceph_write_begin(struct file *file, struct address_space *mapping,
1505 loff_t pos, unsigned len,
1506 struct page **pagep, void **fsdata)
1507 {
1508 struct inode *inode = file_inode(file);
1509 struct ceph_inode_info *ci = ceph_inode(inode);
1510 struct folio *folio = NULL;
1511 int r;
1512
1513 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL);
1514 if (r < 0)
1515 return r;
1516
1517 folio_wait_fscache(folio);
1518 WARN_ON_ONCE(!folio_test_locked(folio));
1519 *pagep = &folio->page;
1520 return 0;
1521 }
1522
1523 /*
1524 * we don't do anything in here that simple_write_end doesn't do
1525 * except adjust dirty page accounting
1526 */
ceph_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * subpage,void * fsdata)1527 static int ceph_write_end(struct file *file, struct address_space *mapping,
1528 loff_t pos, unsigned len, unsigned copied,
1529 struct page *subpage, void *fsdata)
1530 {
1531 struct folio *folio = page_folio(subpage);
1532 struct inode *inode = file_inode(file);
1533 bool check_cap = false;
1534
1535 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
1536 inode, folio, (int)pos, (int)copied, (int)len);
1537
1538 if (!folio_test_uptodate(folio)) {
1539 /* just return that nothing was copied on a short copy */
1540 if (copied < len) {
1541 copied = 0;
1542 goto out;
1543 }
1544 folio_mark_uptodate(folio);
1545 }
1546
1547 /* did file size increase? */
1548 if (pos+copied > i_size_read(inode))
1549 check_cap = ceph_inode_set_size(inode, pos+copied);
1550
1551 folio_mark_dirty(folio);
1552
1553 out:
1554 folio_unlock(folio);
1555 folio_put(folio);
1556
1557 if (check_cap)
1558 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY);
1559
1560 return copied;
1561 }
1562
1563 const struct address_space_operations ceph_aops = {
1564 .read_folio = netfs_read_folio,
1565 .readahead = netfs_readahead,
1566 .writepage = ceph_writepage,
1567 .writepages = ceph_writepages_start,
1568 .write_begin = ceph_write_begin,
1569 .write_end = ceph_write_end,
1570 .dirty_folio = ceph_dirty_folio,
1571 .invalidate_folio = ceph_invalidate_folio,
1572 .release_folio = ceph_release_folio,
1573 .direct_IO = noop_direct_IO,
1574 };
1575
ceph_block_sigs(sigset_t * oldset)1576 static void ceph_block_sigs(sigset_t *oldset)
1577 {
1578 sigset_t mask;
1579 siginitsetinv(&mask, sigmask(SIGKILL));
1580 sigprocmask(SIG_BLOCK, &mask, oldset);
1581 }
1582
ceph_restore_sigs(sigset_t * oldset)1583 static void ceph_restore_sigs(sigset_t *oldset)
1584 {
1585 sigprocmask(SIG_SETMASK, oldset, NULL);
1586 }
1587
1588 /*
1589 * vm ops
1590 */
ceph_filemap_fault(struct vm_fault * vmf)1591 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
1592 {
1593 struct vm_area_struct *vma = vmf->vma;
1594 struct inode *inode = file_inode(vma->vm_file);
1595 struct ceph_inode_info *ci = ceph_inode(inode);
1596 struct ceph_file_info *fi = vma->vm_file->private_data;
1597 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
1598 int want, got, err;
1599 sigset_t oldset;
1600 vm_fault_t ret = VM_FAULT_SIGBUS;
1601
1602 if (ceph_inode_is_shutdown(inode))
1603 return ret;
1604
1605 ceph_block_sigs(&oldset);
1606
1607 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
1608 inode, ceph_vinop(inode), off);
1609 if (fi->fmode & CEPH_FILE_MODE_LAZY)
1610 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
1611 else
1612 want = CEPH_CAP_FILE_CACHE;
1613
1614 got = 0;
1615 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
1616 if (err < 0)
1617 goto out_restore;
1618
1619 dout("filemap_fault %p %llu got cap refs on %s\n",
1620 inode, off, ceph_cap_string(got));
1621
1622 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
1623 !ceph_has_inline_data(ci)) {
1624 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
1625 ceph_add_rw_context(fi, &rw_ctx);
1626 ret = filemap_fault(vmf);
1627 ceph_del_rw_context(fi, &rw_ctx);
1628 dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
1629 inode, off, ceph_cap_string(got), ret);
1630 } else
1631 err = -EAGAIN;
1632
1633 ceph_put_cap_refs(ci, got);
1634
1635 if (err != -EAGAIN)
1636 goto out_restore;
1637
1638 /* read inline data */
1639 if (off >= PAGE_SIZE) {
1640 /* does not support inline data > PAGE_SIZE */
1641 ret = VM_FAULT_SIGBUS;
1642 } else {
1643 struct address_space *mapping = inode->i_mapping;
1644 struct page *page;
1645
1646 filemap_invalidate_lock_shared(mapping);
1647 page = find_or_create_page(mapping, 0,
1648 mapping_gfp_constraint(mapping, ~__GFP_FS));
1649 if (!page) {
1650 ret = VM_FAULT_OOM;
1651 goto out_inline;
1652 }
1653 err = __ceph_do_getattr(inode, page,
1654 CEPH_STAT_CAP_INLINE_DATA, true);
1655 if (err < 0 || off >= i_size_read(inode)) {
1656 unlock_page(page);
1657 put_page(page);
1658 ret = vmf_error(err);
1659 goto out_inline;
1660 }
1661 if (err < PAGE_SIZE)
1662 zero_user_segment(page, err, PAGE_SIZE);
1663 else
1664 flush_dcache_page(page);
1665 SetPageUptodate(page);
1666 vmf->page = page;
1667 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
1668 out_inline:
1669 filemap_invalidate_unlock_shared(mapping);
1670 dout("filemap_fault %p %llu read inline data ret %x\n",
1671 inode, off, ret);
1672 }
1673 out_restore:
1674 ceph_restore_sigs(&oldset);
1675 if (err < 0)
1676 ret = vmf_error(err);
1677
1678 return ret;
1679 }
1680
ceph_page_mkwrite(struct vm_fault * vmf)1681 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
1682 {
1683 struct vm_area_struct *vma = vmf->vma;
1684 struct inode *inode = file_inode(vma->vm_file);
1685 struct ceph_inode_info *ci = ceph_inode(inode);
1686 struct ceph_file_info *fi = vma->vm_file->private_data;
1687 struct ceph_cap_flush *prealloc_cf;
1688 struct page *page = vmf->page;
1689 loff_t off = page_offset(page);
1690 loff_t size = i_size_read(inode);
1691 size_t len;
1692 int want, got, err;
1693 sigset_t oldset;
1694 vm_fault_t ret = VM_FAULT_SIGBUS;
1695
1696 if (ceph_inode_is_shutdown(inode))
1697 return ret;
1698
1699 prealloc_cf = ceph_alloc_cap_flush();
1700 if (!prealloc_cf)
1701 return VM_FAULT_OOM;
1702
1703 sb_start_pagefault(inode->i_sb);
1704 ceph_block_sigs(&oldset);
1705
1706 if (off + thp_size(page) <= size)
1707 len = thp_size(page);
1708 else
1709 len = offset_in_thp(page, size);
1710
1711 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
1712 inode, ceph_vinop(inode), off, len, size);
1713 if (fi->fmode & CEPH_FILE_MODE_LAZY)
1714 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
1715 else
1716 want = CEPH_CAP_FILE_BUFFER;
1717
1718 got = 0;
1719 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
1720 if (err < 0)
1721 goto out_free;
1722
1723 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
1724 inode, off, len, ceph_cap_string(got));
1725
1726 /* Update time before taking page lock */
1727 file_update_time(vma->vm_file);
1728 inode_inc_iversion_raw(inode);
1729
1730 do {
1731 struct ceph_snap_context *snapc;
1732
1733 lock_page(page);
1734
1735 if (page_mkwrite_check_truncate(page, inode) < 0) {
1736 unlock_page(page);
1737 ret = VM_FAULT_NOPAGE;
1738 break;
1739 }
1740
1741 snapc = ceph_find_incompatible(page);
1742 if (!snapc) {
1743 /* success. we'll keep the page locked. */
1744 set_page_dirty(page);
1745 ret = VM_FAULT_LOCKED;
1746 break;
1747 }
1748
1749 unlock_page(page);
1750
1751 if (IS_ERR(snapc)) {
1752 ret = VM_FAULT_SIGBUS;
1753 break;
1754 }
1755
1756 ceph_queue_writeback(inode);
1757 err = wait_event_killable(ci->i_cap_wq,
1758 context_is_writeable_or_written(inode, snapc));
1759 ceph_put_snap_context(snapc);
1760 } while (err == 0);
1761
1762 if (ret == VM_FAULT_LOCKED) {
1763 int dirty;
1764 spin_lock(&ci->i_ceph_lock);
1765 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
1766 &prealloc_cf);
1767 spin_unlock(&ci->i_ceph_lock);
1768 if (dirty)
1769 __mark_inode_dirty(inode, dirty);
1770 }
1771
1772 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
1773 inode, off, len, ceph_cap_string(got), ret);
1774 ceph_put_cap_refs_async(ci, got);
1775 out_free:
1776 ceph_restore_sigs(&oldset);
1777 sb_end_pagefault(inode->i_sb);
1778 ceph_free_cap_flush(prealloc_cf);
1779 if (err < 0)
1780 ret = vmf_error(err);
1781 return ret;
1782 }
1783
ceph_fill_inline_data(struct inode * inode,struct page * locked_page,char * data,size_t len)1784 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1785 char *data, size_t len)
1786 {
1787 struct address_space *mapping = inode->i_mapping;
1788 struct page *page;
1789
1790 if (locked_page) {
1791 page = locked_page;
1792 } else {
1793 if (i_size_read(inode) == 0)
1794 return;
1795 page = find_or_create_page(mapping, 0,
1796 mapping_gfp_constraint(mapping,
1797 ~__GFP_FS));
1798 if (!page)
1799 return;
1800 if (PageUptodate(page)) {
1801 unlock_page(page);
1802 put_page(page);
1803 return;
1804 }
1805 }
1806
1807 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
1808 inode, ceph_vinop(inode), len, locked_page);
1809
1810 if (len > 0) {
1811 void *kaddr = kmap_atomic(page);
1812 memcpy(kaddr, data, len);
1813 kunmap_atomic(kaddr);
1814 }
1815
1816 if (page != locked_page) {
1817 if (len < PAGE_SIZE)
1818 zero_user_segment(page, len, PAGE_SIZE);
1819 else
1820 flush_dcache_page(page);
1821
1822 SetPageUptodate(page);
1823 unlock_page(page);
1824 put_page(page);
1825 }
1826 }
1827
ceph_uninline_data(struct file * file)1828 int ceph_uninline_data(struct file *file)
1829 {
1830 struct inode *inode = file_inode(file);
1831 struct ceph_inode_info *ci = ceph_inode(inode);
1832 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode);
1833 struct ceph_osd_request *req = NULL;
1834 struct ceph_cap_flush *prealloc_cf = NULL;
1835 struct folio *folio = NULL;
1836 u64 inline_version = CEPH_INLINE_NONE;
1837 struct page *pages[1];
1838 int err = 0;
1839 u64 len;
1840
1841 spin_lock(&ci->i_ceph_lock);
1842 inline_version = ci->i_inline_version;
1843 spin_unlock(&ci->i_ceph_lock);
1844
1845 dout("uninline_data %p %llx.%llx inline_version %llu\n",
1846 inode, ceph_vinop(inode), inline_version);
1847
1848 if (ceph_inode_is_shutdown(inode)) {
1849 err = -EIO;
1850 goto out;
1851 }
1852
1853 if (inline_version == CEPH_INLINE_NONE)
1854 return 0;
1855
1856 prealloc_cf = ceph_alloc_cap_flush();
1857 if (!prealloc_cf)
1858 return -ENOMEM;
1859
1860 if (inline_version == 1) /* initial version, no data */
1861 goto out_uninline;
1862
1863 folio = read_mapping_folio(inode->i_mapping, 0, file);
1864 if (IS_ERR(folio)) {
1865 err = PTR_ERR(folio);
1866 goto out;
1867 }
1868
1869 folio_lock(folio);
1870
1871 len = i_size_read(inode);
1872 if (len > folio_size(folio))
1873 len = folio_size(folio);
1874
1875 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1876 ceph_vino(inode), 0, &len, 0, 1,
1877 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
1878 NULL, 0, 0, false);
1879 if (IS_ERR(req)) {
1880 err = PTR_ERR(req);
1881 goto out_unlock;
1882 }
1883
1884 req->r_mtime = inode->i_mtime;
1885 ceph_osdc_start_request(&fsc->client->osdc, req);
1886 err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1887 ceph_osdc_put_request(req);
1888 if (err < 0)
1889 goto out_unlock;
1890
1891 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1892 ceph_vino(inode), 0, &len, 1, 3,
1893 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1894 NULL, ci->i_truncate_seq,
1895 ci->i_truncate_size, false);
1896 if (IS_ERR(req)) {
1897 err = PTR_ERR(req);
1898 goto out_unlock;
1899 }
1900
1901 pages[0] = folio_page(folio, 0);
1902 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
1903
1904 {
1905 __le64 xattr_buf = cpu_to_le64(inline_version);
1906 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
1907 "inline_version", &xattr_buf,
1908 sizeof(xattr_buf),
1909 CEPH_OSD_CMPXATTR_OP_GT,
1910 CEPH_OSD_CMPXATTR_MODE_U64);
1911 if (err)
1912 goto out_put_req;
1913 }
1914
1915 {
1916 char xattr_buf[32];
1917 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
1918 "%llu", inline_version);
1919 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
1920 "inline_version",
1921 xattr_buf, xattr_len, 0, 0);
1922 if (err)
1923 goto out_put_req;
1924 }
1925
1926 req->r_mtime = inode->i_mtime;
1927 ceph_osdc_start_request(&fsc->client->osdc, req);
1928 err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1929
1930 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
1931 req->r_end_latency, len, err);
1932
1933 out_uninline:
1934 if (!err) {
1935 int dirty;
1936
1937 /* Set to CAP_INLINE_NONE and dirty the caps */
1938 down_read(&fsc->mdsc->snap_rwsem);
1939 spin_lock(&ci->i_ceph_lock);
1940 ci->i_inline_version = CEPH_INLINE_NONE;
1941 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
1942 spin_unlock(&ci->i_ceph_lock);
1943 up_read(&fsc->mdsc->snap_rwsem);
1944 if (dirty)
1945 __mark_inode_dirty(inode, dirty);
1946 }
1947 out_put_req:
1948 ceph_osdc_put_request(req);
1949 if (err == -ECANCELED)
1950 err = 0;
1951 out_unlock:
1952 if (folio) {
1953 folio_unlock(folio);
1954 folio_put(folio);
1955 }
1956 out:
1957 ceph_free_cap_flush(prealloc_cf);
1958 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
1959 inode, ceph_vinop(inode), inline_version, err);
1960 return err;
1961 }
1962
1963 static const struct vm_operations_struct ceph_vmops = {
1964 .fault = ceph_filemap_fault,
1965 .page_mkwrite = ceph_page_mkwrite,
1966 };
1967
ceph_mmap(struct file * file,struct vm_area_struct * vma)1968 int ceph_mmap(struct file *file, struct vm_area_struct *vma)
1969 {
1970 struct address_space *mapping = file->f_mapping;
1971
1972 if (!mapping->a_ops->read_folio)
1973 return -ENOEXEC;
1974 vma->vm_ops = &ceph_vmops;
1975 return 0;
1976 }
1977
1978 enum {
1979 POOL_READ = 1,
1980 POOL_WRITE = 2,
1981 };
1982
__ceph_pool_perm_get(struct ceph_inode_info * ci,s64 pool,struct ceph_string * pool_ns)1983 static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
1984 s64 pool, struct ceph_string *pool_ns)
1985 {
1986 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(&ci->netfs.inode);
1987 struct ceph_mds_client *mdsc = fsc->mdsc;
1988 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
1989 struct rb_node **p, *parent;
1990 struct ceph_pool_perm *perm;
1991 struct page **pages;
1992 size_t pool_ns_len;
1993 int err = 0, err2 = 0, have = 0;
1994
1995 down_read(&mdsc->pool_perm_rwsem);
1996 p = &mdsc->pool_perm_tree.rb_node;
1997 while (*p) {
1998 perm = rb_entry(*p, struct ceph_pool_perm, node);
1999 if (pool < perm->pool)
2000 p = &(*p)->rb_left;
2001 else if (pool > perm->pool)
2002 p = &(*p)->rb_right;
2003 else {
2004 int ret = ceph_compare_string(pool_ns,
2005 perm->pool_ns,
2006 perm->pool_ns_len);
2007 if (ret < 0)
2008 p = &(*p)->rb_left;
2009 else if (ret > 0)
2010 p = &(*p)->rb_right;
2011 else {
2012 have = perm->perm;
2013 break;
2014 }
2015 }
2016 }
2017 up_read(&mdsc->pool_perm_rwsem);
2018 if (*p)
2019 goto out;
2020
2021 if (pool_ns)
2022 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
2023 pool, (int)pool_ns->len, pool_ns->str);
2024 else
2025 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
2026
2027 down_write(&mdsc->pool_perm_rwsem);
2028 p = &mdsc->pool_perm_tree.rb_node;
2029 parent = NULL;
2030 while (*p) {
2031 parent = *p;
2032 perm = rb_entry(parent, struct ceph_pool_perm, node);
2033 if (pool < perm->pool)
2034 p = &(*p)->rb_left;
2035 else if (pool > perm->pool)
2036 p = &(*p)->rb_right;
2037 else {
2038 int ret = ceph_compare_string(pool_ns,
2039 perm->pool_ns,
2040 perm->pool_ns_len);
2041 if (ret < 0)
2042 p = &(*p)->rb_left;
2043 else if (ret > 0)
2044 p = &(*p)->rb_right;
2045 else {
2046 have = perm->perm;
2047 break;
2048 }
2049 }
2050 }
2051 if (*p) {
2052 up_write(&mdsc->pool_perm_rwsem);
2053 goto out;
2054 }
2055
2056 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2057 1, false, GFP_NOFS);
2058 if (!rd_req) {
2059 err = -ENOMEM;
2060 goto out_unlock;
2061 }
2062
2063 rd_req->r_flags = CEPH_OSD_FLAG_READ;
2064 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
2065 rd_req->r_base_oloc.pool = pool;
2066 if (pool_ns)
2067 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
2068 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
2069
2070 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
2071 if (err)
2072 goto out_unlock;
2073
2074 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2075 1, false, GFP_NOFS);
2076 if (!wr_req) {
2077 err = -ENOMEM;
2078 goto out_unlock;
2079 }
2080
2081 wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
2082 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
2083 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
2084 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
2085
2086 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
2087 if (err)
2088 goto out_unlock;
2089
2090 /* one page should be large enough for STAT data */
2091 pages = ceph_alloc_page_vector(1, GFP_KERNEL);
2092 if (IS_ERR(pages)) {
2093 err = PTR_ERR(pages);
2094 goto out_unlock;
2095 }
2096
2097 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
2098 0, false, true);
2099 ceph_osdc_start_request(&fsc->client->osdc, rd_req);
2100
2101 wr_req->r_mtime = ci->netfs.inode.i_mtime;
2102 ceph_osdc_start_request(&fsc->client->osdc, wr_req);
2103
2104 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
2105 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
2106
2107 if (err >= 0 || err == -ENOENT)
2108 have |= POOL_READ;
2109 else if (err != -EPERM) {
2110 if (err == -EBLOCKLISTED)
2111 fsc->blocklisted = true;
2112 goto out_unlock;
2113 }
2114
2115 if (err2 == 0 || err2 == -EEXIST)
2116 have |= POOL_WRITE;
2117 else if (err2 != -EPERM) {
2118 if (err2 == -EBLOCKLISTED)
2119 fsc->blocklisted = true;
2120 err = err2;
2121 goto out_unlock;
2122 }
2123
2124 pool_ns_len = pool_ns ? pool_ns->len : 0;
2125 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
2126 if (!perm) {
2127 err = -ENOMEM;
2128 goto out_unlock;
2129 }
2130
2131 perm->pool = pool;
2132 perm->perm = have;
2133 perm->pool_ns_len = pool_ns_len;
2134 if (pool_ns_len > 0)
2135 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
2136 perm->pool_ns[pool_ns_len] = 0;
2137
2138 rb_link_node(&perm->node, parent, p);
2139 rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
2140 err = 0;
2141 out_unlock:
2142 up_write(&mdsc->pool_perm_rwsem);
2143
2144 ceph_osdc_put_request(rd_req);
2145 ceph_osdc_put_request(wr_req);
2146 out:
2147 if (!err)
2148 err = have;
2149 if (pool_ns)
2150 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
2151 pool, (int)pool_ns->len, pool_ns->str, err);
2152 else
2153 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
2154 return err;
2155 }
2156
ceph_pool_perm_check(struct inode * inode,int need)2157 int ceph_pool_perm_check(struct inode *inode, int need)
2158 {
2159 struct ceph_inode_info *ci = ceph_inode(inode);
2160 struct ceph_string *pool_ns;
2161 s64 pool;
2162 int ret, flags;
2163
2164 /* Only need to do this for regular files */
2165 if (!S_ISREG(inode->i_mode))
2166 return 0;
2167
2168 if (ci->i_vino.snap != CEPH_NOSNAP) {
2169 /*
2170 * Pool permission check needs to write to the first object.
2171 * But for snapshot, head of the first object may have alread
2172 * been deleted. Skip check to avoid creating orphan object.
2173 */
2174 return 0;
2175 }
2176
2177 if (ceph_test_mount_opt(ceph_inode_to_fs_client(inode),
2178 NOPOOLPERM))
2179 return 0;
2180
2181 spin_lock(&ci->i_ceph_lock);
2182 flags = ci->i_ceph_flags;
2183 pool = ci->i_layout.pool_id;
2184 spin_unlock(&ci->i_ceph_lock);
2185 check:
2186 if (flags & CEPH_I_POOL_PERM) {
2187 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
2188 dout("ceph_pool_perm_check pool %lld no read perm\n",
2189 pool);
2190 return -EPERM;
2191 }
2192 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
2193 dout("ceph_pool_perm_check pool %lld no write perm\n",
2194 pool);
2195 return -EPERM;
2196 }
2197 return 0;
2198 }
2199
2200 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
2201 ret = __ceph_pool_perm_get(ci, pool, pool_ns);
2202 ceph_put_string(pool_ns);
2203 if (ret < 0)
2204 return ret;
2205
2206 flags = CEPH_I_POOL_PERM;
2207 if (ret & POOL_READ)
2208 flags |= CEPH_I_POOL_RD;
2209 if (ret & POOL_WRITE)
2210 flags |= CEPH_I_POOL_WR;
2211
2212 spin_lock(&ci->i_ceph_lock);
2213 if (pool == ci->i_layout.pool_id &&
2214 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
2215 ci->i_ceph_flags |= flags;
2216 } else {
2217 pool = ci->i_layout.pool_id;
2218 flags = ci->i_ceph_flags;
2219 }
2220 spin_unlock(&ci->i_ceph_lock);
2221 goto check;
2222 }
2223
ceph_pool_perm_destroy(struct ceph_mds_client * mdsc)2224 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
2225 {
2226 struct ceph_pool_perm *perm;
2227 struct rb_node *n;
2228
2229 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
2230 n = rb_first(&mdsc->pool_perm_tree);
2231 perm = rb_entry(n, struct ceph_pool_perm, node);
2232 rb_erase(n, &mdsc->pool_perm_tree);
2233 kfree(perm);
2234 }
2235 }
2236